当前位置:文档之家› 德士古气化炉带水原因分析和处理

德士古气化炉带水原因分析和处理

德士古气化炉带水原因分析和处理
德士古气化炉带水原因分析和处理

德士古气化炉带水原因分析和处理

王建军张敬忠张亮(山东兖矿鲁南化肥厂第二氮肥厂 277527) 2001-08-16

气化炉带水现象在我厂试车和投产以来是一直存在的问题,即加入的激冷水远大于合成气饱和水蒸气带出和排出水的总量,但气化炉的液位仍维持不住,随着负荷由低向高增加,气化炉液位急剧下降,致使整个气化系统操作失控,无法提高系统负荷,而且时刻存在跳车的可能。现将相应的改造经验介绍如下。

1 气化炉带水时的几种现象

气化炉带水时一般会出现如下几种现象:气化炉液位大范围波动;文丘里压差波动大,压差上升;洗涤塔液位上升,进塔水量大幅度减小后,仍无法控制液位上升;支撑板温度下降;出气化炉的黑水减少,气体洗涤效果下降。

2 原因分析

因气化炉操作压力较高,高温合成气由燃烧室经下降管进入激冷室迅速冷却,由于下降管和上升管组成的两相流上升环隙及折流挡板的设计,目的是在短时间、最小空间内达到高温气体冷却饱和水蒸气的初除尘,因此,存在以下问题,激冷室示意见图1。

(1)随着压力与负荷的增加,激冷室内热流强度增加,当其达到一临界值后,传热方式转为低效的膜状沸腾传热,随着变换能力下降,炉内体随之带走大量的水。

(2)气化炉在高负荷运转条件下,气体流速增大,由设计值1.1m/s增大到1.6m/s,增加了带水的能力。在气化炉带水的情况下,班产合成氨由110吨降低到70吨左右。

(3)由于气化炉内下降管和上升管之间尺寸是与原始设计生产能力相对应的,生产能力加大后,两管之间的尺寸没有做相应的调整,容易在水汽过饱和状态下形成水团,被高速气流带走。

(4)当高温合成气经下降管在激冷室内瞬间冷却,气体和熔渣温度下降很快,熔渣继续下沉,气体夹带少量水沿下降管与上升管之间的环隙继续上升,从合成气出口排出;又因负荷增加,有大量气体冲击上升管下部钟罩,这样气体通过液封继续向上,必定会带走大量的水。

(5)高效分布板分离合成气夹带的水团时,不能完全而有效地分离气和水,致使水团随气流进入后系统。

(6)冷激环酸洗效果不好,有大颗粒进入水环板,堵塞水环之间,灰水不能均匀沿下降管流下,造成上升管和下降管受热不均匀,发生严重变形,致使上升气流不匀,易使液位波动。

(7)操作压力和温度过高,以及操作人员经验少、操作不稳,也是诱发带水的原因。

3 改善方法

对气化炉带水的问题,着重从工艺和设备改造两个方面进行。

3.1 工艺方面

(1)当气化炉液位下降无法得到有效控制时,最有效的处理方法是适当降低生产负荷,使产生气量下降,降低上升管之间的气体流速,当气化炉液位稳定不再下降或开始上升时,稳定生产负荷10min左右开始缓慢提高生产负荷,但不得超过降低前的负荷。

(2)气化炉在高负荷情况下,液位不易控制太高,一般应在2.4m左右为宜。

(3)当气化炉出现带水时,文丘里的给水量应随之减少以便于降低文丘里过高的压差和便于控制洗涤塔的液位。

(4)气化炉出现带水时,应加大气化炉排水调节阀FV212的开度,破坏气化炉带水的条件的形成,但不易排水过大,以防止气化炉液位过低而跳车。

(5)经常性校验仪表、控制阀门,防止仪表阀门卡死或指示误差,从而引起液位波动。

(6)在每次停车大修时应酸洗激冷环,防止因结垢太多影响激冷水量,同时严格规定系统冷却水阻垢剂的添加。

(7)操作时应以稳定运行为主,防止盲目增加生产负荷。增加生产负荷时,要稳步提升,严禁幅度过快、过大,操作温度要根据煤的灰熔点来确定,不可过高。

(8)组织技术人员对操作工进行技术培训,提高操作水平,提高人员对气化炉带水现象的认识、分析、判断和处理能力,从而减少人为造成的操作失误。

3.2 设备方面

(1)上升管下部锯齿分别加高,这样高温合成气冲击下降管就会稳定流出,可有效控制液位在小范围内波动。

(2)上升管下部钟罩适当加长,这样溢出钟罩的气体就会减少,也就是说通过上升管外液封的气体减少,减轻水的夹带。

(3)安装上升管和下降管时,注意上升管和激冷环之间的距离,同时保证上升管和下降管的垂直度、同心度,严格控制安装质量及技术要求。

(4)由于开车时产生的振动较大,易造成上升管损坏和位置偏移,因此,上升管的托架必须固定牢固,4个拉筋用力必须要均匀,连接螺栓要符合要求。

(5)冷却水在进入激冷室内的激冷环前黑水管线上,设置过滤器,一则可减少大颗粒的灰水进入激冷环,防止堵塞,保证有足够的激冷水进入激冷环来提高液位;二则便于经常清理过滤器。

4 改造后的效果

(1)气化炉在高负荷生产时常水现象明显减少,并且一旦出现能够得到及时有效的控制,使系统维持了高负荷生产的时间大大延长,从而提高了甲醇和合成氨系统的长周期运行。

(2)激冷室外过滤器的增加,有效地杜绝了激冷环的堵塞,从而保证了气化炉的最佳生产液位,明显地减少了因激冷水量低而造成的停车及减量事故,同时,极大地延长了激冷环、上升管、下降管的使用寿命,由原1年一换,延长至3年一换,节约了资金和费用。

(3)减轻上升管、下降管及气化炉内其它部件的损害程度,破渣机不再频繁拆装,从而节约了检修费用,降低了劳动强度,缩短了检修周期。

德士古气化炉带水原因及措施

聂成元,朱冬梅 (兖矿鲁南化肥厂,山东滕州 277527) 2001-06-16

1 气化炉带水的现象及危害

气化炉带水可分为两种:一种是由气化炉来的合成气进入洗涤塔后,由于温度降低,在洗涤塔内冷凝;另一种是气化炉操作异常时,合成气夹带的水团,沿合成气管线进入洗涤塔。前者带水是正常的,量极少,后者是不正常的,量大。本文讨论的是后者带水。

1.1 气化炉带水现象

(1)气化炉液位急剧下降,激冷水浴不能形成,不能维持正常的气化炉操作;

(2)气化炉底部出水量剧减,逐渐降为零,激冷室水夹带在合成气流中,带入洗涤塔;

(3)洗涤塔液位居高不下,洗涤塔补水量逐步降为零,水系统失调;

(4)出洗涤塔温度偏高,合成气量偏高,这是由于气化炉液位降低,高温合成气通过激冷水浴时间短,导致换热量少而引起的;

(5)文丘里压差变大,且波动频繁。

1.2 气化炉带水的危害

(1)气化炉带水导致气化系统水平衡的破坏,洗涤塔液位居高不下,系统无法补水,灰水罐液位剧降。带水严重时,会迫使气化炉停车。

(2)洗涤塔液位过高,就会引起后工序变换系统带水,水淹变换催化剂,不仅导致后工序停车,而且使催化剂失活。

(3)由于气化炉带水改变了黑水中灰渣颗粒的沉降过程,含有大量灰渣颗粒的黑水进入闪蒸系统,使整个水系统的含固量大大增加,加速设备及管道的磨损,增加结垢、堵塞的可能性,不仅影响系统安全、稳定、长周期运行,而且大大增加维修费用,使产品成本上升。

