当前位置:文档之家› WAVE公司一次性生物反应器从25升

WAVE公司一次性生物反应器从25升

WAVE公司一次性生物反应器从25升
WAVE公司一次性生物反应器从25升

一次性生物反应器从25升--500升的可扩展性:技术回顾

摘要:说到生物反应器,大家都有一定的了解,不过对于一次性的生物反应器,就可能知之甚少了。本文总结了Wave Biotech, LLC所生产的一次性生物反应器以灌流方式从25升工作体积放大至500升工作体积的生产放大结果。实验表明三个不同体积的生物反应器是相当的。(GE Healthcare供稿,生物通翻译)

作者:LEIGH N. PIERCE & PAUL W. SHABRAM

Leigh N. Pierce (lpierce@https://www.doczj.com/doc/c45473480.html,)是美国加利福尼亚州圣迭戈Arizeke制药公司细胞培养与开发部经理;Paul W. Shabram是负责工艺开发与制造的副总裁。

一次性使用的组件为生物制品的生产带来了很多优势。它们干净、买来即用、不需要灭菌,因此也就减少了如冲洗用水系统(WFI)和蒸汽发生器检修的需求。一次性的组件不能用于后续的操作,消除了工艺流程运行之间交叉污染的可能性。因为减少或摈弃了对不锈钢设备的需求,也可以避免了设备组装的长周期。系统的复杂度降低,因而所涉及的工程需求也同样减少。再也无需在位清洗(CIP)或在位灭菌(SIP)操作,以及相关的管道、阀门、控制器或容器的压力等级。此外,一次性组件的使用还降低了验证的复杂度。因为几乎没有可反复使用的组件,也就没有什么项目需要跟踪,也就节省了大量的灭菌、清洁验证研究。最后,通过消除了坚固的管道系统和固定发酵罐的限制,一次性组件还有利于实现更快速的改装以便用于新流程的运行。

一次性组件的使用可在劳力、设备、厂房设计以及验证方面实实在在地节省可观的费用。一次性的组件包括:生物处理袋、管、囊式过滤器、切向流舱、生物反应器、层析舱及混合系统2。

一次性生物反应器的使用及放大

在某些应用中,灌流式细胞培养比分批和补料分批工艺更具优势。操作方式的选择是根据工艺规程所指定的综合需求。工艺的优化常常是评估哪种类型生产最有效的唯一途径。分批是最常用的以终点为依据的生产方式。在分批生产方式中,生物反应器在接种、培养并达到指定的细胞密度和产品浓度的时即收集细胞上清。在补料分批工艺中,在生产流程的晚期进行补加原料以改进细胞活力,增加总的产率。在灌流方式中,原料溶液持续加入生物反应器中,用过的培养基也不断排出。以灌流方式来运行工艺能增加培养的持久性和细胞密度,反过来又增加了整体的生产率3,4,9。

我们的目的蛋白,AZ-IL2B,是一个二聚体融合蛋白,由人IL-2连接人免疫球蛋白特异针对pIgR的scFv区域而组成6。这个融合蛋白最适合灌流方式的生产。细胞产生的蛋白水平较低,而且AZ-IL2B很脆弱,特别是在37o C。灌流生产所带来的生产容量增加,以及缩短了不稳定蛋白在反应器中停留的时间,都有助于实现更高的产量。

本文总结了Wave Biotech, LLC所生产的一次性生物反应器以灌流方式从25升工作体积放大至500升工作体积的生产放大结果。我们将比较25升、100升和500升工作体积的三个不同系统。对于每个生物反应器的运行都测定了以下参数,包括:细胞数量和活力、产生的蛋白数量、葡萄糖和乳酸水平。对每个系统间的这些参数进行了比较,结果显示三个不同体积的生物反应器是相当的。

材料与方法

生物反应器描述

每个生物反应器由一个灵活的、一次性的、预先灭菌的塑料袋组成,这个塑料袋称为细胞袋(Cellbag?)。在操作中,细胞袋放置在摇摆平台上,充入部分培养基(图1)。细胞袋的剩余体积则充入了由二氧化碳(CO2)和氧气(O2)组成的气体混合物。这些气体是通过预留在细胞袋上的无菌过滤入口来添加的。空气流提供了氧气,以及控制pH和

去除二氧化碳所需的气体交换。废气则通过另一个无菌过滤器和背压控制阀排出。背压控制阀确保了细胞袋在任何空气流下总是充满的。阀门也防止了细胞袋的过度膨胀以及爆炸的可能。填充空气的顶部空间占据了细胞袋被填满时的一半体积。例如,一个充满时是50升总体积的细胞袋将包含25升细胞悬液和25升空气。空气在培养时持续地穿过顶部空间。流程中的气体,如CO2和O2,以可控的方式与空气混合。液体混匀以及气体的物质传递是通过来回摇动细胞袋而实现的。这种摇动在气相和液相对分界面产生了波动。这些波动大大增加表面积,能提高气体转移。波浪运动还促进细胞和颗粒离开底部悬浮(防止沉降)以及大面积混匀,同时不会给细胞带来任何伤害。摇动可以通过设定摇摆角度和每分钟的摇动次数来控制。这些参数必须根据细胞袋中的使用体积来确定。细胞袋的温度可通过加热器来控制,此加热器位于设备的底盘,对细胞袋的底部进行加热。加热器是由同样位于单元的底盘的非插入式的温度传感器来调节8。

图1. 波浪生物反应器。20/50EH 系统。

另外还设计了特别的接口,以供无菌加料及样品的取出,而无需将生物反应器置于层流柜中。可用无菌的管道连接器将培养基、缓冲液和葡萄糖储存液加入系统中。使用的生物反应器分别为20/50EH系统、200系统和1000系统(Wave Biotech, LLC)。

细胞解冻与增殖

我们使用了P6A2细胞系,它是一种基于CHO的悬浮克隆,选择这个细胞株的原因在于

其蛋白生产及生长特性俱佳。细胞在120毫升过滤的培养基中解冻,并放置在150毫升的转瓶内。细胞在转瓶内扩增,直到有足够的细胞来接种更大的转瓶,一直至6升。一旦培养物充分扩增,即被转移到细胞袋中接种。转瓶内的细胞密度维持在约2×105细胞/毫升。用于扩增的培养基是带有添加剂的无血清的IS CHO-V (Irvine Scientific)。我们使用了血球计数器来计算细胞数量,并利用台盼蓝染料排除分析来确定细胞活力。利用Bioprofile? 300A (Nova Biomedical)来分析细胞培养试剂。pH值是通过细胞袋探头进行在线测定,或用PHM220 pH计 (Meter Lab)来离线测定。氧气、二氧化碳、温度、摇速及摇摆角度是由Wave Bioreactor的控制器来测定并控制的。

细胞袋接种

细胞一般以1×105-4×105细胞/毫升的密度接种在细胞袋生物反应器中。我们曾以更低的密度(如6×104细胞/毫升)接种细胞,对细胞生长或生产也没有不良影响。一旦细胞在转瓶中充分扩增,就进行细胞袋生物反应器的接种。这可将转瓶的内容物直接转移到生物反应器内。在此时,生物反应器已经充满了二氧化碳和氧气,并包含温暖的培养基(37° C)。细胞悬浮液由无菌接管连接到细胞袋,然后通过无菌的端口泵入生物反应器中。

