当前位置:文档之家› CO2载冷制冷系统优缺点

CO2载冷制冷系统优缺点

CO2载冷制冷系统优缺点

.

. NH3/ CO 2载冷制冷系统

优点:

1、 CO 2是自然工质,对环境无破坏作用,ODP=0.GWP=1,远远小于HFCS ,R134a

的GWP 值为1430, 比CO2制冷剂的破坏能力强1430倍。

2、 优良的经济性,CO 2本身为化工产品的副产品,价格便宜,且无回收问题。

3、 良好的安全性,无毒不可燃。

4、 良好的化学稳定性,与绝大多数物质不发生化学反应。

5、 蒸发潜热大,单位容积制冷量高,可降低循环管路管径,其单位容积制冷量

为R134a 的7.9倍。

6、 优良的流动性及传热性,其液体密度小氟利昂40%,与润滑油类似。 缺点:

1、 临界温度低为31.1℃,冷凝压力高约为10Mpa ,为R134a 的11倍,对设计、

设备尤其是阀门要求很高,且后期操作维护专业性要求高。

2、 由于需采用双系统工作,初投资较大,系统复杂。

3、 运行效率低,比相同温度条件下的R22、R134a 等常规制冷剂的制冷性能系

数都低。

4、 由于初级为氨制冷,所以氨系统存在的不足该系统也同样存在。

冰蓄冷空调系统的优点和缺点

冰蓄冷空调系统的优点和缺点: (1)优点: ①平衡电网峰谷荷,减缓电厂和供配电设施的建设,对国家而言,是节能的; 对于大城市的商业用电而言,均会出现用电的峰谷时段,在用电的峰段,常常会出现供电不足的状况,而在用电的谷段,又常常会出现电量过剩的状况,如果将低谷电的电能转化为冷能应用到峰值电时的空调系统中去,则可以缓解电网压力,平衡电网; 对国家电网而言,要满足用户1kwh的用电需求,必须要发电站发出超过1kwh 的电量便于抵消电在运输过程中的损耗,而用户对电的需求和利用程度在实际过程中却是不定的,是随机的,尤其是对建筑内的空调而言,其使用程度往往同当天的室外天气条件密切相关,不定性特点尤为突出,倘若国家电网发出的余电无法被用户使用,一来是对能源的浪费,二来对国家电网的安全也存在着隐患,于是,冰蓄冷技术在空调系统中的应用便大大地减缓和减少了以上问题; ②能使制冷主机的装机容量减少; 冰蓄冷空调系统按运行策略可分为两类,一类是全部蓄冷模式,另一类是部分蓄冷模式。对于第一类,通俗地说就是建筑的所有冷负荷(注:蓄冰装置是无法作为热源使用的)全由蓄冰装置承担,而制冷机组(通常是双工况制冷机组)只扮演为蓄冰装置充冷制冰的角色,在空调系统运行的时候,制冷机组处于停机状态,而蓄冰装置则全时段运行,为用户提供冷量。对于第二类,也是实际工程中常用的运行方式,即蓄冰装置只承担建筑冷负荷的一部分,而另一部分则由制冷机组(双工况)承担。因此,由上述可知,不论哪种运行方式,蓄冰装置总是要承担一部分冷负荷的,我们所说的减少了制冷主机的装机容量,实质上就是蓄冰装置承担了制冷机组本应该要承担的一部分负荷,这部分负荷值的大小也就是蓄冰装置的蓄冷量大小; ③目前各地供电部门对用电限制较严,征收的额外费用也名目繁多,建筑业主与用户的经济负担较重,还常常受到限电、拉闸停电种种束缚。若发展冰蓄冷空调技术,就能较好的缓解空调用电与城市用电供应能力的矛盾; ④由于采用了冰蓄冷与低温大温差供冷送风相结合的技术,在初投资费用方面,既可减少空调处理设备、输配设备的大小,输送管网的粗细,还可减少机房管井的占用面积,压低建筑层高,从而不但可节省空调的初投资费用,而且还可降低建筑造价;在运行费用方面,由于送风温度低,风机、水泵的输配功率大幅度降低,制冷空调系统的整体能效得到提高,再加上分时电价的优惠,从而使建筑业主与用户支付比常规空调更少的运行费用; ⑤由于采用了低温大温差供冷送风,使空调处理与输送过程均在较低温度下进行,有利于抑止细菌、病菌的繁殖;较低的室内温度,可进一步改善室内空气品质与热舒适水平。 (2)缺点:

CO2制冷装置

CO2制冷装置CDPL500-SIE-29-Y 一:工作原理 二:操作流程: 三:仪表的操作: 四:冷干机的操作: 五:几种常见报警及消除:

CO2制冷装置 CDPL500-SIE-29-Y (一):工作原理 干燥清洁的二氧化碳气体在进入二氧化碳液化器进行液化,液化器是一个列管式换热器,制冷剂在管中流动,不断蒸发汽化吸收热量,二氧化碳气体被冷却到-20~-25℃(温度随压力的变化而变化)左右并被液化,在此温度下不能液化的气体(称为不凝性气体,主要成份是氧气和氮气)积聚在液化器的顶部被排放出液化器。制冷剂可在一定温度及压力下被冷却循环水冷凝成液体,使制冷剂具有制冷能力,吸收的热量被冷却水带走。液化的二氧化碳液体自流被送入储液罐储存。 储存液体时或生产用气时压力超过一定值时(1.93Mpa),冷冻机组自动开启(制冷机组满负荷运行)进行降温降压,将气体液化,避免安全阀起跳损耗气体。当制冷机组压力下降至一定值时(1.83Mpa),液化器冷冻机组自动停止工作;当二氧化碳来气量减少时,二氧化碳回路压力会降低,此时螺杆制冷压缩机会进行卸载。制冷机组工作时压力超过2MPa,建议关闭手动控制气体压缩机,如压力仍维持2Mpa,建议用户关闭制冷机组,检测发酵罐来气中二氧化碳浓度。 制冷压缩机的卸载范围: 1:二氧化碳回路压力>1.8 Mpa:制冷机组满负荷加经济器运行