(4)由于气化炉带水,操作环境恶劣,使气化炉不能维持高负荷生产,单炉生产能力下降,影响整个合成氨系统经济运行。

2 气化炉带水原因分析

由燃烧室出来的高温合成气,沿下降管高速进入激冷水浴中,饱和了大量水汽后沿上升管上升,在高速气流作用下,激冷室的液体呈膨胀状,下降管液位较低,而上升管液位较高,气流经过下降管后沿上升管与下降管间的空隙迅速上升,将液体迅速包围、分散,使液体分散成众多大小不均的液滴,并使其获得了一定速度随气流上升,此时液面上鼓,当气体流速波动剧烈时,还会出现环流现象,气流夹带大量水团上升,但夹带的液滴和水团由于自重还有一个沉降过程,当气流夹带液滴的速度大于液滴和水团的沉降速度时,即:气速+液团速度>液团的沉降速度

气化炉带水现象就发生了。随着液体环流的增强,带水逐渐严重,形成惯性带水后,大量水团及液滴被气流带入洗涤塔,使洗涤塔液位居高不下,无法补水。当然气化炉正常运行时,气流夹带过饱和水汽入洗涤塔后冷凝时,不足引起带水。导致气化炉带水主要有以下因素。

2.1 气速

当气化炉高负荷运行,或者炉温控制偏高时,均能使气化炉发气量迅速增大,从而使气速增大,气流对液体分散作用加强,液体环流现象加剧,这样就导致了带水。

2.2 负荷

由于生产的需要,气化炉基本处在高负荷状态(为原设计负荷的140%左右运行,压力、温度较高,气量也相应大,但气流通过的间隙未改变,气速的增加也会使气化炉带水;在低负荷时,虽未形成剧烈的环境,气流分散的液滴速度大于液滴沉降的速度,仍会使气化炉带水。另外,负荷增减频率快及调节幅度过大也会引起带水。

2.3 液位

气速一定,若气化炉液位控制较高,气流通过激冷水浴的时间长,气流对液体的分散作用就会加剧,环流现象加强,从而导致了气化炉带水。因此,高负荷生产中,气化炉的液位不可控制过高,否则极易引起带水。

2.4 炉温

气化炉操作中,炉温的控制相当关键。维持较高炉温,对气化反应,气化炉的发气量、碳转化率等是有利的。但是,炉温偏高,在激冷水浴中饱和的水蒸气也多,气量增大,气速也就相应增大,同样也会引起带水。

2.5 压力

压力过高,会使合成气的气速增加,压力波动也会引起带水。

3 预防气化炉带水的措施

3.1 炉温控制

炉温一般根据煤浆灰熔点的高低来确认。根据我厂的生产实践证明,炉温控制在高于灰熔点100℃左右,对气化反应最为有利,而且也可避免气化炉带水。

3.2 负荷调节

为使系统经济运行,气化炉均在高负荷状态下运行,但是,不能超出气化炉设计负荷太多。根据我厂长期实践,维持在设计负荷的130%为宜。高负荷运行时,尽可能少加减负荷。而且,调节幅度不宜过大,这不仅能防止气化炉带水,而且对系统长周期、稳定运行也有好处。

3.3 液位控制

由于气化炉超设计负荷运行,气化炉液位不可控制太高,以减少气体通过的时间,降低气体对液体的分散作用,而且,处理带水时,可适当降低液位,破坏生成的环流。待带水得到控制后,再逐步提高液位,但液位控制不可过低,过低会改变渣的沉降过程,增加黑水的含固量,而且也会使气化炉停车。

3.4 氧压及系统压力

应保持氧压及系统压力稳定,不可过高,稳定的氧压及系统压力对防止气化炉带水是有利的;

3.5 气化炉底部出水量

气化炉底部出水量的高低是判断气化炉是否带水的一个重要标志,当气化炉出水量减为零时,气体对激冷室水浴的分散作用便会加强,而且,环流现象加剧,只能引起更严重的带水,保证气化炉底部有一定的出水,水流和气流方向近似作逆向接触,使气体的分散作用变弱,这也会在一定程度上防止气化炉带水。

3.6 对气化炉内件改动

针对气化炉带水的原因,我厂增加了下降管底部的大锯齿数目,在锯齿的作用下,气流比较平稳,而且降低气体对液体的分散作用,也可防止带水。另外,在气化炉合成气出口附近,设置高效挡板,增加液滴和水团的沉降,也可防止带水,这些均取得了较好效果。

3.7 加大水系统循环量

由于负荷的提高,我们在操作中相应将激冷水量由原来的74m3/h提高至90m3/h,同时,在激冷水入气化炉处设置一大滤网,定期冲洗,以保证激冷水的供应,不仅可以阻止带水,而且保证气化炉长周期稳定运行。

4 结论

(1)气化炉气流速度过高,对液体分散作用加强,且液体环流加剧导致带水。

(2)影响带水的基本因素是:气体气速、气化炉液位、负荷、炉温高低、氧压及系统压力等。

(3)由于我们对气化炉带水原因有了正确的认识并采取相应防范措施,基本杜绝了气化炉带水现象。即便发生气化炉带水,操作人员也会迅速采取措施,恢复正常生产。

德士古气化炉操作规程

目录 1、岗位任务..................... - 1 - 2、工艺描述..................... - 1 - 3、联锁系统(根据现有联锁逻辑图编写) ............................... - 5 - 4、工艺指标.................... - 20 - 5、主要设备一览表:见附表...... - 21 - 6、开车 ....................... - 21 - 7、停车 ....................... - 42 - 8、倒系统(A为运行炉,B为备用炉). - 50 - 9、正常操作要点................ - 50 - 10、不正常现象及事故处理....... - 52 - 11、巡回检查制度............... - 62 - 12、基本操作................... - 63 -

1、岗位任务 磨煤工序生产的合格水煤浆与空分生产的氧气在一定的工艺条件下进入气化炉内进行部分氧化反应,产生以CO、H2、CO2为主要成分的合成气,经增湿、降温、除尘后送入下游变换工序;同时,将系统中产生的黑水送入闪蒸、沉降系统,以达到回收热量及灰水再生、循环使用的目的,粗渣及细渣送出界外。 2、工艺描述 (1)制浆系统: 由煤贮运系统来的小于10mm的碎煤进入煤贮斗(V1001)后,经煤称量给料机(W1001)称量送入磨机(M1001)。粉末状的添加剂由人工送至添加剂溶解槽(V1005)中溶解成一定浓度的水溶液,由添加剂溶解槽泵(P1004)送至添加剂槽(V1004)中贮存。并由添加剂计量泵(P1002A/B)送至磨机(M1001)中。添加剂槽可以贮存使用若干天的添加剂。在添加剂槽(V1004)底部设有蒸汽盘管,在冬季维持添加剂温度在20--30℃,以防止冻结。 甲醇废水、低温变换冷凝液、循环上水和灰水送入研磨水槽(V1006),正常用灰水来控制研磨水槽液位,当灰水不能维持研磨水槽(V1006)液位时,才用循环上水来补充。工艺水由研磨水泵(P1003A/B)加压经磨机给水阀(FV1005)来控制水量送至磨机。煤、工艺水和添加剂一同送入磨机(M1001)中研磨成一定粒度分布的浓度约60~65%合格的水煤浆。水煤浆经滚筒筛(S1001)滤去3mm以上的大颗粒后溢流至磨机出料槽(V1003)中,由磨机出料槽泵(P1001)经分流器(V1104)送至煤浆槽(V1101A/B)。磨机出料槽(V1003)和煤浆槽(V1101A/B)均设有搅拌器(X1001、X1101A/B),使煤浆始终处于均匀悬浮状态。 (2)气化炉系统: 来自煤浆槽(V1101A/B)浓度为60~65%的煤浆,由煤浆给料泵(P1101A/B/C)加压,投料前经煤浆循环阀(XV1203A/B/C)循环至煤浆槽(V1101A/B)。投料后经煤浆切断阀(XV1202A/B/C)送至德士古烧嘴的内环隙。 空分装置送来的纯度为%的氧气经氧气缓冲罐(V1210)贮存,由氧气总管放空控制阀(FV1214)控制氧气压力为~,在投料前打开氧气手动阀(HV1240A/B/C),用氧气调节阀(FV1205A/B/C)控制氧气流量(FIA1204/05/06A/B/C),经氧气放空阀(XV1207A/B/C)送至氧气消音器(X1201)放空。投料后由氧气调节阀(FV1205A/B/C)控制氧气流量经氧气上、下游切断

