当前位置:文档之家› 纳米氧化锆粉体的制备

纳米氧化锆粉体的制备

纳米氧化锆粉体的制备
纳米氧化锆粉体的制备

氧化锆陶瓷的制备工艺

氧化锆陶瓷的制备工艺 一氧化锆陶瓷的原料 氧化锆工业原料是由含锆矿石提炼出来的。 斜锆石(ZrO2) 自然界锆矿石 锆英石(ZrO2 ·SiO2) 二氧化锆陶瓷的提炼方法 氯化和热分解 碱金属氧化物分解法 石灰溶解法 等离子弧法 提炼氧化锆的主要方法 沉淀法 胶体法 水解法 喷雾热分解法 ㈠氯化和热分解法 ZrO2?SiO2+4C+4Cl2→ZrCl4+SiCl4+4CO 其中ZrCl4和SiCl4以分馏法加以分离,在150–180℃下冷凝出ZrCl4然后加水水解形成氧氯化锆,冷却后结晶出氧氯化锆晶体,经焙烧就得到氧化锆。 ㈡碱金属氧化物分解法 ZrO2?SiO2+NaOH→Na2ZrO3 +Na2SiO4+H2O

ZrO 2?SiO 2+Na 2CO 3→Na 2ZrSiO 3+CO 2 ZrO 2?SiO 2+Na 2C03→Na 2ZrO 3+Na 2Si03+CO 2 ①反应后用水溶解,滤去Na 2Si03; ②Na 2Zr03→水合氢氧化物→用硫酸进行钝化→Zr 5O 8(SO 4)2·x H 20→ 氧化锆粉 ㈢石灰熔融法 CaO+ZrO 2·SiO 2→ZrO 2+CaSiO 3 焙烧后用盐酸浸出除去CaSiO3 ㈣等离子弧法 锆英石砂(ZrO 2?SiO 2) ㈤沉淀法 沉淀法是在羧基氯化锆等水溶性锆盐与稳定剂盐的混合水溶液中加入氨水等碱性类物质,以获得氢氧化物共沉淀的方法。将共沉淀物干 焙烧 氨 水 调 整 PH 值 用水水解 ZrO2 SiO2 注入高温等离子弧中 熔化并离解 凝固后SiO 2粘在ZrO 2结晶表面 用液体NaOH 煮沸可除SiO 2 ZrO 2和硅酸铀 氧化锆 洗涤

钇稳定氧化锆纳米粉体制备技术

第25卷第6期 硅 酸 盐 通 报 Vol .25 No .6 2006年12月 BULLETI N OF THE CH I N ESE CERAM I C S OC I ETY December,2006  钇稳定氧化锆纳米粉体制备技术研究进展 王洪升1,王 贵2,张景德1,徐廷鸿1 (1.山东大学材料液态结构及其遗传性教育部重点实验室,济南 250061;2.济南大学泉城学院,济南 250061) 摘要:纳米YSZ 是一种新型的高科技材料,有着广泛而重要的用途。本文根据国内外最新研究现状及其发展趋势,综述了纳米级YSZ 的制备技术,特别就目前研究比较多的水热法和反胶团法给予了重点阐述,并就目前制备过程中存在的问题,解决方法及发展方向作了介绍。 关键词:YSZ;纳米粉体;团聚;制备 The Prepara ti on Progresses of Y SZ Nanom eter Powder WAN G Hong 2sheng 1,WAN G Gui 2,ZHAN G J ing 2de 1,XU Ting 2hong 1(Keb Lab .of L iquid Structure and Heredity of MaterialsM inisity of Educati on,Shandong University,J inan 250061,China; 2.Quancheng College of J inan University,J inan 250061,China )Abstract:U ltrafine YSZ particles are a ne w type of advanced material,which has wide and significant uses .Varieties of p reparati on and drying methods of YSZ powder were revie wed in this paper on the basis of ne w p r ogress and devel op ing trends,es pecially the hydr other mal method and the reverse m icelles were described in detail .The p r omble m s that need t o be s olvoed and the directi on in the future were given . Key words:YSZ;nanometer powder;aggregati on;p reparati on 作者简介:王洪升(19822)男,硕士.主要从事氧化锆气敏陶瓷的研究.E 2mail:wanghongsheng@mail .sdu .edu .cn Y 2O 3稳定的Zr O 2(YSZ )固体电解质,具有较高的氧离子导电性,良好的机械性能,优秀的耐氧化和耐腐蚀性[1]以及不与电极材料反应[2]等优点而成为制作氧传感器、高温固体燃料电池、压电陶瓷、铁电陶瓷以及氧泵等的主要材料,而氧化钇稳定氧化锆粉体超细的晶粒粒度、颗粒的均匀性和合理的成分配比是获得高离子电导性能和良好机械强度YSZ 固体电解质的关键。因此纳米YSZ 微粒的制备一直是纳米材料制备科学中的一个热点,目前人们研究、使用了共沉淀法,s ol 2gel 法、水热法、共沉淀-凝胶法、醇-水溶液法、共沸蒸馏技术、微波辅助法、反胶团法或微乳液法等多种制备氧化锆粉体的方法。 1 粉体的制备方法 1.1 共沉淀法 图1 化学共沉淀法工艺流程Fig .1 Flow chart of the chem ical co 2precip itation method 含有多种阳离子的溶液中加入沉淀剂后,所有离子同时沉 淀的方法称为共沉淀法[3]。一般在可溶性锆盐和钇盐的混合 水溶液中,加入氨水、苛性钠、(NH 4)2CO 3或尿素等碱性物质, 从而生成锆和钇的氢氧化物沉淀,然后对沉淀物经洗涤、干燥、 热处理、粉碎即得超细粉末,该法不仅工艺简单(如图1),对设备要求不高,成本低,重复性好,而且可制得各种晶型的氧化物

