当前位置:文档之家› 信号与电源完整性分拆与设计-李玉山第10讲

信号与电源完整性分拆与设计-李玉山第10讲

信号及电源完整性分析与设计[Chapter10]
第十讲
PCB多线网间的串扰分析
西安电子科技大学电路CAD研究所
李玉山
1

10.0
串扰是什么
串扰是发生在两个线网之间的一种耦合效应。任何两 条线网之间都存在串扰。串扰与线网整个的信号-返回 路径回路都密切相关。 此处只讲传导串扰,不涉及辐射串扰。 图 10.1 给出一条3.3V 信号的攻击线和旁边的受害线, 图中是攻击线/受害线的接收器波形和噪声情况(显然,此
例中攻击、受害线均只用源端匹配)。受害接收器的噪声大
于300mV。
2

图10.1
一条动态线在静态线上串扰大于10%。线条为FR4具有源端串联 50Ω匹配的微带线,线宽和线间隔都是10 mil
3 (学完图10.37即可理解此图,这是源端匹配后真实的动态线/静态线远端接受波形)

10.1
噪声的可叠加性
可叠加是所有线性无源系统(包括互连)的一个性质。从 动态线网上耦合到静态线网上的总电压与静态线网上原 有的电压进行叠加。 当静态线上的电压为0V时,3.3V的驱动器在静态线上 产生的噪声为150mV。当静态线电压为3.3V时,所产生的 噪声仍然是 150mV 。静态线上的总电压为原信号电压和 耦合噪声电压之和。如果有两个动态线网将噪音耦合到 同一静态线上,则静态线上的总噪声就是这两个噪声之 和。
4

以前,将无源的 “ 地线 ” 看作是不变的零电位,这本身 就是误引导。所以,这里强调分析信号完整性时不要轻 言“地”的概念。即使将返回路径说成“地”,其电平依然是 各式直流和交流电平的线性叠加! 一旦静态线上出现噪声,此噪声源就和信号一样感受 到相同的瞬时阻抗。应运而生的反射和串扰也会叠加, 要尽量同时消除各种反射和串扰。 如果静态线的每一边都有一条动态线,则每一对线之 间的最大可容许噪声为1/2×5%=2.5%。对于总线结构, 所有的攻击线都耦合到静态线,合成为一个最坏情况。
5

10.2
耦合途径: 互容和互感
当信号沿线传播时,在信号路径和返回路径之间将产 生电力线;围绕在信号路径和返回路径周围也有磁力线匝 。这些场还会延伸到周围的空间。这些延伸出去的场被称 为边缘场(本质上,场和路是一样的)。 离导线越远,其边缘场迅速下降。图10.2给出了在导 线信号路径和返回路径间的主场和边缘场。分别位于远处 和近处的另一个线网,将感受到不同的边缘场耦合力。
6

图10.2
当两导线相距较远时,边缘场耦合和串扰非常小。当另一导线在 边缘场附近时,耦合和串扰就很大
经验法则: 边缘场对应的电容,约等于信号线下方电力线直接对应 的电容。
形成串扰的因素是回路间的互容和互感。
7

10.3
互连近端/远端串扰
信号从动态线一端输入。两条线的近端、远端都加以匹 配就消除了反射,可认为此处只有串扰。 图10.3是测量串扰的结构。静态线两端接到高速示波器 的输入端,同时测量近、远两端的噪声电压。
近端串扰
远端串扰
图10.3
测量动态线网和静态线网之间串扰的结构,在静态线的远端和近端观察串扰 8

图10.4给出相邻静态线近、远两端的噪声电压。此例中 ,两条50Ω微带传输线大约4in长,线间距=线宽。每条线 两端都有50Ω匹配电阻器,反射可忽略不计。
图10.4
动态线由200mV、上升边为50ps的信号驱动时,在静态线上测得的 噪声(红色:近端;蓝色:远端)
9

为了区分两个末端,把距离驱动源端最近的一 端称为 “ 近端 ” ,离源端最远的接收一端称为 “ 远端 ” 。 把这个两端都端接匹配下的恒定近端噪声饱和 量称为近端串扰(或NEXT,Near End X-Talk)系数 。 在上例中,入射信号为200mV,NEXT大约是13mV ,约为入射信号的6.5%。
10

对于远端,在一段时间后才会有远端噪声。噪声脉 冲的宽度就是信号的上升边,峰值电压称为端接匹配 下的远端串扰(或FEXT,Far End X-Talk)系数。 在上面的例子中,FEXT电压值大约是60mV,与输入 信号电压200mV相比,FEXT为信号的30%。这是一个很 大的噪声,所以要特别警惕远端串扰。
11

如果端接不匹配,反射也将影响噪声的幅度,使 问题复杂化。这时,虽然我们仍提及远端串扰,但 其幅度不能再称为FEXT,因为该系数是在端接匹配 特殊情况下测得的噪声幅度。
以后会理解,有三个因素可以减小 FEXT:减小耦合长度 L(累积↓)、拉长上升边(di/dt↓),加大线条间的距离(S↑)(可 参考式10.21)。
12

10.4
串扰的互容互感模型
串扰的互容互感耦合模型——两条线分别用n节集总电 路描述,它们间的耦合可用互容/互感描述。其中一节的 电路模型如图10.5所示。
图10.5
n节耦合传输线模型中一节
13

与前面几讲已经讲过的一样,互连建模要的节数 取决于模型带宽和线时延,最小节数为(7.44式):
n > 10 × BW × TD
其中:n 精确模型所需LC集总电路的最小节数 BW TD 模型的带宽, GHz 每条传输线的时延,ns
(10.1)
14

