当前位置:文档之家› 气化炉带水原因分析

气化炉带水原因分析

气化炉带水原因分析

德士古水煤浆气化合成气带水问题的分析与探讨

摘要:分析了德士古气化炉合成气带水的原因及对稳定系统生产的影响,提出了通过降低热流强度、扩大上升管直径、加大激冷室上部分离空间及在气化炉合成气出口管线上设置气水分离器几项改进措施。关键词:合成气带水德士古分析探讨气化炉是德士古水煤浆气化装置的核心设备,分为燃烧室和激冷室两部分。上部为燃烧室,下部为激冷室。激冷室内有激冷环、下降管、上升管、折流挡板等主要部件。在我们的日常操作过程中,常会发生激冷室内的合成气带水的问题,本文就此问题进行分析和探讨。

一、

装置的流程。

加压的水煤浆和氧气经过特制的工艺烧嘴喷入气化炉以后,水煤浆被高效雾化成细小的煤粒,与氧气在气化炉内1300~1400℃的高温下发生复杂的氧化还原反应,产生煤气,同时生成少量的熔渣。合

成气与熔渣出气化炉燃烧室以后,在下降管的引导下进入到激冷室的液面以下,为了保护下降管,在下降管的上端设置了一个激冷环用来分布供应到气化炉激冷室的激冷水,使激冷水以液膜的形式分布在激冷环的内表面,合成气和熔渣在沿下降管下降的过程中,合成气和熔渣与激冷环内壁上的水膜发生传热传质过程,熔渣被冷却固化后沉降到气化炉激冷室的底部,经锁斗收集后排出。合成气被冷却降低温度,部分激冷水被蒸发并以饱和水蒸气的形式进入到合成气气相主体中。吸收了饱和水蒸气以后的和成气出下降管以后,在浮力和气流的推动力作用下沿下降管与上升管之间的环隙鼓泡上升,离开上升管后被激冷室上部的折流板折流后从气化炉激冷室的合成气出口排出,经文丘里洗涤器进一步增湿后进入洗涤塔洗涤掉合成气中包含的少量灰份后送变换工序。洗涤塔的补充水有三路:一路是由文丘里加入的高压灰水,另两路是冷凝液,分别由洗涤塔的塔盘供水流量调节阀和洗涤塔的液位调节阀

5、由于气化炉向闪蒸系统排放水量的减少会影响闪蒸系统的操作。

6、由于系统带水严重,部分黑水进入气相当中会严重影响合成气的流通通道,增加系统的阻力,造成系统超压和压力波动。

三、合成气带水过程的分析。

合成气通过燃烧室的渣口进入激冷环和下降管以后,由于下降管内壁的四周分布着激冷水形成的液膜,合成气与激冷水并流下降的过程中即发生了传热和传质过程,合成气被冷却,激冷水被加热并吸收部分激冷水蒸发产生的水蒸气。合成气离开下降管后,在下降管和上升管之间的环隙间穿越激冷室的水液层鼓泡上升。在此过程中,由于合成气的流速过快,合成气在逸出水面时,要夹带部分水分。被夹带出的水有四种运动形式:1、部分水液由于动能不够高,上升一段高度后又回落到液面上。2、部分水液撞击到上升管的内壁和下降管的外壁上,以液膜的形式又流回到液面上。3、部分水液上升到上升管的上沿,但是在经过折流板时,被遮挡住又落

浅谈锅炉蒸汽品质

浅谈锅炉蒸汽品质 作者:陈坡一单位:乌鲁木齐石化公司化肥厂动力车间 【摘要】蒸汽品质对锅炉和机组的安全、经济运行影响很大,文章着重介绍了蒸汽品质的影响因素和改善蒸汽品质所应该采取的措施。 【关键词】蒸汽品质;影响因素;措施。 一、保证蒸汽品质的意义: 化肥厂动力车间的锅炉生产的S100过热蒸汽主要用于驱动一合成车间的4111K1T和4117K1T两大透平机组,蒸汽品质将直接影响锅炉和两大机组的安全、经济运行,提高蒸汽品质是保证炉机安全运行,确保化肥厂安、稳、长、满、优生产的先决条件。 目前,正常情况下,两台煤锅炉运行提供化肥厂生产所需要的蒸汽。2005年以来,由于两台煤锅炉老化,多次发生炉水品质低于标准从而影响蒸汽品质的情况。特别是2006年的7、8、9三个月,炉水中亚铁离子超标,严重影响到蒸汽品质,给锅炉和用汽工段的安全运行带来了重大隐患。为保证炉机的安全、经济运行,必须严格控制蒸汽品质。 蒸汽品质是通过质检科抽样化验蒸汽中二氧化硅的含量得出的,下面是对210次抽样结果做的一个数据统计: 对汽包锅炉而言,在高压下汽水腐蚀的问题日益突出,这就给锅炉的安全、经济运行带来困难。我将在这里简单分析蒸汽品质的恶化对机组安全、经济运行所带来的不利影响,蒸汽品质的影响因素,应该采取什么样的措施来保证蒸汽的品质合格。 二、蒸汽品质恶化的不利影响: 蒸汽品质是指蒸汽含杂质的多少,也就是指蒸汽的纯净程度。蒸汽含杂质过多就会引起过热器受热面、汽轮机流通部分和蒸汽管道沉积盐。⑴盐垢如沉积在过热器受热面管壁上,就会使传热能力降低,轻则使蒸汽吸热减少,过热蒸汽温度降低,排烟温度升高,锅炉效率降低;重则使管壁温度超过金属允许的极限温度,导致管子超温烧坏。⑵盐垢如沉积在汽轮机的流通部分,将使蒸汽的流通面积减小,造成叶片的粗糙度增加,甚至会改变叶片的形状,使汽轮机的阻力增大,出力和效率降低,此外还将引起叶片应力和轴向推力增加,甚至引起汽轮机振动增大,造成汽轮机事故。⑶盐垢如沉积在蒸汽管道的阀门处,可能引起阀门动作失灵和阀门漏汽。蒸汽品质恶化还会造成“汽水共腾”等很多负面的影响。 三、蒸汽品质的影响因素: 那么,蒸汽品质的影响因素有哪些呢?主要有以下两个大的方面:(1)蒸汽携带锅炉水:①锅炉压力对蒸汽带水的影响;锅炉压力越高,蒸汽越容易带水;②汽包内部结构对蒸汽带水的影响;汽包内径的大小,汽水引入、引出管的布置情况要影响蒸汽带水的多少,汽包内汽水分离装置不同,汽水分离效果就不一样;③锅水含盐量对蒸汽带水的影响;当锅