纳米氧化锆汇总

二氧化锆纳米材料 一.用途:纳米氧化锆本身是一种耐高温、耐腐蚀、耐磨损和低热膨胀系数的无机非金属材料,由于其卓越的耐热绝热性能,20世纪20年代初即被应用于耐火材料领域。 自1975年澳大利亚学者K.C.Ganvil首次提出利用ZrO2相变产生的体积效应来达到增韧陶瓷的新概念以来,对氧化锆的研究开始异常活跃。——利用其高硬度、抗磨损、耐刮擦、不燃的特性,极大的提高涂料的耐磨性和耐火效果。由于其导热系数低、并具备特殊光学性能,可用于军事、航天领域的热障涂料及隔热涂料。纳米复合氧化锆具备特殊光学性能,对紫外长波、中波及红外线反射率达85%以上;且其自身导热系数低,可提高其隔热性能。——由于不同晶型纳米氧化锆体积不同,可制备具备自修复功能的功能性涂料。 纳米复合氧化锆行业主要企业产能分布

二.目前的制备方法:化学气相沉积(CVD)法,液相法(包括醉盐水解法,沉淀法,水热法,徽乳液法,溶液姗烧法等),徽波诱导法及超声波法等几大类。 三.具体介绍方法:利用溶胶-凝胶法制备出高度有序的二氧化锆纳米管 简介:溶胶一凝胶法是指金属醉盐或无机盐经水解形成溶胶,然后使溶胶一凝胶化再将凝胶固化脱水,最后得到无机材料.在无机材料的制备中通常应用溶胶—凝胶方法,与传统的合成方法相比,具有高纯度、多重组分均匀以及易对制备材料化学掺杂等优点.该方法要使前驱体化合物水解形成胶体粒子的悬浮液(溶胶)后,成为聚集溶胶粒子组成凝胶,凝胶经过热处理得到所需的物质.溶胶—凝胶沉积法广泛用于在模板的纳米通道中制备纳米管或线.本文主要结合溶胶—凝胶法和模板合成法制备二氧化锆纳米管.由于锆的无机盐价格便宜且对大气环境不敏感[,我们利用锆的无机盐(氯化氧锆)作为前驱体溶液制备稳定的溶胶. 具体过程:

【CN109809482A】一种单分散、多形貌氧化锆粉体的制备方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910274034.2 (22)申请日 2019.04.08 (71)申请人 西安工业大学 地址 710021 陕西省西安市未央区学府中 路2号 (72)发明人 高玲 张浩 谢美娇  (74)专利代理机构 北京德崇智捷知识产权代理 有限公司 11467 代理人 贾凯 (51)Int.Cl. C01G 25/02(2006.01) (54)发明名称 一种单分散、多形貌氧化锆粉体的制备方法 (57)摘要 本发明公开了一种单分散、多形貌氧化锆粉 体的制备方法,通过向氧氯化锆溶液中加入氟硼 矿化剂后,通过调控矿化剂浓度,于反应釜中经 水热法合成多形貌的氧化锆粉体,粉体分散性 好,晶粒均匀、不团聚,尺寸处于50-2000nm,本发 明合成方法简单,反应条件温和,易于实现,重复 性好,成本低。本发明适用于制备单分散、多形貌 氧化锆粉体。权利要求书1页 说明书6页 附图6页CN 109809482 A 2019.05.28 C N 109809482 A

权 利 要 求 书1/1页CN 109809482 A 1.一种单分散、多形貌氧化锆粉体的制备方法,其特征在于按照如下的步骤顺序依次进行: (1)配置0.05-1.5 mol/L的氧氯化锆水溶液,记为A; (2)向A中加入氟硼矿化剂,搅拌均匀后得B,所述氟硼矿化剂与氧氯化锆的摩尔比为1:2-50; (3)将B置于水热反应釜中,水热处理得C; (4)将C依次进行水洗和醇洗后,于110℃下干燥24h,得氧化锆粉体。 2.根据权利要求1所述的一种单分散、多形貌氧化锆粉体的制备方法,其特征在于:步骤(2)中,所述氟硼矿化剂为氟硼酸盐。 3.根据权利要求1所述的一种单分散、多形貌氧化锆粉体的制备方法,其特征在于:步骤(2)中,所述氟硼矿化剂为摩尔比为1:0.5-4的H3BO3和NH4F复配矿化剂。 4.根据权利要求1所述的一种单分散、多形貌氧化锆粉体的制备方法,其特征在于:步骤(3)中,所述水热处理的温度为160-250℃,水热处理时间为1-72h。 5.根据权利要求1-4中任意一项所述的一种单分散、多形貌氧化锆粉体的制备方法,其特征在于:所述氧化锆粉体粒径为50-2000nm,形貌为孔状柱形结构、层状南瓜子结构或层状盘片结构中的一种。 2

纳米氧化锆的应用

纳米级二氧化锆的应用 二氧化锆是一种具有高熔点、高沸点、导热系数小、热膨胀系数大、耐磨性好、抗腐蚀性能优良的无机非金属材料。其纳米材料因具有比较高的比表面积而有许多重要用途,近几年来已成为科研领域中的一个热点,并被广泛应用于工业生产中。由它可以制备出多种功能的陶瓷元件,在固体氧化物燃料电池热障涂层材料、催化剂载体润滑油添加剂气敏性耐磨材料等方面都有一定的应用和发展。 结构陶瓷方面,由于纳米二氧化锆陶瓷具有高韧性、高抗弯强度和高耐磨性,优异的隔热性能,热膨胀系数接近于钢等优点,因此被广泛应用于结构陶瓷领域。主要有:Y-TZP磨球、分散和研磨介质、喷嘴、球阀球座、氧化锆模具、微型风扇轴心、光纤插针、光纤套筒、拉丝模和切割工具、耐磨刀具、表壳及表带、高尔夫球的轻型击球棒及其它室温耐磨零器件等。 钇稳定纳米二氧化锆(优锆纳米材料)粒径小,纯度99.9%,平均粒径20-40纳米,烧出来的陶瓷通透性好,表面光洁度高,适合做牙科陶瓷,刀具陶瓷,结构陶瓷,生物陶瓷。 纳米氧化锆粉体(优锆纳米),具有纳米颗粒尺寸细、粒度分布均匀、无硬团聚和很好的球形度。生产中做到了精确控制各组分含量,实现不同组分之间粒子的均匀混合,严格控制颗粒尺寸、形态和结构,保证了产品的质量。利用该产品掺杂不同元素的导电特性,在高性能固体电池中用于电极制造,成为电池专用。 纳米氧化锆粉体(40-50纳米)分散在水相介质中, 形成高度分散化、均匀化和稳定化的纳米氧化锆液(苏州优锆纳米材料)。纳米氧化锆分散液除具有纳米粉体的特性外,还具有更高的活性、易加入等特性。纳米氧化锆分散液做到产品中纳米材料以单个纳米粒子状态存在,客户使用能用到真正的纳米材料,用出真正的纳米效果,大大提高产品的性能。纳米氧化锆分散液因为达到了完全单分散纳米状态,所以和其他材料表面接触后不是普通粉体材料的吸附,而是和化学键结合一体,所以有极高的稳定性,可以极大的提高耐水洗,耐磨、抗菌等性能,极大地发挥纳米材料的作用。