生物反应器里的增殖

细胞袋中的细胞能达到比转瓶更高的密度。这最有可能是由于细胞袋内溶氧的增加,以及控制pH的能力。在转瓶中,密度维持在2×105-6×105细胞/毫升,加入细胞袋后,细胞的密度增加至8×105-1×106细胞/毫升,直到在灌流开始后,P6A2细胞克隆的密度可高达3×107细胞/毫升。

灌流

一旦细胞达到1×106-2×106细胞/毫升,即可开始灌流。收集用过的培养基,同时以相同速率向生物反应器中加入新鲜的培养基、养分、调控pH的缓冲液。这是由生物反应器的以重量为基础的灌流控制器来直接控制的。在这个细胞密度下每天的体积交换约为

总体积的70-75%。只要细胞活力高于50%,反应器就持续灌流。一旦细胞密度达到约

2×107细胞/毫升,控制乳酸及其他毒副产物的累积就变得更加困难,反过来导致pH的控制也非常困难。到此阶段,要移除部分细胞从而维持密度在1×107-2×107细胞/毫升。每天的体积交换提高至约100%,包括培养基、缓冲液及其他添加剂。利用孔径为0.2微米的中空纤维微孔过滤柱来灌流细胞培养上清。

通过ELISA和Western Blot进行蛋白分析

AZ-IL2B目标蛋白的定量是通过ELISA进行的。细胞培养上清是以一种专用于检测和定量AZ-IL2B嵌合体的方法来分析的。细胞培养上清中的AZ-IL2B通过与包被pIgR区域特异性抗体的微滴定板的结合而被捕获,捕获的AZ-IL2B通过生物素标记的山羊抗人

IL-2多克隆抗体(R&D Systems, Inc.)来检测。链亲和素-HRP结合物(BD Biosciences, Pharmingen)加入最后的检测步骤中。TMB底物溶液加入反应中,与反应中存在的酶直接反映并产生颜色变化,这种颜色变化与样品中AZ-IL2B的量成正比。利用AZ-IL2B标准曲线和质量对照来测定细胞培养上清样品中AZ-IL2B的量。

根据标准的步骤来进行western blot分析7。蛋白通过8-16%的Tris-甘氨酸聚丙烯酰胺凝胶电泳进行大小分离,并转移到硝酸纤维素膜上。膜与一抗——兔抗人白介素-2的多克隆抗体(Chemicon International, Inc.)及二抗——碱性磷酸酶结合的驴抗兔IgG 抗体(Pierce Biotechnology, Inc.)一起孵育。

点击了解一次性生物反应器的更多信息!结果

生物反应器运行WVA、WVB和WVC分别指的是Wave Biotech?的生物反应器20/50EH系统、200系统和1000系统。

细胞计数与活力

图2显示了每种生物反应器的细胞生长和密度相当。生物反应器运行WVB没有达到WVA 和WVC那么高的细胞密度,但是确实达到了1.2×107细胞/毫升。这是由于在第8天加入了高浓度的葡萄糖后导致的葡萄糖峰(图3)。

在运行生物反应器WVA后,我们发现现有的培养基配方和投料策略无法支持超过2×107细胞/毫升以上的细胞密度。在细胞密度达到3×107细胞/毫升后,WVA的培养物的细胞活力和细胞生长显著下降,并无法恢复,这可能是由于缺乏营养物,以及毒性物质的积累,包括培养物中的高水平乳酸(图3)5。氧合不是一个问题,因为我们能调节向培养物中添加的氧气量。每个反应器运行中的溶氧维持在73-100%。

图2. 每天活细胞密度的比较。生物反应器运行WVA、WVB和WVC的细胞密度比较。WVA 的灌流在第13天开始。WVB和WVC的灌流在第8天开始。

图3. 每天葡萄糖和乳酸水平的化学分析。WVA、WVB和WVC生物反应器运行的葡萄糖和乳酸水平。

对于随后的反应器,在细胞密度达到1.5×107细胞/毫升或更高,乳酸水平达2.2 克/升或更高时就将部分细胞除去。通过去除细胞和调整每天的灌流量,生物反应器运行被延长,收获了更多的蛋白。WVA需要更长时间才到达灌流密度(1.2×106细胞/毫升),这可能是由于第6天温度意外降至25° C。WVA灌流持续了13天,平均产量为12.5 毫克/升,而WVB灌流持续了18天,平均为8.3 毫克/升,比WVA多了5天,收获蛋白也多了6.7克。WVC灌流了16天,平均产量为12.2 毫克/升,比WVA多了3天,收获蛋白也增加了16.4克。活力的增加及生物反应器运行的延长都能使产量更高。

蛋白产量

图4比较了每个运行的蛋白浓度。WVA的蛋白浓度(37.5 毫克/升)比WVB(15.46 毫克/升)或WVC(27.91 毫克/升)更高,这是由于更高的细胞密度。每个反应器的整体蛋白产量如下:WVA 7.8克,WVB 21.4克,WVC 149.2克。蛋白产量与细胞密度紧密关联。这个解释是合理的,因为存在更多的细胞,自然也有更多的细胞生产蛋白。WVB并没有达到WVA或WVC那么高的蛋白浓度。这与观察到的细胞密度更低是一致的。

在图5a、5b和5c中,每个反应器运行的细胞密度与蛋白浓度重叠。蛋白浓度的增加与

细胞密度直接相关。在每个反应器运行终止时确定细胞活力的减少,以及蛋白产量的减少。

图4. 每天的蛋白浓度。三个生物反应器运行的蛋白水平的比较,以毫克/升表示。蛋白水平通过ELISA测定。

图5. 蛋白水平与活细胞密度。细胞密度与蛋白水平的关联。A. 生物反应器运行WVA。

B. 生物反应器运行WVB。

C. 生物反应器运行WVC。

葡萄糖和乳酸浓度

每个运行中的葡萄糖和乳酸浓度在图3中显示。每个运行的水平基本相似,除了第9天WVB的葡萄糖峰。由于每个反应器运行持续,细胞密度不断增加,葡萄糖被消耗,而乳酸增加。每个运行后期葡萄糖浓度的尖峰是由于当生物反应器葡萄糖水平降低至2.0 克/升时,添加了50%的葡萄糖储存液而引起的。

蛋白分析

AZ-IL2B作为一个二聚体蛋白,跑胶时分子量在36-50 kDa。图6(a)是WVD的Western blot,WVD反应器的工作体积为10升(Wave Biotech 20/50EH系统)。图6(b)是WVC 的Western blot,它的工作体积为500升。图中通过Western blot对第3天到第9天进行了比较,显示小型反应器与大型反应器产生的蛋白之间并无区别。

图6. 两个生物反应器运行的Western blot分析。A. 生物反应器运行WVD的工作体积为10升。B. 生物反应器运行WVC的工作体积为500升。MWM=分子量标准。

讨论

Wave Biotech的一次性生物反应器从25升放大到500升,对细胞生长或蛋白生产没有不良影响。其他影响活力和蛋白产量的因素包括高细胞密度、不合适的添加剂浓度,以及温度波动。不仅每个系统规格所产生的蛋白水平相似,而且产生的蛋白在Western blot