2:二氧化碳回路压力>1.8Mpa,<1.7 Mpa:制冷机组满负荷运行 3:二氧化碳回路压力<1.7 Mpa:制冷机组75%负荷运行 2:二氧化碳回路压力<1.6 Mpa:制冷机组停止运行,等待气体压缩机给二氧化碳回路升压。 (二):操作流程: (1)自动运行:(系统正常运行) 按下启动按钮,这时候制冷压缩机进入运行准备状态,启动按钮灯亮。当系统压力大于18KG,制冷压缩机就可以运行,低于16KG自动停止,然后当系统压力再次大于18KG后会自动再运行,除非按下停止按钮,机器才会停止运行,同时停止按钮灯亮。如果运行中发现有报警发生,机器也会停止运行,人为的消除报警后再次按下启动按钮才能让机器运行。 (2)降压操作:(系统长时间停机可能会导致压力超高) 将允许降压打在开的位臵,允许降压指示灯亮。系统长时间停机可能会导致压力超高。当高过19.3KG时,制冷压缩机强制投入运行,到压力低于18KG停止。一般可以将允许降压打在开的位臵。 (3)工作流程: 系统运行后3秒制冷压缩机启动,首先线圈1得电,500毫秒后线圈2得电。这时能调阀1和2都未得电,压缩机为50%功率运行,线圈1运行后1分钟能调阀2得电,为75%功率运行。再过1分钟能

各类型空气压缩机优缺点功能解析

各类型空气压缩机优缺点功能解析 1. 活塞式空气压缩机 当活塞式空气压缩机的曲轴旋转时,通过连杆的传动,活塞便做往复运动,由气缸内壁、气缸盖和活塞顶面所构成的工作容积则会发生周期性变化。活塞式空气压缩机的活塞从气缸盖处开始运动时,气缸内的工作容积逐渐增大,这时气体即沿着进气管,推开进气阀而进入气缸,直到工作容积变到更大时为止,进气阀关闭;活塞式空气压缩机的活塞反向运动时,气缸内工作容积缩小,气体压力升高,当气缸内压力达到并略高于排气压力时,排气阀打开,气体排出气缸,直到活塞运动到极限位置为止,排气阀关闭。当活塞式空气压缩机的活塞再次反向运动时,上述过程重复出现。 总之,活塞式空气压缩机的曲轴旋转一周,活塞往复一次,气缸内相继实现进气、压缩、排气的过程,即完成一个工作循环。 活塞空气压缩机的优点 (1)不论流量大小,都能得到所需要的压力,排气压力范围广,更高压力可达320MPa(工业应用),甚至700MPa,(实验室中); (2)单机能力为在500m3/min以下的任意流量; (3)在一般的压力范围内,对材料的要求低,多采用普通的钢铁材料,加工较容易,造价也较低廉; (4)热效率较高,一般大、中型机组绝热效率可达0.7~0.85左右; (5)气量调节时,适应性强,即排气范围较广,且不受压力高低影响,能适应较广阔的压力范围和制冷量要求; (6)气体的重度和特性对空气压缩机的工作性能影响不大,同一台空气压缩机可以用于不同的气体;

(7)驱动机比较简单,大都采用电动机,一般不调速,可维修性强; (8)活塞空气压缩机技术上较为成熟,生产使用上积累了丰富的经验; 活塞空气压缩机的缺点: (1)结构复杂笨重,易损件多,占地面积大,投资较高,维修工作量大,使用周期较短,但经过努力可以达到8000小时以上; (2)转速不高,机器体积大而重,单机排气量一般小于500m3/min; (3)机器运转中有振动; (4)排气不连续,气流有脉动,容易引起管道振动,严重时往往因气流脉动、共振而造成管网或机件的损坏; (5)流量调节采用补助容积或旁路阀,虽然简单、方便、可靠,但功率损失大,在部分载荷操作时效率降低; (6)用油润滑的空气压缩机,气体中带油需要脱除; (7)大型工厂采用多台空气压缩机组时,操作人员多或工作强度较大。 2. 滚动转子式空气压缩机

浅谈冰蓄冷空调与常规中央空调的优缺点

浅谈冰蓄冷空调与常规中央空调的优缺点 发表时间:2016-08-18T10:15:48.877Z 来源:《低碳地产》2015年第2期作者:韩广玉 [导读] 冰蓄冷中央空调系统是在常规中央空调系统的基础上多加一套蓄冰装置。 深圳机械院建筑设计有限公司广东深圳 518000 本人前段时间做了一个小型的冰蓄冷项目,通过这个项目认真学习了一下蓄冰系统,在此跟各位浅谈一下蓄冰空调与常规空调优缺点对比,以及本人累积的些许设计经验,希望能对初次做蓄冰项目的设计同行带来一些帮助。 现简单分析一下冰蓄冷中央空调系统、常规空调系统的特点。 1)冰蓄冷中央空调系统特点 冰蓄冷中央空调系统是在常规中央空调系统的基础上多加一套蓄冰装置,利用夜间低谷用电时段开启制冷机组,将蓄冰装置中的水制成冰,白天在空调用电高峰时段利用融冰取冷满足部分空调负荷,宏观上起到调峰移谷,微观上在提高室内空调品质的同时大大降低用户运行费用的作用。 该技术在二十世纪30年代起源于美国,在70年代能源危机中得到发达国家的大力发展。从美国、日本、韩国、台湾等较发达的国家和地区的发展情况来看,冰蓄冷已经成为中央空调的发展方向。比如,韩国明令超过2000㎡建筑,必须采用冰蓄冷或煤气空调,日本超过5000㎡的建筑物,就在设计时考虑采用冰蓄冷空调系统。很多国家都采取了奖励措施来推广这种技术,比如韩国转移1KW高峰电力,一次性奖励2000美元,美国一次性奖励500美元,等等。 中国在近年加大对蓄能技术的推广力度,国家计委和经贸委2001年底特地下达《节约用电管理办法》,要求各单位推广蓄能技术,并逐步加大峰谷电差价。一些建筑采用蓄能技术后直接给用户带去了收益,节约了运行成本。2001年10月举办APEC会议的10万㎡的上海科技城、广州大学城500万㎡等大型建筑采用的就是冰蓄冷空调系统。 冰蓄冷空调从其原理和实践中可以看出它有如下特点 优点: ①减少冷水机组容量(降低主机一次性投资),总用电负荷少,减少变压器配电容量与配电设施费。 ②冷主机制冷效率高(COP大于5.3),同时利用峰谷荷电价差,大大减少空调年运行费,可节约运行费用35%以上。 ③减少建筑的配电容量,节约变配电的投资,节约约30%(空调的配电投资);免双线路的高可靠性费用,节约投资。 ④使用灵活,部分区域使用空调可由融冰提供,不用开主机,节能效果明显。 ⑤可以为较小的负荷(如只使用个别办公室)融冰定量供冷,而无需开主机。 ⑥在过渡季节,可以融冰定量供冷,而无需开主机,不会出现大马拉小车的状况,运行更合理,费用节约明显。 ⑦具有应急功能,提高空调系统的可靠性。在拉闸限电时更能显示其优势:只要具备带动水泵的电力(如发电机发电、限电减电力供电)就能够融冰供冷,不会出现空调不能使用的状况。 ⑧制冷温度低而稳定,空调效果佳,提高大楼的舒适性和品位。 ⑨有低温冷源制冷速度快,上班前启动时间短。上班前启动时间越长,则空调无效运行越多,无谓的浪费越大。 ⑩作为驱动能源,清洁、环保、稳定、简单可靠,且峰谷电差价在不久的将来势必更优惠(周边省份在去年均已大幅优惠,国外的峰谷差更大)。 对于大型多建筑区域供冷,可以低温供水,降低送水能耗、减少管网投资;同时与每一建筑一个供冷站的形式比可以节约投资、减少管理费用、减少机房面积。 可以为末端提供低温冷冻水,降低末端的投资;加强除湿能力,大幅提高空调舒适性;如果采用低温送风系统,更是可以节约末端的风机能耗、提高空调品质、减少风管的尺寸和投资。 空调系统智能化程度高,可以实现系统的全自动运行,而且具备与大楼的BAS接口,是目前世界上最先进的空调系统。 不足之处: ①如果主机和蓄冰装置等设备均布置于冷冻机房内,蓄冰装置需要占用一定的空间。 ②机房设备投资比常规水冷电制冷和溴化锂机组系统稍高。 ③冰蓄冷只能夏天供冷,需要供热系统。(可以采用热网换热采暖,热网容量远低于溴化锂机组所需,只有50%左右容量)2)常规电制冷中央空调系统特点 是目前使用较多的空调形式,经过一个多世纪的发展,制冷主机的形式多种多样,具有制冷效率高等的优点,它有如下特点:优点: ①系统简单,占地比其他形式的稍小。