气化炉简易原理

在一般的煤气发生炉中,煤是由上而下、气化剂则是由下而上地进行逆流运动,它们之间发生化学反应和热量交换。这样在煤气发生炉中形成了几个区域,一般我们称为“层”。 按照煤气发生炉内气化过程进行的程序,可以将发生炉内部分为六层(见混合煤气发生炉结构示意图):1)灰渣层;2)氧化层(又称火层);3)还原层;4)干馏层;5)干燥层;6)空层; 其中氧化层和还原层又统称为反应层,干馏层和干燥层又统称为煤料准备层。 (1)灰渣层:煤燃烧后产生灰渣,形成灰渣层,它在发生炉的最下部,覆盖在炉篦之上。 其主要作用为: A、保护炉篦和风帽,使它们不被氧化层的高温烧坏; B、预热气化剂,气化剂从炉底进入后,首先经过灰渣层进行热交换,使灰渣层温度降低,气化剂温度升高,一般气化剂能预热达300-450℃左右。 C、灰渣层还起了布风作用,使进入的气化剂在炉膛内尽量均匀分布。 (2)氧化层:也称为燃烧层(火层)。从灰渣中升上来的气化剂中的氧与碳发生剧烈的燃烧而生成二氧化碳,并放出大量的热量。它是气化过程中的主要区域之一,其主要反应是: C+O2→CO2+97650大卡氧化层的高度一般为所有燃料块度的3-4倍,一般为100-200毫米。气化层的温度一般要小于煤的灰熔点,控制在1200℃左右。 (3)还原层:在氧化层的上面是还原层。赤热的碳具有很强的夺取氧化物中的氧而与之化合的本领,所以在还原层中,二氧化碳和水蒸气被碳还原成一氧化碳和氢气。这一层也因此而得名,称为还原层,其主要反应为:CO+C→2CO+38790大卡H2O+C→H2+CO+28380大卡 2H2O+C→CO2+2H2+17970大卡由于还原层位于氧化层之上,从上升的气体中得到大量热量,因此还原层有较高的温度约800-1100℃,这就为需要吸收热量的还原反应提供了条件。而严格地讲,还原层还有第一、第二之分,下部温度较高的地方称第一还原层,温度达950-1100℃,其厚度为300-400毫米左右;第二层为700-950℃之间,其厚度 为第一还原层1.5倍,约在450毫米左右。 (4)干馏层:干馏层位于还原层的上部,由还原层上升的气体随着热量的被消耗,其温度逐渐下降,故干馏层温度约在150-700℃之间,煤在这个温度下,历经低温干馏的过程,煤中挥发份发生裂解,产生甲烷、烯烃及焦油等物质,它们受热成为汽态,即生成煤气并通过上面干燥层而逸出,成为煤气的组成部分。干馏层的高度随燃料中挥发份含量及煤气炉操作情况而变化,一般>100毫米。 (5)干燥层:干燥层位于干馏层上面,也即是燃料的面层,上升的热煤气与刚入炉的燃料在这层相遇,进行热交换,燃料中的水分受热蒸发。一般认为干燥温度在室温150℃之间,这一层的高度也随各种不同的操作情况而异,没有相对稳定之层高。 (6)空层:空层即燃料层上部,炉体内的自由区,其主要作用是汇集煤气。也有的同志认为:煤气在空层停留瞬间,在炉内温度较高时还有一些副反应发生,如:CO分解、放出一些炭黑: 2CO→CO2+C 以及2H2O+CO→CO2+H2从上面六层简单叙述,我们可以看出煤气发生炉内进行的气化过程是比较复杂的,既有气化反应,也有干馏和干燥过程。而且在实际生产的发生炉中,分层也不是很严格的,相邻两层往往是相互交错的,各层的温度也是逐步过渡的,很难具体划分,各层中气体成份的变化就更加复杂了,即使在专门的研究中,看法也是分歧的。煤气炉的结构: 对于固定床煤气炉有多种结构型式,按不同部位分述如下:1、加煤装置:间歇式加煤罩;双料钟;振动给煤机;拨齿加煤机。2、炉体结构:带压力全水套;半水套;无水套(耐火材料炉衬);常压全水套。3、炉篦:宝塔型;型钢焊接型。4、灰盘传动结构:拨齿型;蜗轮蜗杆型。 煤气发生炉的事故处理 一、遇到下列情况应立即改热备用或停炉 1、供电停电时。 2、供气或供水停止4小时以上时。

各种气化炉型的比较

各种气化炉型的比较 1.常压固定床间歇式无烟煤(或焦炭)气化技术 目前我国氮肥产业主要采用的煤气化技术之一,其特点是采用常压固定床空气、蒸汽间歇制气,要求原料为准 25~75mm的块状无烟煤或焦炭,进厂原料利用率低,单耗高、操作繁杂、单炉发气量低、吹风放空气对大气污染严重,属于将逐步淘汰的工艺。 2.常压固定床无烟煤(或焦炭)富氧连续气化技术 其特点是采用富氧为气化剂、连续气化、原料可采用?准 8~10mm粒度的无烟煤或焦炭,提高了进厂原料利用率,对大气无污染、设备维修工作量小、维修费用低,适合用于有无烟煤的地方,对已有常压固定层间歇式气化技术进行改进。 3.鲁奇固定床煤加压气化技术 主要用于气化褐煤、不粘结性或弱粘结性的煤,要求原料煤热稳定性高、化学活性好、灰熔点高、机械强度高、不粘结性或弱粘结性,适用于生产城市煤气和燃料气。其产生的煤气中焦油、碳氢化合物含量约1%左右,甲烷含量约10%左右。焦油分离、含酚污水处理复杂,不推荐用以生产合成气。 4.灰熔聚煤气化技术 中国科学院山西煤炭化学研究所技术。其特点是煤种适应性宽,属流化床气化炉,煤灰不发生熔融,而只是使灰渣熔聚成球状或块状灰渣排出。可以气化褐煤、低化学活性的烟煤和无烟煤、石油焦,投资比较少,生产成本低。缺点是操作压力偏低,对环境污染及飞灰堆存和综合利用问题有待进一步解决。此技术适合于中小型氮肥厂利用就地或就近的煤炭资源改变原料路线。 5.恩德粉煤气化技术 属于改进后的温克勒沸腾床煤气化炉,适用于气化褐煤和长焰煤,要求原料煤不粘结或弱粘结性,灰分<25%~30%,灰熔点高、低温化学活性好。在国内已建和在建的装置共有13套22台气化炉,已投产的有16台。属流化床气化炉,床层中部温度1000~1050℃。目前最大的气化炉产气量为4万m3/h半水煤气。缺点是气化压力为常压,单炉气化能力低,产品气中CH4含量高达1.5%~2.0%,飞灰量大、对环境污染及飞灰堆存和综合利用问题有待解决。此技术适合于就近有褐煤的中小型氮肥厂改变原料路线。 6.GE水煤浆加压气化技术 属气流床加压气化技术,原料煤运输、制浆、泵送入炉系统比干粉煤加压气化简单,安全可靠、投资省。单炉生产能力大,目前国际上最大的气化炉投煤量为2000t/d,国内已投产的气化炉能力最大为1000t/d。设计中的气化炉能力最大为1600t/d。对原料煤适应性较广,气煤、烟煤、次烟煤、无烟煤、高硫煤及低灰熔点的劣质煤、石油焦等均能用作气化原料。但要求原料煤含灰量较低、还原性气氛下的灰熔点低于1300℃,灰渣粘温特性好。气化系统不需要外供过热蒸汽及输送气化用原料煤的N2或CO2。气化系统总热效率高达94%~96%,高于Shell干粉煤气化热效率(91%~93%)和GSP干粉煤气化热效率(88%~92%)。气化炉结构简单,为耐火砖衬里,制造方便、造价低。煤气除尘简单,无需价格昂贵的高温高压飞灰过滤器,投资省。国外已建成投产6套装置15台气化炉;国内已建成投产7套装置21台气化炉,正在建设、设计的还有4套装置13台气化炉。 已建成投产的装置最终产品有合成氨、甲醇、醋酸、醋酐、氢气、CO、燃料气、联合循环发电,各装置建成投产后,一直连续稳定长周期运行。装备国产化率已达90%以上,由于国产化率高、装置投资较其他加压气化装置都低,有备用气化炉的水煤浆加压气化与不设备用气化炉的干煤粉加压气化装置建设费用的比例大致为Shell法 : GSP法 : 多喷嘴水煤浆加压气化法 : GE水煤浆法=(2.0~2.5):(1.4~1.6):1.2:1.0。缺点是气化用原料煤受气化炉耐火砖衬里的限制,适宜于气化低灰熔点的煤;碳转化率较低;比氧耗和比煤耗较高;气化炉耐火砖使用寿命较短,一般为1~2年;气化炉烧嘴使用寿命较短。 7.多元料浆加压气化技术