10.5
SPICE电容矩阵
这样,多条互连网可以用一个电容或电感矩阵描述。用 矩阵元素的下标标识线的编号。如果有5条线,我们就用1 ~5来分别标记;按惯例,把返回路径标记为导线0。图 10.6给出了5条导线和一个公用返回平面0的横截面图。我 们首先考虑电容/互容,后面再讨论电感/互感。
图10.6
5条耦合传输线横截面,每一条用下标n标记
15

图10.7 5条耦合传输线的等效电容模型和相应的电容参数值矩阵
注意,矩阵中的C41和C14,是指同一个电容值。这里为 了充分与矩阵对角线元素的写法一致,将Cn0 一律记为 Cnn。
16

一组5条微带线的SPICE电容矩阵示例结果,如图10.8 所示。
图10.8
5条耦合传输线的SPICE单位长度电容矩阵,单位为pF/in, 线宽=线间距各为5mil
17

电源完整性分析(于争博士)

电源完整性设计 作者:于博士 一、为什么要重视电源噪声 芯片内部有成千上万个晶体管,这些晶体管组成内部的门电路、组合逻辑、寄存器、计数器、延迟线、状态机、以及其他逻辑功能。随着芯片的集成度越来越高,内部晶体管数量越来越大。芯片的外部引脚数量有限,为每一个晶体管提供单独的供电引脚是不现实的。芯片的外部电源引脚提供给内部晶体管一个公共的供电节点,因此内部晶体管状态的转换必然引起电源噪声在芯片内部的传递。 对内部各个晶体管的操作通常由内核时钟或片内外设时钟同步,但是由于内部延时的差别,各个晶体管的状态转换不可能是严格同步的,当某些晶体管已经完成了状态转换,另一些晶体管可能仍处于转换过程中。芯片内部处于高电平的门电路会把电源噪声传递到其他门电路的输入部分。如果接受电源噪声的门电路此时处于电平转换的不定态区域,那么电源噪声可能会被放大,并在门电路的输出端产生矩形脉冲干扰,进而引起电路的逻辑错误。芯片外部电源引脚处的噪声通过内部门电路的传播,还可能会触发内部寄存器产生状态转换。 除了对芯片本身工作状态产生影响外,电源噪声还会对其他部分产生影响。比如电源噪声会影响晶振、PLL、DLL的抖动特性,AD转换电路的转换精度等。解释这些问题需要非常长的篇幅,本文不做进一步介绍,我会在后续文章中详细讲解。 由于最终产品工作温度的变化以及生产过程中产生的不一致性,如果是由于电源系统产生的问题,电路将非常难调试,因此最好在电路设计之初就遵循某种成熟的设计规则,使电源系统更加稳健。 二、电源系统噪声余量分析 绝大多数芯片都会给出一个正常工作的电压范围,这个值通常是±5%。例如:对于3.3V 电压,为满足芯片正常工作,供电电压在3.13V到3.47V之间,或3.3V±165mV。对于1.2V 电压,为满足芯片正常工作,供电电压在1.14V到1.26V之间,或1.2V±60mV。这些限制可以在芯片datasheet中的recommended operating conditions部分查到。这些限制要考虑两个部分,第一是稳压芯片的直流输出误差,第二是电源噪声的峰值幅度。老式的稳压芯片