最新各种压缩机工作原理及优缺点分析

各种压缩机工作原理及优缺点分析

各种压缩机工作原理及优缺点分析 一、压缩机概念 用来压缩气体借以提高气体压力的机械称为压缩机。提升的压力小于 0.2MPa时,称为鼓风机。提升压力小于0.02MPa时称为通风机。 二、压缩机分类 1.按工作原理分类 容积式压缩机直接对一可变容积中的气体进行压缩,使该部分气体容积缩小、压力提高。其特点是压缩机具有容积可周期变化的工作腔。 离心式压缩机它首先使气体流动速度提高,即增加气体分子的动能;然后使气流速度有序降低,使动能转化为压力能,与此同时气体容积也相应减小。其特点是压缩机具有驱使气体获得流动速度的叶轮。 2.按排气压力分类 3.按压缩级数分类 单级压缩机气体仅通过一次工作腔或叶轮压缩 两级压缩机气体顺次通过两次工作腔或叶轮压缩 多级压缩机气体顺次通过多次工作腔或叶轮压缩,相应通过几次便是几级压缩机

4.容积流量分类 名称容积流量 (m3/min) 微型压缩机 <1 小型压缩机 1~10 中型压缩机 10~100 大型压缩机≥100 5.按结构或工作特征的分类

三、各种压缩机工作原理及优缺点 1.活塞式压缩机的工作原理及优缺点 当活塞式压缩机的曲轴旋转时,通过连杆的传动,活塞便做往复运动,由气缸内壁、气缸盖和活塞顶面所构成的工作容积则会发生周期性变化。活塞式压缩机的活塞从气缸盖处开始运动时,气缸内的工作容积逐渐增大,这时,气体即沿着进气管,推开进气阀而进入气缸,直到工作容积变到最大时为止,进气阀关闭;活塞式压缩机的活塞反向运动时,气缸内工作容积缩小,气体压力升高,当气缸内压力达到并略高于排气压力时,排气阀打开,气体排出气缸,直到活塞运动到极限位置为止,排气阀关闭。当活塞式压缩机的活塞再次反向运动时,上述过程重复出现。总之,活塞式压缩机的曲轴旋转一周,活塞往复一次,气缸内相继实现进气、压缩、排气的过程,即完成一个工作循环。 活塞压缩机的优点: (1) 不论流量大小,都能得到所需要的,排气压力范围广,最高压力可达 320MPa(工业应用),甚至700MPa,(实验室中)。 (2) 单机能力为在500m3/min以下的任意流量。 (3) 在一般的压力范围内,对材料的要求低,多采用普通的钢铁材料,加 工较容易,造价也较低廉。 (4) 热效率较高,一般大、中型机组绝热效率可达0.7~0.85左右。 (5) 气量调节时,适应性强,即排气范围较广,且不受压力高低影响,能 适应较广阔的压力范围和制冷量要求。

R717-R744复叠式制冷系统的热力学分析

R744-R717复叠式制冷系统的热力学分析 摘要:本文对R744-R717复叠式制冷系统的热力学特性进行了分析,目的是优化该系统的设计和工艺参数。本文中考虑的设计和工艺参数包括(1)高温氨循环中的冷凝温度、过冷度、蒸发温度和过热度;(2)复叠式换热器中的换热温差;(3)低温二氧化碳循环中的蒸发温度、过热度、冷凝温度和过冷度。基于过冷度、过热度、蒸发温度、冷凝温度和复叠式换热器中的温差建立了多线性的数学表达式,旨在得到最大的COP值,同时,得到了最优化的高温循环蒸发温度和R717与R744的质量流量的比率。 关键词:制冷系统;压缩系统;复叠式系统;氨;二氧化碳;R744;计算;性能;优化1.引言 两级式复叠式制冷系统(见图1)适合于工业应用,尤其适合于食物冷冻间蒸发温度在-30℃—-50℃的超市制冷工业。在此系统中,两个单独的制冷系统由复叠式冷凝器连接在一起。复叠式制冷系统的高温级制冷剂可以由氨(R717)、丙烷(R290)、丙烯(R1270)、乙醇或者R404A来充当。相反,二氧化碳被用于低温级循环。氨是一种易得的自然工质,但是由于其可燃性和毒性,限制了它的应用。丙烷、丙烯和乙醇的缺点是他们具有高度的可燃性。乙醇的蒸发和冷凝压力均低于环境压力,这会导致气体泄露进系统内部。然而,毒性和可燃性所带来的风险可以通过选取合适的用于超市和厂区的高温循环温度将这些风险降到最低。二氧化碳的缺点是当临界温度在31℃时,它的压力就高达7.4MPa,这为管道的设计带来了难度。因此,将二氧化碳用于低温级循环是经济可行的。 传统的直接膨胀低温制冷系统在冷凝器和蒸发器之间存在大的压差,这直接导致压缩机的压缩效率和容积效率的下降。另外,全球变暖所带来的一系列问题促使超市所有者必须采取环保的,能提供更低温度的制冷系统。因此,自然工质在超市制冷工业中的应用引起了大家的注意,尤其是以二氧化碳为低温级循环制冷剂的复叠式制冷系统最为被大家看好。例如,新西兰的奥克兰市将二氧化碳-丙烯复叠式制冷系统用于低温储存食品,虽然复叠式式制冷系统的最初安装费用要比传统R404A的单循环制冷系统高10%,但是这与复叠式系统运行中所带来的经济效益和环境效益相比是微不足道的。很重要的一点是,复叠式制冷系统能够大幅度的降低高温循环段的压缩机排气温度,因而可以增加热效率。同时,如果换热器的尺寸