分析和生物活性测试(数据未显示)时也一致。每个系统的细胞生长和倍增时间也是相当的。平均的蛋白浓度与细胞密度直接相关。每个生物反应器的葡萄糖消耗量与乳酸产量是类似的。随着每个生物反应器的运行,葡萄糖水平下降,而乳酸水平上升。

选择一次性的生物反应器实现了生物反应器运行之间的快速转换。生物反应器的安装、接种以及处理都很轻松,因此生物反应器运行的终止以及新反应器的接种能在同一天内完成。10升、25升和100升生物反应器能在标准的8小时工作日内取下并重新接种。500升细胞袋的清空、填充以及培养基预热需要更长的时间,但生物反应器也能在2个8小时工作日内取下并重新接种。这个过程很简单:细胞袋清空、净化并抛弃。新的预灭菌细胞袋放置在平台上,并充入二氧化碳和氧气。添加培养基并加热,接着进行细胞接种。10升和25升工作体积的生物反应器一般从转瓶中接种。100升和500升的生物反应器则从小型的25升反应器中接种。

系统从25升到500升的放大不仅简单而且成比例,只需对体积变化做出调整。而培养基配方或添加剂则无需改变。细胞系在25升、100升和500升反应体系中以相似的方式增殖和生产。

结论

成功的灌流工艺是在培养物健康与最佳产量之间达到平衡。适合最佳的细胞生长和对生长有利的因素可能对生产不利。例如,增加灌流速率以去除毒性物质会将产物稀释到很低的浓度,为下游处理带来不便,更不用说与灌流增加相关的商品费用增加。对培养基成分、添加剂以及投料策略的调整可能会增加灌流的天数,而不稀释蛋白的浓度水平。有报道在生物反应器运行中采用两种不同的培养基配方来控制细胞代谢可降低细胞生长,同时维持其活力,从而延长收获产物的天数1。

从生物反应器中去除细胞也是一个选择,我们将它加入工艺中来控制细胞密度。这很难频繁处理,并增加了生物危害的废料。如果一种培养基配方能支持早期的快速细胞生长,

然后在生产中控制细胞生长,那是最理想的。

一次性的生物反应器比反复使用的生物反应器在清洗、灭菌、验证、安装和运行之间的转换时间上更具优势。我们证明了25升、100升和500升工作体积的系统运行在细胞生长、蛋白产量、葡萄糖消耗以及乳酸生产上是相当的。

点击了解一次性生物反应器的更多信息!致谢

Wave Biotech, LLC借出System1000生物反应器。

Becky Basken, Marie Gonzales, Malena Jimenez, Vivian Nguy, Michael Ports, Angelica Romero, Guillermo Viramontes, Xiaoying Wang, 和Laurin White对于细胞培养和生物反应器的支持。

Zemeda Ainekulu, Val Barra, Kim Cushing, Bill Edwards, 和Marla Madison对于分析的支持。

Eva Boco, Brian Danaher, Victoria Piamonte, 和Joey Rattanasinh对于实验室的支持。参考文献

1. Altamirano C et al. Decoupling cell growth and product formation in Chinese hamster ovary

cells through metabolic control. Biotech Bioeng 2001;76:351–360.

2. Hodge G. Disposable components enable a new approach to biopharmaceutical manufacturing. BioPharm Intl 2004;17:38–49.

3. Konstantinov KB et al. Control and long-term perfusion Chinese hamster ovary cell culture by glucose auxostat. Biotechnol Prog 1996;12:100–109.

4. Ohashi R et al. Perfusion cell culture in disposable reactors. Paper presented at 17th European Society for Animal Cell Technology Meeting 2001 June 10–14;

Tyl?sand, Sweden.

5. Ryll T et al. Biochemistry of growth inhibition by ammonium ions in mammalian cells. Biotech Bioeng 1994;44:184–193.

6. Sacaan A et al. Transport of aerosolized IL-2 chimeric protein using polymeric immunoglobulin receptor in the lung. Respiratory Drug Del IX 2004;2:357–360.

7. Sambrook J et al. Molecular Cloning: A Laboratory Manual, 2nd ed. New York: Cold Spring Harbor Laboratory; 1989.

8. Singh V. Disposable bioreactor for cell culture using wave-induced agitations. Cytotechnology 1999; 30:149–158.

9. Yang JD et al. Achievement of high cell density and high antibody productivity by a controlled-fed perfusion bioreactor process. Biotechnol Bioeng 2000;69:74–82.

植物生物反应器的研究进展及发展方向

植物生物反应器的研究进展及发展方向 姓名 (内蒙古科技大学生物技术系) 摘要利用转基因植物作为生物反应器生产外源蛋白,包括抗体、疫苗、药用蛋白等较之其他生产系统具有很多优越性。本文简介了植物生物反应器的研究发展历史和现状, 并对植物生物反应器领域的发展作了一定的展望和讨论。 关键词植物抗体; 口服疫苗; 药用蛋白;转基因; 生物反应器 植物生物反应器是生物反应器研究领域中的一大类, 是指通过基因工程途径, 以常见的农作物作为化学工厂,通过大规模种植生产具有高经济附加值的医用蛋白、工农业用酶、特殊碳水化合物、生物可降解塑料、脂类及其他一些次生代谢产物等生物制剂的方法[1]。 1 植物生物反应器研究内容 1.1植物抗体(plantibody) 抗体(antibody) 是动物体液中的一系列球蛋白,称为免疫球蛋白(Ig) 。它们可介导动物的体液免疫反应。在植物体内表达编码抗体或抗体片段(如Fab 片段和Fv 片段) ,获得的产物就称为植物抗体。植物抗体最大的优点是使生产抗体更加方便和廉价。尤其在生产单克隆抗体方面,利用植物生产要比杂交瘤细胞低廉的多。据估计,在250 m2 的温室中利用苜蓿生产IgG的成本约为500~600美元/ g ,而利用杂交瘤细胞生产抗体的成本约为5 000 美元/g 。因此,利用植物生产抗体具有广阔的市场前景。目前,利用转基因植物表达的抗体包括完整的抗体分子、分泌型抗体IgA、IgG、单链可变区片段(scFv) 、Fab 片段、双特异性scFv 片段以及嵌合型抗体等不同类型的抗体。 植物不仅作为生物反应器器生产抗体用于医药产业,而且植物抗体介导的免疫调节在植物抗病育种上也很值得研究。Fecker 等将抗甜菜坏色黄脉病毒(BNYVV) 的外壳蛋白基因的scFv 转化烟草,产生的scFv 定位于细胞质中或通过末端的连接信号肽而分泌到质外体,结果发现转scFv 的植株出现症状的时间明显迟于对照。Tavladoraki 等将抗菊芋斑驳病毒(AMCV) 的外壳蛋白基因的scFv 转入烟草后,发现感病率下降50~60 % ,出现症状的时间也明显迟于对照。LeGall 等将针对僵顶病植原体主要膜蛋白的scFv 转入烟草中,并通过细菌信号肽把scFv 定位到质外体,将转基因烟草接穗嫁接到被植原体侵染的砧木上,没有表现病症,而对照的非转基因接穗却出现严重的僵顶病症状甚至死亡。 另外,在植物细胞中表达具有催化或钝化酶和激素作用的抗体,从而对细胞代谢进行调节,这对于植物代谢机理的研究非常有用。Owen 等将植物光敏色素单链Fab 抗体转入烟草中,转基因烟草光敏色素下降40 % ,而且该转基因烟草种子表现出异常的依赖光敏色素萌发的能力。Shimada等在烟草内质网中高效表达了抗赤霉素前体分子A19/ 24 的scFv ,A19 和A24 分别是A1 和A4 的前体,转基因烟草中A1含量降低并表现矮化[2]。 1.2口服疫苗(edible vaccine)