伯格丁信号完整性-学习笔记

写在前言:作为一个还在layout门口徘徊的小虾米,贸然记录自己的学习想法是可笑的。但每个人并不是出生 就会成为大神。只不过有的人天分好,机遇也把握得当,在相对短的时间内,成为万众瞩目的高手。很可惜本 人天生愚钝,机遇又很差,在毕业后的三年里浑浑噩噩的憧憬自己的人生,做着自己不喜欢的工程,每天跟着 工程队奔波在广阔的祖国大地。不经意在工作的最后阶段接触到PCB设计。对于没有耐心和毅力的我,突然感 觉这才是我的人生方向,因为突然发现在绘制板图的时候,我可以很有耐心的拉扯每一条线,呵呵难道这一条 条显示屏上的线便是我的命运之线么?如饥似渴的读完买回来的书,又囫囵吞枣的大致看了两遍。感觉到一个 人的学习是空虚乏味的,于是想在咱们论坛与各位同我一样,还趴在门缝里仰慕者殿堂中的大神的新手们共同 体会我的学习体会。本人至今自学,没有老师带路,言语中的偏差错误,望各位高手给予我醍醐灌顶的指正。 在此感谢Eric Bogatin 感谢国内的翻译者李玉山、李丽平等,是他们让我趴在SI的门缝,让我有机会一窥我的 成神目标。让论坛记录成神的历程吧!哈哈有些夸口,目标定的太高,大家勿笑。 我的第一本SI教材:Signal integrity:simplified(信号完整性讲义)也是我目前唯一学习过的教材。废话不多说, 直接上酸菜! 信号完整性问题十个基本准则:前三个为设计理念,后八个为设计思路。 影响研发进度并造成产品产品交货推迟,就是企业付出的最昂贵代价。 体会:在论坛中常常争论,是质量重要还是工期重要!我认为都重要,所有的工程都是一个平衡过程,而不是 单单一种。质量固然重要,但最重要的是适应性,因为整个工业流程中并不仅仅只是画线路板,最终交到消费 者手里才是完整的工艺流程。如果仅仅是为了吹毛求疵而耽误了工期,那么整个工业流程都会耽误。导致产品 上市时间推迟,损失不可计量。但为了赶工期,而设计出不合格的产品,那么只能说设计者能力不够。或者这 家公司没有这个实力在行业内生存。所以我个人认为:一个优秀的设计者最重要的能力是能够把握质量与工期 的平衡关系,在合适的工期内完成满足产品质量。至于大神我估计是在要求的工期内,使产品的质量得到飞跃。 1 b* N* h1 T3 _: k6 X5 U 二:提高高速产品设计效率的关键是:充分利用分析工具来实现准确的性能预测;使用测量手段来验证设计过程、降低风险、提高设计工具的可信度。 体会:还没用过仿真,认为仿真等的作用是提高可信度,降低风险。如果板级设计所留预量足够,可以简单的 用公式计算和经验来代替仿真。 三:将问题实质与表面现象剥离开的唯一可行的途径就是采用经验法则、解析近似、数值仿真或者测量工具来 获得数据。这是工程实践的本质。! B( Y8 p. B ] 体会:没做过仿真,不知道仿真所需时间。依我来看,以上所说应相对应工程的要求,如果所作产品要求不严格,或者裕量很大,最快的方法是采用经验法则。对于裕量在20~5%的可以采用解析近似。此书上大部分公式 及近似值都在10%-5%左右。对于要求更严格的裕量便可采用仿真。裕量大概在2-3%左右。比如DDR等。对于要求更严格的,建模无法满足精度的情况下,即需要直接用测量工具来测量。耗时应该说是逐层递加。 四:信号由信号路径和返回路径构成。一个信号在沿着传输线流动过程中每一时刻都会感受到特性阻抗。如果 瞬态阻抗为常数,则其信号质量将会获得奇迹般的改善。 体会:忘掉覆铜地的概念,在设计初期考虑信号线走向时,就要优先考虑地平面或其他信号返回路径。防止电 路板在绘制完信号线后,突然发现返回的地平面出现“濠”,导致高速信号线需要重新规划。单根传输线最优的 工作方式是点对点,源阻抗=传输线特性阻抗=负载阻抗。在特性阻抗恒定的情况下,Tr保持不变,变的仅仅是 信号的幅值。 不明:在线路规划时,一个芯片N个I/O口,而相对的地引脚很少。按照高速信号线返回路径为靠近信号线理论。岂不是在信号的接收端,N条信号线同时走在同一个GND引脚,便会造成信号返回线之间的串扰了么?这样做假设N条信号线同时工作,便会造成很严重的地弹么?芯片的设计原理是什么?- e. f, k7 @) F# { 五:把接地这一术语忘掉,因为它所造成的问题比用它来解决的问题还多。每一路信号都有返回路径。 体会:个人感觉同上。把接地等同于信号线设计,估计返工的情况大减。不要轻易相信覆铜的威力,覆铜不是 铺设地的万金油。并且不合理的覆铜还会引入其他问题,6 s% x) r; M9 K% z+ M3 r5 c 六:当电压变化时,电容上就有电流流过。对于信号的陡峭边,即使电路的PCB板边缘和悬空导线之间的空气 形成的边缘线电容也可能有很低的阻抗。 体会:电容的原理嘛,两个平行板之间只要有电压差就有电容的存在。电容的作用:隔直通交。会使陡峭的信 号进入别的导线中。Tr小导致两个问题:1.串扰的发生。2:特性阻抗的变化。两个问题都导致信号受干扰。电 容本质上属于一个电压源。. J( e) O2 U. i1 [ 七:电感与通过的电流所产生的磁力线匝数有本质关系。只要电流或者磁力线匝数发生改变,在导线的两端就 会产生电压。这一电压导致了反射噪声、串扰、开关噪声、地弹、轨道塌陷以及EMI。- r' E5 P% G, [: W" }, l 体会:电感并不是电感,而是磁场效应。改变磁场,便会产生阻碍磁场变化的电流。本质上属于一个电流源。 反射噪声原因:特性阻抗发生变化;串扰原因:切割磁力线,产生电流;开关噪声:概念不懂,明天查查。 八:当流经接地回路电感上的电流变化时,在接地回路导线上产生的电压称之为地弹。它是造成开关噪声和 EMI的内部机理。! a! ~1 L4 Q0 Y9 l3 g 体会:所谓“地弹”,是指芯片内部“地”电平相对于电路板“地”电平的变化现象。以电路板“地”为参考,就像是芯

电源完整性设计详解

于博士信号完整性研究网 https://www.doczj.com/doc/c78197291.html, 电源完整性设计详解 作者:于争 博士 2009年4月10日

目 录 1 为什么要重视电源噪声问题?....................................................................- 1 - 2 电源系统噪声余量分析................................................................................- 1 - 3 电源噪声是如何产生的?............................................................................- 2 - 4 电容退耦的两种解释....................................................................................- 3 - 4.1 从储能的角度来说明电容退耦原理。..............................................- 3 - 4.2 从阻抗的角度来理解退耦原理。......................................................- 4 - 5 实际电容的特性............................................................................................- 5 - 6 电容的安装谐振频率....................................................................................- 8 - 7 局部去耦设计方法......................................................................................- 10 - 8 电源系统的角度进行去耦设计..................................................................- 12 - 8.1 著名的Target Impedance(目标阻抗)..........................................- 12 - 8.2 需要多大的电容量............................................................................- 13 - 8.3 相同容值电容的并联........................................................................- 15 - 8.4 不同容值电容的并联与反谐振(Anti-Resonance)......................- 16 - 8.5 ESR对反谐振(Anti-Resonance)的影响......................................- 17 - 8.6 怎样合理选择电容组合....................................................................- 18 - 8.7 电容的去耦半径................................................................................- 20 - 8.8 电容的安装方法................................................................................- 21 - 9 结束语..........................................................................................................- 24 -