纳米氧化锆-2017.12.21

纳米氧化锆相关资料分析 第一章 项目概况 投资公司:XXXXX 有限公司 技术支持:XXXXXX 研发团队 投产项目:5nm 级氧化锆 总投资金额:2000万元 资金来源:融资方式 预计年产纳米氧化锆1200吨,单价40万元/吨,预计年总营业额4.8亿元。 第二章 产品介绍 通常情况下Z r O 2有四种存在形式:无定形、常温下稳定的单斜晶相,常温下稳定的四方晶相(添加稳定剂),高温下稳定的立方晶相。 立方晶 四方晶 单斜晶 常规情况下:单斜氧化锆加热到1170度转化为四方氧化锆,这个转变速度很快并伴随7%-9%的体积收缩,但在冷却过程中,四方氧化锆往往不在1170度转变为单斜氧化锆,而在1000度左右转变,是一种滞后的转变,同时伴随着体积的膨胀。为了避免回到单斜相,必须通过外来氧化物对高温晶型进行稳定。这样,稳定的氧化锆在室温至熔点的 温 度 范围内以相同的稳定的晶型存在。 单斜晶 四方晶 预投产项目可以在温度为420度时,即可在无须添加氧化稳定剂的情况下制备出5nm 级别四方晶相氧化锆。在目前市场,并未有同等级别产品。但是,制备温度的改变以及没有填加稳定剂的情况下,在常温条件晶体的稳定性及物理、化学性能是否改变,需研发团队出具具体技术结果。 1170o C 1000o C

二、国内因素 (1)2017年11月锆英砂价格上涨3.13%至9900元/吨,港口库存环比下降3.26%至13.64万吨。海南地区为国内主要锆矿砂资源地,海南省国土资源厅为保护当地资源,将严格控制锆英砂等矿物产量,未来国内锆英砂供给量或将减少,锆英砂价格或将在高位继续上行。(2)国内环保限产影响全国约一半的氧氯化锆产能,氧氯化锆价格仍将持续提升。2017年山东等地氧氯化锆产能由于环保不达标被限制生产,国内氧氯化锆供应出现短缺,价格快速上涨,最新成交价格15000元/吨,较年初9900元/吨上涨52%,随着冬季城市取暖季限产即将来临,预计氧氯化锆环保限产仍将持续,氧氯化锆价格仍将上涨。 作为生产企业投产纳米氧化锆,需要稳定的原材料来源以稳定产品的价格与质量,而锆英砂垄断性比较高,几大垄断巨头控制定价权。国内氧氯化锆生产受制于环保要求,大规模减产。所以投产纳米氧化锆需要稳定的原材料来源,以确保生产销售的稳定性。

纳米氧化锆粉体的合成与表征

纳米氧化锆粉体的合成与表征 李杰119024189 无111 1 引言 二氧化锆是制备特种陶瓷最重要的原料之一,由于其具有优良的机械、热学、电学、光学性质而在高温结构材料、高温光学元件、氧敏元件、燃料电池等方面有着广泛的应用,它是2l世纪最有发展前景的功能材料之一。而控制氧化锆前驱粒子的颗粒尺寸对制备高性能氧化锆陶瓷具有重要意义。 本研究采用水/环己烷/辛基苯基聚氧乙烯醚(Triton X-100)/正己醇四元油包水体系,通过反相微乳液法制备了纳米ZrO2粉体,用TEM,XRD等对所制备的纳米粉体进行了表征,研究了煅烧温度、pH值、陈化时间对ZrO2纳米粒子结构与性能的影响。结果表明,以单斜相为主的ZrO2纳米粉体,其晶粒尺寸可控制在20 nm左右;随着煅烧温度的提高,ZrO2的结晶程度逐渐提高;随着pH值的提高,少量四方相ZrO2全部转化为单斜相;随着陈化时间的增加,ZrO2颗粒尺寸变大。 2 结构性质 自然界的氧化锆矿物原料,主要有斜锆石和锆英石。纯氧化锆的分子量为123.22,理论密度是5.89g/cm3,熔点为2715℃。通常含有少量的氧化铪,难以分离,但是对氧化锆的性能没有明显的影响。氧化锆有三种晶体形态:单斜、四方、立方晶相。常温下氧化锆只以单斜相出现,加热到1100℃左右转变为四方相,加热到更高温度会转化为立方相。由于在单斜相向四方相转变的时候会产生较大的体积变化,冷却的时候又会向相反的方向发生较大的体积变化,容易造成产品的开裂,限制了纯氧化锆在高温领域的应用。但是添加稳定剂以后,四方相可以在常温下稳定,因此在加热以后不会发生体积的突变,大大拓展了氧化锆的应用范围。 3 用途 3.1 ZrO2在特种陶瓷中的应用 由于高纯ZrO2具有优良的物理化学性质,当其与某些物质复合时,在不同条件下又具有对电、光、声、气和温度等的敏感特性,使其广泛用于电子陶瓷、功能陶瓷和结构陶瓷等高新技术领域。 3.1.1 电子陶瓷 ZrO2在电子陶瓷中的应用主要有压电元件(如发火元件、助听器、拾音器等),滤波器(用于电视机、收录机、共电式无线电收发机等),超声波振荡器(用于潜艇音纳、鱼群探测器和测深仪等),蜂鸣器(用于电子计算机输入功率鉴定信号机、曲调桌式电子计算机、数字显示手表及闹钟等)及高温导体等。