六大类冰箱优缺点介绍

六大类冰箱优缺点介绍 冰箱是我们家庭生活中不可缺少的一件电器,冰箱不仅能储存食物,也让我们的生活更加舒适方便。现在冰箱的种类有很多,那么到底哪种冰箱好呢?下面为您介绍六大类冰箱的优缺点。 一、对开门冰箱 优点:这种对开门冰箱,比较适合那种无法给较宽的冰箱门留有位置的窄小空间中使用。一般空间内部空间面积比较大,外观比较的大气,除了实用性以外还具有一定的装饰厨房空间的作用。 缺点:但是相对于其他型号的冰箱,这种类型的冰箱比较的适合比较耗能,对于一般的普通消费者来说,并不是很划算。 二、内置式冰箱 优点:整洁、一体化布局,设计新颖,冰箱嵌入橱柜内,柜体周围包有木质板材。宽度范围:36?48英寸(1英寸=2.54厘米)。 缺点:价格高,需要专人安装,可利用存储空间比其他类冰箱少。

三、法式下冷冻冰箱 优点:这种所谓的法式下冷冻冰箱,以都是采用对开门设计,上半部分有两个冰箱门,下半部分作为冷冻室,这种冰箱成为越来越多人的选择,主要体现在外观比较的亮丽时尚,内置的容量较大,一般还配备有取冰取水装置。 缺点:需要俯身拿取冷冻室的食物。 四、上冷冻冰箱 优点:上冷冻冰箱比较多的适用于小户型的空间,一般厨房空间比较小,预算有限的家庭,上冷冻冰箱是最佳选择。这类冰箱的性能及款式,一般都比较的延续传统的风格,其占用空间小,价格低廉,贮存空间最大,成为这一类型的冰箱的最大的优点。在市场上还是成为许多普通消费者的选择。宽度范围:30?33英寸(1英寸=2.54厘米)。 缺点:通常情况下需要俯身拿取位于下部冷藏室的储存物品,还需为较宽的冰箱门留有一部分空间。 五、传统下冷冻冰箱 优点:比较传统的冰箱款式,一般都是将冰箱冷冻室设置在下半部分。更易于拿取上冷藏室的食物。宽度范围与上冷冻冰箱相同,为30?33英寸(1英寸=2.54厘米)。 缺点:需要俯身拿取冷冻室的食物,还需为较宽的冰箱门留有一部分空间。 六、嵌入柜体冰箱 优点:这种柜体冰箱,一般需要在装修厨房时预留出恰当的空间,在空间中比较能够和厨柜融为一体,比较的时尚美观。这一类冰箱主要有冷冻冰箱、传统型下冷冻冰箱以及对开门冰箱3种形式。

各种压缩机优缺点解析

各种压缩机优缺点解析 「活塞式压缩机」 当活塞式压缩机的曲轴旋转时,通过连杆的传动,活塞便做往复运动,由气缸壁、气缸盖和活塞顶面所构成的工作容积则会发生周期性变化。活塞式压缩机的活塞从气缸盖处开始运动时,气缸的工作容积逐渐增大,这时气体即沿着进气管,推开进气阀而进入气缸,直到工作容积变到最大时为止,进气阀关闭;活塞式压缩机的活塞反向运动时,气缸工作容积缩小,气体压力升高,当气缸压力达到并略高于排气压力时,排气阀打开,气体排出气缸,直到活塞运动到极限位置为止,排气阀关闭。当活塞式压缩机的活塞再次反向运动时,上述过程重复出现。 总之,活塞式压缩机的曲轴旋转一周,活塞往复一次,气缸相继实现进气、压缩、排气的过程,即完成一个工作循环。

活塞压缩机的优点: (1)不论流量大小,都能得到所需要的压力,排气压力围广,最高压力可达320MPa(工业应用),甚至700MPa(实验室中); (2)单机能力为在500m3/min以下的任意流量; (3)在一般的压力围,对材料的要求低,多采用普通的钢铁材料,加工较容易,造价也较低廉; (4)热效率较高,一般大、中型机组绝热效率可达0.7~0.85左右; (5)气量调节时,适应性强,即排气围较广,且不受压力高低影响,能适应较广阔的压力围和制冷量要求; (6)气体的重度和特性对压缩机的工作性能影响不大,同一台压缩机可以用于不同的气体; (7)驱动机比较简单,大都采用电动机,一般不调速,可维修性强; (8)活塞压缩机技术上较为成熟,生产使用上积累了丰富的经验; 活塞压缩机的缺点: (1)结构复杂笨重,易损件多,占地面积大,投资较高,维修工作量大,使用周期较短,但经过努力可以达到8000小时以上; (2)转速不高,机器体积大而重,单机排气量一般小于