德士古气化炉简介与基本原理和特点

德士古气化炉 Texaco(德士古)气化炉 德士古气化炉是一种以水煤气为进料的加压气流床气化工艺。德士古气化炉由美国德士古石油公司所属的德士古开发公司在1946年研制成功的,1953年第一台德士古重油气化工业装置投产。在此基础上,1956年开始开发煤的气化。本世纪70年代初期发生世界性危机,美国能源部制定了煤液化开发计划,于是,德士古公司据此在加利福尼亚州蒙特贝洛(Montebello)研究所建设了日处理15t的德士古气化装置,用于烧制煤和煤液化残渣。目前国内大化肥装置较多采用德士古气化炉,并且世界范围内IGCC电站多采用德士古式气化炉。 典型代表产品我厂制造过的德士古气化炉典型的产品有:渭河气化炉、恒升气化炉、神木气化炉、神华气化炉等。1992年为渭河研制的德士古气化炉是国际80年代的新技术,制造技术为国内先例,该气化炉获1995年度国家级新产品奖。它的研制成功为化工设备实现国产化,替代进口做出了重要贡献。德士古气化炉是所以第二代气化炉中发展最迅速、开发最成功的一个,并已实现工业化。 一、德士古气化的基本原理 德士古水煤浆加压气化过程属于气化床疏相并流反应,水煤浆通过

喷嘴在高速氧气流的作用下,破碎、雾化喷入气化炉。氧气和雾状水煤浆在炉内受到耐火砖里的高温辐射作用,迅速经历预热、水分蒸发、煤的干馏、挥发物的裂解燃烧以及碳的气化等一系列复杂的物理、化学过程,最后生成一氧化碳,氢气二氧化碳和水蒸气为主要成分的湿煤气,熔渣和未反应的碳,一起同向流下,离开反应区,进入炉子底部激冷室水浴,熔渣经淬冷、固化后被截流在水中,落入渣罐,经排渣系统定时排放。煤气和饱和蒸汽进入煤气冷却系统。 水煤浆是一种最现实的煤基流体燃料,燃烧效率达96~99%或更高,锅炉效率在90%左右,达到燃油等同水平。也是一种制备相对简单,便于输送储存,安全可靠,低污染的新型清洁燃料[1]。具有较好的发展与应用前景。水煤浆的气化是将一定粒度的煤颗粒及少量的添加剂在磨机中磨成可以泵送的非牛顿型流体,与氧气在加压及高温条件下不完全燃烧,制得高温合成气的技术,以其合成气质量好、碳转化率高、单炉产气能力大、三废排放少的优点一直受到国际社会的关注,我国也将水煤浆气化技术列为“六五”、“七五”、“八五”、“九五”的科技攻关项目。本文基于目前我国水煤浆气化技术的现状,以Texaco气化炉为研究对象,根据对气化炉内流动、燃烧和气化反应的特性分析,将Texaco气化炉膛分成三个模拟区域,即燃烧区、回流区和管流区,分别对各区运用质量守恒和能量守恒方程,建立了过程仿

气化炉简易原理

在一般的煤气发生炉中,煤是由上而下、气化剂则是由下而上地进行逆流运动,它们之间发生化学反应和热量交换。这样在煤气发生炉中形成了几个区域,一般我们称为“层”。 按照煤气发生炉内气化过程进行的程序,可以将发生炉内部分为六层(见混合煤气发生炉结构示意图):1)灰渣层;2)氧化层(又称火层);3)还原层;4)干馏层;5)干燥层;6)空层; 其中氧化层和还原层又统称为反应层,干馏层和干燥层又统称为煤料准备层。 (1)灰渣层:煤燃烧后产生灰渣,形成灰渣层,它在发生炉的最下部,覆盖在炉篦之上。 其主要作用为: A、保护炉篦和风帽,使它们不被氧化层的高温烧坏; B、预热气化剂,气化剂从炉底进入后,首先经过灰渣层进行热交换,使灰渣层温度降低,气化剂温度升高,一般气化剂能预热达300-450℃左右。 C、灰渣层还起了布风作用,使进入的气化剂在炉膛内尽量均匀分布。 (2)氧化层:也称为燃烧层(火层)。从灰渣中升上来的气化剂中的氧与碳发生剧烈的燃烧而生成二氧化碳,并放出大量的热量。它是气化过程中的主要区域之一,其主要反应是: C+O2→CO2+97650大卡氧化层的高度一般为所有燃料块度的3-4倍,一般为100-200毫米。气化层的温度一般要小于煤的灰熔点,控制在1200℃左右。 (3)还原层:在氧化层的上面是还原层。赤热的碳具有很强的夺取氧化物中的氧而与之化合的本领,所以在还原层中,二氧化碳和水蒸气被碳还原成一氧化碳和氢气。这一层也因此而得名,称为还原层,其主要反应为:CO+C→2CO+38790大卡H2O+C→H2+CO+28380大卡 2H2O+C→CO2+2H2+17970大卡由于还原层位于氧化层之上,从上升的气体中得到大量热量,因此还原层有较高的温度约800-1100℃,这就为需要吸收热量的还原反应提供了条件。而严格地讲,还原层还有第一、第二之分,下部温度较高的地方称第一还原层,温度达950-1100℃,其厚度为300-400毫米左右;第二层为700-950℃之间,其厚度 为第一还原层1.5倍,约在450毫米左右。 (4)干馏层:干馏层位于还原层的上部,由还原层上升的气体随着热量的被消耗,其温度逐渐下降,故干馏层温度约在150-700℃之间,煤在这个温度下,历经低温干馏的过程,煤中挥发份发生裂解,产生甲烷、烯烃及焦油等物质,它们受热成为汽态,即生成煤气并通过上面干燥层而逸出,成为煤气的组成部分。干馏层的高度随燃料中挥发份含量及煤气炉操作情况而变化,一般>100毫米。 (5)干燥层:干燥层位于干馏层上面,也即是燃料的面层,上升的热煤气与刚入炉的燃料在这层相遇,进行热交换,燃料中的水分受热蒸发。一般认为干燥温度在室温150℃之间,这一层的高度也随各种不同的操作情况而异,没有相对稳定之层高。 (6)空层:空层即燃料层上部,炉体内的自由区,其主要作用是汇集煤气。也有的同志认为:煤气在空层停留瞬间,在炉内温度较高时还有一些副反应发生,如:CO分解、放出一些炭黑: 2CO→CO2+C 以及2H2O+CO→CO2+H2从上面六层简单叙述,我们可以看出煤气发生炉内进行的气化过程是比较复杂的,既有气化反应,也有干馏和干燥过程。而且在实际生产的发生炉中,分层也不是很严格的,相邻两层往往是相互交错的,各层的温度也是逐步过渡的,很难具体划分,各层中气体成份的变化就更加复杂了,即使在专门的研究中,看法也是分歧的。煤气炉的结构: 对于固定床煤气炉有多种结构型式,按不同部位分述如下:1、加煤装置:间歇式加煤罩;双料钟;振动给煤机;拨齿加煤机。2、炉体结构:带压力全水套;半水套;无水套(耐火材料炉衬);常压全水套。3、炉篦:宝塔型;型钢焊接型。4、灰盘传动结构:拨齿型;蜗轮蜗杆型。 煤气发生炉的事故处理 一、遇到下列情况应立即改热备用或停炉 1、供电停电时。 2、供气或供水停止4小时以上时。