五款信号完整性仿真工具介绍

现在的高速电路设计已经达到GHz的水平,高速PCB设计要求从三维设计理论出发对过孔、封装和布线进行综合设计来解决信号完整性问题。高速PCB设计要求中国工程师必须具备电磁场的理论基础,必须懂得利用麦克斯韦尔方程来分析PCB设计过程中遇到的电磁场问题。目前,Ansoft公司的仿真工具能够从三维场求解的角度出发,对PCB设计的信号完整性问题进行动态仿真。 (一)Ansoft公司的仿真工具 现在的高速电路设计已经达到GHz的水平,高速PCB设计要求从三维设计理论出发对过孔、封装和布线进行综合设计来解决信号完整性问题。高速PCB设计要求中国工程师必须具备电磁场的理论基础,必须懂得利用麦克斯韦尔方程来分析PCB设计过程中遇到的电磁场问题。目前,Ansoft公司的仿真工具能够从三维场求解的角度出发,对PCB设计的信号完整性问题进行动态仿真。 Ansoft的信号完整性工具采用一个仿真可解决全部设计问题: SIwave是一种创新的工具,它尤其适于解决现在高速PCB和复杂IC封装中普遍存在的电源输送和信号完整性问题。 该工具采用基于混合、全波及有限元技术的新颖方法,它允许工程师们特性化同步开关噪声、电源散射和地散射、谐振、反射以及引线条和电源/地平面之间的耦合。该工具采用一个仿真方案解决整个设计问题,缩短了设计时间。 它可分析复杂的线路设计,该设计由多重、任意形状的电源和接地层,以及任何数量的过孔和信号引线条构成。仿真结果采用先进的3D图形方式显示,它还可产生等效电路模型,使商业用户能够长期采用全波技术,而不必一定使用专有仿真器。 (二)SPECCTRAQuest Cadence的工具采用Sun的电源层分析模块: Cadence Design Systems的SpecctraQuest PCB信号完整性套件中的电源完整性模块据称能让工程师在高速PCB设计中更好地控制电源层分析和共模EMI。 该产品是由一份与Sun Microsystems公司签署的开发协议而来的,Sun最初研制该项技术是为了解决母板上的电源问题。 有了这种新模块,用户就可根据系统要求来算出电源层的目标阻抗;然后基于板上的器件考虑去耦合要求,Shah表示,向导程序能帮助用户确定其设计所要求的去耦合电容的数目和类型;选择一组去耦合电容并放置在板上之后,用户就可运行一个仿真程序,通过分析结果来发现问题所在。 SPECCTRAQuest是CADENCE公司提供的高速系统板级设计工具,通过它可以控制与PCB layout相应的限制条件。在SPECCTRAQuest菜单下集成了一下工具: (1)SigXplorer可以进行走线拓扑结构的编辑。可在工具中定义和控制延时、特性阻抗、驱动和负载的类型和数量、拓扑结构以及终端负载的类型等等。可在PCB详细设计前使用此工具,对互连线的不同情况进行仿真,把仿真结果存为拓扑结构模板,在后期详细设计中应用这些模板进行设计。 (2)DF/Signoise工具是信号仿真分析工具,可提供复杂的信号延时和信号畸变分析、IBIS 模型库的设置开发功能。SigNoise是SPECCTRAQUEST SI Expert和SQ Signal Explorer Expert进行分析仿真的仿真引擎,利用SigNoise可以进行反射、串扰、SSN、EMI、源同步及系统级的仿真。 (3)DF/EMC工具——EMC分析控制工具。 (4)DF/Thermax——热分析控制工具。 SPECCTRAQuest中的理想高速PCB设计流程: 由上所示,通过模型的验证、预布局布线的space分析、通过floorplan制定拓朴规则、由规

电源完整性基础理论

电源完整性理论基础 ------- 阿鸣随着PCB设计复杂度的逐步提高,对于信号完整性的分析除了反射,串扰以及EMI之外,稳定可靠的电源供应也成为设计者们重点研究的方向之一。尤其当开关器件数目不断增加,核心电压不断减小的时候,电源的波动往往会给系统带来致命的影响,于是人们提出了新的名词:电源完整性,简称PI(power integrity)。其实,PI和SI是紧密联系在一起的,只是以往的EDA仿真工具在进行信号完整性分析时,一般都是简单地假设电源绝对处于稳定状态,但随着系统设计对仿真精度的要求不断提高,这种假设显然是越来越不能被接受的,于是PI的研究分析也应运而生。从广义上说,PI是属于SI研究范畴之内的,而新一代的信号完整性仿真必须建立在可靠的电源完整性基础之上。虽然电源完整性主要是讨论电源供给的稳定性问题,但由于地在实际系统中总是和电源密不可分,通常把如何减少地平面的噪声也作为电源完整性中的一部分进行讨论。 一. 电源噪声的起因及危害 造成电源不稳定的根源主要在于两个方面:一是器件高速开关状态下,瞬态的交变电流过大;二是电流回路上存在的电感。从表现形式上来看又可以分为三类:同步开关噪声(SSN),有时被称为Δi噪声,地弹(Ground bounce)现象也可归于此类(图1-a);非理想电源阻抗影响(图1-b);谐振及边缘效应(图1-c)。

对于一个理想的电源来说,其阻抗为零,在平面任何一点的电位都是保持恒定的(等于系统供给电压),然而实际的情况并不如此,而是存在很大的噪声干扰,甚至有可能影响系统的正常工作,见图2: 开关噪声给信号传输带来的影响更为显著,由于地引线和平面存在寄生电感,在开关电流的作用下,会造成一定的电压波动,也就是说器件的参考地已经不再保持零电平,这样,在驱动端(见图3-a),本来要发送的低电平会出现相应的噪声波形,相位和地面噪声相同,而对于开关信号波形来说,会因为地噪声的影响导致信号的下降沿变缓;在接收端(见图3-b),信号的波形同样会受到地噪声的干扰,不过这时的干扰波形和地噪声相位相反;另外,在一些存储性器件里,还有可能因为本身电源和地噪声的影响造成数据意外翻转(图3-c)。 从前面的图3-c我们可以看到,电源平面其实可以看成是由很多电感和电容构成的网络,也可以看成是一个共振腔,在一定频率下,这些电容和电感会发生谐振现象,从而影响电源层的阻抗。比如一个8英寸×9英寸的PCB空板,板材是普通的FR4,电源和地之间的间距为4.5Mils,随着频率的增加,电源阻抗是不断变化的,尤其是在并联谐振效应显著的时候,电源阻抗也随之明显增加(见图4)。

