当前位置:文档之家› 小波阈值图像降噪与MATLAB仿真设计

小波阈值图像降噪与MATLAB仿真设计

小波阈值图像降噪与MATLAB仿真设计
小波阈值图像降噪与MATLAB仿真设计

小波阈值图像降噪及MATLAB仿真

图像信号在生成和传输过程中常常因受到各种噪声的干扰和影响而使图像降质,这对后续图像的处理(如分割、压缩和图像理解等)将产生不利影响。为了抑制噪声,改善图像质量,便于更高层次的处理,必须对图像进行降噪预处理。

小波降噪的方法有多种,如利用小波分解与重构的方法滤波降噪、利用小波变换模极大值的方法去噪、利用信号小波变换后空域相关性进行信噪分离、非线性小波阈值方法去噪、平移不变量小波降噪法,以及多小波降噪等等。归结起来主要有三类:模极大值检测法、阈值降噪法和屏蔽(相关)降噪法。其中最常用的就是阈值法去噪,其基本思想就是利用图像小波分解后,各个子带图像的不同特性选取不同的阈值,从而达到较好的降噪目的。而且,小波变换本身是一种线形变换,因而对于类似于高斯噪声的效果较好。线性运算往往还会造成边缘模糊,小波分析技术正因其独特的时频局部化特性在图像信号和噪声信号的区分以及有效去除噪声并保留有用信息等方面较之传统的降噪具有明显的优势,且在降噪的同时实现了图像一定程度的压缩和边缘特征的提取。所以小波降噪具有无可比拟的优越性。小波降噪主要优点有:

低熵性,小波系数的稀疏分布,使得图象变换后的熵降低;

多分辨率,由于采用了多分辨率的方法,所以可以非常好地刻画信号的非平稳特征,如边缘、尖峰、断点等;

去相关性,因为小波变换可以对信号进行去相关,且噪声在变换后有白化趋势,所以小波频域比时域更利于降噪;

选基灵活性,由于小波变换可以灵活选择变换基,从而对不同应用场合、不同的研究对象,可以选用不同的小波函数,以获得最佳的效果。

一、阈值去噪法简述

1992年,斯坦福大学的Donoho D L 和Johnstone 教授提出一种具有良好的统计优化特性的降噪方法,称作“Wavelet Shrinkage ”(即阈值收缩法)。

该方法的主要思想是:基于图像和噪声在经小波变换后具有不同的统计特性:图像本身的能量对应着幅值较大的小波系数,主要集中在高频(LL );噪声能量则对应着幅值较小的小波系数,并分散在小波变换后的所有系数中。根据该特征,设置一个阈值门限,认为大于该阈值的小波系数的主要成份为有用的信号,给予收缩后保留;小于该阈值的小波系数,主要成份为噪声,予以剔除,这样就可以达到降噪的目的。

降噪时,通常认为低通系数含有大量的图像能量,一般不作处理,只对剩余三个高通部分进行处理。因此,一次阈值降噪并不能完全去除噪声,还需要对未作处理的低频部分(LL )再次进行小波分解和阈值去噪,直到实际图像与估计图像的偏差达到最小值。

但是,随着分解和降噪次数的增加,小波系数中的噪声能量越来越少,并且趋于分散,降噪的效果将逐渐降低。一般来说,进行3-4层小波分解和降噪就可以达到满意的降噪效果。

小波阈值降噪的基本思路是:

(1)先对含噪信号()k f 做小波变换,得到一组小波系数k j W ,;

(2)通过对k j W ,进行阈值处理,得到估计系数k j W

,^,使得k j W ,^与k j W ,两者的差值尽可能小;

(3)利用k j W ,^

进行小波重构,得到估计信号()k f 即为降噪后的信号。

Donoho 提出了一种非常简洁的方法对小波系数k j W ,进行估计。对()k f 连续做几次小波分解后,有空间分布不均匀信号()k s 各尺度上小波系数k j W ,在某些特定位置有较大的值,这些点对应于原始信号()k s 的奇变位置和重要信息,而其他大部分位置的k j W ,较小;对于白噪声()k n ,它对应的小波系数k j W ,在每个尺度上的分不都是均匀的,并随尺度的增加,k j W ,系数的幅值减小。因此,通常的降噪办法是寻找一个合适的数λ作为阈值(门限),把低于λ的小波函数k j W ,(主要由信号()k n 引起),设为零,而对于高于λ的小波函数k j W ,(主要由信号()k s 引起),则予以保留或进行收缩,从而得到估计小波系数k j W ,^

,它可理解为基本由信号()k s 引起的,然后对k

j W ,^

进行重构,就可以重构原始信号。

估计小波系数的方法如下,取: ()N log 2σλ= (4-1) 定义: ??

???≤≥=λλk j k j k j k j W W W W ,,,,^

,0, (4-2)称之为硬阈值估计方法。 一般软阈值估计定义为

()()??

???≤≥-=λλλk j k j k j k j W W k Wj W sign W ,,,,^

,0,, (4-3) 两种阈值方法各有差异,前者具有连续性,在数学上易于处理,而后者更接近实际情况。

阈值化处理的关键是阈值的选择,如阈值太小,降噪后仍留有噪声,但阈值如果太大,重要的信号与图像特征会被滤掉,引起偏差。

二、 基于MATLAB 的小波降噪函数简介

常用的图像降噪方式是小波阈值降噪方法。这是一种实现简单而效果较好的降

噪方法,阈值降噪方法的思想很简单,就是对小波分解后的各层系数模大于和小于某阈值的系数分别进行处理,然后利用处理后的小波系数重构出降噪后的图像。在阈值降噪中,阈值函数体现了对小波分解系数的不同处理策略和不同的估计方法。常用的阈值函数有硬阈值函数和软阈值函数。硬阈值函数可以很好地保留图像边缘等局部特征,但图像会出现伪吉布斯效应等视觉失真等现象;而软阈值处理相对较光滑,但可能会造成边缘模糊等失真现象,为此人们提出了半软阈值函数。

小波阈值降噪方法处理阈值的选取,另一个关键因素是阈值的具体估计。如果阈值太小,降噪后的图像仍然存在噪声;相反如果阈值太大,重要图像特征有被滤掉,引起偏差。从直观上讲,对于给定的小波系数,噪声越大,阈值就越大。

MATLAB中实现图像的降噪,主要是阈值获取和图像降噪实现两个方面。

1 阈值获取

MATLAB中实现阈值获取的函数有ddencmp、select、wbmpen和wdcbm2。这里主要介绍函数ddencmp。

函数ddencmp的功能是获取降噪或压缩的默认值。该函数是降噪和压缩的导向函数,它给出一维或二维信号使用小波或小波包进行降噪和压缩一般过程的所有默认值。

其语法格式为:

[THR,SORH,KEEPAPP,CRIT]=ddencmp(IN1,IN2,X)

[THR,SORH,KEEPAPP]= ddencmp(IN1,‘wv’,X)

[THR,SORH,KEEPAPP,CRIT]= ddencmp(IN1,‘wp’,X)

2 阈值降噪

MATLAB中实现阈值降噪的函数有wden、wdencmp、wpdencmp、wthresh、wpthcoef

和wthcoef2。这里主要介绍函数wdencmp 。

其语法格式为:

[XC,CXC,LXC,PERF0,PERFL2] =wdencmp('gbl',X,'wname',N,THR,SORH,KEEPAPP)

[XC,CXC,LXC,PERF0,PERFL2] = wdencmp('lvd',X,'wname',N,THR,SORH)

[XC,CXC,LXC,PERF0,PERFL2] = wdencmp('lvd',C,L,'wname',N,THR,SORH)

函数wdencmp 的功能是使用小波进行降噪。该函数是二维小波降噪的导向函数。它使用小波对信号或图像执行降噪过程。wname 是所用的小波函数。gbl (global )表示每层都采用同一个阈值进行处理。lvd 表示每层用不同的阈值进行处理。N 表示小波分解的层数。THR 为阈值向量,长度为N 。SORH 表示选择软阈值或硬阈值(分别取值为‘s ’和‘h ’)。参数KEEPAPP 取值为1是,则低频系数不进行阈值量化,反之,则低频系数要进行阈值量化。XC 是降噪后的信号,[CXC,LXC]是XC 的小波分解结构,PHRF0和PERFL2是恢复和压缩L 2的范数百分比。如果[C ,L]是x 的小波分解结构,则PERFL2=100 (CXC 向量的范数/C 向量的范数)2;如果X 是一维信号,小波wname 是一个正交小波,则PERFL2=2

2/XC 100X 。 三、用小波对信号进行降噪

1. 使用小波进行一维信号的降噪

对含噪一维信号降噪,实现信噪分离。含噪的正弦信号:

对含噪信号进行分解,从分解中得出高频与低频系数。高频系数对应细节信号,低频系数对应逼近信号。由高频系数中检测噪声,低频系数中识别各分量信号的不同频率。然后,再从去噪的高频信号与逼近的低频信号重构目标信号。降噪的程序如下:

% 生成含噪正弦信号

●N=1024;

●t=1:N;

●sig=sin(0.03*t);

●figure(1);subplot(211);plot(t,sig); title('正弦信号');

●% 叠加噪声

●x=sig+randn(1,N);

●subplot(212);plot(t,x); title('含噪正弦信号');

●% 一维小波分解,使用'haar'进行4层分解

●[c,l]=wavedec(x,4,'haar');

●% 重构第1-4层逼近信号

●a4=wrcoef('a',c,l,'haar',4);

●a3=wrcoef('a',c,l,'haar',3);

●a2=wrcoef('a',c,l,'haar',2);

●a1=wrcoef('a',c,l,'haar',1);

●% 显示各层逼近信号

●figure(2);

●subplot(411);plot(a4);ylabel('a4');

●subplot(412);plot(a3);ylabel('a3');

●subplot(413);plot(a2);ylabel('a2');

●subplot(414);plot(a1);ylabel('a1');

●% 重构第1-4层细节信号

●d4=wrcoef('d',c,l,'haar',4);

●d3=wrcoef('d',c,l,'haar',3);

●d2=wrcoef('d',c,l,'haar',2);

●d1=wrcoef('d',c,l,'haar',1);

●% 显示各层细节信号

●figure(3);

●subplot(411);plot(d4);ylabel('d4');

●subplot(412);plot(d3);ylabel('d3');

●subplot(413);plot(d2);ylabel('d2');

●subplot(414);plot(d1);ylabel('d1');

2、使用小波对图像的降噪处理

对含有高斯白噪声的图像,使用sym4小波进行分解,再用阈值法进行降噪处

理,最后重构图像,实现降噪目的。在下面的例子中,分别采用了软阈值和硬阈值两种方法,观察降噪后的图像并比较两种方法的优缺点。程序如下:

●% 装载原始图像

●I=imread('D:\MATLAB7\toolbox\images\imdemos\cameraman.tif');

●nbc=size(I,1);

●X = im2double(I);

●% 产生噪声图像

●init=2055415866;

●randn('seed',init);

●x=X+randn(size(X))/10;

●% 使用 sym4 执行图像的2层小波分解

●wname='sym4';lev=2;

●[c,l]=wavedec2(x,lev,wname);

●sigma_s=0.054779;

●% 图像降噪时,使用wbmpen 函数选择阈值

●alpha=2;

●thr_s=wbmpen(c,l,sigma_s,alpha);

●% 使用软阈值和保存的低频信号,进行图像降噪

●keepapp=1;

●xds=wdencmp('gbl',x,wname,lev,thr_s,'s',keepapp);

●sigma_h=0.062818;

●thr_h=wbmpen(c,l,sigma_h,alpha);

●% 使用硬阈值和保存的低频信号,进行图像降噪

●xdh=wdencmp('gbl',x,wname,lev,thr_h,'h',keepapp);

●% 画出原始图像和降噪后的图像

●figure(1);

●subplot(221);imshow(I,nbc);title('原始图像');

●subplot(222);imshow(x);title('噪声图像');

●subplot(223);imshow(xds);title('软阈值降噪图像');

●subplot(224);imshow(xdh);title('硬阈值降噪图像');

其图像如下:

观察上述图像可得以下结论:采用硬阈值降噪,可以很好的保留信号边缘等局部特征,但得到的估计小波系数连续性差;而采用软阈值降噪,得到的估计小波系数连续性好,容易处理,但会降低重构信号的精度,造成边缘模糊。