气化炉带水原因分析

气化炉带水原因分析

德士古水煤浆气化合成气带水问题的分析与探讨 摘要:分析了德士古气化炉合成气带水的原因及对稳定系统生产的影响,提出了通过降低热流强度、扩大上升管直径、加大激冷室上部分离空间及在气化炉合成气出口管线上设置气水分离器几项改进措施。关键词:合成气带水德士古分析探讨气化炉是德士古水煤浆气化装置的核心设备,分为燃烧室和激冷室两部分。上部为燃烧室,下部为激冷室。激冷室内有激冷环、下降管、上升管、折流挡板等主要部件。在我们的日常操作过程中,常会发生激冷室内的合成气带水的问题,本文就此问题进行分析和探讨。 一、 装置的流程。 加压的水煤浆和氧气经过特制的工艺烧嘴喷入气化炉以后,水煤浆被高效雾化成细小的煤粒,与氧气在气化炉内1300~1400℃的高温下发生复杂的氧化还原反应,产生煤气,同时生成少量的熔渣。合

成气与熔渣出气化炉燃烧室以后,在下降管的引导下进入到激冷室的液面以下,为了保护下降管,在下降管的上端设置了一个激冷环用来分布供应到气化炉激冷室的激冷水,使激冷水以液膜的形式分布在激冷环的内表面,合成气和熔渣在沿下降管下降的过程中,合成气和熔渣与激冷环内壁上的水膜发生传热传质过程,熔渣被冷却固化后沉降到气化炉激冷室的底部,经锁斗收集后排出。合成气被冷却降低温度,部分激冷水被蒸发并以饱和水蒸气的形式进入到合成气气相主体中。吸收了饱和水蒸气以后的和成气出下降管以后,在浮力和气流的推动力作用下沿下降管与上升管之间的环隙鼓泡上升,离开上升管后被激冷室上部的折流板折流后从气化炉激冷室的合成气出口排出,经文丘里洗涤器进一步增湿后进入洗涤塔洗涤掉合成气中包含的少量灰份后送变换工序。洗涤塔的补充水有三路:一路是由文丘里加入的高压灰水,另两路是冷凝液,分别由洗涤塔的塔盘供水流量调节阀和洗涤塔的液位调节阀

锅炉水质处理及水分析

Q/QH 锅炉水质处理及水分析 青海油田分公司供水供电公司发布 I

锅炉水质处理及水分析 1 范围 本规程适用于中国石油天然气股份有限公司青海油田分公司供水供电公司发电车间 2 规范性引用文件 锅炉水质处理及水分析(1988年)。 3 天然水和水的预处理 3.1 概述 3.1.1 天然水中的杂质 气体:O2、CO2 分类悬浮物:泥沙、腐殖酸、微生物等 溶解固形物 溶解固形物最常见的有八种离子:CLˉ、SO42-、HCO3ˉ、CO32-四种阴离子和Na+、Mg2+、Ca2+、K+四种阳离子。 使用地下水时,原水中本来几乎不含,腐殖酸,微生物等,而在长管线运送过程中水中增加大量的管路腐蚀产物,以及中转过程中增加和微量有机物。 被如上杂质污染的水直接用来作为锅炉给水时,对锅炉和蒸汽品质都会直接或间接地造成危害,其危害有: 1、产生水垢与沉渣,堵塞和影响传热效果; 2、对锅炉产生腐蚀,减少锅炉使用寿命; 3、恶化蒸汽品质,造成用汽设备的结盐和腐蚀。 我们把污染天然水的杂质也可简单归纳为如下几种: 1、浊度: 浊度就是水的浑浊程度,用度表示,1度也叫1mg/L,即表示1水中所含悬浮物杂质的毫克数。但是,用散射光性能测定浊度时单位应采用福马单位。 2、硬度: 硬度表示结垢物质的含量多少,Ca2+、Mg2+含量的总和称为总硬度,硬度有碳酸盐硬度和非碳酸硬度之分。碳酸盐硬度,是指水中硬度由钙、镁的碳酸盐沉淀。因此碳酸盐硬度又叫暂时硬度。非碳酸盐硬度,是指水中硬度由钙、镁的非碳酸盐组成。其特点是:当水温升高到一定高度时也就是暂时硬度和永久硬度之和。 硬度的单位是毫摩尔/升(mM或mmol/L) 3、碱度 水中能够消耗的物质的量称为碱度。碱度可分为重碳酸根碱度、碳酸根碱度和氢氧根碱度,总碱度为它们之和,但事实上重碳酸根碱度和氢氧根碱度不能同时存在。 用甲基橙为指示剂测出的碱度为总碱度,又称全碱度。用酚酞为指示剂测出的碱度只包含了全部的氢氧根碱度各碳酸根碱度。其单位也是mmol/L。 原水为地下水时,该原水的碱度基本上是由HCO3ˉ造成。因此当碱度小于硬度时,测出的碱度就是水中的暂时硬度,当碱度大于硬度时水中就有了负硬。 2

气化炉频繁带水故障处理调查报告.docx

一、事故现象 正常生产过程中,气化炉出口气温度由242℃快速下降至235℃,同时气化炉液位先升后降,洗涤塔液位先降后升。 二、事故处理要点 1.适当降低气化炉液位; 2.适当加大气化炉排水量; 3.适当降低气化炉负荷。 三、原因分析 1.气化炉液位高减小了激冷室内气水分离的空间。 2.气化炉热负荷过高,产气量过大,气相易带液。 3.炉内件变形或运行后期结垢,造成气体流道变窄流速加快。 四、事故危害 1.造成气化炉洗涤塔液位波动,易联锁停车,同时影响洗涤塔给料泵负荷,易造成该泵超电流或憋压; 2.影响系统压力,影响送变换合成气水汽比; 3.造成洗涤塔水质恶化,从而加快激冷水系统、洗涤塔黑水排放线结垢堵塞,缩短系统运行周期。 五、事故教训及防范措施 1.单炉检修时对炉内结垢进行彻底清理,对变形的部件进行修复; 2.频繁带水时需及时处理,避免造成更严重的危害。 一、事故现象 2010年5月6日19点30,气化工段123R0101系统一系列仪表显示故障,8个仪表参数同时开路,显示值锁定不变,对应阀门调节器无法自动调节。显示故障的几个参数分别是挂有水泵自启及气化炉停车联锁的激冷水流量:123FI01218,挂激冷水泵停车联锁的123LI01193以及123PI01202。 二、事故处理要点 发现问题后,紧急联系仪表、通知车间值班及调度,同时将洗涤塔补水阀123LV01193打手动调节,洗涤塔进水量略大于正常值,保证洗