PCB板级信号完整性的仿真及应用

作者简介:曹宇(1969-),男,上海人,硕士,工程师. 第6卷第 6期 2006年12月泰州职业技术学院学报 JournalofTaizhouPolytechnicalInstituteVol.6No.6 Dec.2006摘要:针对高速数字电路印刷电路板的板级信号完整性,分析了IBIS模型在板级信号完整 性分析中的作用。利用ADS仿真软件,采用电磁仿真建模和电路瞬态仿真测试了某个 实际电路版图,给出了实际分析结果。 关键词:信号完整性;IBIS;仿真;S参数 中图分类号:TP391.9文献标识码:A文章编号:1671-0142(2006)06-0030-03 信号完整性(SI,SignalIntegrity)的概念是针对高速数字信号提出来的。以往的数字产品,其时钟或数据频率在几十兆之内时,信号的上升时间大多在几个纳秒,甚至几十纳秒以上。数字化产品设计工程师关注最多的是“数字设计”保证逻辑正确。随着数字技术的飞速发展,原先只是在集成电路芯片设计中需要考虑的问题[1]在PCB板级设计中正在逐步显现出来,并由此提出了信号完整性的概念。 在众多的讲述信号完整性的论文和专著中[2,3],对信号完整性的描述都是从信号传输过程中可能出现的问题(比如串扰,阻抗匹配,电磁兼容,抖动等)本身来讨论信号完整性,对信号完整性没有一个统一的定义。事实上,信号完整性是指信号在通过一定距离的传输路径后在特定接收端口相对指定发送端口信号的还原程度,这个还原程度是指在指定的收发参考端口,发送芯片输出处及接收芯片输入处的波形需满足系统设计的要求[4]。 1、板级信号完整性分析 1.1信号完整性分析内容的确定 信号完整性分析工作是一项产品开发全流程工作,从产品设计阶段开始一直延续到产品定型。PCB板级设计同样如此。在系统设计阶段,产品还没有进入试制,需要建立相应的系统模型并得到仿真结果以验证设计思想和设计体系正确与否,这个阶段称前仿真;前仿真通过后,产品投入试制,样品出来后再进行相应的测试和仿真,这个阶段称后仿真。假如将每一块PCB板视为一个系统,影响这个系统正常工作的信号问题涉及到所有的硬件和软件,包括芯片、封装、PCB物理结构、电源及电源传输网络和协议。 对系统所有部分都进行仿真验证是不现实的。应根据系统设计的要求选定部分内容进行测试仿真。本文所提及的“板级信号完整性分析”仅针对芯片引脚和走线的互连状态分析。 当被传输的信号脉冲时间参量(如上升时间、传输时间等)已缩短至和互连线上电磁波传输时间处于同一个量级时,信号在互连线上呈现波动效应,应采用微波传输线或分布电路的模型来对待互连线,从而产生了时延、畸变、回波、相邻线之间的干扰噪声等所谓的“互连效应”[1]。 假设PCB板上芯片引脚的输入输出信号都是“干净”的,那么只要考虑互连线路本身的互连效应。事实上,每个芯片引脚在封装时都有其独特的线路特性,这些特性是由其内部的晶体管特性决定的,同样的信号在不同引脚上的传输效率差异很大。因此,在分析信号传输的互连效应时必须考虑芯片内部的电路特性以提取相对准确的电路模型,并在此基础上作进一步的分析。这个模型就是在业界被广泛使用的IBIS模型。 1.2IBIS标准模型的建立 PCB板级信号完整性的仿真及应用 曹宇,丁志刚,宗宇伟 (上海计算机软件技术开发中心,上海201112)

PCB设计与信号完整性仿真

本人技术屌丝一枚,从事PCB相关工作已达8年有余,现供职于世界闻名的首屈一指的芯片设计公司,从苦逼的板厂制板实习,到初入Pcblayout,再到各种仿真的实战,再到今天的销售工作,一步一步一路兢兢业业诚诚恳恳,有一些相关领悟和大家分享。买卖不成也可交流。 1.谈起硬件工作,是原理图,pcb,码农的结合体,如果你开始了苦逼的pcblayout工作,那么将是漫长的迷茫之路,日复一日年复一年,永远搞不完的布局,拉线。眼冒金星不是梦。最多你可以懂得各种模块的不同处理方式,各种高速信号的设计,但永远只能按照别人的意见进行,毫无乐趣。 2.谈起EDA相关软件,形象的说,就普通的PROTEL/AD来说你可能只有3-6K,对于pads 可能你有5-8K,对于ALLEGRO你可能6-10K,你会哀叹做的东西一样,却同工不同酬,没办法这就是市场,我们来不得无意义的抱怨。 3.众所周知,一个PCB从业者最好的后路就是仿真工作,为什么呢?一;你可以懂得各种模块的设计原则,可以优化不准确的部分,可以改善SI/PI可以做很多,这往往是至关重要的,你可以最大化节约成本,减少器件却功效相同;二;从一个pcblayout到仿真算是水到渠成,让路走的更远; 三:现实的说薪资可以到达11-15K or more,却更轻松,更有价值,发言权,你不愿意吗? 现在由于本人已技术转销售,现在就是生意人了哈哈,我也查询过各种仿真资料我发现很少,最多不过是Mentor Graphics 的HyperLynx ,candense的si工具,