小波阈值的函数介绍

1 阈值获取 MATLAB 中实现信号阈值获取的函数有ddencmp 、thselect 、wbmpen 和wdcbm ,下面对它们的用法进行简单的说明。 函数Ddencmp 的调用格式 (1)[THR ,SORH ,KEEPAPP ,CRIT]=ddencmp(IN1,IN2,X) (2)[THR ,SORH ,KEEPAPP ,CRIT]=ddencmp(IN1,'wp',X) (3)[THR ,SORH ,KEEPAPP]=ddencmp(IN1,'wv',X) 函数ddencmp 用于获取在消噪或压缩过程中的默认阈值。输入参数X 为一维或二维信号;IN1取值为'den'或'crop',den 表示进行去噪,crop 表示进行压缩;IN2取值为'wv'或'wp',wv 表示选择小波,wp 表示选择小波包。返回值THR 是返回的阈值;SORH 是软阈值或硬阈值选择参数;KEEPAPP 表示保存低频信号;CRIT 是熵名(只在选择小波包时用)。 函数thselect 的调用格式 THR=thselect(X ,TPTR) THR=thselect(X ,TPTR)根据字符串TPTR 定义的阈值选择规则来选择信号X 的自适应阈值。 自适应阈值选择规则包括下面四种: " (1)TPTR='rigrsure',自适应阈值选择使用Stein 的无偏风险估计原理。 (2)TPTR='heursure',使用启发式阈值选择。 (3)TPTR='sqtwolog',阈值等于sqrt(2*log(1ength(X)))。 (4)TPTR='minimaxi',用极大极小原理选择阈值。 阈值选择规则基于模型e t f y +=)(,e 是高斯A 噪声N(O ,1)。 函数wbmpen 的调用格式 THR=wbmpen(C ,L ,SIGMA ,ALPHA) THR=wbmpen(C ,L ,SIGMA ,ALPHA)返回去噪的全局阈值THR 。THR 通过给定的一种小波系数选择规则计算得到,小波系数选择规则使用Birge-Massart 的处罚算法。[C ,L]是进行去噪的信号或图像的小波分解结构;SIGMA 是零均值的高斯白噪声的标准偏差;ALPHA 用于处罚的调整参数,它必须是一个大于1的实数,一股取ALPHA=2。 设t*是crit(t)=-sum(c(k)^2,k<=t)+2*SIGMA^2*t*(ALPHA+log(n/t))的最

小波变换图像去噪综述

科技论文写作大作业小波变换图像去噪综述 院系: 班级: 学号: 姓名:

摘要小波图象去噪已经成为目前图象去噪的主要方法之一.在对目前小波去噪文献进行理解和综合的基础上,首先通过对小波去噪问题的描述,揭示了小波去噪的数学背景和滤波特性;接着分别阐述了目前常用的3类小波去噪方法,并从小波去噪中常用的小波系数模型、各种小波变换的使用、小波去噪和图象压缩之间的联系、不同噪声场合下的小波去噪等几个方面,对小波图象去噪进行了综述;最后,基于对小波去噪问题的理解,提出了对小波去噪方法的一些展望 关键词:小波去噪小波萎缩小波变换图象压缩 1.前言 在信号数据采集及传输时,不仅能采集或接收到与所研究的问题相关的有效信号,同时也会观测到各种类型的噪声。在实际应用中,为降低噪声的影响,不仅应研究信号采集的方式方法及仪器的选择,更重要的是对已采集或接收的信号寻找最佳的降噪处理方法。对于信号去噪方法的研究可谓是信号处理中一个永恒的话题。传统的去噪方法是将被噪声污染的信号通过一个滤波器,滤除掉噪声频率成分。但对于瞬间信号、宽带噪声信号、非平稳信号等,采用传统方法具有一定的局限性。其次还有傅里叶(Fourier)变换也是信号处理中的重要手段。这是因为信号处理中牵涉到的绝大部分都是语音或其它一维信号,这些信号可以近似的认为是一个高斯过程,同时由于信号的平稳性假设,傅立叶交换是一个很好的信号分析工具。但也有其不足之处,给实际应用带来了困难。 小波变换是继Fourier变换后的一重大突破,它是一种窗口面积恒定、窗口形状可变(时间域窗口和频率域窗口均可改变)的时频局域化分析方法,它具有这样的特性;在低频段具有较高的频率分辨率及较低的时间分辨率,在高频段具有较高的时间分辨率及较低的频率分辨率,实现了时频窗口的自适应变化,具有时频分析局域性。小波变换的一个重要应用就是图像信号去噪。将小波变换用于信号去噪,它能在去噪的同时而不损坏信号的突变部分。在过去的十多年,小波方法在信号和图像去噪方面的应用引起学者广泛的关注。本文阐述小波图像去噪方法的原理,概括目前的小波图像去噪的主要方法,最后对小波图像去噪方法的发展和应用进行展望。 2小波图像去噪的原理 所谓小波变化,即:

最新小波去噪matlab程序.优选

[转帖]小波去噪matlab程序 ****************************************** clear clc %在噪声环境下语音信号的增强 %语音信号为读入的声音文件 %噪声为正态随机噪声 sound=wavread('c12345.wav'); count1=length(sound); noise=0.05*randn(1,count1); for i=1:count1 signal(i)=sound(i); end for i=1:count1 y(i)=signal(i)+noise(i); end %在小波基'db3'下进行一维离散小波变换[coefs1,coefs2]=dwt(y,'db3'); %[低频高频] count2=length(coefs1); count3=length(coefs2); energy1=sum((abs(coefs1)).^2); energy2=sum((abs(coefs2)).^2);

energy3=energy1+energy2; for i=1:count2 recoefs1(i)=coefs1(i)/energy3; end for i=1:count3 recoefs2(i)=coefs2(i)/energy3; end %低频系数进行语音信号清浊音的判别 zhen=160; count4=fix(count2/zhen); for i=1:count4 n=160*(i-1)+1:160+160*(i-1); s=sound(n); w=hamming(160); sw=s.*w; a=aryule(sw,10); sw=filter(a,1,sw); sw=sw/sum(sw); r=xcorr(sw,'biased'); corr=max(r); %为清音(unvoice)时,输出为1;为浊音(voice)时,输出为0 if corr>=0.8

小波阈值图像降噪及MATLAB仿真

小波阈值图像降噪及MATLAB仿真 图像信号在生成和传输过程中常常因受到各种噪声的干扰和影响而使图像降质,这对后续图像的处理(如分割、压缩和图像理解等)将产生不利影响。为了抑制噪声,改善图像质量,便于更高层次的处理,必须对图像进行降噪预处理。 小波降噪的方法有多种,如利用小波分解与重构的方法滤波降噪、利用小波变换模极大值的方法去噪、利用信号小波变换后空域相关性进行信噪分离、非线性小波阈值方法去噪、平移不变量小波降噪法,以及多小波降噪等等。归结起来主要有三类:模极大值检测法、阈值降噪法和屏蔽(相关)降噪法。其中最常用的就是阈值法去噪,其基本思想就是利用图像小波分解后,各个子带图像的不同特性选取不同的阈值,从而达到较好的降噪目的。而且,小波变换本身是一种线形变换,因而对于类似于高斯噪声的效果较好。线性运算往往还会造成边缘模糊,小波分析技术正因其独特的时频局部化特性在图像信号和噪声信号的区分以及有效去除噪声并保留有用信息等方面较之传统的降噪具有明显的优势,且在降噪的同时实现了图像一定程度的压缩和边缘特征的提取。所以小波降噪具有无可比拟的优越性。小波降噪主要优点有: 低熵性,小波系数的稀疏分布,使得图象变换后的熵降低; 多分辨率,由于采用了多分辨率的方法,所以可以非常好地刻画信号的非平稳特征,如边缘、尖峰、断点等; 去相关性,因为小波变换可以对信号进行去相关,且噪声在变换后有白化趋势,所以小波频域比时域更利于降噪; 选基灵活性,由于小波变换可以灵活选择变换基,从而对不同应用场合、不同的研究对象,可以选用不同的小波函数,以获得最佳的效果。 一、阈值去噪法简述 1992年,斯坦福大学的Donoho D L和Johnstone教授提出一种具有良好的统计优化特性的降噪方法,称作“Wavelet Shrinkage”(即阈值收缩法)。 该方法的主要思想是:基于图像和噪声在经小波变换后具有不同的统计特性:图像本身的能量对应着幅值较大的小波系数,主要集中在高频(LL);噪声能量则对应着幅值较小的小波系数,并分散在小波变换后的所有系数中。根据该特征,设