涤塔液位,防止激冷水泵抽空。现场人员及时赶到123P0104,观察激冷水泵运行情况,并把备用泵打手动,随时准备现场调节和操作。仪表人员到位后首先保障相关参数不能触发激冷水流量低联锁停车,然后进一步处理卡件问题。 三、原因分析 仪表卡件质量问题。 四、事故危害 若发现不及时、处理不正确都将造成气化炉非计划停车,甚至造成激冷环严重损坏的恶性生产事故。 五、事故教训及防范措施 1.认真监盘,及时发现问题。 2.加强事故演练,提高操作人员应对和处理事故能力。 3.加强仪表维护和保养,保证生产稳定运行。

蒸汽冷凝水酸性原因

1蒸汽冷凝水受污染的原因 冷凝水受铁离子污染的主要原因是,蒸汽冷凝水系统和冷凝水回收金属管道发生了腐蚀,而腐蚀的主要原因是蒸汽中所含有的Ο2和СΟ2 (1)氧腐蚀 由于锅炉给水不除氧或出氧不合格(除氧未达到104℃),给水中的溶解氧进入锅炉,在高温锅水中部分随着蒸汽一起蒸发出来(部分与锅炉金属发生了反映)进入蒸汽中,又伴随着蒸汽冷凝,溶解到蒸汽冷凝水中,如果蒸汽冷凝水回收系统不密闭(开式回收或被加热介质进入),空气中的溶解氧也会溶解到冷凝水中,因此,蒸汽冷凝水中含有一定量的溶解氧会对管道和回收系统的金属表面进行腐蚀。 Ο2+Fе+Н2Ο→Fе(ΟН)2 Ο2+ Fе(ΟН)2+Н2Ο→Fе(ΟН)3 Fе(ΟН)2 +Fе(ΟН)3→Fе3Ο4+Н2Ο (2)游离二氧化碳造成的腐蚀 冷凝水中的二氧化碳主要来源于锅炉的补给水或碳酸盐阻垢剂。这是由于天然水中含有大量碳酸氢盐,多数工业锅炉为了防止结垢常常加入过量的碳酸钠,在高温的锅水中碳酸氢盐和碳酸盐受热分解,释放出游离的二氧化碳,并随着蒸汽进入冷凝水中。 НСΟ3-→СΟ2↑+Н2Ο+СΟ32- СΟ32-+Н2Ο→СΟ2↑+ΟН- СΟ2气体被蒸汽携带,会使蒸汽冷凝水或湿蒸汽显弱酸性,水中СΟ2虽然只显弱酸性,但由于蒸汽一般都比较纯净,冷凝成水后缓冲性很小,少量溶有1mgСΟ2时,水的ΡН值便可由7.0降至5.5左右。水中的СΟ2可使水产生Н+,而Н+与溶解氧同是腐蚀电池中阴极去极化剂,大大加速了阳极金属的腐蚀。 СΟ2使金属发生酸腐蚀,又使其发生电化学腐蚀。因此,冷凝水中的СΟ2具有较强的腐蚀性,特别是在有氧的存在下。 СΟ2+Н2Ο→НСΟ3-+ΟН- 在冷凝水系统中,同时含有Ο2和СΟ2,将会明显地加速管道和泵的金属腐蚀,促使冷凝水中的含铁量迅速增高,直接将受污染的蒸汽冷凝水作为锅炉补水,(冷凝水中若不含有Ο2和СΟ2冷凝水不会污染),会造成锅炉给水系统及锅炉本体腐蚀,冷凝水中携带的Fе3+及腐蚀产物同样会引起锅炉腐蚀和在锅炉内积聚堆积,因此不经过处理的受污染的蒸汽冷凝水是不能直接作为锅炉补给水的。 2蒸汽冷凝水作为锅炉补给水的水质防范措施 为了防止冷凝水中铁含量增高而引起锅炉结垢和腐蚀,可以采用下列几种处理措施。(1)从提高锅炉补水品质入手,减少蒸汽中Ο2和СΟ2的含量,从而防止冷凝水对回收管道和回收系统的腐蚀来保证冷凝水中的铁含量,达到锅炉给水标准。 要减少锅炉给水中的溶解氧含量必须搞好锅炉给水的除氧处理。目前对≥6t/h的锅炉,一般有除氧器,应该尽可能投入运行,同时补充投加化学除氧剂处理。对小型直流式,贯流式燃油燃汽锅炉,可以直接投加化学除氧剂处理;对≤4t/h的锅炉可以不进行除氧处理。 要减少蒸汽中的二氧化碳,必须降低锅炉给水中碳酸盐碱度。对于原水碱度较高的应采取降低碱度处理,对于原水碱度较低的,在采取软化处理时,不宜加碳酸钠而应加适量的磷酸三钠来消除给水残余硬度和提高锅水碱度,必要时还可以设脱碳器除二氧化碳。(要增加补水分析项目) (2)、冷凝水采用闭式回收,彻底消除外界空气中的氧和二氧化碳进入回收系统。(3)、杜绝用热设备泄漏,防止被加热介质进入回收系统。 3蒸汽冷凝水作为锅炉补给水的水质补救措施

水煤浆气化炉分析

水煤浆气化炉分析 水煤浆常压气化炉分析 水煤浆气化根据气化炉内压力分常压和高压两种气化方法,其中Texaco水煤浆气化技术是开发成功并最早实现工业化生产的第二代煤气化工艺技术,它是一种以水煤浆为进料、氧气为气化剂的加压气流床气化工艺,属于气流床湿法加料、液态排渣的加压煤气化技术。现有资料显示了Texaco水煤浆加压气化的优越性,但并没有否定常压气化的可行性。 高温高压气化的优点: 1、采用高压气化制造合成气,大大减少了气体净化的投资,因此所有现代化的气化方法都在压力下操作。 2、总能耗大大减少。例如,在低于6Mpa的煤加压气化中,甲醇的压缩消耗会从常压气化的700kWh/t降到约100kWh/t,其中氧气压缩所增加的费用仅为 100kWh/t,此外氧的增加的费用也可以通过降低氧纯度再进一步减少。 3、大大提高单位体积和单位时间的产品质量,气化炉的容积得到了充分利用。采用高压时,炉内反应物、生成物的浓度都较常压气化提高,从而提高了反应速度。 4、高温下水煤浆的水产生热分解促进气化反应进行。在高温气化中,水煤浆中的水通过热分解被分成氧和氢。这样,一方面可以减少用于自然气化所必需的由外部供给的氧气的数量,另一方面可以得到富氢合成气。 常压气化的优点: 1、投资少,运行、维修成本低。 由于采用常压气化,设备不属于压力容器,减少了设备投入;炉内温度不会太高,因此烧嘴砖和耐火材料的使用寿命延长,维护