但是他们真的太low了,精确度和完整性根本不能保证,最多是定性的能力,无法定量。真正的仿真是完整的die到die的仿真,是完整的系统的,是需要更高级的仿真软件,被收购的xxsigrity,xx ansys,hspicexx,adxx等等,这些软件才是真正的仿真。 本人提供各种软件及实战代码,例子,从基本入门到高级仿真,从电源仿真,到ddr仿真到高速串行仿真,应有尽有,,完全可以使用,想想以后的高薪,这点投入算什么呢?舍不得孩子套不住狼哦。 所有软件全兼容32位和64位系统。 切记本人还提供学习手册,你懂的,完全快速进入仿真领域。你懂的! 希望各位好好斟酌,自己的路是哪个方向,是否想更好的发展,舍得是哲学范畴,投资看得是利润的最大化,学会投资吧,因为他值得拥有,骚年! 注:本人也可提供培训服务,面面俱到,形象具体,包会! 有购买和学习培训兴趣的请联系 QQ:2941392162

电源完整性设计

电源完整性设计电容的安装方法 电容的安装方法 电容的摆放 对于电容的安装,首先要提到的就是安装距离。容值最小的电容,有最高的谐振频率,去耦半径最小,因此放在最靠近芯片的位置。容值稍大些的可以距离稍远,最外层放置容值最大的。但是,所有对该芯片去耦的电容都尽量靠近芯片。下面的图14就是一个摆放位置的例子。本例中的电容等级大致遵循10倍等级关系。 图14 电容摆放位置示例 还有一点要注意,在放置时,最好均匀分布在芯片的四周,对每一个容值等级都要这样。通常芯片在设计的时候就考虑到了电源和地引脚的排列位置,一般都是均匀分布在芯片的四个边上的。因此,电压扰动在芯片的四周都存在,去耦也必须对整个芯片所在区域均匀去耦。如果把上图中的680pF电容都放在芯片的上部,由于存在去耦半径问题,那么就不能对芯片下部的电压扰动很好的去耦。 电容的安装 在安装电容时,要从焊盘拉出一小段引出线,然后通过过孔和电源平面连接,接地端也

是同样。这样流经电容的电流回路为:电源平面->过孔->引出线->焊盘->电容->焊盘->引出线->过孔->地平面,图15直观的显示了电流的回流路径。 图15 流经电容的电流回路 放置过孔的基本原则就是让这一环路面积最小,进而使总的寄生电感最小。图16显示了几种过孔放置方法。 图16 高频电容过孔放置方法 第一种方法从焊盘引出很长的引出线然后连接过孔,这会引入很大的寄生电感,一定要避免这样做,这时最糟糕的安装方式。 第二种方法在焊盘的两个端点紧邻焊盘打孔,比第一种方法路面积小得多,寄生电感也较小,可以接受。 第三种在焊盘侧面打孔,进一步减小了回路面积,寄生电感比第二种更小,是比较好的

如何实现电源PCB板完整性的设计

如何实现电源PCB板完整性的设计 在电路设计中,一般我们很关心信号的质量问题,但有时我们往往局限在信号线上进行研究,而把电源和地当成理想的情况来处理,虽然这样做能使问题简化,但在高速设计中,这种简化已经是行不通的了。尽管电路设计比较直接的结果是从信号完整性上表现出来的,但我们绝不能因此忽略了电源完整性设计。因为电源完整性直接影响最终PCB板的信号完整性。电源完整性和信号完整性二者是密切关联的,而且很多情况下,影响信号畸变的主要原因是电源系统。例如,地反弹噪声太大、去耦电容的设计不合适、回路影响很严重、多电源/地平面的分割不好、地层设计不合理、电流不均匀等等。 (1)电源分配系统 电源完整性设计是一件十分复杂的事情,但是如何近年控制电源系统(电源和地平面)之间阻抗是设计的关键。理论上讲,电源系统间的阻抗越低越好,阻抗越低,噪声幅度越小,电压损耗越小。实际设计中我们可以通过规定最大的电压和电源变化范围来确定我们希望达到的目标阻抗,然后,通过调整电路中的相关因素使电源系统各部分的阻抗(与频率有关)目标阻抗去逼近。 (2)地反弹 当高速器件的边缘速率低于0.5ns时,来自大容量数据总线的数据交换速率特别快,当它在电源层中产生足以影响信号的强波纹时,就会产生电源不稳定问题。当通过地回路的电流变化时,由于回路电感会产生一个电压,当上升沿缩短时,电流变化率增大,地反弹电压增加。此时,地平面(地线)已经不是理想的零电平,而电源也不是理想的直流电位。当同时开关的门电路增加时,地反弹变得更加严重。对于128位的总线,可能有50_100个I/O线在相同的时钟沿切换。这时,反馈到同时切换的I/O驱动器的电源和地回路的电感必须尽可能的低,否则,连到相同的地上的静止将出现一个电压毛刷。地反弹随处可见,如芯片、封装、连接器或电路板上都有可能会出现地反弹,从而导致电源完整性问题。 从技术的发展角度来看,器件的上升沿将只会减少,总线的宽度将只会增加。保持地反弹在可接受的唯一方法是减少电源和地分布电感。对于,芯片,意味着,移到一个阵列晶片,