matlab小波去噪详解

小波去噪 [xd,cxd,lxd]=wden(x,tptr,sorh,scal,n,'wname') 式中: 输入参数x 为需要去噪的信号; 1.tptr :阈值选择标准. 1)无偏似然估计(rigrsure)原则。它是一种基于史坦无偏似然估计(二次方程)原理的自适应阈值选择。对于一个给定的阈值t,得到它的似然估计,再将似然t 最小化,就得到了所选的阈值,它是一种软件阈值估计器。 2)固定阈值(sqtwolog)原则。固定阈值thr2 的计算公式为:thr 2log(n) 2 = (6)式中,n 为信号x(k)的长度。 3)启发式阈值(heursure)原则。它是rigrsure原则和sqtwolog 原则的折中。如果信噪比很小,按rigrsure 原则处理的信号噪声较大,这时采用sqtwolog原则。 4)极值阈值(minimaxi)原则。它采用极大极小原理选择阈值,产生一个最小均方误差的极值,而不是没有误差。 2.sorh :阈值函数选择方式,即软阈值(s) 或硬阈值(h). 3.scal :阈值处理随噪声水平的变化,scal=one 表示不随噪声水平变化,scal=sln 表示根据第一层小波分解的噪声水平估计进行调整,scal=mln 表示根据每一层小波分解的噪声水平估计进行调整. 4.n 和wname 表示利用名为wname 的小波对信号进行n 层分解。输出去噪后的数据xd 及xd 的附加小波分解结构[cxd,lxd]. 常见的几种小波:haar,db,sym,coif,bior haar db db1 db2 db3 db4 db5 db6 db7 db8 db9 db10 sym sym2 sym3 sym4 sym5 sym6 sym7 sym8 coif coif1 coif2 coif3 coif4 coif5 coif6 coif7 coif8 coif9 coif10 bior bior1.1 bior1.3 bior1.5 bior2.2 bior2.4 bior2.6 bior2.8 bior3.5 bior3.7 bior3.9 bior4.4

小波变换图像去噪的算法研究自设阈值

基于小波的图像去噪 一、小波变换简介 在数学上,小波定义卫队给定函数局部化的新领域,小波可由一个定义在有限区域的函数()x ψ来构造,()x ψ称为母小波,(mother wavelet )或者叫做基本小波。一组小波基函数,()}{,x b a ψ,可以通过缩放和平移基本小波 来生成: ())(1 ,a b x a x b a -ψ=ψ (1) 其中,a 为进行缩放的缩放参数,反映特定基函数的宽度,b 为进行平移的平移参数,指定沿x 轴平移的位置。当a=2j 和b=ia 的情况下,一维小波基函数序列定义为: ()() 1222,-ψ=ψ--x x j j j i (2) 其中,i 为平移参数,j 为缩放因子,函数f (x )以小波()x ψ为基的连续小波变换定义为函数f (x )和()x b a ,ψ的内积: () dx a b x a x f f x W b a b a )(1)(,,,-ψ=ψ=?+∞ ∞- (3) 与时域函数对应,在频域上则有:

())(,ωωa e a x j b a ψ=ψ- (3) 可以看出,当|a|减小时,时域宽度减小,而频域宽度增大,而且()x b a ,ψ的窗口中心向|ω|增大方向移动。这说明连续小波的局部是变化的,在高频时分辨率高,在低频时分辨率低,这便是它优于经典傅里叶变换的地方。总体说来,小波变换具有更好的时频窗口特性。 二、图像去噪描述 所谓噪声,就是指妨碍人的视觉或相关传感器对图像信息进行理解或分析的各种因素。通常噪声是不可预测的随机信号。由于噪声影响图像的输入、采集、处理以及输出的各个环节,尤其是图像输入、采集中的噪声必然影响图像处理全过程乃至最终结果,因此抑制噪声已成为图像处理中极其重要的一个步骤。 依据噪声对图像的影响,可将噪声分为加性噪声和乘性噪声两大类。由于乘性噪声可以通过变换当加性噪声来处理,因此我们一般重点研究加性噪声。设f(x,y)力为理想图像,n(x,y)力为噪声,实际输入图像为为g(x,y),则加性噪声可表示为: g(x,y)= f(x,y)+ n(x,y), (4) 其中,n(x,y)和图像光强大小无关。 图像去噪的目的就是从所得到的降质图像以g(x,y)中尽可能地去除噪声n(x,y),从而还原理想图像f(x,y)。图像去噪就是为了尽量减少图像的均方误差,提高图像的信噪比,从而尽可能多地保留图像的特征信息。 图像去噪分为时域去噪和频域去噪两种。传统图像去噪方法如维纳滤波、中值滤波等都属于时域去噪方法。而采用傅里叶变换去噪则属于频域去噪。这些方法去噪的依据是一致的,即噪声和有用信号在频域的不同分布。我们知道,有用信号主要分布于图像的低频区域,噪声主要分布在图像的高频区域,但图像的细节信息也分布在高频区域。这样在去除高频区域噪声的同时,难免使图像的一些细节也变得模糊,这就是图像去噪的一个两难问题。因此如何构造一种既能降低图像噪声,又能保留图像细节特征的去噪方法成为图像去噪研究的一个重大课题。

小波阈值去噪及MATLAB仿真

哈尔滨工业大学华德应用技术学院毕业设计(论文) 摘要 小波分析理论是一种新兴的信号处理理论,它在时间上和频率上都有很好的局部性,这使得小波分析非常适合于时—频分析,借助时—频局部分析特性,小波分析理论已经成为信号去噪中的一种重要的工具。利用小波方法去噪,是小波分析应用于实际的重要方面。小波去噪的关键是如何选择阈值和如何利用阈值来处理小波系数,通过对小波阈值化去噪的原理介绍,运用MATLAB 中的小波工具箱,对一个含噪信号进行阈值去噪,实例验证理论的实际效果,证实了理论的可靠性。本文设计了几种小波去噪方法,其中的阈值去噪的方法是一种实现简单、效果较好的小波去噪方法。 关键词:小波变换;去噪;阈值 -I-