冰蓄冷复习小结

名词解释 1、蓄冷密度:单位质量蓄冰介质所蓄存的能量 2、相变(潜热)蓄能:利用蓄冰介质的相变特性,蓄存相变潜热的蓄能方式 3、显热蓄能:指利用蓄能材料的温度变化来蓄存显热能量的蓄能方法 4、动态蓄冰:指冰的制备和储存不在同一位置,制冰机和蓄冷槽相对独立 5、静态蓄冰:指冰的制备和融化在同一位置进行,蓄冰设备和制冰部件为一体结构 6、相变(潜热)蓄冷:利用介质的物态变化来蓄冷 7、显热蓄冷:通过降低蓄冷介质的温度进行蓄冷 8、飞轮蓄能:机械蓄能的一种,将电能转化成可蓄存的动能或势能:(1)电网电量富裕时,飞轮蓄能系统通过电动机拖动飞轮加速以动能形式蓄存电能(2)电网需电量时,飞轮减速并拖动发动机发电以放出电能 9、抽水蓄能:利用电力系统负荷低谷时的剩余电量,由抽水蓄能机组作水泵工况运行,将下水库的水抽至上水库,即将不可蓄存的电能转化成可蓄存的水的势能,并蓄存于上水库中 10、部分蓄冷:在夜间非用电高峰时制冷设备运行,蓄存部分冷量,白天空调期间一部分空调负荷由蓄冷设备承担,另一部分由制冷设备承担。 11、全部蓄冷:其蓄冷时间与空调时间完全错开:夜间启动制冷机蓄冷,当其制冷量达到空调所需全部冷量时待机,白天空调时,蓄冷系统将冷量转移到空调系统,空调期间制冷机不工作 12、主机上游:空调回水先流经主机,使主机能在较高的蒸发温度下进行。 13、主机下游:在串联流程中,主机在蓄冷槽之后,空调回水先回到蓄冷槽里降温,再到主机降至供冷温度 14、机组优先:在串联流程中,主机位于蓄冷槽上游,空调回水先到其中取冷 15、蓄冰优先:从空调负荷端流回的热乙二醇溶液,先经蓄冰装置冷却到某一中间温度,而后经制冷机冷却至设定温度 16、移峰填谷:指在夜间电网低谷时间,制冷主机开机制冷并由蓄冷设备将冷量储存起来,待白天电网高峰用电时间,再将冷量释放出来满足高峰空调负荷的需要。这样,制冷系统的大部分耗电发生在夜间用电低谷期,而在白天用电高峰期只有辅助设备在运行,从而实现用电负荷的“移峰填谷” 17、自然分层型蓄水槽:利用密度的影响将冷热水隔开,依靠稳定的斜温层 斜温层:由于冷热水间自然的导热作用而形成的一个冷热温度过渡层。厚度0.3~1.0m 18、间接供冷水蓄冷系统:系统在供冷回路中采用换热器与用户形成间接连接换热器一次侧与水蓄冷槽组成开式回路,而供至用户的二次侧形成闭式回路,这样用户侧管路可防止氧化腐蚀、有机物及菌类繁殖等影响。适用场合:主要适用于高层、超高层空调供冷。 19、外融冰:温度较高的空调回水直接送入盘管的表面结有冰层的蓄冷槽,使盘管表面上的冰层自外向内逐渐融化; 20、内融冰:来自用户或二次换热装置的温度较高的载冷剂(或制冷剂)仍在盘管内循环,通过盘管表面将热量传递给冰层,使盘管外表面的冰层自内向外逐渐融化进行取冷 21、盘管外蓄冰:是空调系统中常见的一种蓄冰方式即直接冻结在蒸发盘管上,盘管伸入蓄冷槽内构成结冰时的主干管 22、功能热流体:是由相变材料微粒(直径为微米量级)和单向传热流体构成的一种固液多相流体 23、封装冰蓄能:是将封装在一定形状的塑料容器内的水制成冰的过程 24、TES:蓄能Thermal Energy Storage 25、IPF:制冰率Ice Packing Factor 指蓄冷槽中制冰量与制冰前蓄冷槽内水量的体积百分比 26、FOM:冷量释放系数,指从蓄冷槽移走的冷量与理论可用蓄冷量之比。 27、GSHP:地源热泵Groud Source Heat Pump是以地源能作为热泵空调夏季制冷的冷却源,冬季采暖供热的低温热源,同时是实现采暖、制冷和生活用水的一种系统 简答题 1.空调系统应用的前提条件有哪些? (1)合适的电费结构及其他优惠政策(2)空调冷负荷在用电峰谷时段应有一定的不均衡性。

关于CO2制冷的说明

关于CO2制冷的说明 CO2制冷的优点: 1、CO2为自然工质 2、优良的经济性,无回收问题 3、良好的安全性,无毒,不燃 4、优良的传热和流动性。 CO2制冷现阶段的局限性: 1、管道材质:CO2常温下压力为75kgf ,采用R717和CO2复叠制冷,温度控制在-5℃ ~-10℃范围内,设计压力为52kgf ,运行压力在30kgf ,在此压力下,管道采用不锈钢 或16Mnr ,不锈钢焊口需经过处理,否则容易腐蚀,16Mnr 焊接后需经过热处理,在中 国现有条件下,现场没法进行处理,如果出现问题,危险性更大。此外,中国没有这方 面的规范和部门对此进行检验,检验标准生产厂家按自己厂家的标准执行。 2、CO2的水的影响:CO2系统中如果有水分,不但会造成冰堵,CO2和水反应生产碳酸, 对系统造成腐蚀。通常在系统中增加干燥过滤器,经常更换干燥过滤器,但在如此高的 压力下,更换过滤器,对设备管理人员提出了更高的要求。 3、CO2冲霜的问题:如果采用电融霜,运行费用非常高;采用水融霜,融霜时间长, 并且冷库地面会出现冻冰现象。通常采用工质融霜。CO2制冷压缩机组工作范围-5℃ ~-10℃,压缩机设计压力在35kgf ,而融霜温度在10℃左右,需增加进口压缩机进行 融霜,设计压力在50kgf~60kgf ,融霜压缩机组都是进口,如果出现故障,现场很难 处理,维修周期非常长。 4、辅助制冷系统:由于CO2 常温下压力过高,系统停止运行时,需开启辅助制冷系

统保持系统压力升高,辅助制冷系统需配置专用发电机组,并且都要有备用,时刻保证辅助制冷系统和专用发电机组都在良好的工作状态,平时不使用,一旦制冷系统停止运行,必须保证辅助制冷系统可靠运行,辅助制冷压缩机采用进口,维修麻烦。 5、操作维护:CO2制冷系统同R22制冷系统一样,系统很难回油,完全靠人工操作进行系统回油,在如此高的压力和复杂的系统下,对设备操作人员技术水平提出非常高的要求。该系统有制冷压缩机组、融霜压缩机组和辅助制冷系统,各压缩机组都不能出现故障,对设备维护人员要求很高的技术水平。系统压力非常高,运行补充CO2和冷冻油,更换阀门、安全阀等,都要求有非常专业的设备维护人员。 6、CO2的危险性:直接存在于人类的呼吸过程中,3% (30,000ppm) 导致呼吸加重 (+100%),5% (50,000ppm)导致麻醉,10% (100,000ppm) 导致昏迷,> 30% 立即导致由于浓度过高而引起的死亡!大气中CO2和O2的浓度比为1:700。O2浓度下降1-5%不会引起致命的危害。CO2浓度上升1-5%是致命的,需要设置类似于NH3那样明显的警示标志以便使现场受过训练的工作人员能够随时意识到可能存在的安全性问题。 综上所述,在中国现有的国情下,无论从技术上、工艺上、还是用户的操作维护上,都不适合作为商业推广,只能作为实验项目使用,只有各方面都进一步发展,才适合推广。蒙牛、伊利公司都研究过CO2制冷,伊利公司还到CO2制冷现场参观过,但现在都没采用,就是CO2制冷现在还不可靠,风险性比较大。此次羊屠宰项目采用CO2 制冷,系统也需要氨液(可能2吨左右),采用氨制冷,系统充氨量才9吨左右,没超过十吨(超过十吨为重大危险源),采用CO2制冷没什么意义。