费用降低。 2、安全性提高。 由于采用常压,不仅降低了事故的危害性和事故发生的次数,而且对操作人员的业务要求有所降低,便于大范围推广。 3、对环保的促进。 由于现在拥有大量粉煤的企业一般为中小型企业,通过对水煤浆常压气化炉的使用,对粉煤的再利用将有很大的好处,从而减少由于粉煤闲置造成的环境污染和能源浪费。 常压气化存在的问题: 1、反应能否进行问题。 任何反应能够不断进行是因为能达到热量平衡。气化剂采用30%左右的富氧空气及常压操作炉内各物质浓度较低,反应的剧烈程度将远低于Texaco加压气化,因此C+O=CO+Q 和 22C+O=2CO+Q 的反应速度将下降,从而产生的热量减少。 2 富氧空气的加入加大了生成物中非可燃气的含量,由煤气带出热量的损失也加大了。 水煤浆中约三分之一的水气化,需吸收大量的热量。 由于存在以上几个方面的热量损失,不仅不利于 C+HO=CO+H-Q 的进行,而且能否维持反应的持续进行将是一22 个很突出的问题。 2、研发的经济性问题。 由于产生热量少和热损失较大,气化炉内能否达到高温,使水产生热分解将成为一个问题。假如水不产生热分解,大量水蒸汽将随煤气排出炉体并将在管道沉积,不仅造成大量能源浪费,而且单位体积的产气量将减少,设备的利用率降低,装置的热效率大大降低,气化的经济性将受到极大质疑。 3、耐火砖问题。

锅炉蒸汽品质的影响因素和对策措施

随着锅炉参数和容量的不断提高,对汽包锅炉而言对蒸汽品质要求也越来越高,特别是在高压下汽水腐蚀的问题也日益突出,这就给我们的安全,经济运行带来困难。我们在这里简单分析蒸汽品质的恶化对机组安全,经济运行所带来的不利影响,影响蒸汽品质的因素,采取什么措施。希望能对我们的工作有所帮助。 蒸汽品质是指蒸汽含杂质的多少,也就是指蒸汽的洁净程度,蒸汽含杂质过多会引起过热器受面,汽轮机通流部分和蒸汽管道沉积盐。盐垢如沉积在过热器受热面管壁上,会使传热能力降低,重则使管壁温度超过金属允许的极限温度,导致管子超温烧坏,轻则使蒸汽吸热减少,过热汽温降低,排烟温度升高,锅炉效率降低。盐垢如沉积在汽轮机的通流部分时,将使蒸汽的流通面积减小,造成叶片的粗糙度增加,甚至会改变叶片的型线,使汽轮机的阻力增大出力和效率降低,此外将引起叶片应力和轴向推力增加,甚至引起汽轮机振动增大,造成汽轮机事故。若盐垢沉积在蒸汽管道的阀门处,可能引起阀门动作失灵和阀门漏汽。 影响蒸汽品质的因素有一下主要方面; (一)蒸汽携带锅水: a)锅炉压力对蒸汽带水的影响;压力越高蒸汽越容易带水。b)汽包内部结构对蒸汽带水的影响:汽包内径的大小,汽水的引入引出管的布置情况要影响蒸汽带水的多少,汽包内汽水分离装置不同,其汽水分离效果也不同。c)锅水含盐量对蒸汽带水的影响;锅水含盐量小于某一定值时,蒸汽含盐与锅水含盐量成正比。d)锅炉负荷对蒸汽带水的影响;在蒸汽压力和锅水含盐量一定的条件下,锅炉负荷上升,蒸汽带水量也趋于有少量增加。如果锅炉超负荷运行时,其蒸汽品质就会严重恶化。d)汽包水位的影响也不容忽视;当汽包水位过高时,蒸汽带水量也会明显增加。 (二)蒸汽溶解杂质: 大容量高压锅炉的饱和蒸汽像水一样也能溶解锅水中的某些杂质。蒸汽溶解杂质的数量与物质种类和蒸汽压力大小有关。蒸汽溶盐能力随压力的升高而增强;蒸汽溶盐具有选择性,以溶解硅酸最为显著,过热蒸汽也能溶盐。因此锅炉压力越高,要求锅水中含盐量和含硅量越低。 下面我们从运行方面来总结一下提高蒸汽品质所采取的措施:通过各项实验可知,要获得清洁的蒸汽,就必须降低炉水的含盐量,降低饱和蒸汽的带水和减少溶解在蒸汽中的杂质。因此,我们运行人员要努力做到以下几点: 1)首先减少给水中的杂质,保证给水品质良好。 2)其次,合理地进行锅炉排污。锅炉排污分定期排污和连续排污,定期排污可排除锅水中的水渣及沉淀物。连续排污可以降低锅水的含盐量,含硅量。故锅炉值班员在进行排污工作时应严格执行各技术标准规定和运行分场的各项技术措施。 3)再次,当锅炉正常运行时对汽包水位应进行严密监视与调整。按锅炉技术标准规定执行,汽包水位应保持在零位即:汽包中心线下50MM处。防止因汽包水位过高引起蒸汽带水,造成蒸汽品质恶化。 4)最后,应严格监督给水品质,调整锅炉运行工况。因为各台锅炉汽,水监督指标是根据每台锅炉热化学实验确定的,运行中应保持汽,水品质合格。同时锅炉运行负荷的大小应符合有关规定。

锅炉给水水质超标的危害

一、水中的杂质 水的杂质除氧、二氧化碳等气体和悬浮物外,还有溶解固形物。溶解固形物最常见的有八种离子:氯离子(Cl--)、硫酸根离子(SO2-4)、重碳酸根离子(HCO--3)、碳酸根离子(CO2-3)、钠离子(Na+)、镁离子(Mg2+)、钙离子(Ca2+)、钾离子(K+)。以上杂质的水溶液,假如直接用于锅炉给水,则对锅炉和蒸汽品质都会直接或间接地造成危害:产生水垢与沉渣;对锅炉腐蚀;恶化蒸汽品质。 二、各种杂质对安全生产的影响 钠离子:限制炉水中的含钠量是为了保证蒸汽品质。因蒸汽带水,使炉水中的钠盐带入蒸汽,当含盐量超过一定数值时,蒸汽带水量会明显增加,使蒸汽品质明显变坏。过热蒸汽带入汽轮机的钠化合物,由于钠化合物在过热蒸汽中的溶解度不大,而且随着蒸汽压力的下降,溶解度也会很快下降。所以在汽轮机内,当蒸汽压力稍有降低时,它们在蒸汽中的含量就高于溶解度,因此很容易从蒸汽中析出而沉积在汽轮机内,不仅影响汽轮机的出力,而且还危机安全运行。 氧:自然水中,大多都溶解有氧。氧存在于水中,对于钢、铁、铜等金属,都具有不同的腐蚀作用。pH值较低的水,能促进溶解氧的腐蚀作用;pH值较高的水,可使这种作用减弱。当水温升高,但不足以使溶解氧从水中析出时,腐蚀作用的速度会加快,所以在热水管和凝聚水管中,氧腐蚀更为严重。经验得知,此温度约在60~90℃之间。溶解氧的腐蚀,只