煤气化工艺的优缺点及比较

13种煤气化工艺的优缺点及比较 我国是一个缺油、少气、煤炭资源相对而言比较丰富的国家,如何利用我国煤炭资源相对比较丰富的优势发展煤化工已成为大家关心的问题。近年来,我国掀起了煤制甲醇热、煤制油热、煤制烯烃热、煤制二甲醚热、煤制天然气热。有煤炭资源的地方都在规划以煤炭为原料的建设项目,这些项目都碰到亟待解决原料选择问题和煤气化制合成气工艺技术方案的选择问题。现就适合于大型煤化工的比较成熟的几种煤加压气化技术作评述,供大家参考。 1、常压固定层间歇式无烟煤(或焦炭)气化技术 这是目前我国生产氮肥的主力军之一,其特点是采用常压固定层空气、蒸汽间歇制气,要求原料为25-75mm的块状无烟煤或焦炭,进厂原料利用率低,单耗高、操作繁杂、单炉发气量低、吹风气放空对大气污染严重。从发展看,属于将逐步淘汰的工艺。 2、常压固定层间歇式无烟煤(或焦炭)富氧连续气化技术 这是从间歇式气化技术发展过来的,其特点是采用富氧为气化剂,原料可采用8-10mm 粒度的无烟煤或焦炭,提高了进厂原料利用率,对大气无污染、设备维修工作量小、维修费用低,适合于有无烟煤的地方,对已有常压固定层间歇式气化技术的改进。 3、鲁奇固定层煤加压气化技术 主要用于气化褐煤、不粘结性或弱粘结性的煤,要求原料煤热稳定性高、化学活性好、灰熔点高、机械强度高、不粘结性或弱粘结性,适用于生产城市煤气和燃料气,不推荐用以生产合成气。 4、灰熔聚流化床粉煤气化技术 中科院山西煤炭化学研究所的技术,2001年单炉配套20kt/a合成氨工业性示范装置成功运行,实现了工业化,其特点是煤种适应性宽,可以用6-8mm以下的碎煤,属流化床气化炉,床层温度达1100℃左右,中心局部高温区达到1200-1300℃,煤灰不发生熔融,而只是使灰渣熔聚成球状或块状排出。床层温度比恩德气化炉高100-200℃,所以可以气化褐煤、低化学活性的烟煤和无烟煤,以及石油焦,投资比较少,生产成本低。缺点是气化压力为常

德士古气化炉简介与基本原理和特点

德士古气化炉 TeXaCo(德士古)气化炉 德士古气化炉是一种以水煤气为进料的加压气流床气化工艺。德士古气化炉由美国德士古石油公司所属的德士古开发公司在1946 年研制成功的, 1953年第一台 德士古重油气化工业装置投产。在此基础上, 1956 年开始开发煤的气化。本世纪 70 年代初期发生世界性危机,美国能源部制定了煤液化开发计划,于是,德士古公司据此在加利福尼亚州蒙特贝洛 (Montebello) 研究所建设了日处理 15t 的德士古气化装置,用于烧制煤和煤液化残渣. 目前国内大化肥装置较多采用德士古气化炉,并且世界范围内IGCC电站多采用德士古式气化炉. 典型代表产品我厂制造过的德士古气化炉典型的产品有 : 渭河气化炉、恒升气化炉、神木气化炉、神华气化炉等。 1992 年为渭河研制的德士古气化炉是国际 80 年代的新技术,制造技术为国内先例,该气化炉获1995年度国家级新产品奖。它 的研制成功为化工设备实现国产化,替代进口做出了重要贡献。德士古气化炉是所以第二代气化炉中发展最迅速、开发最成功的一个,并已实现工业化。 一、德士古气化的基本原理 德士古水煤浆加压气化过程属于气化床疏相并流反应,水煤浆通过

喷嘴在高速氧气流的作用下,破碎、雾化喷入气化炉。氧气和雾状水煤浆在炉 内受到耐火砖里的高温辐射作用,迅速经历预热、水分蒸发、煤的干馏、挥发物的 裂解燃烧以及碳的气化等一系列复杂的物理、化学过程,最后生成一氧化碳,氢气 二氧化碳和水蒸气为主要成分的湿煤气,熔渣和未反应的碳,一起同向流下,离开 反应区,进入炉子底部激冷室水浴,熔渣经淬冷、固化后被截流在水中,落入渣 罐,经排渣系统定时排放.煤气和饱和蒸汽进入煤气冷却系统。 水煤浆是一种最现实的煤基流体燃料,燃烧效率达96~99%或更高,锅炉效率在 90%左右,达到燃油等同水平。也是一种制备相对简单,便于输送储存,安全可靠,低 污染的新型清洁燃料[1].具有较好的发展与应用前景。水煤浆的气化是将一定粒 度的煤颗粒及少量的添加剂在磨机中磨成可以泵送的非牛顿型流体 ,与氧气在加压 及高温条件下不完全燃烧,制得高温合成气的技术,以其合成气质量好、碳转化率 高、单炉产气能力大、三废排放少的优点一直受到国际社会的关注 ,我国也将水煤 浆气化技术列为“六五"、“七五”、“八五"、“九五”的科技攻关项目。 本 文基于目前我国水煤浆气化技术的现状,以TeXaCo 气化炉为研究对象,根据对气化 炉内流动、燃烧和气化反应的特性分析,将TeXaCO 气化炉膛分成三个模拟区域,即 燃烧区、回流区和管流区,分别对各区运用质量守恒和能量守恒方程,建立了过程仿 真模型.该模型 德 士 古气 化 炉

各种气化炉型的比较

各种气化炉型的比较 1.常压固定床间歇式无烟煤(或焦炭)气化技术 目前我国氮肥产业主要采用的煤气化技术之一,其特点是采用常压固定床空气、蒸汽间歇制气,要求原料为准 25~75mm的块状无烟煤或焦炭,进厂原料利用率低,单耗高、操作繁杂、单炉发气量低、吹风放空气对大气污染严重,属于将逐步淘汰的工艺。 2.常压固定床无烟煤(或焦炭)富氧连续气化技术 其特点是采用富氧为气化剂、连续气化、原料可采用?准 8~10mm粒度的无烟煤或焦炭,提高了进厂原料利用率,对大气无污染、设备维修工作量小、维修费用低,适合用于有无烟煤的地方,对已有常压固定层间歇式气化技术进行改进。 3.鲁奇固定床煤加压气化技术 主要用于气化褐煤、不粘结性或弱粘结性的煤,要求原料煤热稳定性高、化学活性好、灰熔点高、机械强度高、不粘结性或弱粘结性,适用于生产城市煤气和燃料气。其产生的煤气中焦油、碳氢化合物含量约1%左右,甲烷含量约10%左右。焦油分离、含酚污水处理复杂,不推荐用以生产合成气。 4.灰熔聚煤气化技术 中国科学院山西煤炭化学研究所技术。其特点是煤种适应性宽,属流化床气化炉,煤灰不发生熔融,而只是使灰渣熔聚成球状或块状灰渣排出。可以气化褐煤、低化学活性的烟煤和无烟煤、石油焦,投资比较少,生产成本低。缺点是操作压力偏低,对环境污染及飞灰堆存和综合利用问题有待进一步解决。此技术适合于中小型氮肥厂利用就地或就近的煤炭资源改变原料路线。 5.恩德粉煤气化技术 属于改进后的温克勒沸腾床煤气化炉,适用于气化褐煤和长焰煤,要求原料煤不粘结或弱粘结性,灰分<25%~30%,灰熔点高、低温化学活性好。在国内已建和在建的装置共有13套22台气化炉,已投产的有16台。属流化床气化炉,床层中部温度1000~1050℃。目前最大的气化炉产气量为4万m3/h半水煤气。缺点是气化压力为常压,单炉气化能力低,产品气中CH4含量高达1.5%~2.0%,飞灰量大、对环境污染及飞灰堆存和综合利用问题有待解决。此技术适合于就近有褐煤的中小型氮肥厂改变原料路线。 6.GE水煤浆加压气化技术 属气流床加压气化技术,原料煤运输、制浆、泵送入炉系统比干粉煤加压气化简单,安全可靠、投资省。单炉生产能力大,目前国际上最大的气化炉投煤量为2000t/d,国内已投产的气化炉能力最大为1000t/d。设计中的气化炉能力最大为1600t/d。对原料煤适应性较广,气煤、烟煤、次烟煤、无烟煤、高硫煤及低灰熔点的劣质煤、石油焦等均能用作气化原料。但要求原料煤含灰量较低、还原性气氛下的灰熔点低于1300℃,灰渣粘温特性好。气化系统不需要外供过热蒸汽及输送气化用原料煤的N2或CO2。气化系统总热效率高达94%~96%,高于Shell干粉煤气化热效率(91%~93%)和GSP干粉煤气化热效率(88%~92%)。气化炉结构简单,为耐火砖衬里,制造方便、造价低。煤气除尘简单,无需价格昂贵的高温高压飞灰过滤器,投资省。国外已建成投产6套装置15台气化炉;国内已建成投产7套装置21台气化炉,正在建设、设计的还有4套装置13台气化炉。 已建成投产的装置最终产品有合成氨、甲醇、醋酸、醋酐、氢气、CO、燃料气、联合循环发电,各装置建成投产后,一直连续稳定长周期运行。装备国产化率已达90%以上,由于国产化率高、装置投资较其他加压气化装置都低,有备用气化炉的水煤浆加压气化与不设备用气化炉的干煤粉加压气化装置建设费用的比例大致为Shell法 : GSP法 : 多喷嘴水煤浆加压气化法 : GE水煤浆法=(2.0~2.5):(1.4~1.6):1.2:1.0。缺点是气化用原料煤受气化炉耐火砖衬里的限制,适宜于气化低灰熔点的煤;碳转化率较低;比氧耗和比煤耗较高;气化炉耐火砖使用寿命较短,一般为1~2年;气化炉烧嘴使用寿命较短。 7.多元料浆加压气化技术