制冷系统设计经验

近期论坛高质量文章不多,人气下降明显,版主积极性明显下降。本人正在进行硕士毕设论文阶段, 目前随着写作的进展,特分享一些里面的经验内容供各位看官评论,希望能尽一份力,为我们的论坛。由于之后本人不再从事本行业,7年来本人经验由论坛来,如今经过思索提炼正在草拟论文,想尽量 把相关精彩之处都借助论文这个方式写出来,写到精彩之处不由得想与论坛各位坛友分享。 (1)知识和经验二者之间的关系。本人毕业后从事制冷设计工作7年,校内时书本上学的各个关键理论好比一个个知识点,而实践经验相当于线。随着毕业后时间的推移,往往各个知 识点会逐渐遗忘,相信记忆再好的人,如果毕业2年内不搞相关工作,最后也仅剩下印象, 甚至忘的精光,因为没有实践经验支撑的理论早晚是会被遗忘的。而随着相关工作的进行, 在实践中,你会发现在研发设计,试验甚至失败中印证了课本上所学的一个个内容,于是 重新捡起来,回归课本、经过思考,才能真正被消化。久而久之,各个关键参数和公式算 法通过实践这条线连成串,经过自己大脑的联想、列举、归纳又横向交织成网,相互验证, 也就形成自己的一套理论体系,很难遗忘了。 (2)(2)蒸发、冷凝温度的确定。有很多人在论坛上问过我蒸发温度和冷凝温度是如何限定的,与环温的关系又是怎样的。很多从事了多年维修的师傅由经验反推理论,常常关注蒸 发、冷凝温度,根据表测得的参数去反推进行系统设计,这其实是错误的。制冷系统的蒸 发温度和冷凝温度是根据热源和热汇温度确定的,而不是相反。而热源、热汇的温度并不 是人为规定的,热源是由被冷却物质所需要的温度决定的,热汇是由放热端所处的环境温 度(冷却水温度)决定的。而我们所能做的,就是根据以上条件设计制冷系统,即根据允 许的换热面积和氟、水、空气侧状况匹配经济性温差进而求得蒸发、冷凝温度。由于很多 种热源、热汇温度下又存在关联或相似性区间,所以我们又把各个热源热汇划分出区间进 行归纳,方便不同区间相关配件的选配,如T1、T2、T3等工况。这里举个例子就是由卡 诺定理,理论上制冷系统的制冷系数为: Snap1.jpg(2.37 KB, 下载次数: 112) 可以看出低温热源温度越高,高温热汇和低温热源温差越小,制冷系数越大。某些厂家为 了提高制冷系数,随意改变工况或为了使蒸发、冷凝温度更接近热源、热汇温度,不惜成 本的成倍加大换热面积从而减小换热温差,这也就是目前小压缩机配大换热器的例子比比 皆是的原因。需要说明的是,确定热源、热汇温度后综合考虑经济性温差进而合理的匹配 换热面积才符合我们科学设计的原则。 (3)压缩机汽缸容积与系统制冷量的关系。在给定的制冷系统里,很多参数都是随着工况变化的,很多人问我设计的根源是什么,从哪出发。这就要首先找到一个不变量。对于一台已有的制冷压缩机来说,在制冷系统中,理论输气量Vh为定值,它也是我们确定工况后进行系统设计的出发点。 Snap1.jpg(2.58 KB, 下载次数: 36) 其中n为压缩机电机转速,对于50Hz的两极电动机来说,转数在2830rpm,i指压缩机汽缸数,Vp为 汽缸容积。具个例子,已知某汽缸标称容积为7.4cc的转子压缩机在T1工况下(To=7.2℃、过热11K;

冰蓄冷空调常识

冰蓄冷空调系统常识 冰蓄冷是利用冰的熔解热进行蓄冷,因此蓄冷密度较水蓄冷大,相同蓄冷能力的蓄冰槽与蓄水槽之体积比1:8~10。与水蓄冷相比,冰蓄冷系统的优点是:蓄冷密度高,使用蓄冷槽体积较小;温度稳定,便于控制。 常见的冰蓄冷系统形式: 1、冰球式(Ice Ball):将溶液注入塑胶球内但不充满,预留一膨胀空间。将塑料球放入蓄冰罐内,再注入冷水机组制出的低温乙二醇水溶液,使冰球内的溶液冻结起来。融冰时,让从空调负荷端流回的温度较高的乙二醇水溶液通过冰罐内塑胶球将冰球内的冰融化而释冷。 2、完全冻结式(Total-Freeze-Up):是将塑料或金属管伸入蓄冰筒(槽)内,管内通以冷水机组制出的低温乙二醇水溶液(也称二次冷剂),使蓄冰筒内90%以上的水冻结起来。融冰时,让从空调负荷端流回的温度较高的乙二醇水溶液通过塑料或金属管内部,将管外的冰融化而释冷。 冰蓄冷空调系统是怎样运行的? 夜间,冷水机组保持乙烯乙二醇溶液在-3℃~ -4℃运行,此时的乙烯乙二醇溶液会在机组与冰筒的热交换之间对流,慢慢的将冰筒内的水结成冰块。在制冰运行时,乙烯乙二醇溶液是不通过空气处理机组的。 日间,由冷水机组回来的11℃部分溶液通过冰筒冷却至1℃;另一部分11℃的溶液则与冰筒出来的1℃溶液混合在一起而成为6℃,再而进入空气处理机组,约在13℃离去。设定在6℃的三通控制阀操作此混合状态。空气处理机组将24℃的空气冷却到13℃﹙常温系统﹚。 春秋季的日间,可以随意由冷水机组或蓄冰筒提供建筑物的全部冷量。 市场应用较成熟的有盘管式、冰球式、冰晶式。 盘管式特点:蓄冷及放冷过程稳定,水力管网易于平衡。蓄冰及融冰速度较慢;盘管管道较细,流动阻力大。 冰球式特点:设备结构简单,阻力小,技术要求低。蓄冰及融冰速度较快。缺点:冰球需密集堆放,会造成冰球外冷媒水的流量不均及旁通,易引起传热的不稳定,冰球间反复挤压影响寿命。 蓄冰装置中使用塑料换热管与金属换热管之比较 金属管的导热系数比之塑料管要大很多,但是,在对冰筒的影响方面,这只是一个并不重要的方面。 (1)如果对蓄冰筒的整体换热效果进行考虑,会发现绝大部分热阻(也即影响结冰/融冰的根本原因) 是在蓄冷材料方面,即水这一侧。换热盘管材料本身对于总热阻的影响非常之小。 (2)高灵已经公布了在多种条件下蓄冰筒蓄冷/释冷的运行性能数据。这些数据都是由实际测量得出的结果,而不是由模拟或计算所得。可以完全参考这些测试结果去评价材料不同所导致的结果。 (3)传热不仅取决于盘管材料本身的导热系数,而且和换热面积有关。这也是高灵冰筒要在190型蓄冰筒中使用长达4300米塑料盘管的原因。高灵蓄冰筒中结冰厚度平均只有12mm (4)除了换热面积和材料性质外,冰筒中的传热还和盘管中液体流动状态及盘管粗细、盘管间距等因素有关。 (5)如果把高灵产品和其它产品的制冰温度进行比较,会发现在多项能效指标中,高灵产品是最高的。要知道,正是结冰过程决定了效率以及制冷机的运行费用。 (6)高灵冰筒盘管中的逆流设计(相邻管中的液体流动方向相反),保证了全长度盘管都是有效换热面积。