钇稳定氧化锆纳米粉体制备技术解析

第25卷第6期硅酸盐通报 Vol . 25No . 62006年12月BULLETI N OF THE CH I N ESE CERAM I C S OC I ETY December, 2006 钇稳定氧化锆纳米粉体制备技术研究进展 王洪升, 王贵, 张景德, 徐廷鸿1211 (1. 山东大学材料液态结构及其遗传性教育部重点实验室, 济南250061; 2. 济南大学泉城学院, 济南250061 摘要:纳米YSZ 是一种新型的高科技材料, 有着广泛而重要的用途。本文根据国内外最新研究现状及其发展趋势, 综述了纳米级YSZ 的制备技术, 特别就目前研究比较多的水热法和反胶团法给予了重点阐述, 并就目前制备过程中存在的问题, 解决方法及发展方向作了介绍。 关键词:YSZ; 纳米粉体; 团聚; 制备 The Prepara ti on Progresses of Y SZ Nanom WAN G Hong 2sheng , WAN G Gui , J , XU 2. Quancheng College of J China 1211(Keb Lab . of L iquid Structure and Heredity of MaterialsM J inan 250061, China; Abstract:U ltrafine ne advanced material, which has wide and significant uses . methods of YSZ powder were revie wed in this paper on the basis of ne w op trends, es pecially the hydr other mal method and the reverse m icelles were described in The p r omble m s that need t o be s olvoed and the directi on in the future were given . Key words:YSZ; nanometer powder; aggregati on; p reparati on

氧化锆纳米粉体的制备及其烧结性能研究

氧化锆纳米粉体的制备及其烧结性能研究

目录 第1章前言 (1) 1.1纳米材料概述 (1) 1.2纳米氧化锆及其陶瓷材料概述 (2) 1.2.1二氧化锆的结构与性质 (2) 1.2.2氧化锆纳米材料的研究进展 (5) 1.2.3纳米氧化锆粉体的制备 (6) 1.2.4氧化锆陶瓷材料的成型 (9) 1.2.5氧化锆陶瓷的烧结 (10) 1.2.6纳米氧化锆及其陶瓷的应用 (12) 1.3本课题研究目的及主要研究内容 (14) 1.3.1课题研究目的 (14) 1.3.2课题研究内容 (14) 第2章实验材料及方法 (16) 2.1实验试剂与仪器 (16) 2.2粉体制备实验步骤与流程 (17) 2.2.1实验步骤 (17) 2.2.2实验流程 (18) 2.3氧化锆陶瓷试样的制备 (20) 2.4纳米氧化锆粉体的测试与表征手段 (20) 2.4.1物相组成(X射线衍射)分析 (21) 2.4.2热重-差热(TG-DTA)分析 (21) 2.4.3红外光谱(FT-IR)分析 (21) 2.4.4形貌(TEM)分析 (22) 2.5烧结试样的性能测试 (22) 2.5.1密度的测定 (22) 2.5.2收缩率的测定 (22) 2.5.3抗弯强度的测定 (23) 2.5.4显微结构分析 (23) 第3章氧化锆纳米粉体合成工艺条件的研究与机理分析 (24) 3.1常压水热法制备氧化锆纳米粉体 (24) 3.1.1实验内容 (24)

3.1.2实验结果与讨论 (25) 3.2有机网络凝胶法制备ZrO2纳米粉体 (34) 3.2.1实验内容 (34) 3.2.2实验原理 (34) 3.2.3实验结果与讨论 (35) 3.3本章小结 (46) 第4章氧化锆纳米粉体的烧结性能研究 (47) 4.1烧结试样的密度测试与分析 (48) 4.2烧结试样收缩率的测试与分析 (50) 4.3烧结试样的抗弯强度测试与分析 (51) 4.4烧结试样的显微结构测试与分析 (52) 4.5本章小结 (57) 第5章结论 (58) 参考文献 (59) 致谢 (63) 攻读硕士期间发表论文及专利情况 (65)

纳米氧化锆-2017.12.21

纳米氧化锆相关资料分析 第一章 项目概况 投资公司:XXXXX 技术支持:XXXXXX 研发团队 投产项目:5nm 级氧化锆 总投资金额:2000万元 资金来源:融资方式 预计年产纳米氧化锆1200吨,单价40万元/吨,预计年总营业额4.8亿元。 第二章 产品介绍 通常情况下Z r O 2有四种存在形式:无定形、常温下稳定的单斜晶相,常温下稳定的四方晶相(添加稳定剂),高温下稳定的立方晶相。 立方晶 四方晶 单斜晶 常规情况下:单斜氧化锆加热到1170度转化为四方氧化锆,这个转变速度很快并伴随7%-9%的体积收缩,但在冷却过程中,四方氧化锆往往不在1170度转变为单斜氧化锆,而在1000度左右转变,是一种滞后的转变,同时伴随着体积的膨胀。为了避免回到单斜相,必须通过外来氧化物对高温晶型进行稳定。这样,稳定的氧化锆在室温至熔点 的 温度围以相同的稳定的晶型存在。 单斜晶 四方晶 预投产项目可以在温度为420度时,即可在无须添加氧化稳定剂的情况下制备出5nm 级别四方晶相氧化锆。在目前市场,并未有同等级别产品。但是,制备温度的改变以及没有填加稳定剂的情况下,在常温条件晶体的稳定性及物理、化学性能是否改变,需研发团队出具具体技术结果。 1170o C 1000o C