德士古水煤浆气化操作规程下

614操作规程 一、岗位任务: 本岗位对气化炉排出的黑水进行闪蒸,回收灰水和热量。 二、管辖范围: 工段的管辖范围是,V1401—V1408、E1401—E1404、P1411E、P1401、P1402、P1406、P1411、P1412、Q1401、渣池及上述设备相关的管道、阀门、调节阀仪表、电动机和其它各种设备所属附件。 三、开车: 大检修后开车: 系统机电仪安装检修完毕,吹扫或清洗干净,气密实验、单体试车及全部仪表调试合格后准备开车。 1.启动真空闪蒸系统: 在气化炉投料前,启动真空闪蒸系统: a.向E1402、E1403、E1404和P1411E供CW;打开换热器CW进出口阀、排气后关闭排气阀; b.打开DW到V1406的截止阀,向V1406供脱盐水; c.当V 1406液位达到50%时,按泵运行规程启动P1412,LICA1408稳定后投自动; d.打开P1411密封水阀、FI14102前阀、打开LV1409前后截止阀,LICA1409投自动,当液位稳定后,停DW; e.由P1401-3/4向V1404送水;打开P1401出口到V1404截止阀,关闭到S1401的截止阀,建立V1404的上塔液位; f.打开LV1404,当上塔液位达到50%时,打开LV1406; g.V1404下塔液位达到50%时,按运行规程启动P1402,打开LV1407前后阀,关闭导淋阀,打开P1402到S1401的截止阀,手动打开LV1407; f.当V1404上塔液位达到50%且上、下塔液位均稳定后,LICA1406、LICA1407投自动; h.按运行规程启动P1411; i.投用PIC1404/PIC1406,打开PV1404前后截止阀,关闭旁路阀,打开PV1406截止阀,逐渐降PICA1406、PICA1404的设定值,直到 PICA1404 -64,24KPa PICA1406 -91,50KPa 如果PICA1404压力不正常,通过N3管线上的放空阀吸入空气;或检查LV1405阀位。V1405液位达到50%时,打开LV1411前后截止阀,LI1411投自动; 当V1404上塔压力稳定后,停止吸入空气,关闭第二道给气阀后,关闭排气阀; 打开LV1408前后截止阀,关闭旁路阀,LICA1408投自动设定50%; j.确认P1402泵送水S1401后,启动P1409加絮凝剂(开车前溶好物料); k.确认P1406向气化炉供水后,启动P1410给P1406入口管线加分散剂; l.打开P1502给V1408供水截止阀(两道阀,第一道位于P1502出口,第二道位于614框架E1401东北侧); 2.接通黑回管线

各种煤气化工艺的优缺点

各种煤气化工艺的优缺点 1、常压固定层间歇式无烟煤(或焦炭)气化技术 这是目前我国生产氮肥的主力军之一,其特点是采用常压固定层空气、蒸汽间歇制气,要求原料为25-75mm的块状无烟煤或焦炭,进厂原料利用率低,单耗高、操作繁杂、单炉发气量低、吹风气放空对大气污染严重。从发展看,属于将逐步淘汰的工艺。 2、常压固定层间歇式无烟煤(或焦炭)富氧连续气化技术 这是从间歇式气化技术发展过来的,其特点是采用富氧为气化剂,原料可采用8-10mm粒度的无烟煤或焦炭,提高了进厂原料利用率,对大气无污染、设备维修工作量小、维修费用低,适合于有无烟煤的地方,对已有常压固定层间歇式气化技术的改进。 3、鲁奇固定层煤加压气化技术 主要用于气化褐煤、不粘结性或弱粘结性的煤,要求原料煤热稳定性高、化学活性好、灰熔点高、机械强度高、不粘结性或弱粘结性,适用于生产城市煤气和燃料气,不推荐用以生产合成气。 4、灰熔聚流化床粉煤气化技术 中科院山西煤炭化学研究所的技术,2001 年单炉配套20kt/a 合成氨工业性示范装置成功运 行,实现了工业化,其特点是煤种适应性宽,可以用6-8mm以下的碎煤,属流化床气化炉, 床层温度达1100C左右,中心局部高温区达到1200-1300C,煤灰不发生熔融,而只是使灰渣熔聚成球状或块状排出。床层温度比恩德气化炉高100-200C,所以可以气化褐煤、低化 学活性的烟煤和无烟煤,以及石油焦,投资比较少,生产成本低。缺点是气化压力为常压,单炉气化能力较低,产品中CH4含量较高(1%-2%,环境污染及飞灰综合利用问题有待进 一步解决。此技术适用于中小氮肥厂利用就地或就近的煤炭资源改变原料路线。 5、恩德粉煤气化技术 恩德炉实际上属于改进后的温克勒沸腾层煤气化炉,适用于气化褐煤和长焰煤,要求

GE德士古气化炉

德士古气化炉 1.德士古气化炉概况 德士古水煤浆加压气化工艺简称TCGP ,是美国德士古石油公司TEXACO 在重油气化的基础上发展起来的。1945 年德士古公司在洛杉矶近郊蒙特贝洛建成第一套中试装置,并提出了水煤浆的概念,水煤浆采用柱塞隔膜泵输送,克服了煤粉输送困难及不安全的缺点,后经各国生产厂家及研究单位逐步完善,于80年代投入工业化生产,成为具有代表性的第二代煤气化技术。 国外已建成投产的装置有6套,15台气化炉;国内已建成投产的装置有8套,24台气化炉,正在建设、设计的装置还有4套,13台气化炉。已建成投产的装置最终产品有合成氨、甲醇、醋酸、醋酐、氢气、一氧化碳、燃料气、联合循环发电。 我国自鲁南化肥厂第一套水煤浆加压气化装置(2台气化炉)1993年建成投产以来,相继建成了上海焦化厂气化装置(4.0 MPa气化,4台气化炉,于1995年建成投产),渭河化肥厂气化装置(6.5 MPa气化,3台气化炉,于1996年建成投产),淮南化肥厂气化装置(4.0 MPa气化,3台气化炉,于2000年建成投产),金陵石化公司化肥厂气化装置(4.0 MPa气化,3, , , , 台气化炉,于2005年建成投产),浩良河化肥厂气化装置(3.0~4.0 MPa气化,3台气化炉,于2005年建成投产),南化公司气化装置(8.5 MPa气化,2006年建成投产),南京惠生气化装置(6.5 MPa气化,2007年建成投产)等装置。由于我国有关生产厂的精心消化吸收,已掌握了丰富的连续稳定运转经验,新装置一般都能顺利投产,短期内便能连续稳定、高产、长周期运行。并且掌握了以石油焦为原料的气化工艺技术。