二氧化碳在冷库制冷系统的应用讲课稿

C O2在冷库制冷系统的应用 辽宁石油化工大学汤玉鹏一、C O2作为制冷剂的发展历史 在19世纪末至20世纪30年代前,C O2(R744),氨(R717),S O2(R764),氯甲烷(R40)等曾被广泛应用。 1850年,最初是由美国人A l e x a n d e r T w i n i n g提出在蒸汽压缩系统中采用C O2作为制冷剂,并获英国专利[1]。 1867年,T h a d d e u s S C L o w e首次成功使用C O2应用于商业机,获得了英国专利。于1869年制造了一台制冰机。 1882年,C a r l v o n L i n d e为德国埃森的F K r u p p公司设计和开发了采用C O2 作为工质的制冷机。 1884年,WR a y d t设计的C O2压缩制冰系统获得了英国15475号专利。澳大利亚的J Ha r r i s o n设计了一台用于制冷的C O2装置获得了英国1890号专利。 1886年,德国人F r a n z Wi n d h a u s e n设计的C O2压缩机获得了英国专利。英国的J&E Ha l公司收购了该专利,将其改进后于1890年开始投入生产。 19世纪90年代美国开始将C O2应用于制冷。 1897年K r o e s c h e l B r o s锅炉公司在芝加哥成立了分公司,生产C O2压缩机。 1919年前后,C O2制冷压缩机才被广泛应用在舒适性空调中。 1920年,在教堂的空调系统中得到应用。 1925年,干冰循环用于空气调节。 1927年,在办公室的空调系统中得到使用。 1930年,在住宅的空调系统中得到使用,后来又被用于各种商业建筑和公共设施的空调制冷系统。 C O2制冷曾经达到很辉煌的程度。据统计,1900年全世界范围内的356艘船舶中,37%用空气循环制冷机,37%用氨吸收式制冷机,25%使用C O2蒸气压缩式制冷机。发展到1930年,80%的船舶采用C O2制冷机,其余的20%则用氨制冷机。由于当时的技术水平比较差,C O2较低的临界温度(31.1℃)和较高的临界压力(7.37MP a),使得C O2系统的效率较低。加上其冷凝器的冷却介质多采用温度较低的地下水或海水,基本属于亚临界循环。当水温较高时(如热带海洋上行驶的轮船其冷却水的温度可接近30℃),其制冷效率会更加下降。所以C O2制冷技术并没有进一步开发运用于汽车空调、热泵等。

制冷装置能耗优化分析

制冷装置能耗优化分析 【摘要】制冷系统的优化是指在符合工艺条件的前提下,对有限个参数进行综合调节,使得综合能耗最低。文中把冷却水泵、冷冻水泵、制冷机组看作一个有机的整体进行参数的优化和控制。讨论了在环境温度变化时,采用小流量和大流量的能耗比较,在可能的情况下,对能耗的最小值进行求解,以到达总能耗最小的目的。 【关键词】节能;制冷系统;冷却水流量;冷冻水流量 当前,环境和资源是摆在人类面前的两大难题。“十一五”规划纲要中要求实行单位能耗目标责任和考核制度,完善重点行业能耗标准和节能设计规范,进一步把单位GDP能耗降低20%作为约束性指标。节能降耗的技术和手段需要各企业去探索、研究和实践。笔者拟通过对制冷装置节能降耗影响因素的分析,探讨节能降耗的改进方向和措施。 1.制冷工艺比较 1.1压缩制冷工艺 压缩制冷是将制冷剂通过制冷压缩机及辅机由压缩、冷凝、节流、蒸发4个过程组成制冷循环。 压缩制冷工艺具有流程短、制冷量大、工艺成熟的优点;但是无论选择电动压缩机或蒸汽透平压缩机都需要使用品级较高的能源,故适合于制冷量很大的场合。 1.2吸收制冷工艺 虽然吸收制冷工艺流程较长、设备较多,但在中等规模制冷量的情况下投资费用比压缩制冷少,运行费用也较低。吸收制冷工艺具有以下优缺点。 (1)有利于热能的综合利用。吸收制冷工艺中蒸发器加热所需要的热源温度较低,故可以充分利用0.25~0.8MPa(绝)低品质饱和蒸汽,甚至使用低压蒸汽冷凝液,从而节约能量,大幅降低运行成本,特别是在低品质热源较多,供电紧张的地方,具有明显的优点。 (2)负荷调节范围大。负荷在20%~100%的范围内,吸收制冷系统均可以正常运行,而采用压缩制冷时负荷变化范围较小。 (3)维修简单,易于管理。吸收制冷装置大部分为静设备,而压缩制冷需要压缩机等复杂机组。