(1)2017年11月锆英砂价格上涨3.13%至9900元/吨,港口库存环比下降3.26%至13.64万吨。地区为国主要锆矿砂资源地,省国土资源厅为保护当地资源,将严格控制锆英砂等矿物产量,未来国锆英砂供给量或将减少,锆英砂价格或将在高位继续上行。 (2)国环保限产影响全国约一半的氧氯化锆产能,氧氯化锆价格仍将持续提升。2017年等地氧氯化锆产能由于环保不达标被限制生产,国氧氯化锆供应出现短缺,价格快速上涨,最新成交价格15000元/吨,较年初9900元/吨上涨52%,随着冬季城市取暖季限产即将来临,预计氧氯化锆环保限产仍将持续,氧氯化锆价格仍将上涨。 作为生产企业投产纳米氧化锆,需要稳定的原材料来源以稳定产品的价格与质量,而锆英砂垄断性比较高,几大垄断巨头控制定价权。国氧氯化锆生产受制于环保要求,大规模减产。所以投产纳米氧化锆需要稳定的原材料来源,以确保生产销售的稳定性。

纳米氧化锆的制备及其干燥技术_温立哲

收稿日期:2001-05-17 基金项目:广东省自然科学基金(000028);广东省教育厅自然科学研究项目资助(2000024) 作者简介:温立哲(1975-),男,2000级硕士研究生,主要研究方向为纳米氧化锆的制备. 纳米氧化锆的制备及其干燥技术 温立哲1,余忠民2,黄慧民1,周立清1,邓淑华 1 (1 广东工业大学轻工化工学院,广东广州510090 2 广东省质量监督局,广东广州510240) 摘要:纳米氧化锆是一种新型的高科技材料,由于其具有很多特殊的性质,因而有着广泛而重要的用 途 本文根据国内外研究制备纳米氧化锆的最新进展和其发展趋势,综述了纳米氧化锆的各种制备 的方法和干燥技术,并提出目前制备中存在的问题 关键词:纳米材料;氧化锆;干燥 中图分类号:TQ134.12 文献标识码:A 文章编号:1007-7162(2002)01-0063-07引 言 纳米级材料是指晶粒尺寸在0 1nm 到100nm 之间处于原子簇和宏观物体交接区域的超细微粒,由于纳米结构单元的尺度与物质中许多特性长度,如电子的德布洛意波长、超导相干长度、隧穿热垒厚度、铁磁性临界尺寸等相当,从而导致了纳米材料具有了不同于微观的原子、分子,也不同于宏观物体的物理化学特性 二氧化锆是一种具有高熔点(2700 )和高沸点、导热系数小、热膨脉系数大、耐高温、耐磨性好、抗蚀性能优良的金属氧化物材料 纳米级二氧化锆粉体材料因具有某些独特性能,如常温下为绝缘体,高温下则具有导电性、敏感特性、增韧性等 目前已用于制造结构陶瓷(如反应堆包套、航空发动机的排杠、汽缸内衬等)、功能陶瓷(如气体、温度、湿度、声传感器等)、压电陶瓷、电子陶瓷(如电容器、震荡器、蜂鸣器、调节器、电热组件等)、生物陶瓷、高温燃料电池、高温光学组件、磁流体发电机电极等高科技产品 有研究表明:100nm 的ZrO 2在拉伸疲劳试验中晶粒出现了300%的超塑性,由于晶粒粒径的减小,材料性能有了数量级的提高,烧结温度大大下降 作为添加剂它能使脆性材料增韧,韧性材料强度更强,使陶瓷材料的脆性问题可望得到解决 由于ZrO 2的化学稳定性好,表面同时具有酸性和碱性,同时拥有氧化性和还原性,又是 型半导体,易产生氧空穴,用作催化剂载体可与活性组份产生较强的相互作用 另外由于超细粒子具有高的比表面积和丰富的表面缺陷,所以超细Zr O 2在催化领域的应用前景广阔 因此研究纳米氧化锆的制备应用技术意义重大,已成为目前科技工作者关注和研究的热点[1],这也是我国九五规划重点发项目之一,以下就其制备和干燥技术进行介绍 1 纳米ZrO 2制备方法 纳米微粒的制备方法一般可分为物理方法和化学方法,化学法又可分为气相化学法和液相第19卷第1期 2002年3月广东工业大学学报Journal o f Guangdong University of Technology Vol 19No 1 March 2002

氧化锆粉体制备及其应用

氧化锆粉体制备及其应用摘要: 本文重点介绍了氧化锆陶瓷原料制备工艺和性能覆其在蛄构瓷、功 能瓷、颜料与宝石、涂层、纤堆和耐火材料等方面的应用。对如何使氧化铬畸瓷产 业化远一问题,提出了自己的见解。 关键词:氧化锆;高性能陶瓷;制备;应用 Abstract:This paper focuses on the zirconia ceramic material preparation process and performance review of its structure in the mantis porcelain, functional ceramics, pigments and precious stones, coating, fiber and other aspects of heap and refractory applications. Chromium oxide on how to make porcelain produced abnormal Much a problem of industry, put forward their own views. Keywords: zirconia; high-performance ceramics; preparation; application 一、引言 随着科学技术的发展,人们对材料的需求也在不断地提高。当今世界新型陶瓷的发展趋向是:原料超细化(含纳米级细度),发展了材料复台、成型与烧结工艺、制品的后处理(包括制品后加工及其与其他材料联接等)和相应的测试方法。氧化锆陶瓷也与其他新型陶瓷一样,随着新工艺、新技术的运用,进一步充分发挥了它高熔点、比重大、耐腐蚀、耐磨损、低导热、半导体及相变等特点,世界各国都给予高度重视,在功能和结构等各个领域中,都起着重大作用。下面就ZrO2陶瓷材料及倒品的有关情材料多功能化、轻质高强化和材料结构梯度化。为此也相应地况作简单概述,供有关人士参阅。 ZrO2具有熔点和沸点高、硬度大、常温下为绝缘体、而高温下则具有导电性等优良性质。上个世纪二十年代开始就被用来作为熔化玻璃、冶炼钢铁等的耐火材料,从上个世纪七十年代以来,随着对ZrO2有了更深刻的了解,人们进一步研究开发ZrO2作为结构材料和功能材料。1975年澳大利亚R.G.Garvie以CaO为稳定剂制得部分稳定氧化锆陶瓷(Ca-PSZ),并首次利用ZrO2马氏体相变的增韧效应提高了韧性和强度,极大的扩展了ZrO2在结构陶瓷领域的应用。1973年美国R.Zechnall, G.Baumarm,H.Fisele制得ZrO2电解质氧传感器,此传感器能正确显示汽车发动机的空气、燃料比,1980年把它应用于钢铁工业。1982年日本绝缘子公司和美国Cummins发动机公司共同开发出ZrO2节能柴油机缸套。自此,ZrO2高性能陶瓷的研究和开发获得了许多进展。 二、ZrO2粉体的制备方法 2.1 微粉制备