信号完整性分析

信号完整性背景 信号完整性问题引起人们的注意,最早起源于一次奇怪的设计失败现象。当时,美国硅谷一家著名的影像探测系统制造商早在7 年前就已经成功设计、制造并上市的产品,却在最近从生产线下线的产品中出现了问题,新产品无法正常运行,这是个20MHz 的系统设计,似乎无须考虑高速设计方面的问题,更为让产品设计工程师们困惑的是新产品没有任何设计上的修改,甚至采用的元器件型号也与原始设计的要求一致,唯一的区别是 IC 制造技术的进步,新采购的电子元器件实现了小型化、快速化。新的器件工艺技术使得新生产的每一个芯片都成为高速器件,也正是这些高速器件应用中的信号完整性问题导致了系统的失败。随着集成电路(IC)开关速度的提高,信号的上升和下降时间迅速缩减,不管信号频率如何,系统都将成为高速系统并且会出现各种各样的信号完整性问题。在高速PCB 系统设计方面信号完整性问题主要体现为:工作频率的提高和信号上升/下降时间的缩短,会使系统的时序余量减小甚至出现时序方面的问题;传输线效应导致信号在传输过程中的噪声容限、单调性甚至逻辑错误;信号间的串扰随着信号沿的时间减少而加剧;以及当信号沿的时间接近0.5ns 及以下时,电源系统的稳定性下降和出现电磁干扰问题。

信号完整性含义 信号完整性(Signal Integrity)简称SI,指信号从驱动端沿传输线到达接收端后波形的完整程度。即信号在电路中以正确的时序和电压作出响应的能力。如果电路中信号能够以要求的时序、持续时间和电压幅度到达IC,则该电路具有较好的信号完整性。反之,当信号不能正常响应时,就出现了信号完整性问题。从广义上讲,信号完整性问题指的是在高速产品中由互连线引起的所有问题,主要表现为五个方面:

SIwave电源完整性仿真教程

SIwave电源完整性仿真教程V1.0 目录 1软件介绍 (4) 2.1功能概述 (4) 2.2操作界面 (5) 2.3常用热键 (7) 2仿真的前期准备 (8) 2.1软件的准备 (8) 2.2 PCB文件导入 (8) 2.2.1 Launch SIwave方式 (8) 2.2.1 ANF+CMP方式 (9) 2.3 PCB的Validation Check (10) 2.4 PCB叠层结构设置 (11) 2.5仿真参数设置 (13) 2.6 RLC参数修正 (14) 2.6.1 RLC的自动导入 (14) 2.6.2检视自动导入的RLC默认值 (15)

2.6.3批量修改RLC值 (16) 2.6.4套用大厂的RLC参数 (16) 3 SIwave仿真模式 (17) 3.1谐振模式 (17) 3.2激励源模式 (19) 3.3 S参数分析 (22) 4实例仿真分析 (24) 4.1从Allegro中导入SIwave (24) 4.2 Validation Check (24) 4.3叠层结构设置 (24) 4.4无源参数RLC修正 (25) 4.5平面谐振分析 (27) 4.6目标阻抗(Z参数)分析 (28) 4.7选取退耦电容并添加 (29) 4.8再次运行仿真查看结果 (30) 5问题总结 (32)

5.1 PCB谐振的概念 (32) 5.2为何频率会有实部和虚部 (33) 5.3电容的非理想特性影响 (34) 5.4地平面完整与回流路径连续 (34) 5.5电源目标阻抗 (35)

1软件介绍 2.1功能概述 Ansoft SIwave主要用于解决电源完整性问题,采用全波有限元算法,只能进行无源的仿真分析。Ansoft SIwave虽然功能强大,但并非把PCB导入,就能算出整块板子的问题在哪里。还需要有经验的工程设计人员,以系统化的设计步骤导入此软件检查PCB设计。主要功能如下: 1.计算共振模式 在PDS电源地系统结构(层结构、材料、形状)的LAYOUT之前,我们可以计算出PDS 电源地系统的共有的、内在的共振模式。可以计算在目标阻抗要求的带宽或更高的带宽范围内共振频率点。 2. 查看共振模式下的电压分布图 避免把大电流的IC芯片放置于共振频率的电压的峰值点和电压谷点。原因是当把这些源放在共振频率的电压的峰值点和电压谷点的时候很容易引起共振。 3.侦测电压 利用电流源代替IC芯片放置于它们可能的LAYOUT placement位置的周围、同时放置电压探头于理想IC芯片的位置侦测该位置的电压频率相应。在电压的频率相应的曲线中,峰值电压所对应的频率点就是共振频率的发生点。 4.表面电压 基于电压峰值频率,查看这些频率点的表面电压的分布情况,把退耦电容放置于电压

DDR3信号完整性与电源完整性设计

DesignCon 2011 Signal and Power Integrity for a 1600 Mbps DDR3 PHY in Wirebond Package June Feng, Rambus Inc. [Email: jfeng@https://www.doczj.com/doc/c78197291.html,] Ralf Schmitt, Rambus Inc. Hai Lan, Rambus Inc. Yi Lu, Rambus Inc.

Abstract A DDR3 interface for a data rate of 1600MHz using a wirebond package and a low-cost system environment typical for consumer electronics products was implemented. In this environment crosstalk and supply noise are serious challenges and have to be carefully optimized to meet the data rate target. We are presenting the signal and power integrity analysis used to optimize the interface design and guarantee reliable system operation at the performance target under high-volume manufacturing conditions. The resulting DDR3 PHY was implemented in a test chip and achieves reliable memory operations at 1600MHz and beyond. Authors Biography June Feng received her MS from University of California at Davis, and BS from Beijing University in China. From 1998 to 2000, she was with Amkor Technology, Chandler, AZ. She was responsible for BGA package substrate modeling and design and PCB characterization. In 2000, she joined Rambus Inc and is currently a senior member of technical staff. She is in charge of performing detailed analysis, modeling, design and characterization in a variety of areas including high-speed, low cost PCB layout and device packaging. Her interests include high-speed interconnects modeling, channel VT budget simulation, power delivery network modeling and high-frequency measurements. Ralf Schmitt received his Ph.D. in Electrical Engineering from the Technical University of Berlin, Germany. Since 2002, he is with Rambus Inc, Los Altos, California, where he is a Senior Manager leading the SI/PI group, responsible for designing, modeling, and implementing Rambus multi-gigahertz signaling technologies. His professional interests include signal integrity, power integrity, clock distribution, and high-speed signaling technologies. Hai Lan is a Senior Member of Technical Staff at Rambus Inc., where he has been working on on-chip power integrity and jitter analysis for multi-gigabit interfaces. He received his Ph.D. in Electrical Engineering from Stanford University, M.S. in Electrical and Computer Engineering from Oregon State University, and B.S. in Electronic Engineering from Tsinghua University in 2006, 2001, and 1999, respectively. His professional interests include design, modeling, and simulation for mixed-signal integrated circuits, substrate noise coupling, power and signal integrity, and high-speed interconnects. Yi Lu is a senior systems engineer at Rambus Inc. He received the B.S. degree in electrical engineer and computer science from U.C. Berkeley in 2002 with honors. In 2004, he received the M.S. degree in electrical engineering from UCLA, where he designed and fabricated a 3D MEMS microdisk optical switch. Since joining Rambus in 2006, he has been a systems engineer designing various memory interfaces including XDR1/2 and DDR2/3.