冰蓄冷介绍

1、蓄冷空调原理 蓄冷中央空调系统是一种通过蓄能来节约空调系统运行费用的技术,其基本工作原理是:建筑物空调时间所需冷量的部分或全部在非空调时间利用蓄冷介质的显热或其相变过程的潜热迁移等特性,将能量以低温状态蓄存起来,然后根据空调负荷要求释放这些冷量,这样在用电高峰时期就可以少开甚至不开主机。当空调使用时间与非空调时间和电网高峰和低谷同步时,就可以将电网高峰时间的空调用电量转移至电网低谷时使用。 在一般工程中,空调系统用电量占总耗电量的35%--65%,而制冷主机的电耗在空调系统中又占65%--75%。在常规空调设计中,冷冰主机及辅助设备容量均按尖峰负荷来选配,这不仅使空调系统的电力容量增大,而且使得主机等空调设备在绝大部分情况下均处于低效率的部分负荷状态运行,显得很不经济。 蓄冷中央空调从系统构成上来说只是在常规空调系统的基础上增加了一套蓄冷装置,其它各部分在结构上与常规空调相同,它在使用范围方面也与常规空调基本一致。 2、蓄冷中央空调的意义 随着社会的发展,中央空调在大中城市的普及率日渐增高。据统计,空调高峰时用电量达到城市用电负荷的25%-30%,加大了电网的峰谷用电差。蓄冷中央空调之所以得到各国政府和工程技术界的重视,正因为它对电网有卓越的移峰填谷功能,是电力需求侧最有效的电能蓄存方法,蓄冷对于用户还有以下的一些突出优点: 1)空调的出水温度低、制冷效果好,低温送风系统节省投资和能耗。 2)空调环境相对湿度较低,空调品质提高,有利于防止中央空调综合症。 3)利用峰谷荷电价差,平衡电网负荷。减少空调年运行费。 4)减少冷水机组容量,降低一次性投资。 5)在主机出现故障或断电的情况下,蓄冷系统相当于应急冷源,系统可靠性高。6)当建筑物功能变化或面积增加引起冷负荷增加时,只要增加蓄冷装置的蓄冷量, 即可满足大楼新增冷量需要。 3、蓄冷发展史 第一代:冰球蓄冷第二代:冰盘管蓄冷第三代:动态冰蓄冷―――――――――――――――――――――――――――――――― 在没有实行集中供热前,冬天时家家户户烧火取暖,这种原始的用能方式既浪费能源,又污染环境。北方实行热力站集中供热方式后,在节约能源的同时也保护了环境。南方地区冬天烧火取暖的时间很短或基本不烧火取暖,但夏天却要用空调降温。目前,不管是南方和北方

二氧化碳制冷技术

二氧化碳制冷技术 二氧化碳具有高密度和低粘度,其流动损失小、传热效果良好,并且通过对传热作用的强化,可以弥补其循环不高的缺点。同时二氧化碳环境表现优良、费用低易获取、稳定性好、有利于减小装置体积。最重要的是,其安全无毒,不可燃,这一点比R290具有明显的优势。 当然,采用二氧化碳为制冷剂也有缺点,二氧化碳高的临界压力和低的临界温度也给它做制冷剂带来了许多难题。无论亚临界循环还是跨临界循环,二氧化碳制冷系统的运行压力都将高于传统的制冷空调系统,这必然会给系统及部件的设计带来许多新的要求。同时现阶段还存在二氧化碳制冷系统的效率相对较低的问题。 目前二氧化碳的研究和应用主要集中于三个方面: 一方面是汽车空调领域,由于制冷剂排放量大,对环境的危害也大,必须尽早采用对环境无危害的制冷剂; 第二方面是热泵热水器,二氧化碳在超临界条件下放热存在一个相当大的温度滑移,有利于将热水加热到一个更高的温度; 第三方面是考虑到二氧化碳良好的低温流动性能和换热特性,采用它作为复叠制冷循环低温级制冷剂。

在复叠式制冷系统中,二氧化碳循环在亚临界条件下运行。此时二氧化碳用作低压级制冷剂,高压级用NH3作制冷剂。与其它低压制冷剂相比,即使处在低温,二氧化碳的粘度也非常小,传热性能良好,因为利用潜热,其制冷能力相当大。 目前,欧洲在超市中已建立了几个这种用二氧化碳作低温制冷剂的复叠式制冷系统,运行情况表明技术上是可行的,这种系统还适用于低温冷冻干燥过程。 当前关于R22制冷剂的替代国际上主要有两种技术方案: 一种是以北欧国家和韩国为代表,其主张采用天然工质作为替代物,如纯工质R290、R1270、R744、R600a、R600、R717等,以及HCs类的混合物; 另一种是以美国和日本为代表的采用HFCs作为替代物,如美国联合信号公司的非共沸混合物R410A、杜邦公司和I.C.I公司的混合物R407C,以及R32和R152a等,这些制冷剂的ODP均为0,能够达到保护臭氧层的目的,但是会产生温室效应。 目前看来,二氧化碳在国内市场的前景,还有点像“雾里看花”,就像王立群所言,他们都了解它的好,但真正用的少。国内空调行业暂时看不到二氧化碳发展的影子,其在国内冷冻冷藏市场也才刚刚迈步,但在热

压缩机试题-A卷-答案

1.离心压缩机的性能曲线左端受喘振工况限制,右端受堵塞工况限制,这两者之间的区域称为稳定工况区。 2.离心压缩机级内的能量损失主要包括:轮阻损失、内漏气损失和流动损失。 3.离心压缩机轴封形式主要有机械密封、浮环密封、迷宫密封和抽气密封。 4.往复式压缩机由传动机构、工作机构、机体和辅助机构四部分组成。 5.活塞通过活塞杆由传动部分驱动,活塞上设有活塞环以密封活塞与气缸的间隙。 6.如果气缸冷却良好,进气过程加入气体的热量减少,则温度系数取值大; 传热温差大,造成实际气缸工作容积利用率减小,温度系数取值小。 7.气阀主要由阀座、弹簧、阀片和升程限制器四部分组成。 8.生产中往复活塞式压缩机的排出压力取决于背压(排出管路内压力)。 9.往复活塞式压缩机缸内实际平均吸气压力低于(高于、等于、低于)名义吸气压力,缸内实际平均排气压力高于(高于、等于、低于)名义排气压力。 10.转子型线的影响要素主要有:接触线、泄漏三角形、封闭容积和齿间面积。 11.泄漏三角形三顶点:两转子接触线的最高点、阴转子齿顶与两汽缸孔交线的交点、阳转子齿顶与两汽缸孔交线的交点。 12.螺杆压缩机阴阳转子的传动比等于两转子转角之比,等于两转子转速之比,等于两转子角速度之比,等于两转子节圆半径之比,还等于两转子齿数 之比。 13.螺杆压缩机吸气过程中,吸气腔一直与吸气口相连通,不能与排气口相连通。 14.当螺杆压缩机的内压力比大于(大于或小于)外压力比时,此时产生过压缩;当内压力比小于(大于或小于)外压力比时,此时产生欠压缩。 15.螺杆压缩机喷液的作用是:冷却、密封、润滑和降噪等。 16.同一台螺杆压缩机用于压缩空气和丙烷,相比之下当压缩空气时,其压缩比较大(大或小),其排气温度较高(高或低)。 二、判断题(每题1分,共20分)

相关主题
文本预览
相关文档 最新文档