纳米氧化锆厂家 纳米氧化锆价格

纳米氧化锆厂家纳米氧化锆价格 纳米氧化锆作为新型纳米材料之一,其价值和作用是很大的,尤其在工业等领域,发挥了很大的价值和作用。没错,下面小编要给大家介绍的就是纳米氧化锆。下面先让我们一起来了解一下,纳米氧化锆的性质有哪些吧! 性质 纳米氧化锆具有抗热震性强、耐高温、化学稳定性好、材料复合性突出等特点。将纳米氧化锆与其他材料(Al?O3 、SiO?)复合,可以极大地提高材料的性能参数,提高其断裂韧性、抗弯强度等。因此,纳米二氧化锆不仅应用于结构陶瓷和功能陶瓷领域,也应用于提高金属材料的表面特性(热传导性、抗热震性、抗高温氧化性等)。利用纳米二氧化锆掺杂不同元素的导电特性,在高性能固体电池中用于电极制造。 纳米氧化锆粉体烧结成的陶瓷由于其相变增韧的良好性能已成为主要的结构陶瓷之一;在纳米复合材料研究中,将纳米二氧化锆作为弥散相对基体进行增强韧化,已取得显著的效果;

稳定纳米氧化锆作为一种理想的电解质已被广泛地应用于固体氧化物燃料电池中。 纳米氧化锆厂家哪家好?小编要给大家介绍的是京煌科技有限公司。 石家庄市京煌科技有限公司由河北科技大学教授创办,其前身为河北科技大学化工技术研究所,是一家以纳米高纯材料的研发、生产的科研院所型企业。公司长期服务于中国军工系统,69%的客户集中在军工企业和相关高校。 在锂电新能源领域先后研制成功纳米系列产品:锂电专用镁,铝,锆,钛,硅,铌,锂,锰,钙等纳米粉体材料;锂电专用碳纳米管粉体和浆料;锂电专用石墨烯和浆料产品;锂电池电解液纳米粉体添加剂材料等产品系列;同时京煌欢迎更多的科研院所和企业加入京煌锂电纳米材料生态型平台建设中来;为锂电新能源客户提供更多的纳米材料和产品解决方案。 京煌科技有限公司主营纳米氧化镁、纳米氧化锆等产品,产品种类齐全、满足客户们的不同要求。想了解更多详细信息和内容,欢迎大家点击咨询,京煌科技将竭诚为您服务!

纳米二氧化锆研究进展_制备

纳米二氧化锆研究进展—— 制备Ξ 王晓莉1,安欣林2 (1.内蒙古石油化学工业检验测试所,内蒙古呼和浩特 010020;2.河北工业大学化工学院,天津红桥区 300130) 摘 要:本文主要对纳米二氧化锆的制备技术进行总结,阐述了各种制备技术的原理,并分析各种制备技术的优缺点。 关键词:纳米二氧化锆;水解法;制备 二氧化锆是唯一具有酸性、碱性、氧化性和还原性的金属氧化物,因此在工业合成、催化剂、催化剂载体、特种陶瓷等方面有较大的应用价值。为了更好满足应用方面的要求,二氧化锆呈现出高纯化、纳米化、复合化的发展趋势,因此纳米二氧化锆的制备研究〔1-3〕、介孔二氧化锆的制备研究〔4,5〕、二氧化锆的掺杂研究〔6-10〕等新兴课题将是未来一段时间需要大力开展的工作。 1 醇盐水解法 此法是将有机溶液中混合着锆和稳定剂的醇盐进行加水分解的方法。这种方法可以制得微细而高纯度的、易烧结的粉料。Zr(OR)4(R为烷基)一般可溶于乙醇,遇水后很容易分解成乙醇和氧化物或共水化物: Zr(OR)4+4H2O→Zr(OH)4↓+4HOR↑ 然后经过过滤、干燥、粉碎、煅烧得到二氧化锆粉体。 此法的优点是:①几乎全为一次粒子,团聚很少;②粒子的大小和形状均一;③化学纯度和相结构的单一性好。缺点是原料制备工艺较为复杂,成本较高。 2 水解沉淀法 此法是长时间地沸腾锆盐溶液,使水解生成的挥发性酸HC l或HNO3不断蒸发除去,从而使如下水解反应平衡不断向右移动: Z r OC l2+(3+n)H2O→Z r(OH)4 nH2O+2H C l↑ Z r O(N O3)2+(3+n)H2O→ Z r(OH)4 nH2O+2H N O3↑ 然后经过过滤、洗涤、干燥、煅烧等过程制得二氧化锆粉体。工艺流程图如下所示: 锆盐溶液→水解沉淀→过滤→洗涤→干燥 →煅烧→二氧化锆粉体 Zr OC l2浓度控制在0.2~0.3m o l L。 此法的优点是操作简便。缺点是反应时间较长(>48小时),耗能较大,所得粉体也存在团聚现象。3 反向胶团法〔11〕 反向胶团法是由水、油、表面活性剂组成的热力学体系,其中水被表面活性剂单层包裹形成微水池,分散在油相中。在这种具备纳米尺度的微水环境中,应用金属醇盐可制备纳米微粒,其原理是该环境中所产生的颗粒被微水池大小有效限制,使成核、生长、聚结、团聚等过程局限在一个微小的球形液滴内,形成球形颗粒且避免颗粒的进一步长大。 这一方法的关键之一是形成油包水型乳化液,且必须有适当的表面活性剂存在,以便形成稳定的乳化液。为此,所用的表面活性剂的亲水 疏水平衡常数应在3~6范围内。此外,金属离子以反胶团溶液形式存在,是利用反胶团制备超细粉的必要条件。 方小龙、杨传芳等〔12〕研究湿化学工艺条件对Zr O2(Y2O3)超细颗粒团聚的影响,实验分别用水相共沉淀法和反胶团共沉淀法制备了二氧化锆前驱体即氢氧化锆胶体,对前驱体分别进行水洗和无水乙醇超声洗涤,并在不同温度下真空干燥,干燥后的前驱体在600℃煅烧2h,得到晶体Zr O2(Y2O3)粉末。对干燥前驱体进行T G-D TA和FT I R分析,并对二氧化锆晶体颗粒进行T E M观察,证实反胶团法制备过程中乙氧基能紧密的吸附在沉淀物表面,从而使颗粒的分散性能增强,而且相对于水相共沉淀制备法,其前驱体吸附水较少,可以大大减少煅烧粉末中硬团聚的产生。 该法制得的Zr O2(Y2O3)粉体优点是分散性能好,颗粒粒度细,分布窄;缺点是生产过程复杂,成本也较高。 4 喷雾热分解法 03内蒙古石油化工 2007年第5期 Ξ收稿日期:2006-11-12