激流式生物反应器

在培养液和工艺未优化情况下 细胞悬浮培养密度可达 2.5 X 107cells/ml 一个50L纸片载体灌注系统的体积产量相当于1200个大转瓶的生产车间! 20-40ml 模拟反应器系统用于工艺优化研究。 https://www.doczj.com/doc/c45473480.html, 激流式灌注反应器 激流式灌注反应器配合激流式生物反应器使用,采用新型外循环式纸片灌注培养工艺,以纸片作为载体,利用激流式细胞培养器控制溶氧、pH、温度等细胞生长条件。

◆ 激流式灌注反应器细胞生长数据 ● 蛋白抗体生产用纸片载体灌注式不同细胞生长密度×纸片载体总重量 细胞名称5L灌注系统(细胞数/克载 体×载体总重量150克)50L灌注系统(细胞数/克载体× 载体总重量1200克) 150L灌注系统(细胞数/克载体 ×载体总重量3600克) CHO-K1 13.7×108cells/g×150g 16.4×108cells/g×1200g 正在进行中 CHO-S 21.0×108cells/g×150g 25.0×108cells/g×1200g 18.0×108cells/g×3600g 结论:一个150L纸片载体灌注系统连续灌注和丰收一个月的体积产量相当于一个国际水平的1500L的大型流加悬浮 培养罐。 优势:一次性使用纸片灌注系统,工艺简单,细胞生存活力特别稳定,适合于发展中国家大规模蛋白质和抗体药物生产。 ● 疫苗生产用纸片载体灌注式不同细胞生长密度×纸片载体总重量 细胞名称 5L灌注系统(细胞数/克载体 ×载体总重量150克) 50L灌注系统(细胞数/克载 体×载体总重量1200克) 150L灌注系统(细胞数/克载 体×载体总重量3600克) VERO(人) 6.0×108cells/g×150g 6.5×108cells/g×1200g 正在进行中 MDCK(人) 5.0×108cells/g×150g 正在进行中 正在进行中 Marc145(兽) 3.5×108cells/g×150g 正在进行中 正在进行中 ST1(兽) 4.0×108cells/g×150g 正在进行中 正在进行中 DF-1(鸡) 2.5×108cells/g×150g 正在进行中 正在进行中 CIK(鱼) 1.0×108cells/g×150g 正在进行中 正在进行中 EPC(鱼) 1.2×108cells/g×150g 正在进行中 正在进行中 结论:1、一个50L纸片载体灌注系统的体积产量相当于1200个大转瓶的生产车间,特别适合于大规模人用、兽(包括鸡和鱼)疫苗生产。同时,也是适合烈性传染病(例如禽流感和SARS)国家和军队的疫苗应急生产方法。 2、低成本、一次性使用,适合于发展中国家大规模疫苗生产的全部中国制造的高端生物反应器。 优势:1、由于一次性使用纸片灌注系统细胞密度特别高,所以细胞之间生长的相互支持力度大,生存活力特别强。 2、与使用转瓶和微载体冲洗和酶消化的接种方法相比,一次性使用纸片灌注系统细胞容易冲洗和酶消化,所 以解决了逐级放大的接种问题。 3、实现DO、pH、温度等培养条件的自动控制 ◆ 激流式灌注反应器的优势 ● 系统无气升装置、鼓泡或搅拌器,使剪切力最小化。 ● 培养液以一定流速流过纸片,供给贴壁依赖性细胞所需养分,在细胞周围形成稳定的流体轨道,可提供细胞生 长、交流和形成的三维结构。 ● 新型纸片适用于多种细胞系,可提供传统培养模式(转瓶等)无法比拟的细胞吸附面积,更利于细胞吸附和生 长。 ● 可解决贴壁培养放大问题,且空间占用少、操作简便、条件要求低。 ● 一次性纸片灌注培养系统用后就弃,可避免交叉污染、缩短批间处理周期,无需清洗、消毒、验证,极大地提 高工作效率。 ● 灌注袋事先经过γ射线照射,即拆即用。灌注袋也适用于5L,50L,150L激流式反应器。 激流式灌注反应器培养体系能力比一般反应器高出20倍,是细胞商业化培养、疫苗工业大规模生产的首选。

生物柴油生产工艺

生物柴油的制备方法主要有 4 种: 直接混合法( 或稀释法) 、微乳化法、高温热裂解法和酯交换法。前两种方法属于物理方法, 虽简单易行, 能降低动植物油的黏度, 但十六烷值不高, 燃烧中积炭及润滑油污染等问题难以解决。高温裂解法过程简单,没有污染物产生, 缺点是在高温下进行, 需催化剂,裂解设备昂贵, 反应程度难控制, 且高温裂解法主要产品是生物汽油, 生物柴油产量不高。酯交换法又分为碱催化酯交换法、酸催化酯交换法、生物酶催化酯交换法和超临界酯交换法。酯交换法是目前研究最多并已工业化生产的方法但生物酶催化酯交换法目前存在着甲酯转化率不高, 仅有40%~60%, 短链醇( 甲醇、乙醇) 对脂肪酶毒性较大,酶寿命缩短; 生成的甘油对酯交换反应产生副作用,短期内要实现生物酶法生产生物柴油, 还是比较困难。超临界酯交换法由于设备成本较高, 反应压力、温度也高, 一程度上影响了该技术的工业化, 目前主要处于试验室研究阶段。 1 生物柴油生产工艺 目前, 国内采用的原料主要有地沟油、酸化油、混合脂肪酸、废弃的植物和动物油等, 根据不同的原料应采用不同的工艺组合来 生产生物柴油。因目前国内企业的日处理量不是很大( 大多为5~50t /d 不等) , 酯交换( 酯化) 工序一般采用反应釜间歇式的; 分离、水洗工序有采用罐组间歇式的, 也有采离心机进行连续分离、水洗的。 1 地沟油制取生物柴油 地沟油水分大、杂质含量多, 酸值较高, 酸值一般在20(KOH)

/(mg/g) 油左右。由地沟油制得的生物柴油颜色较深, 一般需经过脱色或蒸馏工序、添加剂调配工序处理。 碱法催化制备生物柴油工艺流程 氢氧化钠→甲醇粗甘油→脱溶→精制→甘油 ↓↑ 地沟油→过滤→干燥→酯交换→分离→脱溶→水洗→干燥→生物柴油 2酸化油制取生物柴油 酸化油的机械杂质含量较大( 如细白土颗粒) , 酸值一般在80~160(KOH) /(mg/g) 油间, 国内有一步酸催化法和先酸催化后碱催化两步法来制备生物柴油。因酸化油中含有一定量的悬浮细白土颗粒及胶杂, 在反应过程易被硫酸炭化, 在反应釜底部会有一定量的黑色废渣。在酯化反应过程国内有采用均相反应的, 也有采用非均相反应的, 各有利弊。均相反应( 反应体系温度60~65℃) 甲醇在体系内分布均匀, 接触面积大, 利于参与反应, 但生成的水没有带走, 阻碍反应进程; 非均相反应( 反应体系温度105~115℃) 甲醇以热蒸汽形式鼓入, 可以带走一部分生成的水, 有利于反应进程, 以及免去反应釜的搅拌装置, 但甲醇气体在油相的停留时间短、接触面积小, 不利于参与反应,需要更多的热能和甲醇循环量。由酸化油制得的生物柴油颜色也较深, 一般需经过脱色或蒸馏工序、添加剂调配工序处理。一步酸催化制备生物柴油工艺流程:

膜生物反应器及其应用研究进展

膜生物反应器及其应用研究进展 1 引言 传统的活性污泥工艺(Conventional Activated Sludge, CAS)广泛地应用于各种污水处理中。由于采用重力式沉淀方式作为固液分离手段,因此带来了很多方面的问题。如固液分离效率不高、处理装置容积负荷低、占地面积大、出水水质不稳定、传氧效率低、能耗高以及剩余污泥产量大等等。传统生物处理工艺处理后的水难以满足越来越严格的污水排放标准,同时,经济的发展所带来的水资源的日益短缺也迫切要求开发合适的污水资源化技术,以缓解水资源的供需矛盾。在上述背景下,一种新型的水处理技术——(Membrane Bioreactor,MBR)应运而生。随着膜分离技术和产品的不断开发,(MBR)也更具有实用价值,近年来许多国家都投入了大量资金用于开发此项高新技术。 2 CAS CAS是一种应用最广的废水好氧生物处理技术。其基本流程如图1所示,是由曝气池、二次沉淀池、曝气系统(含空气或氧气的加压设备、管道系统和空气扩散装置)以及污泥回流系统等组成。

曝气池与二次沉淀池是活性污泥系统的基本处理构筑物。由初次沉淀池流出的废水与从二次沉淀池底部回流的活性污泥同时进入曝气池,其混合体称为混合液。在曝气的作用下,混合液得到足够的溶解氧并使活性污泥和废水充分接触。废水中的可溶性有机污染物为活性污泥所吸附并为存活在活性污泥上的微生物群体所分解,使废水得到净化。在二次 沉淀池内,活性污泥与已被净化的废水(称为处理水)分离,处理水排放,活性污泥在污泥区内进行浓缩,并以较高的浓度回流曝气池。由于活性污泥不断地增长,部分污泥作为剩余污泥从系统中排出,也可以送往初次沉淀池。 图1 活性污泥法基本流程 3 MBR法 3.1 MBR及其分类

生物柴油技术

生物柴油技术 随着我国工农业、交通运输业的飞速发展,市场对汽、柴油的需求日益增长。现在我国每年消耗的汽、柴油约为1.15亿吨,进口原油及成品油已成为我国财政的沉重负担,而且天然石油的储备有限,人类面临日益严重的能源危机。另外,燃油燃烧不当所排放出的浮碳、碳氢化合物、一氧化碳、氮氧化物、硫化物已成为大中城市的主要污染物来源,严重影响生态环境和人类健康。中国是一个经济大国,也是一个能源消耗大国,节能减排与绿色环保已经成为中国能源战略的重要组成部分。 国家出台了多项节能减排的政策措施,抑制高耗能、高污染行业的过快增长。节约发展,清洁发展,安全发展,可持续发展日益受到重视。因此,本着节能和环保要求,研制燃油新配方、开发清洁柴油已经势在必行。 我公司最新研制的生物柴油是以植物油厂下脚料、动物脂肪、废餐饮油、工业废醇等为原料,再加入一定量的催化剂,经专用设备和特殊工艺合成。 目前,该技术已经通过科技部成果鉴定、质量技术监督局备案和全国唯一通过国家发改委及环保局批准立项且具有生产、销售资质(附:成果鉴定证书及备案、立项原件),现在已有多家合作单位规模化生产。 【技术咨询:186-3718 1635 张经理187-3817 2329 齐经理】 以下是汇绿生物柴油项目介绍: 1、生物柴油的技术特点 生物柴油是以动植物油厂下脚料、泔水油、地沟油、脂肪酸甲酯、重油、蜡油、轻油、洗油、常线油、减线油、重柴、催柴、废轮胎油、废塑料油、臭油、废机油、地炼油、土炼油、低温煤焦油、常柴、焦化柴油、燃料油、碳五、碳九、碳十四、碳十六、白柴、化工油、黑柴、乌油、减线油等的二种或三种为原料,经过处理后,再加入一定量的催化剂、乳化剂,经专用设备和特殊工艺合成。该产品外观清澈透亮,主要指标达到国家柴油相关标准。与国内同类产品相比,本产品具有以下特点: 1)生物柴油原材料广泛,化工厂、植物油厂、炼油厂、化工市场等均可提供。动植物油厂下脚料、泔水油、地沟油来源于饭店或者植物油厂;脂肪酸甲酯来源于生物柴油厂;轻油、洗油、焦化柴油来源于焦化厂;重油、蜡油、常线油、减线油、重柴、催柴、碳五、碳九、碳十四、碳十六、白柴、来源于各大小炼油厂;废轮胎油、废塑料油、臭油、废机油、地炼油、黑柴来源于各小炼油厂。 2)生物柴油生产工艺简单、上马快、投资周期短,设备安装仅需15-30天。