哈尔滨工业大学华德应用技术学院毕业设计(论文) Abstract Wavelet analysis theory is a new theory of signal process and it has good localization in both frequency and time do-mains.It makes the wavelet analysis suitable for time-frequency analysis.Wavelet analysis has played a particularly impor-tant role in denoising,due to the fact that it has the property of time- frequency analysis. Using wavelet methods in de-noising, is an important aspect in the application of wavelet analysis. The key of wavelet de-noising is how to choose a threshold and how to use thresholds to deal with wavelet coefficients. It confirms the reliability of the theory through the wavelet threshold de-noising principle, the use of the wavelet toolbox in MATLAB, carrying on threshold de-noising for a signal with noise and actual results of the example confirmation theory.In this paper,the method of Wavelet Analysis is analyzed.and the method of threshold denoising is a good method of easy realization and effective to reduce the noise. Keywords:Wavelet analysis;denoising;threshold -II-

小波去噪matlab程序

小波去噪matlab程序 ****************************************** clear clc %在噪声环境下语音信号的增强 %语音信号为读入的声音文件 %噪声为正态随机噪声 sound=wavread('c12345.wav'); count1=length(sound); noise=0.05*randn(1,count1); for i=1:count1 signal(i)=sound(i); end for i=1:count1 y(i)=signal(i)+noise(i); end %在小波基'db3'下进行一维离散小波变换 [coefs1,coefs2]=dwt(y,'db3');%[低频高频] count2=length(coefs1); count3=length(coefs2); energy1=sum((abs(coefs1)).^2); energy2=sum((abs(coefs2)).^2); energy3=energy1+energy2; for i=1:count2 recoefs1(i)=coefs1(i)/energy3; end for i=1:count3 recoefs2(i)=coefs2(i)/energy3; end %低频系数进行语音信号清浊音的判别 zhen=160; count4=fix(count2/zhen); for i=1:count4 n=160*(i-1)+1:160+160*(i-1); s=sound(n); w=hamming(160); sw=s.*w; a=aryule(sw,10); sw=filter(a,1,sw);

小波阈值降噪

一种基于小波阈值降噪方法的图像降噪效果研究 电子信息学院 赵华 2015201355 一、引言 数字图像处理(Digital Image Processing ,DIP)是指用计算机辅助技术对图像信号进行处理的过程。数字图像处理最早出现于20世纪50年代,随着过去几十年来计算机、网络技术和通信的快速发展,为信号处理这个学科领域的发展奠定了基础,使得DIP 技术成为信息技术中最重要的学科分支之一。在现实生活中,DIP 应用十分广泛,医疗、艺术、军事、航天等图像处理影响着人类生活和工作的各个方面。 然而,在图像的采集、获取、编码和传输的过程中,都存在不同程度被各种噪声所?干扰?的现象。如果图像被干扰得比较严重,噪声会变成可见的颗粒形状,导致图像质量的严重下降。根据研究表明,当一张图像信噪比(SNR)低于14.2dB 时,图像分割的误检率就高于0.5%,而参数估计的误差高于0.6%。通过一些卓有成效的噪声处理技术后,尽可能地去除图像噪声,我们在从图像中获取信息时就更容易,有利于进一步的对图像进行如特征提取、信号检测和图像压缩等处理。小波变换处理应用于图像去噪外,在其他图像处理领域都有着十分广泛的应用。本文以小波变换作为分析工具处理图像噪声,研究数字图像的滤波去噪问题,以提高图像质量。 二、基本原理 1.小波基本原理 在数学上,小波定义为对给定函数局部化的新领域,小波可由一个定义在有限区域的函数ψ(x )来构造,ψ(x )称为母小波(mother wavelet ),或者叫做基本小波。一组小波基函数, {ψa,b (x )},可以通过缩放和平移基本小波来生成: ?? ? ??-ψ=ψa b x a x b a 1)(, 其中,a 为进行缩放的缩放参数,反映特定基函数的宽度,b 为进行平移的平移参数,指定沿x 轴平移的位置。当a=2j 和b=ia 的情况下,一维小波基函数序列定义为: ()() 1222,-ψ=ψ--x x j j j i 其中,i 为平移参数,j 为缩放因子,函数f (x )以小波ψ(x )为基的连续小波变换定义为函数f (x )和ψa,b (x )的内积: ( )()dx a b x a x f f x W b a b a ?? ? ??-ψ=ψ=?∞ ∞-1,,,

基于MATLAB的小波消噪仿真实现 (1)

收稿日期:2007-12-10 作者简介:史振江(1979-),男,汉,河北唐山人,学士,讲师,研究方向智能检测与控制技术。 基金项目:河北省教育厅自然科学项目(Z2006442) 基于MATLAB 的小波消噪仿真实现 史振江1) 安建龙 2) 赵玉菊1) (石家庄铁路职业技术学院1) 河北石家庄 050041 衡水学院2) 河北衡水 053000)  摘要:小波阈值消噪方法是利用小波变换技术对含噪信号进行分解和重构,通过对小波分解后的小波系数限定阈值来消除噪声的方法。分析小波消噪的算法和实现步骤,并基于MATLAB 软件平台编写仿真程序。进行光纤光栅反射信号的小波消噪仿真实验,消噪效果良好。  关键词:小波消噪 阈值 分解 重构 光纤光栅  中图分类号:TP272 文献标识码:A 文章编号:1673-1816(2008)01-0063-04 1 引言  微弱信号检测[1]是关于如何提取和测量强噪声背景下微弱信号的方法,有效的去除信号中的噪声是实现微弱信号检测的关键。小波变换[2]是一种信号的时间、频率分析方法,具有多分辨分析的特点,是时间窗和频率窗都可以改变的时频局部化分析方法,已经广泛应用于信号消噪、信号处理、图像处理、语音识别与合成等领域。小波消噪[3~5]的方法可以分为三类:模极大值法、相关法以及阈值方法。其中,小波阈值消噪方法是利用小波变换技术对含噪信号进行分解和重构,通过对小波分解后的各层系数限定阈值来消除噪声的方法,因其实现简单、计算量小,取得了广泛应用。 MATLAB 即矩阵实验室,是一种建立在向量、数组和矩阵基础上,面向科学与工程计算的高级语言,它集科学计算、自动控制、信号处理、神经网络、图像处理于一体,具有极高的编程效率[6]。其中的小波处理工具箱可以方便实现小波消噪算法,对含噪信号进行消噪处理和研究。 本文详细分析了小波消噪算法,利用MATLAB 软件编写了程序,并对光纤光栅反射谱信号进行了小波消噪仿真实验。 2 小波变换与Mallat 算法  小波变换是指,把某一被称为基本小波的函数()t ψ平移位移b 后, 在不同尺度a 下作伸缩变换,得到连续小波序列,()a b t ψ,再与待分析信号()f t 作内积: 1/2(,)()()f R t b W a b a f t dt a ψ??=∫ (1) 在实际应用中,经常将,()a b t ψ作离散化处理,令2j a =,2j b k =g ,Z k j ∈,则得到相应的离散