四方相氧化锆粉体制备工艺研究

四方相氧化锆粉体制备工艺研究 摘要:以ZrOC l2·8H2O和Y2O3为主要原料,采用醇-水溶液加热结合共沉淀法制备出Y2O3稳定的纳米ZrO2复合粉体。利用X射线衍射(XRD)分析和扫描电子显微镜(SEM)研究了复合粉体的物相组成和晶粒大小。结果显示,当Y2O3含量为2mol%时,复合粉体由单斜相ZrO2和少量四方相ZrO2组成;当Y2O3含量为3mol%、4mol%时,粉体全部由四方相ZrO2组成。750℃~900℃煅烧时,复合粉体的物相组成变化不大,但四方相ZrO2的晶粒尺寸随煅烧温度升高而增大。 关键词:醇-水溶液加热法,共沉淀法,t-ZrO2 Press of Preparation of Tetragonal Zirconia Powder ABSTRACT:Using ZrOC12?8H2O and Y2O3 as the main raw materials, the nanometer-size ZrO2(Y2O3) powder was prepared by heating of alcohol-aqueous salt solutions combined with co-precipitation method. XRD and SEM were performed to investigate the phase composition and the grain size of the ZrO2(Y2O3) powder. The results show that the composite powder with 2 mol% Y2O3 was composed of monoclinic zirconia (m-ZrO2) and a small amount of tetragonal zirconia (t-ZrO2). However, only t-ZrO2 existed in the ZrO2(Y2O3) powder when the content of Y2O3 increased to 3mol% and 4mol%. The phase composition of the composite powder changes little when the calcining temperature increased from 750℃to 900℃. However, the size of t-ZrO2 grain increased with the calcining temperature. KEY WORDS: heating of alcohol-aqueous salt solutions,co-precipitation methods,t-ZrO2 引言 二氧化锆早已广泛应用于陶瓷材料和多相催化剂中。ZrO2有3种不同的晶相结构,即单斜、四方和立方晶系。前者是热力学稳定结构,后两者是亚稳定结构。但是,对于不同单一结构的制备,特别是亚稳结构的制备,依然停留在实验室的摸索阶段。在80年代,一些人[1-5]曾研究了用制备烷基氧化锆再水解的办法,试图得到纯四方二氧化锆。这一途径不仅制备步骤繁琐、成本昂贵,而且还往往得不到单一晶相的产品。Sriniv asan[6]报道了他的研究结果,认为二氧化锆晶相的组成极大地依赖于制备原料。而在所有锆盐原料中,没有一种原料可制得纯晶相。其中硫酸锆倾向转化为高比例的四方晶相,而卤化锆倾向高比例的单斜晶相。在陶瓷基体中引入四方相氧化锆(t-ZrO2),利用其转变成单斜相氧化锆(m-ZrO2)的马氏体相变过程,是提高陶瓷材料韧性的有效途径。为了得到室温下稳定的t-ZrO2,常需引入Y2O3、CeO2、MgO或CaO等稳定剂。其中,利用液相法制备ZrO2(Y2O3)粉体的研究报道[7-21]已有许多。但是,由于Y2O3添加量、制备工艺和t-ZrO2晶粒性能特征之间的关系非常密切,因此一直是研究的重点。本文研究了以ZrOCl2·8H2O 和Y2O3为主要原料,采用醇-水溶液加热法结合共沉淀过程制备ZrO2(Y2O3)粉体,探讨了t-ZrO2粉体的最佳制备工艺。 1 实验 1.1 实验原料 氧氯化锆(ZrOC l2?8H2O≥99.0%),氧化钇(Y2O3,99.99%),盐酸(分析纯),聚乙二醇(PEG-4000,化学纯),无水乙醇(分析纯) ,氨水(分析纯)。 1.2 实验过程 实验选取三个配方,即稳定剂Y2O3的含量分别为2mol%,3mol%和4mol%,所制复合粉体相应地以ZrO2(n-Y2O3)(n = 2,3 ,4)表示。将Y2O3与盐酸反应制得一定浓度的YCl3溶液。根据拟合成ZrO2(n-Y2O3)