有在水溶解中才能发生。溶解氧的腐蚀,是锅炉金属表面腐蚀的主要和常见的原因。 二氧化硅:在所有自然水中,二氧化硅的含量差异较大,江河中二氧化硅在一年中变化也很大。二氧化硅在锅炉内形成的水垢是非常坚硬的,且呈透明或半透明状态,类似玻璃。用机械方法清除这种水垢,要比清洗一般碳酸盐水垢多几倍工时,这种水垢的导热性能极差。当水垢产生后,会使受热面降低传热作用,以致造成受热面过热烧坏。 铁:自然水中含铁量小于0.1mg/L时,并无影响,但当含量超过0.3mg/L 时,水就会有味、混浊。地下水含有铁时,会出现红色氢氧化铁沉淀。锅炉补给水中含铁量过高,会导致锅炉受热面炉管产生氧化铁垢。氧化铁水垢的导热性能很差,平均导热系数只有0.1~0.2kcal/(m·h·℃),仅为钢材的1.67‰~5‰;即使与锅炉内常见的钙镁水垢相比,平均导热数也要低很多,约为钙镁水垢平均导热系数的1.67%~40%。而资料显示,锅炉受热面上附着1mm厚的水垢时,其燃料的消耗将增加1.5~3.0%,由此可见,在锅炉炉管上生成的氧化铁水垢将大大降低锅炉的经济性。氧化铁水垢不仅严重阻碍传热,而且会造成传热面局部温度过高,导致金属强度下降。因此,锅炉给水的铁含量超标,还容易造成炉管变形,进而危及锅炉的安全。

各种气化炉工艺比较

煤制合成气技术比较 作者/来源:陈英1,任照元2(1.兖矿鲁南化肥厂,山东滕州277527;2.水煤浆气化及煤化工国家工程研究中日期:2009-1-13 Texaco水煤浆气化、Shell粉煤加压气化和GSP气化技术都是典型的洁净煤气化技术,各有特点,各企业在改造或新建时应根据煤种、灰熔点、装置规模、产品链设定和投资情况进行合理选择。下面就上述气化技术及其选择和使用情况进行分析和评价,供大家参考。 1 Shell气流床加压粉煤气化 该工艺在国外还没有用于化肥生产的成功范例。中石化巴陵分公司是第一家引进该技术用于化肥原料生产的厂家。到目前为止,国内已先后有18家企业引进了此项技术(装置)。但该工艺选择的是废锅流程,由于合成原料气含有的蒸汽较少,3.0MPa下仅为14%;因此用于生产合成氨后续变换工序要补充大量的水蒸气,用于甲醇生产也要补充一部分水蒸气于变换工序,工艺复杂,也使系统能量利用不合理。湖北双环科技股份有限公司是第一家正式投运的厂家,于2006年5月开始试车。据反映,试车期间曾发生烧嘴处水冷壁烧漏,输煤系统不畅引发氧煤比失调、炉温超温,渣口处水冷壁管严重腐蚀,水冷液管内异物堵塞和烧嘴保护罩烧坏等问题。 引进该技术的项目投资大。2006年5月贵州天福与Shell签约,气化岛规模为每小时 17.05万m3CO+H2,投资9.7亿元人民币,为同规模水煤浆气化岛投资的1.8倍。气化装置设备结构复杂,制造周期长。气化炉、导管、废锅内件定点西班牙、印度制造,加工周期14~18个月,海运3个月;压力壳可国内制造,但材料仍需进口,周期也较长;设备、仪表、材料的国产化率与水煤浆气化相比差距比较大。建厂时间长(3~5 a),将使企业还贷周期长,财务负担加重。2001年与Shell签约的中石化巴陵分公司、湖北双环、柳州化工股份有限公司只有双环于2006年5月试车;2003年与Shell签约的中石化湖北化肥分公司、中石化安庆分公司、云天化集团公司、云维集团沾化分公司只有安庆于2006年10月开始煮炉。

蒸汽锅炉缺水事故原因分析及预防

龙源期刊网 https://www.doczj.com/doc/394226018.html, 蒸汽锅炉缺水事故原因分析及预防 作者:胡建平 来源:《科技风》2019年第04期 摘要:随着经济的进步和人民生活质量的提高,民众对锅炉的质量的应用效果的要求也越来越高,在实际的运用过程中,蒸汽锅炉出现的缺水事故比较常见,给人们和社会带来极大的危害,锅炉检验及事故预防就显得尤为重要。本文首先通过对近年来我国锅炉缺水事故进行介绍,然后分析锅炉缺水事故的原因,并在此基础上采取相应的措施进行处理,进而提出针对锅炉缺水事故的预防措施,从而在一定程度上降低事故的发生,保障人民的生命财产安全,使得锅炉良好运行得到有效的保障。 关键词:蒸汽锅炉;缺水事故;原因分析;事故预防 蒸汽锅炉是一种利用热能将水变成的蒸汽的设备,将燃料释放的热能以及其他释放的热能作为支持,进而为人类提供相应的服务,满足人们的供暖和工业需求。随着经济的发展,锅炉燃烧也有了一定的进步,但在实际的应用过程中,还是存在着较多的问题,其中,由于缺水导致的锅炉事故时比较常见的,我国已经发生多起锅炉缺水事故,给人们的生命财产安全带来极大的损失,对锅炉缺水事故进行原因分析,并采取有效的措施进行预防是人们关心的重要话题。 1 锅炉缺水事故的案例 蒸汽锅炉作为一种动力设备与热力设备,无论是在生活还是在工业制造中都有着十分重要的作用,蒸汽锅炉又是一种特种设备,在人们的生产生活中被广泛应用,但也在一定程度上存在着锅炉缺水事故。以广东省汕头市一起锅炉缺水事故为例,一台 SZL151.25AII 型锅炉,制造日期为 2012年9 月18 日,投用日期为 2013 年7 月 4日,使用时间才三年多,于 2015 年9 月15 日锅炉产生严重缺水事故。因司炉人员操作不当,强行进水,发生爆炸,致使锅炉产生三个方面的受损缺陷:第一,上锅筒位于进水管侧,距前人孔封头中心 4650 mm处产生 Φ1100 mm 范围的一处严重鼓包变形,其鼓包凸起向外变形最大高度为 132 mm;同时与水冷壁管及对流管部分连接处,产生开裂;其次,进水管侧有31 根对流管出现严重弯曲变形,管子与锅筒连接处部分产生开裂;最后,因受震上锅筒进水管侧隔火墙基本倒塌,锅炉其它位置的砖墙及隔火墙也出现较为严重的耐火砖脱落和开裂受损。此次事故也造成了一定的人员伤亡和经济损失,事故造成二人受伤,其中一人烧伤面积达 70%,另一人轻伤。该锅炉由于无维修价值,已报废处理,造成经济损失 180 多万元。 2 广东省汕头市锅炉缺水事故的原因