小波图像去噪及matlab分析

小波图像去噪及matlab实例 图像去噪 图像去噪是信号处理的一个经典问题,传统的去噪方法多采用平均或线性方法进行,常用的是维纳滤波,但是去噪效果不太好(维纳滤波在图像复原中的作用)。 小波去噪 随着小波理论的日益完善,其以自身良好的时频特性在图像去噪领域受到越来越多的关注,开辟了用非线性方法去噪的先河。具体来说,小波能够去噪主要得益于小波变换有如下特点: (1)低熵性。小波系数的稀疏分布,使图像变换后的熵降低。意思是对信号(即图像)进行分解后,有 更多小波基系数趋于0(噪声),而信号主要部分多集中于某些小波基,采用阈值去噪可以更好的保留原 始信号。 (2)多分辨率特性。由于采用了多分辨方法,所以可以非常好地刻画信号的非平稳性,如突变和断点等(例如0-1突变是傅里叶变化无法合理表示的),可以在不同分辨率下根据信号和噪声的分布来消除噪声。(3)去相关性。小波变换可对信号去相关,且噪声在变换后有白化趋势,所以小波域比时域更利于去噪。(4)基函数选择灵活。小波变换可灵活选择基函数,也可根据信号特点和去噪要求选择多带小波和小波 包等(小波包对高频信号再次分解,可提高时频分辨率),对不同场合,选择不同小波基函数。 根据基于小波系数处理方式的不同,常见去噪方法可分为三类: (1)基于小波变换模极大值去噪(信号与噪声模极大值在小波变换下会呈现不同变化趋势)

(2)基于相邻尺度小波系数相关性去噪(噪声在小波变换的各尺度间无明显相关性,信号则相反)(3)基于小波变换阈值去噪 小波阈值去噪是一种简单而实用的方法,应用广泛,因此重点介绍。 阈值函数选择 阈值处理函数分为软阈值和硬阈值,设w是小波系数的大小,wλ是施加阈值后小波系数大小,λ为阈值。(1)硬阈值 当小波系数的绝对值小于给定阈值时,令其为0,而大于阈值时,保持其不变,即: (2)软阈值 当小波系数的绝对值小于给定阈值时,令其为0,大于阈值时,令其都减去阈值,即: 如下图,分别是原始信号,硬阈值处理结果,软阈值处理结果。硬阈值函数在|w| = λ处是不连续的,容易造成去噪后图像在奇异点附近出现明显的伪吉布斯现象。 阈值大小的选取 阈值的选择是离散小波去噪中最关键的一部。在去噪过程中,小波阈值λ起到了决定性作用:如果阈值太小,则施加阈值后的小波系数将包含过多的噪声分量,达不到去噪的效果;反之,阈值太大,则去除了有用的成分,造成失真。小波阈值估计方法很多,这里暂不介绍。 小波去噪实现步骤 (1)二维信号的小波分解。选择一个小波和小波分解的层次N,然后计算信号s到第N层的分解。

基于小波去噪matlab程序示例

clear all clc %在噪声环境下语音信号的增强 %语音信号为读入的声音文件 %噪声为正态随机噪声 sound=wavread('c12345.wav'); count1=length(sound); noise=0.05*randn(1,count1); for i=1:count1 signal(i)=sound(i); end for i=1:count1 y(i)=signal(i)+noise(i); end %在小波基'db3'下进行一维离散小波变换 [coefs1,coefs2]=dwt(y,'db3'); %[低频高频] count2=length(coefs1); count3=length(coefs2); energy1=sum((abs(coefs1)).^2); energy2=sum((abs(coefs2)).^2); energy3=energy1+energy2; for i=1:count2 recoefs1(i)=coefs1(i)/energy3; end for i=1:count3 recoefs2(i)=coefs2(i)/energy3; end %低频系数进行语音信号清浊音的判别 zhen=160; count4=fix(count2/zhen); for i=1:count4 n=160*(i-1)+1:160+160*(i-1); s=sound(n); w=hamming(160); sw=s.*w; a=aryule(sw,10); sw=filter(a,1,sw); sw=sw/sum(sw); r=xcorr(sw,'biased'); corr=max(r); %为清音(unvoice)时,输出为1;为浊音(voice)时,输出为0 if corr>=0.8 output1(i)=0; elseif corr<=0.1

2004,小波降噪阈值选取的研究_余晃晶

小波降噪阈值选取的研究 余晃晶 (三明学院,福建 三明365004) 摘 要:小波分析用于信号降噪的过程中,核心的算法就是在小波系数上作用阈值,因为阈值的选取直接影响降噪的质量.笔者就阈值的选取做了一些理论分析并在MATLAB 环境下进行仿真研究,得出应用小波降噪过程中阈值选取的一些实际结论. 关键词:小波变换;阈值;降噪 中图分类号:TP301.6 文献标识码:A 文章编号:1008-293X (2004)09-0034-05 实际采集的信号中常含有噪声,只有作降噪处理才能有效地表现原信号中有用的信息.信号降噪方法有时域和频域两种方法,但是归根到底是利用噪声和信号在频域上分布的不同进行的:信号主要分布在低频区域,而噪声主要分布在高频区域,但同时信号的高频区域也存在被检测对象的某些重要特征.传统的Fourier 分析方法可将信号的高频成分滤除,虽然也能够达到降低噪声的效果,但却影响了信号的某些重要特征.如何构造一种既能够降低信号噪声,又能够保持信号某些重要特征的降噪方法是此项研究的目标,而这在小波变换这种强有力的信号分析工具出现以后已经成为可能.由于小波变换同时具有时域和频域上的局部性特性,优于傅立叶变换,所以它一出现,就很快被普遍应用于信号处理中.本文就小波分析用于信号降噪的过程中阈值的选取做一些理论分析,并在MATL AB 环境下做了仿真研究,得出应用小波降噪过程中阈值选取的一些实际结论. 1 小波变换用于降噪的基本原理 1988年,文献〔1〕提出了多分辨分析的概念,并给出了小波分解与重构的快速算法,即Mallat 算法.根据这一算法,若f k 为信号f (t )的离散采样数据,f k =c 0,k ,则信号f (t )的正交小波变换分解公式为 c j ,k =∑n c j -1,n h n -2k ; d j ,k =∑d j -1,n g n -2k .(k =0,1,2,…n -1)(1) 式中:c j ,k 为尺度系数;d j ,k 为小波系数;h ,g 为一对正交镜像滤波器组(QMF );j 为分解层数;N 为离散采样点数.小波重构过程是分解过程的逆运算,相应的重构公式为 c j -1,n =∑n c j ,n h k -2n +∑n d j ,n g k -2n (2) 小波的多分辨分析特性可将信号在不同尺度下进行多分辨率的分解,并将交织在一起的各种不同频率组成的混合信号分解成不同频段的子信号,因而对信号具有按频带处理的能力. 对于一个含噪声的一维信号的基本模型通常表示成如下的形式: s (n )=f (n )+σe (n ) (n =0,1,2,…n -1)(3) 式中:f (n )为原始信号;e (n )为噪声信号;s (n )为含噪声信号;σ为噪声强度.在最简单的情况下可以假设e (n )为高斯白噪声,且σ=1.小波变换的目的就是要抑制e (n )以恢复f (n ).在f (n )的分解系数比较稀疏(非零项很少)的情况下,这种方法的效率很高.为了从含噪信号s (n )中还原出真实信号f (n ),可以利用信号和噪声在小波变换下的不同特性,通过对小波分解系数进行处理来达到信号和噪声分离的目的.在实际工程应用中,有用信号通常表现为低频信号或是一些比较平稳的信号,而噪声信号则通常表现为高第24卷第9期2004年9月 绍 兴 文 理 学 院 学 报JOUR NAL OF SHAOXING UNIVERSITY Vol .24No .9Sep .2004 收稿日期:2004-07-06 作者简介:余晃晶(1965-),男,福建连江人,讲师.研究方向:单片机和信号处理等. DOI :10.16169/j .issn .1008-293x .s .2004.09.009