浅析我国生物反应器行业发展现状与对策

浅析我国生物反应器行业发展现状与对策 发表时间:2018-09-18T11:57:05.223Z 来源:《基层建设》2018年第24期作者:张国良 [导读] 摘要:生物反应器技术是上世纪90年代初出现的一种利用微生物、动植物细胞为单位进行大规模生产药用,农用蛋白的生物高技术。 身份证号:44010619881029xxxX 510530 摘要:生物反应器技术是上世纪90年代初出现的一种利用微生物、动植物细胞为单位进行大规模生产药用,农用蛋白的生物高技术。21世纪是“生物”的世纪,随着世界经济的发展和细胞培养工艺的提高,我国生物反应器行业面临着挑战和机遇。为了在“生物”世纪潮流下生存与发展,我国生物反应器行业需不断事实更新管理模式,不断提高自主创新能力,不断提高生物反应器的品质。本文对我国生物反应器行业发展现状、存在问题及发展机遇进行综合分析,为新旧生物反应器企业发展提供参考,给生物反应器企业带来机遇。 关键词:生物反应器;发展;对策 1.我国生物反应器行业发展面临的主要问题 1.1我国生物反应器行业部分企业沿用粗放型的管理模式 我国生物反应器行业的发展正随着国家对生物医药的重视和大力扶持而稳步前行。早期的生物技术政策“蓝皮书”、“863”、“973”高技术计划拉开了生物反应器快速发展的序幕,2011年,《医药工业“十二?五”规划》中更是将占领生物制药制高点作为两大主题之一。这使我国生物反应器行业飞速发展。但是,部分生物反应器企业发展却有着其不合理性。①国内大部分生物反应器企业管理层前身为某些生物反应器外企的销售人员,本身没有成本意识,报价是结合以往外企经验和国内廉价劳动力进行的估价,导致报价利润较低,且容易产生“降低品质竞争”的现象。②没有项目管理经验,合同执行能力不足,导致大项目及时交货率低。 1.2我国生物反应器行业自主创新能力低下 我国生物反应器发展机缘:因我国改革开放,在国家良好政策推动下,国内生物反应器需求增大,而国外的生物反应器货期长,价格贵,售后服务能力差。在此供需不平衡的因素促进,部分有生物反应器外企经验的工作人员进行自主创业。但因该主要创业人员前身为销售工程师,缺乏工艺基础,自主创新能力低下。这是导致我国生物反应器行业自主创新能力低下的根源所在。 1.3我国生物反应器产品“量”大于“质” 就目前现状,我国生物反应器行业主要是仿造国外Sartorius等企业的标准产品,所提供的反应器主要为:A、发酵罐,B、细胞罐。从改革开放“大生产”政策指导,大部分企业选择生产具有“工艺简单,产能大,回本快”的发酵罐。但因发酵罐制作与培养工艺简单,对反应器“大生产”品质要求低,入行门槛低,导致国内很多反应器企业至今仍靠着不断降低发酵罐产品质量来获得经济效益。但时代在发展,生物培养行业的产品不断更新,对工艺和品质越来越注重。靠着仿造和粗制滥造的“发酵罐”逐步跟不上时代的步伐。 2.我国生物反应器行业的未来发展前景 2.1我国生物反应器行业的生产管理方式将转向PMP管理 在政府的政策支持和客观利润的促进下,越来越多的具有各自特点的生物反应器企业不断涌现。在竞争对手越来越多的背景下,以往“粗放型”管理模式的企业竞争力越来低,逼迫他们进行转型。PMP等新型管理模式在此背景下诞生。①要求企业以项目为单位制作生物反应器;②PMP要求企业注重成本管理,要求企业在保证生物反应器质量的前提下,降低人员成本,材料成本等,超成本需要经过分析与批准后才能往下走流程并留下文本信息以作后面项目参考;③PMP要求企业注重时间管理。制作反应器前需制作进度管理计划,与各相关部门定下关键项目结点,例:图纸出具节点,材料计划出具节点,施工开始和预计结束节点,项目验证节点等。进度计划出具后,各部门均需按照项目节点安排工作;④PMP要求企业进行品质管理,唯有高品质产品的保证下,企业才能长久生存。 2.2我国生物反应器行业需不断进行自主创新 在改革开放三十多年以来,政府不断号召行业进行“科技创新”。在同行技术不断增强与客户要求增多的背景下,单靠低成本,低品质生物反应器企业被迫向高技术企业转型。另外,在政府推进工业4.0的政策指导和GMP要求计算机验证下,越来越多企业将系统往wincc方面研发,增大企业“含金量”。 2.3我国生物反应器行业需投入更多资源进行提供不同等级的产品和服务的研发 在国产生物反应器发展的开始阶段,低价格的反应器设备往往更能占领市场份额,是企业在市场竞争中胜利的主要因素。但随着国内外客户需求不断增长以及同行竞争力不断变大的背景下,“低品质,低价格,无服务”的生物反应器无法满足不同客户的个性化需求。在未来,拥有“高品质,合理价格,个性化服务”的企业将占有越来愈多市场份额。何为“高品质,合理价格,个性化服务”?“高品质”,指的是生物反应器在生产过程中严格按照GMP进行制作,经过GMP验证,且系统稳定,不同批次的产品质量稳定。“合理价格”,指的是在保证品质和服务的前提下,将成本降低,以获得更好的利润回报。“个性化服务”,指的是针对不同等级的客户提供不一样的售前售后服务。例,针对某些培养工艺不成熟的客户,生物反应器企业需要提供培养工艺方面的指导,帮助客户走通工艺。 2.4环保是我国生物反应器行业需要考虑的发展因素 无论是现在还是未来,节能环保都是客户企业运行成本的重要考虑因素。生物反应器系统如拥有节能环保设计,将会帮客户大大的降低运营成本。例如:传统的生物反应器,蒸汽用量与维持成本占用了很大运营成本,其实生物反应器除了灭菌时需要用到大量的蒸汽外,工艺培养时,用量较低。在此因素下,某些客户用“电加热器”代替蒸汽,大大的降低了客户维持蒸汽的用量的成本。 3.我国生物反应器行业的发展对策 3.1我国生物反应器行业管理者需加强专业化学习和技能深造 我国生物反应器行业中的企业管理者大部分前身为外企销售经理,缺乏工艺技术。在未来,技术和创新决定企业能否在21世纪生产与发展。企业管理层应该勇做“领头羊”,加强专业学习和工艺研发,从上而下,带动中层管理层,带领一线员工进行学习,并定期举办“创新竞技”大赛和表彰。养成“活到老,学到老”的企业文化,提升企业的向心力和凝聚力。 3.2我国生物反应器行业应该建立和完善企业管理制度 一套完善的企业管理制度是企业能否生存和发展的重要因素。目前我国生物反应器企业的管理制度多数为粗放型管理,或者是领导层的“一锤定音”,导致中层管理层没有真正的参与到公司管理,不能锻炼管理技能,不利于公司长久发展。公司想有效的发展,管理层需学会

生物反应器

生物反应器 生物反应器,是指利用自然存在的微生物或具有特殊降解能力的微生物接种至液相或固相的反应系统。目前研究得最多的两种反应器是“升降机型反应器”和“土壤泥浆反应器”。升降机型反应器是通过水相的流动来提供适当的营养、碳源和氧气,从而达到降解土壤中污染物质的目的。与固相系统相比,生物反应器能够在更短的时间内将污染物进行有效降解。该生物反应器技术已经应用于有机污染土壤的生物修复中。通过研究生物反应器,我们可以了解到:可以知道为达到一定的生产目的需要多大的生物反应器,确定什么样的结构更好;其次,对已有的生物反应器进行分析,达到优化的目的;还有就是分析各种生物反应器的数据,从而对细胞的生长、代谢等过程有更加深入的理解,生物反应器是工程学的一部分也是化学工程的一个分支,加上成本低.、设备简单、效率高、产品作用效果显著、减少工业污染等优点使他能够在很多方面都有着重要的应用,如改良乳汁品质、生产药用蛋白、外源基因在动物体内的位点整合问题、.乳蛋白基因表达组织特异性问题、目的蛋白的翻译后修饰问题、转基因表达产物的分离和纯化问题、转基因的技术与方法问题、伦理道德问题等诸多方面。 生物反应器经历了三个发展阶段:细菌基因工程、细胞基因工程、转基因动物生物反应器。转基因动物生物反应器的出现之所以受到人们极大的关注,是因为它克服了前两者的缺陷,即细菌基因工程产物往往不具备生物活性,必须经过糖基化、羟基化等一系列修饰加工后才能成为有效的药物,而细胞基因工程又因为哺乳动物细胞的培养条件要求相当苛刻、成本太高而限制了规模生产。另外,转基因动物生物反应器还具有产品质量高、容易提纯的特点。一般把目的片段在器官或组织中表达的转基因动物叫做动物生物反应器。几乎任何有生命的器官、组织或其中一部分都可以经过人为驯化为生物反应器。从生产的角度考虑,生物反应器选择的组织或器官要方便产物的获得,例如乳腺、膀胱、血液等,由此发展了动物乳