气化炉的分类与计算公式

第四章气化炉 世界煤炭气化技术的发展趋势有以下几个方面。 ①增大气化炉规模,提高单炉制气能力。以K—T炉为例,20世纪50年代是双嘴炉, 20世纪70年代采用了双嘴和四头八嘴,以及后来设计的六个头的气化炉等,使得单炉产 气能力大幅度提高。 ②提高气化炉的操作压力,降低压缩动力消耗,减少设备尺寸,降低氧耗,提高碳 的转化率。 ③气流床和流化床技术日益发展,扩大了气化煤种的范围。 ④提高气化过程的环保技术,尽量减少环境污染。 ⑤将煤炭气化过程和发电联合起来的生产技术越来越受到各国的重视,并巳建成不 同规模的生产厂。 总之,煤炭气化技术的发展基本是围绕气化炉展开的,以下对常用的不同类型的煤 气化技术以及所使用的气化炉作一基本介绍。 第一节概述 基本概念: 1、气化炉:进行煤炭气化的设备叫气化炉。 2、气化炉分类 ①按照燃料在气化炉内的运动状况来分类是比较通行的方法,一般分为移动床 (又叫固定床)、沸腾床(叉叫流化床)、气流床和熔融床等。

②气化炉在生产操作过程中根据使用的压力不同,又分为常压气化炉和加压气 化炉; ③根据不同的排渣方式,可以分为固态排渣气化炉和液态排渣气化炉。 3、煤气的分类: 如果以空气作为气化剂,生产的煤气称空气煤气。 如果以空气(富氧空气或纯氧)和水蒸气的混合物作为气化剂,生产的煤气称混合煤气; 如果将空气(富氧空气或纯氧)和水蒸气分别交替送人气化炉内,间歇进行,生产的煤气叫水煤气; 气体成分经过适当调整(主要是调整含氮气的量)后.生产的煤气符合成氨原料气的要求,这种煤气叫做半水煤气。 4、气化炉的组成 各种不同结构的气化炉基本上由三大部分组成,即加煤系统、气化反应部分和排灰系统。 加煤系统:要考虑煤入炉后的分布和加煤时的密封问题。 气化部分: ①是煤炭气化的主要反应场所,首要考虑的问题是如何在低消耗的情况下,使煤最大限度地转化为符合用户要求的优质煤气 ②由于煤炭气化过程是在非常高的温度下进行的,为了保护炉体而加设内璧衬里或加设水套也是非常必要的。水套一方面可以起到保护炉体(也包括炉内的布煤器或搅拌装置)的作用,同时可以吸收气化区的热量而生产蒸汽,该部分蒸汽叉可以作为气化时需用的蒸汽而进入气化炉内。 排灰系统 ①作用:保证了炉内料层高度的稳定,同时也保证了气化过程连续稳定地进行. ②问题:对移动床而言,由于炉箅(气化剂的分布装置)和排灰系统结合在一起,气化剂的均匀分布和排灰操作是生产上较为重要的两个问题。

2×630MW机组锅炉短吹蒸汽带水现象分析及治理

2×630MW机组锅炉短吹蒸汽带水现象分析及治理 摘要:吹灰管路的分支设计不合理,分支管末端没有疏水,形成了盲管,吹灰系统不能充分暖管,造成分支管内凝结水排不出去,造成蒸汽带水。对2×630MW机组炉膛短吹蒸汽管道进行改造,以便彻底解决蒸汽带水的问题。 关键词:吹灰、带水、吹损、改造 一、设备概况: 炉膛前、后、左、右墙分别布置24只墙式吹灰器,分四层布置,共计96只炉室短吹灰器,一层位于燃烧器下方,其余三层位于主燃烧器与SOFA之间。为保证吹灰介质适当干度,炉膛吹灰管路中设有疏水系统。炉膛吹灰器共有2个疏水点,布置在17米#1角、#3角,每一点疏水管路上布置有一只电动截止阀,温控疏水,阀门启闭设定值为250℃。 型号单位IR--3D 行程mm267 压力MPa1.4(原设计值) 0.3和0.5(现调整值) 速度m/min0.29 数量支96 二、存在问题: #5炉、#6炉大修中发现水冷壁吹灰器区域磨损严重,造成大面积换管。由于吹灰蒸汽带水现象,疏水不彻底会导致吹灰蒸汽中夹带部分凝结水,吹灰时产生夹带水滴现象,水的密度大、水滴速度高,水滴的磨损动量远大于蒸汽,会引起吹灰器区域的水冷壁管过快地磨损。近期在锅炉吹灰系统投运时,多次发现炉膛短吹灰器存有疏水从吹灰器的空气阀中流出。 三、问题分析: 1、机械方面: 1.1 鹅颈阀内漏或者冷凝水未疏尽,吹灰蒸汽带水,停炉前对内漏的吹灰器进行检查,本次大修中已对内漏的鹅颈阀解体检修,重新将密封面进行了研磨;可以排除机械方面原因造成蒸汽带水。 2、吹灰管线设计不合理: 2.1 吹灰管路的分支设计不合理,分支管末端没有疏水,形成了盲管,吹灰系统不能充分暖管,造成分支管内凝结水排不出去,从而导致分支管内的凝结水在吹灰时被带入炉膛,对水冷壁管产生快速磨损,故需对三期炉膛短吹蒸汽管道进行改造,以便彻底解决蒸汽带水的问题。 四、实施方案:

GE气化炉带水原因分析及解决措施

GE气化炉带水原因分析及解决措施 摘要:分析了GE气化炉合成气带水的表征现象、原因及其对稳定生产的危害性,并针对影响因素提出了两个方面的改进措施,一是从工艺指标的控制上作出调整,二是针对新设计装置气化炉结构提出了改进措施。 关键词:GE气化炉合成气带水影响 Abstract: The GE gasifier synthesis gas with water, the characterization of the phenomenon, causes and dangers for stable production and influencing factors for the two aspects of the proposed improvements, one from the control of process indicators adjusted Second, the structure for the new design devicegasifier proposed improvement measures. Keywords: GE gasifiedSyngasWatery Affect 引言: 气化炉是GE水煤浆加压气化装置的核心设备,分为燃烧室和激冷室两部分。上部为燃烧室,内衬3 层耐火材料;下部为激冷室,内有激冷环、下降管、上升管和折流挡板等主要部件。我们在生产操作过程中时常会发生激冷室的合成气带水问题,所谓“带水”,即激冷室的水被合成气大量夹带至后续工序的洗涤塔,使激冷室内液位严重低于工艺要求值,而洗涤塔内严重超高,来不及排除,严重时塔内水与合成气一并流向下游工序的变换炉,迫使变换停炉。本文就此问题进行分析和探讨。 1. 装置流程简述 加压的水煤浆和氧气经过特制的工艺喷嘴喷入气化炉内后, 水煤浆被高效雾化成细小的颗粒,与氧气在炉内1300~1400 ℃的高温下发生复杂的氧化—还原反应产生煤气, 其主要成分为合成气(CO+ H2); 同时生成少量熔渣。合成气与熔渣出气化炉燃烧室后, 在下降管的引导下, 进入到气化炉激冷室液面下, 在此熔渣被冷却固化后沉降到气化炉激冷室锥底, 经锁斗收集后排出; 合成气被冷却并吸收饱和水蒸气后出下降管, 沿下降管与上升管之间的环隙鼓泡上升, 离开上升管后被激冷室顶部的折流挡板折流, 由激冷室合成气出口排出, 经文丘里洗涤器去洗涤塔进一步洗涤除尘后, 送变换工序。洗涤塔的补充水有三路: 一路是高压灰水, 由上塔盘加入; 另两路为冷凝液, 分别由洗涤塔的下塔盘加入。出洗涤塔的水有两路, 一路是去闪蒸处理的排放水; 一路是去气化炉激冷环上的激冷水, 为气化炉的补水。下图为工艺流程简图:

炉水、锅炉给水、蒸汽知识简单介绍

炉水、锅炉给水、蒸汽知识简单介绍 1、锅炉给水为什么必须经过处理? 化学水处理系统也叫锅炉补给水处理系统。锅炉给水要求一定的纯净的水质,以确保锅炉的安全经济运行所以要经除盐处理,这是因为:未经除盐处理的水中除似有少量悬浮杂质外,还存在Ca 2+、Mg 2+、Na +等阳离子和SO 42-、Cl -、HCO 3-、HSiO 3-等阴离子组成的溶解盐类及O 2、CO 2等气体杂质。这些杂质随水进入锅炉中,会在锅炉及蒸汽系统中产生以下危害: 1)O 2、CO 2等气体会在给水管路和热力设备中造成腐蚀。 含有溶解盐类的水进入锅炉受热后,水不断被蒸发,盐类逐渐浓缩、超过其溶解度而析出产生沉积物,产生水垢和水渣。水垢的热导率只有金属的几十至几百分之一,从而导致锅炉受热面热阻增加,使受热面受热不均或局部过热,甚至爆管的危险。 2)污染蒸汽 盐类及杂质进入锅炉系统后,由于水滴携带或蒸汽的溶解携带,水中钠盐、硅酸盐的气体杂质会带入蒸汽系统。锅炉的压力等级越高,携带量越大。这些杂质会造成热力设备的腐蚀。盐类物质会沉积在蒸汽通过的各个部位,如过热器、汽轮机等,影响机组的安全经济运行。 2、锅炉给水的除氧 除氧器(热力除氧) 因为水中的氧会推动金属的电化学腐蚀反应,会使锅炉系统形成严重的氧腐蚀。反应式如下: -=++OH e O O H 44222 因此,给水在进入锅炉之前要进行除氧处理,除氧处理一般采用物理方法,即热力除氧。将水加热至沸点,根据亨利定律,溶解在水中的氧气和其它气体会逸出到水上空间,随着部分蒸汽一同排入大气中。热力除氧按压力分类为:真空式、大气式和压力式。 化学除氧:化学除氧的目的是消除热力除氧后残余溶解氧和除去由于水泵和给水系统不严密而漏入给水中的溶解氧。一般加联氨处理,其反应式如下: O H N O H N 222422+=+ 联氨有毒、易燃、易挥发,使用时应特别注意。 锅炉给水品质控制指标: 硬度:≤2.0μmol/L

600 MW燃煤锅炉汽包带水问题分析及处理

600 MW燃煤锅炉汽包带水问题分析及处理 赵刚1柴锡强2 (1.浙江省火电建设公司浙江杭州310016; 2.浙江省电力建设总公司浙江宁波315010) 摘要:通过对北仑电厂二期工程的锅炉汽包水平式一次旋风分离器的深入研究,分析了汽包水位测量、汽包容积、水平式一次旋风分离器、重力分离空间、二次立式百叶窗分离器等对汽包饱和蒸汽带水的影响。在对可能引起汽包饱和蒸汽带水的各有关因素进行了比较系统的研究后,进行了汽包内部装置的改造。 关键词:汽包;水位试验;带水;原因分析;改造 1概述 北仑电厂二期工程3台600 MW燃煤发电机组是日本IHI公司设计并提供,该炉主要参数:蒸发量2045t/h,汽包运行压力18.56 MPa,再热温度343℃/538℃,省煤器水温282℃/313℃,排烟温度135℃,锅炉效率94.0%。该锅炉引进了美国F·W公司的设计、制造技术,其受热面布置、汽包内部装置带有F·W 技术特色,该炉系单炉膛、平衡通风,前后墙对冲燃烧。 汽包总长28857.5 mm,汽包直段长25760mm,汽包两端采用球型封头,一次分离元件为水平式旋风分离器,二次分离器为立式百叶窗。 2汽包的饱和蒸汽带水现象 1999年1月,在3号炉试运行中,当负荷升至400 MW时,开始暴露出锅炉主蒸汽温度偏低问题,现象为主蒸汽温度达不到额定值537℃,且过热器一、二级减温水全关,发生多次主蒸汽温度在短时间(5 min)内急剧下跌(530~490℃),同时伴随低温过热器出口汽温的大幅度下降(约15℃),锅炉顶棚温度也下降(约

5℃),汽包压力及主蒸汽压力明显升高,锅炉的入炉煤量、燃烧工况、减温水、汽机调门等无异常动作,由此判定主蒸汽温度的骤然下跌是由于汽包饱和蒸汽带水引起。 针对锅炉主蒸汽温度偏低及汽包饱和蒸汽带水问题做了如下试验:燃烧调整、配风调整、投运所有上层磨煤机、降低汽包水位设定值、降低主蒸汽压力、切高加运行、变压运行、变煤种试验、汽水分离器热化学试验等。试验在额定负荷和压力下,汽包带水水位为汽包正常水位(NWL)以上20 mm处,且450 MW负荷时额定压力下汽包饱和蒸汽带水水位为NWL+85 mm进行的。 根据以上试验结果证实了机组在低水位时才能满足稳定运行要求,但抗干扰性很差,离合同及规范要求相差甚远,在这种情况下,如果因某种原因引起水位较大波动,机组将被迫MFT。 对于电站锅炉,合格的蒸汽品质是保证锅炉和汽轮机安全经济运行的重要条件,一旦发生饱和蒸汽带水就可能影响主蒸汽温度,即使受热面足够,主蒸汽温度不下跌,也可能引发锅炉爆管,影响汽轮机安全运行等严重后果,因此,必须解决这个问题。 3确定汽包饱和蒸汽带水的方法 (1)热化学试验法通 过锅炉热化学试验,监视离开汽包的饱和蒸汽的含盐量随汽包水位的变化情况,以证实当汽包水位上升到一定高度时,饱和蒸汽带水问题的存在。 (2)水位试验方法当 汽包水位达到一定值,若汽包饱和蒸汽开始带水时,会引起锅炉顶棚的金属

相关主题
文本预览
相关文档 最新文档