matlab小波函数

Matlab小波函数 一、Matlab小波去噪基本原理 1、带噪声的信号一般是由含有噪声的高频信号和原始信号所在的低频 信号。利用多层小波,将高频噪声信号从混合信号中分解出来。 2、选择合适的阈值对图像的高频信号进行量化处理 3、重构小波图像:依据图像小波分解的低频信号与处理之后的高频信 号来重构图像的信息。 二、第二代小波变换 1、构造方法特点: (1)继承了第一代小波的多分辨率的特性。 (2)不依赖fourior变换,直接在时域完成小波变换。 (3)变换之后的系数可以是整数。 (4)图像恢复质量与变换是边界采用何种延拓方式无关。 2、优点:算法简单,速度快,适合并行处理。对内存需求量小,便于DSP 芯片实现、可用于本位操作运算。 3、提升原理:构造紧支集双正交小波 (1)步骤:分裂—预测—更新 (2)分解与重构 三、matlab小波函数库 1、matlab小波通用函数: (1)wavemngr函数【小波管理器(用于小波管理,添加、删除、储存、读取小波)】 wavemngr(‘add’,FN,FSN,WT,NUMS,FILE) wavemngr(‘add’,FN,FSN,WT,NUMS,FILE,B) % 添加小波函数,FN为family name,FSN为family short name WT为小波类型:WT=1表示正交小波,=2表示非正交小波,=3表示带尺度函数的小波,=4表示无尺度函数的小波,=5表示 无尺度函数的复小波。 小波族只有一个小波,则NUMS=“,否则NUMS表示小波参数的字符串 FILE表示文件名 B=[lb ub]指定小波有效支撑的上下界 wavemngr(‘del’,N) %删除小波 wavemngr(‘restore’)/ wavemngr(‘restore’,IN2) %保存原始小波 OUT1= wavemngr(‘read’) %返回小波族的名称 OUT1= wavemngr(‘read’,IN2) %返回所有小波的名称 OUT1= wavemngr(‘read_asc’) %读取wavelets.asc文件并返回小波信息 (2)scal2frq函数【尺度转换频率】 F=scal2frq(A,’wname’,DELTA) %返回由尺度A,小波函数“wname”和采样周期DELTA决定的准 频率。 (3)orthfilt函数【正交小波滤波器组】

小波变换图像去噪MATLAB实现

基于小波图像去噪的MATLAB 实现 一、 论文背景 数字图像处理(Digital Image Processing ,DIP)是指用计算机辅助技术对图像信号进行处理的过程。数字图像处理最早出现于 20世纪50年代,随着过去几十年来计算机、网络技术和通信的快速发展,为信号处理这个学科领域的发展奠定了基础,使得DIP 技术成为信息技术中最重要的学科分支之一。在现实生活中,DIP 应用十分广泛,医疗、艺术、军事、航天等图像处理影响着人类生活和工作的各个方面。 然而,在图像的采集、获取、编码和传输的过程中,都存在不同程度被各种噪声所“污染”的现象。如果图像被污染得比较严重,噪声会变成可见的颗粒形状,导致图像质量的严重下降。根据研究表明,当一图像信噪比(SNR)低于14.2dB 时,图像分割的误检率就高于0.5%,而参数估计的误差高于0.6%。通过一些卓有成效的噪声处理技术后,尽可能地去除图像噪声,我们在从图像中获取信息时就更容易,有利于进一步的对图像进行如特征提取、信号检测和图像压缩等处理。小波变换处理应用于图像去噪外,在其他图像处理领域都有着十分广泛的应用。本论文以小波变换作为分析工具处理图像噪声,研究数字图像的滤波去噪问题,以提高图像质量。 二、 课题原理 1.小波基本原理 在数学上,小波定义为对给定函数局部化的新领域,小波可由一个定义在有限区域的函数()x ψ来构造,()x ψ称为母小波,(mother wavelet )或者叫做基本小波。一组小波基函数,()}{,x b a ψ,可以通过缩放和平移基本小波 来生成:

())(1 ,a b x a x b a -ψ=ψ (1) 其中,a 为进行缩放的缩放参数,反映特定基函数的宽度,b 为进行平移的平移参数,指定沿x 轴平移的位置。当a=2j 和b=ia 的情况下,一维小波基函数序列定义为: ()() 1222,-ψ=ψ--x x j j j i (2) 其中,i 为平移参数,j 为缩放因子,函数f (x )以小波()x ψ为基的连续小波变换定义为函数f (x )和()x b a ,ψ的积: ( )dx a b x a x f f x W b a b a )(1)(,,,-ψ= ψ=?+∞∞- (3) 与时域函数对应,在频域上则有: ())(,ωωa e a x j b a ψ=ψ- (4) 可以看出,当|a|减小时,时域宽度减小,而频域宽度增大,而且()x b a ,ψ的窗口中心向|ω|增大方向移动。这说明连续小波的局部是变化的,在高频时分辨率高,在低频时分辨率低,这便是它优于经典傅里叶变换的地方。总体说来,小波变换具有更好的时频窗口特性。 2. 图像去噪综述 所谓噪声,就是指妨碍人的视觉或相关传感器对图像信息进行理解或分析的各种因素。通常噪声是不可预测的随机信号。由于噪声影响图像的输入、采集、处理以及输出的各个环节,尤其是图像输入、采集中的噪声必然影响图像处理全过程乃至最终结果,因此抑制噪声已成为图像处理中极其重要的一个步骤。 依据噪声对图像的影响,可将噪声分为加性噪声和乘性噪声两大类。由于乘性噪声可以通过变换当加性噪声来处理,因此我们一般重点研究加性噪声。设