气化炉带水原因分析

气化炉带水原因分析

德士古水煤浆气化合成气带水问题的分析与探讨 摘要:分析了德士古气化炉合成气带水的原因及对稳定系统生产的影响,提出了通过降低热流强度、扩大上升管直径、加大激冷室上部分离空间及在气化炉合成气出口管线上设置气水分离器几项改进措施。关键词:合成气带水德士古分析探讨气化炉是德士古水煤浆气化装置的核心设备,分为燃烧室和激冷室两部分。上部为燃烧室,下部为激冷室。激冷室内有激冷环、下降管、上升管、折流挡板等主要部件。在我们的日常操作过程中,常会发生激冷室内的合成气带水的问题,本文就此问题进行分析和探讨。 一、 装置的流程。 加压的水煤浆和氧气经过特制的工艺烧嘴喷入气化炉以后,水煤浆被高效雾化成细小的煤粒,与氧气在气化炉内1300~1400℃的高温下发生复杂的氧化还原反应,产生煤气,同时生成少量的熔渣。合

成气与熔渣出气化炉燃烧室以后,在下降管的引导下进入到激冷室的液面以下,为了保护下降管,在下降管的上端设置了一个激冷环用来分布供应到气化炉激冷室的激冷水,使激冷水以液膜的形式分布在激冷环的内表面,合成气和熔渣在沿下降管下降的过程中,合成气和熔渣与激冷环内壁上的水膜发生传热传质过程,熔渣被冷却固化后沉降到气化炉激冷室的底部,经锁斗收集后排出。合成气被冷却降低温度,部分激冷水被蒸发并以饱和水蒸气的形式进入到合成气气相主体中。吸收了饱和水蒸气以后的和成气出下降管以后,在浮力和气流的推动力作用下沿下降管与上升管之间的环隙鼓泡上升,离开上升管后被激冷室上部的折流板折流后从气化炉激冷室的合成气出口排出,经文丘里洗涤器进一步增湿后进入洗涤塔洗涤掉合成气中包含的少量灰份后送变换工序。洗涤塔的补充水有三路:一路是由文丘里加入的高压灰水,另两路是冷凝液,分别由洗涤塔的塔盘供水流量调节阀和洗涤塔的液位调节阀

德士古气化炉的优缺点

德士古气化炉的优缺点 淮化“”工程是于年建成投产的一套年产万吨合成氨并加工成万吨尿素的生产装置, 它由空分、气化、净化、合成、尿素等几个工序组成, 其中气化是制备合格煤气的工序, 采用的是最新一代德士古水煤浆加压气艺技术。该是美国德士古石油公司受重油气化的启发, 于年首先开发的煤气化工艺, 后经前西德鲁尔煤鲁尔化学公司在磨煤、热回收方面的进一步改进, 以及日本对系统关键进行合理改造后, 逐步形成比较完善的煤气化工艺。相继在美国、德国、日本等地建成了多套工业性示范及工业化生产装置, 其系统工艺技术已基本成熟。淮化公司的气化装置由磨煤、低压煤浆、煤浆槽、高压煤浆泵、气化炉、收排渣系统、洗气系统及渣水系统组成。投产年来, 总体运行情况良好, 同时也暴露出一些。在此之前, 国内的上海焦化厂、山东鲁南化肥厂、陕西渭河化肥厂等企业都先后建成投产了多套类似的煤气化装置。虽然在煤浆制备、操作压力及装置能力等方面存在小的差异, 但核心技术基本相同。根据公司六年来的使用实践, 结合国内其它兄弟单位的使用经验以及国外的相关资料, 总结出德士古水煤浆加压气化工艺技术相对于传统的固定床、流化床等气化工艺, 具有如下优点: ( ) 煤种适应性广。德士古气化工艺可以利用次烟煤、烟煤、石油焦、煤加氢液化残渣等。不受灰熔点限制( 灰熔点高可加助熔剂) , 同时因煤最终要磨制成水煤浆,故不受煤的块度大小限制。原设计为河南义马煤, 但在近几年煤炭市场紧俏的情况下, 我们经常掺烧山东、陕西等地的煤种, 经过局部的工艺调节, 同样能够平稳运行。 ( ) 连续生产性强。气化炉的原料———煤浆、氧气的生产是连续的, 因此也就能够连续不断地进入气化炉。排渣经排渣系统固定程序控制, 不需停车, 气化开停少, 系统操作稳定。迄今单炉连续稳定运行最长已达天。 ( ) 气化压力高。气化炉内的高压, 首先是相同质量的产品气大幅度

几种常用煤气化技术的优缺点

几种煤气化技术介绍 煤气化技术发展迅猛,种类很多,目前在国内应用的主要有:传统的固定床间歇式煤气化、德士古水煤浆气化、多元料浆加压气化、四喷嘴对置式水煤浆气化、壳牌粉煤气化、GSP气化、航天炉煤气化、灰熔聚流化床煤气化、恩德炉煤气化等等,下别分别加以介绍。 一Texaco水煤浆加压气化技术 德士古水煤浆加压气化技术1983年投入商业运行后,发展迅速,目前在山东鲁南、上海三联供、安徽淮南、山西渭河等厂家共计13台设备成功运行,在合成氨和甲醇领域有成功的使用经验。 Texaco水煤浆气化过程包括煤浆制备、煤浆气化、灰水处理等工序:将煤、石灰石<助熔剂)、添加剂和NaOH称量后加入到磨煤机中,与一定量的水混合后磨成一定粒度的水煤浆;煤浆同高压给料泵与空分装置来的氧气一起进入气化炉,在1300~1400℃下送入气化炉工艺喷嘴洗涤器进入碳化塔,冷却除尘后进入CO变换工序,一部分灰水返回碳洗塔作洗涤水,经泵进入气化炉,另一部分灰水作废水处理。 其优点如下: <1)适用于加压下<中、高压)气化,成功的工业化气化压力一般在 4.0MPa 和6.5Mpa。在较高气化压力下,可以降低合成气压缩能耗。 <2)气化炉进料稳定,因为气化炉的进料由可以调速的高压煤浆泵输送,所以煤浆的流量和压力容易得到保证。便于气化炉的负荷调节,使装置具有较大的操作弹性。 <3)工艺技术成熟可靠,设备国产化率高。同等生产规模,装置投资少。 该技术的缺点是: <1)因为气化炉采用的是热壁,为延长耐火衬里的使用寿命,煤的灰熔点尽可能的低,通常要求不大于1300℃。对于灰熔点较高的煤,为了降低煤的灰熔点,必须添加一定量的助熔剂,这样就降低了煤浆的有效浓度,增加了煤耗和氧耗,降低了生产的经济效益。而且,煤种的选择面也受到了限制,不能实现原料采购本地化。 <2)烧嘴的使用寿命短,停车更换烧嘴频繁<一般45~60天更换一次),为稳定后工序生产必须设置备用炉。无形中就增加了建设投资。 <3)一般一年至一年半更换一次炉内耐火砖。 二多喷嘴对置式水煤浆加压气化技术 该技术由华东理工大学洁净煤技术研究所于遵宏教授带领的科研团队,经过20多年的研究,和兖矿集团有限公司合作,成功开发的具有完全自主知识产权、国际首创的多喷嘴对置式水煤浆气化技术,并成功地实现了产业化,拥有近20项发明专利和实用新型专利。目前在山东德州和鲁南均有工业化装置成功运行。