聊聊电源完整性

PI:聊聊电源完整性(PI)仿真(转) 首先,咱们先来讨论一下电源完整性的概念,电源完整性(PI,Power Integrity)就是为板级系统提供一个稳定可靠的电源分配系统(PDS)。实质上是要使系统在工作时,电源、地噪声得到有效的控制,在一个很宽的频带范围内为芯片提供充足的能量,并充分抑制芯片工作时所引起的电压波动、辐射及串扰。 今天,一起来聊聊电源完整性仿真的必要性:随着超大规模集成电路工艺的发展,芯片工作电压越来越低,而工作速度越来越快,功耗越来越大,单板的密度也越来越高,因此对电源供应系统在整个工作频带内的稳定性提出了更高的要求。电源完整性设计的水平直接影响着系统的性能,如整机可靠性,信噪比与误码率,及EMI/EMC等重要指标。板级电源通道阻抗过高和同步开关噪声SSN过大会带来严重的电源完整性问题,这些会给器件及系统工作稳定性带来致命的影响。PI设计就是通过合理的平面电容、分立电容、平面分割应用确保板级电源通道阻抗满足要求,确保板级电源质量符合器件及产品要求,确保信号质量及器件、产品稳定工作。 电源完整性PI与信号完整性SI的相互影响:从整个仿真领域来看,刚开始大家都把注意力放在信号完整性上,但是实际上电源完整性和信号完整性是相互影响相互制约的。电源、地平面在供电的同时也给信号线提供参考回路,直接决定回流路径,从而影响信号的完整性;同样信号完整性的不同处理方法也会给电源系统带来不同的冲击,进而影响电源的完整性设计。所以对电源完整性和信号的完整性地融会贯通是很有益处的。设计工程师在掌握了信号完整性设计方法之后,充实电源完整性设计知识显得很有必要。 电源完整性研究的内容:电源完整性仿真的内容很多,但主要的几个方面如下: 1:板级电源通道阻抗仿真分析,在充分利用平面电容的基础上,通过仿真分析确定旁路电容的数量、种类、位置等,以确保板级电源通道阻抗满足器件稳定工作要求。 2:板级直流压降仿真分析,确保板级电源通道满足器件的压降限制要求。

五款信号完整性仿真分析工具

SI五款信号完整性仿真工具介绍 (一)Ansoft公司的仿真工具 现在的高速电路设计已经达到GHz的水平,高速PCB设计要求从三维设计理论出发对过孔、封装和布线进行综合设计来解决信号完整性问题。高速PCB设计要求中国工程师必须具备电磁场的理论基础,必须懂得利用麦克斯韦尔方程来分析PCB设计过程中遇到的电磁场问题。目前,Ansoft公司的仿真工具能够从三维场求解的角度出发,对PCB设计的信号完整性问题进行动态仿真。 Ansoft的信号完整性工具采用一个仿真可解决全部设计问题: SIwave是一种创新的工具,它尤其适于解决现在高速PCB和复杂IC封装中普遍存在的电源输送和信号完整性问题。 该工具采用基于混合、全波及有限元技术的新颖方法,它允许工程师们特性化同步开关噪声、电源散射和地散射、谐振、反射以及引线条和电源/地平面之间的耦合。该工具采用一个仿真方案解决整个设计问题,缩短了设计时间。 它可分析复杂的线路设计,该设计由多重、任意形状的电源和接地层,以及任何数量的过孔和信号引线条构成。仿真结果采用先进的3D图形方式显示,它还可产生等效电路模型,使商业用户能够长期采用全波技术,而不必一定使用专有仿真器。 (二)SPECCTRAQuest Cadence的工具采用Sun的电源层分析模块: Cadence Design Systems的SpecctraQuest PCB信号完整性套件中的电源完整性模块据称能让工程师在高速PCB设计中更好地控制电源层分析和共模EMI。 该产品是由一份与Sun Microsystems公司签署的开发协议而来的,Sun最初研制该项技术是为了解决母板上的电源问题。 有了这种新模块,用户就可根据系统要求来算出电源层的目标阻抗;然后基于板上的器件考虑去耦合要求,Shah表示,向导程序能帮助用户确定其设计所要求的去耦合电容的数目和类型;选择一组去耦合电容并放置在板上之后,用户就可运行一个仿真程序,通过分析结果来发现问题所在。 SPECCTRAQuest是CADENCE公司提供的高速系统板级设计工具,通过它可以控制与PCB layout相应的限制条件。在SPECCTRAQuest菜单下集成了一下工具: (1)SigXplorer可以进行走线拓扑结构的编辑。可在工具中定义和控制延时、特性阻抗、驱动和负载的类型和数量、拓扑结构以及终端负载的类型等等。可在

相关主题
文本预览
相关文档 最新文档