纳米二氧化锆

纳米级二氧化锆合成方法综述 姓名:刘嘉瑞学号:2011121279 摘要:纳米级二氧化锆是一种新型的高科技材料,有着广泛而重要的用途。根据 国内外研究制备的最新进展及其发展趋势,综述了纳米级二氧化锆的制备技术及 其分析测试与表征,还有近年来新的应用领域和研究前沿。 关键词:纳米级二氧化锆制备方法分析测试与表征应用 1 引言 二氧化锆是唯一具有酸性、碱性、氧化性和还原性的金属氧化物,因此在工业合成、催化剂、催化剂载体、特种陶瓷等方面有较大的应用价值。为了更好满足应用方面的要求,二氧化锆呈现出高纯化、纳米化、复合化的发展趋势,因此纳米二氧化锆的制备研究、介孔二氧化锆的制备研究、二氧化锆的掺杂研究等新兴课题将是未来一段时间需要大力开展的工作。 2 气相法 气相法是直接利用气体或者通过各种手段将物质变成气体,使之在气体状态下发生物理变化或化学反应,最后在冷却过程中凝聚长大形成纳米微粒的方法。 2.1 气体中蒸发法 气体中蒸发法是在惰性气体或活泼性气体中将金属、合金或陶瓷蒸发气化,最后在冷却过程中凝聚长大形成纳米微粒的方法。其优点是颗粒的形态容易控制,其缺陷是可以得到的前驱体类型不多。有人用氢电弧等离子体法、激光加热法、爆炸丝法等制备出二氧化锆纳米颗粒。 2.2化学气相合成法(CVS) CVS法是将一种挥发性的金属有机物前驱体在减压下分解而形成。具体反应过程是用99.99%的氦气气流和叔丁基锆一起喷入反应区,同时通入氧气流。氦气和氧气流量比例为1:10,气流压力为1 kPa,反应温度为1000℃,气流经过反应器使锆的化合物被分解,形成ZrO2纳米颗粒,最后利用温度梯度收集颗粒。该法的优点是纳米微晶的形成过程是在均匀气相下进行的,故得到的微粒均匀,温度压力和气流的流动易控制,实验具有可重复性,但产量较低,成本较高。 2.3化学气相沉积法 CVD法是在一定的反应条件(~300℃,5 h, 101133 kPa)下,反应前驱物蒸气在气态下分解得到ZrO2,ZrO2形成时具有很高的过饱和蒸气压,自动凝聚形成大量晶核,这些晶核在加热

实验讲义-氧化锆的固相合成

实验2 纳米氧化锆的固相合成 一、目的和要求 1、通过锆盐与氢氧化钠的固相反应,了解固相合成法的特点。 2、掌握固相合成纳米氧化锆的基本原理和制备过程。 二、实验原理 氧化锆由于其固有的化学成分、晶体结构、粒度等基本性质,因而具有化学稳定性好、热传导系数小、硬度大等优点,是一种重要的结构和功能陶瓷材料。普通氧化锆在常温至1170℃以单斜相存在,加热到1170℃~2370℃时转变为四方相,2370℃以上时由四方相转变成立方相(2700℃左右熔融)。由于纯氧化锆的高温相(立方相或四方相)随着温度的降低会转变成低温相(单斜相)。要获得室温下稳定的高温相氧化锆,就需要在氧化锆中掺杂某些其它氧化物,如氧化钇、氧化钙、氧化镁、氧化钪等,形成复合氧化物。这种掺杂的四方相部分稳定或全稳定的氧化锆在相变增韧和微裂纹增韧方面性能优良,具有极高的室温强度和断裂韧性。用氧化钇稳定的四方相氧化锆(Y-TZP),当晶体粒度控制在纳米级(小于100nm)时,可能带来材料性能的突变,如材料强度和断裂韧性的显著提高等。同时,氧化钇稳定的氧化锆还是一种优良的气敏材料(用于氧气传感器)和固体电池材料。 目前制备纳米氧化锆粉体的方法分液相法和气相法。其中液相法有共沉淀法、水热法、溶胶-凝胶法、微乳液法等。这些方法各有其特点,但也存在很多不足。如共沉淀法一般是以氧氯化锆为原料,在锆盐溶液中加入沉淀剂,得到氢氧化物沉淀,再经过滤、洗涤、干燥、煅烧、研磨得到氧化锆粉体。这种方法比较简单易行,可制得粒度小、成分较易控制的多组分纳米粉末,不足之处是制得的粉体往往存在较多的硬团聚体,影响制品的烧结温度和力学性能。为了解决粉体的团聚问题,采用加入分散剂并控制温度在乙醇中陈化的方法,可制备出低温可烧结的纳米氧化锆粉体。水热法制备纳米氧化锆一般以锆的无机或有机化合物为原料,可制得粒径小、高分散的粉体。水热法的不足之处是制备条件较苛刻,成本较高,产量较低。溶胶-凝胶法和醇盐水解法使用锆的有机化合物,同样存在着原料来源困难,价格较高,水解法反应时间长、产率过低、难以工业化生产等缺陷。气相法生产纳米氧化锆粉体,所得产物分散性较好,可以连续制备。但气相法不适用于制备多元组分氧化物粉体,并且组分的可控性也相对较差,而且气相法所使用的原料价格较高,需要高纯的原材料以及昂贵的设备,而产量却较低。例如以四氯化锆为原料,在高温反应器中与水蒸气混合、水解,制备纳米氧化锆粉末。不过,要用这种方法获得四方相稳定的氧化锆粉体,还需要将气相法得到的纯氧化锆粉体浸入金属盐溶液中,蒸发、干燥、焙烧。 尽管这些方法有许多的优点,但是它们都存在能耗大、污染严重、生产周期长等缺

相关主题
文本预览
相关文档 最新文档