气化炉频繁带水故障处理调查报告.docx

一、事故现象 正常生产过程中,气化炉出口气温度由242℃快速下降至235℃,同时气化炉液位先升后降,洗涤塔液位先降后升。 二、事故处理要点 1.适当降低气化炉液位; 2.适当加大气化炉排水量; 3.适当降低气化炉负荷。 三、原因分析 1.气化炉液位高减小了激冷室内气水分离的空间。 2.气化炉热负荷过高,产气量过大,气相易带液。 3.炉内件变形或运行后期结垢,造成气体流道变窄流速加快。 四、事故危害 1.造成气化炉洗涤塔液位波动,易联锁停车,同时影响洗涤塔给料泵负荷,易造成该泵超电流或憋压; 2.影响系统压力,影响送变换合成气水汽比; 3.造成洗涤塔水质恶化,从而加快激冷水系统、洗涤塔黑水排放线结垢堵塞,缩短系统运行周期。 五、事故教训及防范措施 1.单炉检修时对炉内结垢进行彻底清理,对变形的部件进行修复; 2.频繁带水时需及时处理,避免造成更严重的危害。 一、事故现象 2010年5月6日19点30,气化工段123R0101系统一系列仪表显示故障,8个仪表参数同时开路,显示值锁定不变,对应阀门调节器无法自动调节。显示故障的几个参数分别是挂有水泵自启及气化炉停车联锁的激冷水流量:123FI01218,挂激冷水泵停车联锁的123LI01193以及123PI01202。 二、事故处理要点 发现问题后,紧急联系仪表、通知车间值班及调度,同时将洗涤塔补水阀123LV01193打手动调节,洗涤塔进水量略大于正常值,保证洗

涤塔液位,防止激冷水泵抽空。现场人员及时赶到123P0104,观察激冷水泵运行情况,并把备用泵打手动,随时准备现场调节和操作。仪表人员到位后首先保障相关参数不能触发激冷水流量低联锁停车,然后进一步处理卡件问题。 三、原因分析 仪表卡件质量问题。 四、事故危害 若发现不及时、处理不正确都将造成气化炉非计划停车,甚至造成激冷环严重损坏的恶性生产事故。 五、事故教训及防范措施 1.认真监盘,及时发现问题。 2.加强事故演练,提高操作人员应对和处理事故能力。 3.加强仪表维护和保养,保证生产稳定运行。

德士古气化炉闭式升温烧嘴

德士古气化炉闭式升温烧嘴(Z1302A/B/C)系统 一、总则 本方案规范阐述了预热烧嘴的作用、形式以及工艺条件。 预热烧嘴的加工方法以及管道、管件的使用压力等级和材料选用,均需依据有关压力容器制造规范。 二、流程说明 在开车时,气化炉升温阶段用预热烧嘴(Z1302A/B/ C)临时替换工艺烧嘴(Z1301A/B/C),用石油液化气作燃料,空气辅助燃烧,对气化炉进行升温。用蒸汽驱动开工抽引器(J1301A/B/C),使气化炉内形成微负压,蒸汽和燃烧后的尾气经过开工抽引器(J1301A/B/C)后排入大气。 气化炉投料时要求的最低炉温为1000℃。如果气化炉投料前炉温降至1000℃以下进行,气化炉投料会对气化炉耐火材料造成过度“热震击”,避免出现投料不成功的情况,气化炉炉温在1000℃以上时投料。 三、设备、工艺条件数据表 INCONEL-600产品产地:/德国/日本 主要成分:77Ni-16Cr -6Fe INCONEL 600的高镍成分使合金具有非常强的抗氯化物应力裂变腐蚀能力,以及在还原状态下可维持其高耐蚀性及在碱溶液中亦具有很强的耐腐蚀能力。同时因含铬,所以在氧化性环境下耐腐蚀性更胜纯镍。 INCONEL600是一种镍基合金,是Ni-Cr-Fe合金系列的代表性材料,其成分大致为Ni75%,Cr16%,Fe8%。Inconel 600的力学性能与普通奥氏体304相近 镍合金:又称蒙乃尔合金,是一种以金属镍为基体添加铜、铁、锰等其它元素而成的合金。蒙乃尔合金耐腐蚀性好,呈银白色,适合作边丝材料。蒙乃尔合金的用途蒙乃尔400合金的组织为高强度的单相固溶体,它是一种用量最大、用途最广、综合性能极佳的耐蚀合金。 一、工艺烧嘴(Z0402) ① 结构说明 a.所有与氧气接触的部件材质选用Inconel600不锈钢。 b.烧嘴加工方法以及管道和管件主要使用压力等级,依据有关压力容器制造规范。 c.所有螺栓孔跨在中心线上。 d.烧嘴装运前,烧嘴所有表面用三氯乙烷进行彻底脱脂。 e.烧嘴水压试验依据施工规范。 f.所有焊缝依据施工规范进行测试。 g.所有配管及管件采用无缝管。 h.装配法兰下方的烧嘴部件必须能够放入内径为320mm的耐火材料炉颈部。 1文档收集于互联网,如有不妥请联系删除.

水煤浆气化炉分析

水煤浆气化炉分析 水煤浆常压气化炉分析 水煤浆气化根据气化炉内压力分常压和高压两种气化方法,其中Texaco水煤浆气化技术是开发成功并最早实现工业化生产的第二代煤气化工艺技术,它是一种以水煤浆为进料、氧气为气化剂的加压气流床气化工艺,属于气流床湿法加料、液态排渣的加压煤气化技术。现有资料显示了Texaco水煤浆加压气化的优越性,但并没有否定常压气化的可行性。 高温高压气化的优点: 1、采用高压气化制造合成气,大大减少了气体净化的投资,因此所有现代化的气化方法都在压力下操作。 2、总能耗大大减少。例如,在低于6Mpa的煤加压气化中,甲醇的压缩消耗会从常压气化的700kWh/t降到约100kWh/t,其中氧气压缩所增加的费用仅为 100kWh/t,此外氧的增加的费用也可以通过降低氧纯度再进一步减少。 3、大大提高单位体积和单位时间的产品质量,气化炉的容积得到了充分利用。采用高压时,炉内反应物、生成物的浓度都较常压气化提高,从而提高了反应速度。 4、高温下水煤浆的水产生热分解促进气化反应进行。在高温气化中,水煤浆中的水通过热分解被分成氧和氢。这样,一方面可以减少用于自然气化所必需的由外部供给的氧气的数量,另一方面可以得到富氢合成气。 常压气化的优点: 1、投资少,运行、维修成本低。 由于采用常压气化,设备不属于压力容器,减少了设备投入;炉内温度不会太高,因此烧嘴砖和耐火材料的使用寿命延长,维护

费用降低。 2、安全性提高。 由于采用常压,不仅降低了事故的危害性和事故发生的次数,而且对操作人员的业务要求有所降低,便于大范围推广。 3、对环保的促进。 由于现在拥有大量粉煤的企业一般为中小型企业,通过对水煤浆常压气化炉的使用,对粉煤的再利用将有很大的好处,从而减少由于粉煤闲置造成的环境污染和能源浪费。 常压气化存在的问题: 1、反应能否进行问题。 任何反应能够不断进行是因为能达到热量平衡。气化剂采用30%左右的富氧空气及常压操作炉内各物质浓度较低,反应的剧烈程度将远低于Texaco加压气化,因此C+O=CO+Q 和 22C+O=2CO+Q 的反应速度将下降,从而产生的热量减少。 2 富氧空气的加入加大了生成物中非可燃气的含量,由煤气带出热量的损失也加大了。 水煤浆中约三分之一的水气化,需吸收大量的热量。 由于存在以上几个方面的热量损失,不仅不利于 C+HO=CO+H-Q 的进行,而且能否维持反应的持续进行将是一22 个很突出的问题。 2、研发的经济性问题。 由于产生热量少和热损失较大,气化炉内能否达到高温,使水产生热分解将成为一个问题。假如水不产生热分解,大量水蒸汽将随煤气排出炉体并将在管道沉积,不仅造成大量能源浪费,而且单位体积的产气量将减少,设备的利用率降低,装置的热效率大大降低,气化的经济性将受到极大质疑。 3、耐火砖问题。