生物柴油生产工艺

学院:化学与环境保护学院专业:化学工程与工艺 姓名:朱慧芳 学号:201031204011

新型藻类制生物柴油生产工艺 摘要:我国石油资源紧缺,研究开发生物柴油是当务之急。结合我国情况介绍了几种可用于生产生物柴油的原料,并针对不同的原料,提出了几种可供使用的生产工艺。用泔水油、地沟油和油厂下脚料等原料生产生物柴油工艺成熟、经济合算, 值得推广。为适应我国生物柴油的研究与生产,建议加快制定我国生物柴油的相关标准。 关键词:生物柴油;酯化;醇解;酯交换;脂肪酸;脂肪酸甲酯 一生物柴油概述 生物柴油 (Biodiesel),又称脂肪酸甲酯 (Fatty Acid Ester)是以植物果实、种子、植物导管乳汁或动物脂肪油、废弃的食用油等作原料,与醇类 (甲醇、乙醇) 经交酯化反应 (Transesterification reaction) 获得。生物柴油这一概念最早由德国工程师Dr. Rudolf Diesel (1858-1913) 于1895年提出,是指利用各类动植物油脂为原料,与甲醇或乙醇等醇类物质经过交脂化反应改性,使其最终变成可供内燃机使用的一种燃料。在1900年巴黎博览会上Dr.Rudolf Diesel展示了使用花生油作燃料的发动机。生物柴油具有一些明显优势,其含硫量低,可减少约30%的二氧化硫和硫化物的排放;生物柴油具有较好的润滑性能,可以降低喷油泵、发动机缸体和连杆的磨损,延长其使

用寿命;生物柴油具有良好的燃料性能,而且在运输、储存、使用等方面的安全性均好于普通柴油。此外生物柴油是一种可再生能源,也是一种降解性较高的能源。 二生产生物柴油背景技术市场分析 1生物柴油原料 由于各国的资源差异,生物柴油的原料差异较大,欧盟主要是菜籽油为主,美国主要是以大豆油为主。我国主要生物柴油主要以废弃油脂以及木本原料为主,并在价格合适的情况下考虑进口棕榈油。 2 生物柴油的优缺点 (1)生物柴油优势 与常规柴油相比,生物柴油下述具有无法比拟的性能。 1) 具有优良的环保特性。主要表现在由于生物柴油中硫含量低,使得二氧化硫和硫化物的排放低,可减少约30%(有催化剂时为70%);生物柴油中不含对环境会造成污染的芳香族烷烃,因而废气对人体损害低于柴油。检测表明,与普通柴油相比,使用生物柴油可降低90%的空气毒性,降低94%的患碍率;由于生物柴油含氧量高,使其燃烧时排烟少,一氧化碳的排放与柴油相比减少约10%(有催化剂时为95%);生物柴油的生物降解性高。 2) 具有较好的低温发动机启动性能。无添加剂冷滤点达-20℃。 3) 具有较好的润滑性能。使喷油泵、发动机缸体和连杆的磨损率低,使用寿命长。 4) 具有较好的安全性能。由于闪点高,生物柴油不属于危险品。因

生物反应器项目规划方案

生物反应器项目规划方案 投资分析/实施方案

报告说明— 该生物反应器项目计划总投资11052.87万元,其中:固定资产投资7881.50万元,占项目总投资的71.31%;流动资金3171.37万元,占项目总投资的28.69%。 达产年营业收入24035.00万元,总成本费用18993.65万元,税金及附加191.28万元,利润总额5041.35万元,利税总额5927.99万元,税后净利润3781.01万元,达产年纳税总额2146.98万元;达产年投资利润率45.61%,投资利税率53.63%,投资回报率34.21%,全部投资回收期4.42年,提供就业职位433个。 生物反应器是指利用自然存在的微生物或具有特殊降解能力的微生物接种至液相或固相的反应系统。一次性生物反应器作为更替可清洗以及可重复使用系统的替代品,自使用起即能发现他们的显著差异及影响。一次性组件能够提高生产灵活性、增强无菌保证、降低前期资本投入以及加速新设施启动。全球生物反应器产业市场规模将从2020年的18亿美元增长到2025年的42亿美元,在预测期内的复合年增长率为18.5%。小型企业和初创企业越来越多地采用SUBs降低了自动化的复杂性,减轻了海洋生物的种植,降低了能源和水的消耗,生物制剂市场不断增长,SUBs的技术进步以及生物制药研发的不断增长等因素推动生物反应器市场的增长。

第一章概况 一、项目概况 (一)项目名称及背景 生物反应器项目 (二)项目选址 某某工业园 对各种设施用地进行统筹安排,提高土地综合利用效率,同时,采用 先进的工艺技术和设备,达到“节约能源、节约土地资源”的目的。节约 土地资源,充分利用空闲地、非耕地或荒地,尽可能不占良田或少占耕地;应充分利用天然地形,选择土地综合利用率高、征地费用少的场址。 (三)项目用地规模 项目总用地面积26960.14平方米(折合约40.42亩)。 (四)项目用地控制指标 该工程规划建筑系数78.46%,建筑容积率1.11,建设区域绿化覆盖率6.51%,固定资产投资强度194.99万元/亩。 (五)土建工程指标

赛多利斯一次性生物反应器

赛多利斯一次性生物反应器 高性能一次性平台 近年来,赛多利斯的一次性生物反应器已应用到现代生物制药工艺中。它们不仅十分灵活,还能减少投资和运营成本。 今天,赛多利斯拥有一系列一次性生物反应器,是哺乳动物细胞培养、苛刻的高细胞密度,以及基于微载体工艺的理想之选。 赛多利斯已经开发出15 mL 的 ambr? 15 和2,000 L 的 BIOSTAT STR?一次性生物反应器,能够提供简单、直接的放大和缩小工艺。即使在大规模下,赛多利斯的产品一样能够保持卓越的性能,所以无论是当下还是未来,赛多利斯都能完全满足您从工艺开发到商业生产阶段的一切需求。 利用ambr?方案开发您的工艺。借助赛多利斯的Flexsafe? RM 工艺袋,组合成为种子培养中的预发酵罐;最后使用的Flexsafe STR?工艺袋用于珍贵产物的临床或商业生产。 Flexsafe?薄膜是赛多利斯一次性生物反应器的一大核心要素。Flexsafe?可确保最敏感的细胞系具有卓越的可重复生长行为,并在所有步骤中满足您对稳健

性和易用性的一切要求。为您提供前所未有的供应保证。赛多利斯与树脂和薄膜供应商的长期战略合作关系,确保了完全的可追溯性。 1.ambr? 15 细胞培养系统 2.ambr? 15 微生物发酵系统 3.ambr? 250 高通量系统 4.ambr? 250 高通量灌注培养系统 5.ambr? 250 modular 系统 6.BIOSTAT STR? & Flexsafe STR? 7.BIOSTAT? RM & Flexsafe? RM 8.BIOSTAT? RM TX & Flexsafe? RM TX 工艺袋 9.UniVessel? SU 连接上游 深入了解赛多利斯集成上游平台的概念。一次性技术是这一系列产品的支柱,不仅确保了卓越的工艺安全性和最佳的上市时间,还降低了产品成本。赛多利斯的薄膜供应确保完全的可追溯性。 细胞培养创新 在过去十年中,赛多利斯一直致力于上游技术的开发和优化,以应对重要的工业挑战。BioProcess international 补充说明了赛多利斯团队开发的各项产品及其特性,其中配有Flexsafe?薄膜的一流完整上游平台可助力客户实现安全、卓越和可重复的细胞培养支持。 ?细胞培养的创新|生物工艺 PDF | 4.4 MB | 2020年5月13日