基于小波变换的图像去噪

第1章绪论 由于各种各样的原因,现实中的图像都是带噪声的。噪声恶化了图像质量,使图像变得模糊。对同时含有高斯噪声和椒盐噪声的图像先进行混合中值滤波,在滤除椒盐噪声的同时,又很好地保留了图像中的物体细节和轮廓。小波域去噪处理具有很好的时频特性、多分辨分析特性等优点,可以看成特征提取和低通滤波功能的综合。小波模极大值去噪方法能有效地保留信号的奇异点信息,去噪后的信号没有多余振荡,具有较好的图画质量,改进后可以得到更满意的图像。小波相位滤波去噪算法是基于小波变换系数相关性去噪算法的,适于强噪声图像,去噪后也可以改善图像质量。 1.1课题背景 图像信息以其信息量大、传输速度快、作用距离远等优点成为人类获取信息的重要来源及利用信息的重要手段,而现实中的图像由于种种原因都是带噪声的。噪声恶化了图像质量,使图像模糊,甚至淹没和改变特征,给图像分析和识别带来困难。为了去除噪声,会引起图像边缘的模糊和一些纹理细节的丢失。反之,进行图像边缘增强也会同时增强图像噪声。因此在去除噪声的同时,要求最小限度地减小图像中的信息,保持图像的原貌。经典的图像去噪算法,如均值滤波、维纳滤波、中值滤波等,其去噪效果都不是很理想。 中值滤波是由图基(Turky)在1971年提出的,开始用于时间序列分析,后来被用于图像处理,在去噪复原中得到了较好的效果。它的基本原理是把数字图像或数字序列中的一点的值,用该点的一个邻域中的各点的中值代替。中值滤波在抑制椒盐噪声的同时又能较好地保持图像特征,图像也得到了平滑。对同时含有高斯噪声和椒盐(脉冲)噪声的图像,先进行混合中值滤波处理。基于极值的混合中值滤波兼容了中值滤波和线性滤波的优点,在滤除椒盐噪声的同时又对图像中的物体细节和轮廓进行了很好的保留。基于混合中值滤波和小波去噪相结合的方法,去噪效果好于单纯地使用小波变换去除噪声,或者单纯使用混合中值滤波去除噪声,能获得比单一使用任何一种滤波器更好的效果。

五种常用小波基含MATLAB实现

1.给出五种常用小波基的时域和频域波形图。 与标准的傅里叶变换相比,小波分析中使用到的小波函数具有不唯一性,即小波函数(t)ψ 具有多样性。小波分析在工程应用中,一个十分重要的问题就是最优小波基的选择问题,因为用不同的小波基分析同一个问题会产生不同的结果。目前我们主要是通过用小波分析方法处理信号的结果与理论结果的误差来判定小波基的好坏,由此决定小波基。常用小波基有Haar 小波、Daubechies(dbN)小波、Mexican Hat(mexh)小波、Morlet 小波、Meyer 小波等5种。 (1)Haar 小波 Haar 函数是小波分析中最早用到的一个具有紧支撑的正交小波函数,也是最简答的一个小波函数,它是支撑域在[0,1]∈t 围的单个矩形波。 Haar 函数的 定义如下:其他 1212 1 001-1(t)≤≤≤≤?????=ψt t Haar 小波在时域上是不连续的,所以作为基本小波性能不是特别好。但它也有自己的优点,如: 计算简单; (t)ψ不但与t)2(j ψz][j ∈正交,而且与自己的整数位移正交。 因此,在2j a =的多分辨率系统中Haar 小波构成一组最简单的正交归一的小波 族。 ()t ψ的傅里叶变换是: 2/24=sin ()j e a ψ-ΩΩ ΩΩ()j

Haar 小波的时域和频域波形图 -1.5 -1 -0.5 0.5 1 1.5 t haar 时域 x 10 5 1 2 3 4 5 6 75 f haar 频域 i=20; wav = 'haar'; [phi,g1,xval] = wavefun(wav,i); subplot(1,2,1); plot(xval,g1,'-r','LineWidth',1.5); xlabel('t') title('haar 时域'); g2=fft(g1); g3=abs(g2); subplot(1,2,2);plot(g3); xlabel('f') title('haar 频域')

小波变换的原理及matlab仿真程序

基于小波变换的信号降噪研究 2 小波分析基本理论 设Ψ(t)∈L 2( R) ( L 2( R) 表示平方可积的实数空间,即能量有限的信号空间) , 其傅立叶变换为Ψ(t)。当Ψ(t)满足条件[4,7]: 2 () R t dw w C ψψ =<∞? (1) 时,我们称Ψ(t)为一个基本小波或母小波,将母小波函数Ψ(t)经伸缩和平移后,就可以得到一个小波序列: ,()( )a b t b t a ψ -= ,,0a b R a ∈≠ (2) 其中a 为伸缩因子,b 为平移因子。 对于任意的函数f(t)∈L 2( R)的连续小波变换为: ,(,),()( )f a b R t b W a b f f t dt a ψψ-=<>= ? (3) 其逆变换为: 211()(,)()f R R t b f t W a b dadb C a a ψ ψ+-= ?? (4) 小波变换的时频窗是可以由伸缩因子a 和平移因子b 来调节的,平移因子b,可以改变窗口在相平面时间轴上的位置,而伸缩因子b 的大小不仅能影响窗口在频率轴上的位置,还能改变窗口的形状。小波变换对不同的频率在时域上的取样步长是可调节的,在低频时,小波变换的时间分辨率较低,频率分辨率较高:在高频时,小波变换的时间分辨率较高,而频率分辨率较低。使用小波变换处理信号时,首先选取适当的小波函数对信号进行分解,其次对分解出的参数进行阈值处理,选取合适的阈值进行分析,最后利用处理后的参数进行逆小波变换,对信号进行重构。 3 小波降噪的原理和方法 3.1 小波降噪原理 从信号学的角度看 ,小波去噪是一个信号滤波的问题。尽管在很大程度上小波去噪可以看成是低通滤波 ,但由于在去噪后 ,还能成功地保留信号特征 ,所以在这一点上又优于传统的低通滤波器。由此可见 ,小波去噪实际上是特征提取和低通滤波的综合 ,其流程框图如 图所示[6] : 小波分析的重要应用之一就是用于信号消噪 ,一个含噪的一维信号模型可表示为如下

相关主题
文本预览
相关文档 最新文档