气化炉维护检修规程

气化炉维护检修规程 1总则 1.1适用范围 本规程适用于山东华鲁恒升化工股份有限公司 A气化炉及B/C气化炉的维护检修。 1.2设备概述 气化炉为华鲁恒升大氮肥国产化装置中核心设备之一,用于水煤浆的加压气化,为合成氨或甲醇生产提供粗原料气。我公司采用的气化炉分为两种类型:一种为西北化工研究院的专有技术(B/C气化炉,类似于德士古气化炉);另一种为华东理工大学的专有技术(A气化炉,为四烧嘴对撞式,具有自主知识产权)。 1.3设备结构与技术性能简介 1.3.1设备结构 A气化炉和B/C气化炉均由燃烧室和激冷室组成。 燃烧室内衬耐火材料,就燃烧室筒体来说,从内到外依次为热面砖、背衬砖、隔热砖和可压缩层(膨胀材料)。衬里材料结构为:炉膛基本为竖向直筒;上面为球形拱顶;下面为收缩的渣口结构,即锥底。在使用中蚀损最严重的部位是向火面砖。 A气化炉和B/C气化炉在结构上的主要区别有: a)A气化炉安四个烧嘴,在炉子侧面即燃烧室筒体上水平对置安装, A 气化炉开车时在炉子顶部安装预热烧嘴,正常生产时炉子顶部用堵头堵死; B/C气化炉只一个烧嘴,在炉子顶部朝下安装,开车时预热烧嘴也安装在 此。 b)A气化炉在激冷室只有下降管没有上升管,而设置了气泡分离器;B/C 气化炉既有下降管也有上升管,没有设置气泡分离器。 1.3.2技术参数与性能 A气化炉和B/C气化炉的介质均为02、H2、CO、C02、H2O、H2S、N2和炉渣,工作压力均为6.5MPa,燃烧室工作温度均为1450C,激冷室工作温度均为252°C。 单炉日处理煤量A气化炉比B/C气化炉略高。另外,A气化炉产生的气化气中有效气体成分(CO+ H2)含量高。 1.4设备完好标准

煤气化工艺流程(德士古气化炉)

煤气化工艺流程(德士古气化炉)
煤气化工艺流程 一、 制浆系统 1、系统图 2、工艺叙述 由煤贮运系统来的小于 10mm 的碎煤进入煤贮斗后, 经煤称量给料机称量送入磨 机。 30%的添加剂由人工送至添加剂溶解槽中溶解成 3%的水溶液, 由添加剂溶解槽 泵送至添加剂槽中贮存。 并由添加剂计量泵送至磨机中。在添加剂槽底部设有蒸汽盘 管,在冬季维持添加剂温度在 20--30?,以防止冻结。
b5E2RGbCAP
工艺水由研磨水泵经磨机给水阀来控制送至磨机。煤、工艺水和添加剂一同送入 磨机中研磨成一定粒度分布的浓度约 59%-62%合格的水煤浆。水煤浆经滚筒筛滤去 3mm 以上的大颗粒后溢流至磨机出料槽中,由磨机出料槽泵送至煤浆槽。磨机出料槽和煤 浆槽均设有搅拌器,使煤浆始终处于均匀悬浮状态。 二、气化炉系统 1、系统图 2、工艺叙述 来自煤浆槽浓度为 59%-62%的煤浆,由煤浆给料泵加压,投料前经煤浆循环阀循 环至煤浆槽。投料后经煤浆切断阀送至德士古烧嘴的内环隙。
DXDiTa9E3d p1EanqFDPw
空分装置送来的纯度为 99.6%的氧气经氧气缓冲罐,控制氧气压力为 6.0~6.2MPa,在准备投料前打开氧气手动阀,由氧气调节阀控制氧气流量经氧气放空 阀送至氧气消音器放空。投料后由氧气调节阀控制氧气经氧气上、下游切断阀送入德 士古烧嘴。
RTCrpUDGiT
1/9

水煤浆和氧气在德士古烧嘴中充分混合雾化后进入气化炉的燃烧室中,在约 4.0MPa、1300?条件下进行气化反应。生成以 CO 和 H 为有效成份的粗合成气。粗 25PCzVD7HxA 合成气和熔融态灰渣一起向下,经过均匀分布激冷水的激冷环沿下降管进入激冷 室的水浴中。大部分的熔渣经冷却固化后,落入激冷室底部。粗合成气从下降管和导 气管的环隙上升,出激冷室去洗涤塔。在激冷室合成气出口处设有工艺冷凝液冲洗 水,以防止灰渣在出口管累积堵塞,并增湿粗合成气。由冷凝液冲洗水调 jLBHrnAILg 3 节阀控制冲洗水量为 23m/h。 激冷水经激冷水过滤器滤去可能堵塞激冷环的大颗粒,送入位于下降管上部的激 冷环。激冷水呈螺旋状沿下降管壁流下进入激冷室。
xHAQX74J0X
激冷室底部黑水,经黑水排放阀送入黑水处理系统,激冷室液位控制在 50--55%。在开车期间,黑水经黑水开工排放阀排向真空闪蒸罐。
LDAYtRyKfE
在气化炉预热期间,激冷室出口气体由开工抽引器排入大气。开工抽引器底部通 入蒸汽,通过调节预热烧嘴风门和抽引蒸汽量来控制气化炉的真空度,气化炉配备了 预热烧嘴。
Zzz6ZB2Ltk
三、合成气洗涤系统 1、系统图 2、工艺叙述 从激冷水浴出来饱和了水汽的合成气进入文丘里洗涤器,在这里与激冷水泵 送出的黑水混合,使合成气夹带的固体颗粒完全湿润,以便在洗涤塔内能快速除 去。
2/9

德士古气化炉维护检修规程

1.3.2技术参数与性能气化炉维护检修规程 1总则 1.1适用范围 本规程适用于德士古气化炉的检修周期与内容、检修与质量标准、试车与验收、维护与故障处理。 1.2设备概述 气化炉是我公司气化装置中核心设备之一,用于水煤浆的加压气化,为甲醇生产提供粗原料气。 1.3设备结构与技术性能简介 1.3.1设备结构 气化炉呈圆筒状,顶部有烧嘴安装口,底部连接破渣机,主要由燃烧室和激冷室组成,燃烧室为氧气和水煤浆的燃烧反应提供了空间,而激冷室则是对反应后的气体和熔渣进行了激冷和分离。 a)燃烧室壳体的主材为SA387Gr11CL2,内衬耐火砖,耐火砖从内到外 依次为向火面砖、背衬砖、隔热砖和可压缩层(膨胀材料)。炉膛顶部 为球形拱顶;中间为竖向直筒状;下部为收缩的渣口结构,即锥底。 壳体表面遍布测温点。 b)激冷室壳体主要采用SA387Gr11CL2+316L复合板卷制而成,内部主 要由激冷环、水环管和抽引管等组成。人孔开于下部。

总高mm20050净重t252 2检修周期和检修内容 2.1检修周期 检修周期可适当调整。中修主要根据气化炉实际运行状况,比如激冷水、炉砖情况或突发性状况等,而当筒体和拱顶向火面炉砖烧损至1/2厚度或壳体局部变形时,则必须安排大修。 2.2检修内容 2.2.1小修 a.处理日常检查中发现的不需要停车处理的问题,如消除漏点、检修或更换部分管路、阀门或仪表,加固管道支撑等; b.设备、管道的防腐、保温的修补; c.检查完善防静电接地。 2.2.2中修 a.包括小修内容; b.清理激冷水管路,包括外环管、弯管和激冷环等; c.检查耐火砖表面烧损情况,特别是渣口砖,有无剥落掉块等现象,必要时进行修补或更换; d.检查激冷环、水环管和抽引管等内件,有无穿孔、腐蚀、龟裂、变形等情况,若有则必须调正、修复、补焊甚至更换; e.激冷环与水环管的四周环隙是否均匀,有无异物堵塞,并疏通下降管平衡孔; f.检查抽引管的支撑、水环管的定位板是否牢靠,必要时进行修复; g.检查修复大法兰的密封面及高压螺栓、螺母或螺孔; h.检查、调校或更换测温热电偶、仪表联锁、自动调节装置及现场液位计,并冲洗流量计的导压管; i.进行压力容器年度检验。 2.2.3大修

相关主题
文本预览
相关文档 最新文档