生物柴油文献综述

年产2万吨生物柴油生产技术简介 一、总论 生物柴油概念:生物柴油是清洁的可再生能源,它以生物质资源作为原料为基础加工而成的一种柴油(液体燃料),主要化学成分是脂肪酸甲酯。具体而言,动植物油,如菜籽油、大豆油、花生油、玉米油、米糠油、棉籽油;以及动植物油下脚料酸化油,脂肪酸;动物油:猪油、鸡油、鸭油、动物骨头油等经一系列化学转化,精制而成的液体燃料,是优质的石油柴油代用品。生物柴油是典型的“绿色能源”,大力发展生物柴油对经济可持续发展,推进能源替代,减轻环境压力,控制城市大气污染具有重大的战略意义。 二、生物柴油的主要特性 与常规柴油相比,生物柴油具有下述无法比拟的性能。 1、优良的环保特性。主要表现在由于生物柴油中硫含量低,使得二氧化硫和硫化物的排放低,可减少约30%;生物柴油中不含对环境会造成污染的芳香族烷烃,如苯等化合物,因而废气对人体损害低于石化柴油。检测表明,与普通柴油相比,使用生物柴油可降低90%的空气毒性,降低94%的患癌率;由于生物柴油含氧量高,使其燃烧时排烟少,一氧化碳的排放与柴油相比减少约10%(有催化剂时为95%);生物柴油的生物降解性高。 2、具有较好的低温发动机启动性能,无添加剂冷滤点达–20℃。 3、具有较好的润滑性能。使喷油泵、发动机缸体和连杆的磨损

率低,使用寿命长。运动粘度稍高,在不影响燃油雾化的情况下,更容易生气缸内壁形成一层油膜,从而提高运动机件的润滑性,保护发动机,降低机件磨损。 4、具有较高的安全性能。由于闪点高,生物柴油不属于危险品。因此,在运输、储存、使用方面的安全性更高。 5、具有良好的燃烧性能。十六烷值高,含氧量高,燃烧性优于石化柴油,燃烧残留物呈微酸性,发动机油的使用寿命加长。 6、具有可再生性能。作为可再生能源,与石油储量不同,其通过农业和生物科学家的努力,可供应量不会枯竭。 7、无需改动柴油机,可直接添加使用,同时无需另添设加油设备、储存设备及人员的特殊技术训练。 8、使用性广。可广泛用于各种载重汽车、火车、公交车、卡车、舰船、工程机械、地质矿业设备、农用机械、发电机组等柴油内燃机;更是非动力的工民用窑炉、锅炉及灶具上佳燃料。 三、生物柴油的发展前景及意义 (一)国家立法、政策支持 从2006年1月1日起正式生效的《中华人民共和国可再生能源法》明确规定“国家将再生能源的开发利用列为能源的优先领域,——依法保护可再生资源开发利用者的合法权益”。并指出“生物液体燃料,是指利用生物质资源生产的甲醇、乙醇和生物柴油”。 (二)资源十分广泛 一是可利用各种动、植物油脂的各种废料、副产物,例如加工植

植物生物反应器的研究进展及应用

植物生物反应器的研究进展及应用 王勇 (广西工学院生化系20110401022) 摘要:随着植物转基因技术的发展,将植物体作为生物反应器生产有用的生化产物是当今生命科学技术研究中最热门的领域。植物生物反应器是近年来生物技术领域新的研究方向,利用农作物进行疫苗、药用蛋白的生产,具有广阔的市场前景和商业价值。植物系统具有低成本、安全和易规模化优势,其表达生物活性药用蛋白能力已被许多研究所证实;同时,植物药用蛋白产品还表现出潜在的市场和广阔应用前景。利用植物生物反应器生产药品是生物制药的一个分支,该技术通过基因工程植物生产药用蛋白质分子、肽和二级代谢物,具有成本低、规模化生产等优点。 关键词:植物生物反应器;转基因植物;重组蛋白;制药 随着人类经济社会的发展,对传统农业产品的要求也越来越高。现代生物技术,尤其是农业生物技术的迅速发展,对全球现有的农作物种植和生产结构能够产生重要影响。植物生物反应器是生物反应器研究领域中的一大类,是指通过基因工程途径,以常见的农作物作为化学工厂,通过大规模种植生产具有高经济附加值的医用蛋白、工农业用酶、特殊碳水化合物、生物可降解塑料、脂类及其他一些次生代谢产物等生物制剂的方法。植物生物反应器就是利用植物这个系统,包括植物细胞、组织器官以及整株植物为工厂,来生产具有商业价值的生物制品,包括疫苗、抗体、药用蛋白等,许多研究证实植物系统

具有表达活性哺乳动物蛋白的能力,在产品质量、成本和安全方面已显现出优势,并很快得到科学家和生物制药业的认可.据预测,未来5~1O年植物将成为临床治疗或诊断药品的主要生产系统。 1 植物生物反应器特点及优越性 许多研究证实植物系统具有表达活性哺乳动物蛋白的能力,在产品质量、成本和安全方面已显现出优势,并很快得到科学家和生物制药业的认可。科学家预测,不久的未来,植物生物反应器很可能成为生物化学药物及多种有用蛋白的重要生产系统。植物作为生产药用蛋白的生物反应器,为人类提供了一个更加安全和廉价的生产体系,与微生物发酵、动物细胞和转基因动物等生产系统相比,它具有许多潜在的优势。以生物学生产要求很高的疫苗为例,它的优点有:(1)技术较成熟,成本低廉,使用方便,易于推广;(2)植物具有完整的真核细胞表达系统,能准确地进行翻译后加工;(3)无须提取纯化过程,可直接食用免疫;(4)比传统的免疫途径更有效,植物细胞中的疫苗抗原通过胃内的酸性环境时可受到细胞壁的保护,直接到达肠内黏膜诱导部位,刺激黏膜和全身免疫反应;(5)安全性好,不需要注射器和针头之类的设备,避免了某些血液传播疾病。如果不以整株植物作为生产单位,而是用带有生产目的产物特性的植物细胞或组织作为生产单位,结合植物细胞培养和发酵工程方法,则可以像微生物发酵生产一样大规模工厂化生产目的产物。与人工栽培相比较,这种生产方式具有独特的优点:(1)节约自然资源,减少对土地资源的占用,同时不受地区、季节、气候等自然条件的影响;(2)细胞培养个体差异

生物柴油工艺流程简述

本项目所采用的是吸收发展日本HAVE技术及与公司技术研发合作方上海华东理工大学共同研制的脂肪酸甲脂提纯的分子蒸馏技术和自有的精制技术相结合,自主开发创新,独具特色的生产工艺和设备。是在国内外同行业中具有先进性的生物柴油生产新工艺。 叙述如下: STEP-1前处理 原料油在,多数场合时是含有一定的水分和微生物的,在加热100℃以上的情况下.甘油三酯(三酸甘油酯)的一部分加水分解,变为游离脂肪酸。因此,一般的原料油尤其是废食用油里含有2~3%的游离脂肪酸,饱和溶解度的水以及残渣的固定成分。这些杂质,特别是在由碱性触媒法的酯化交换过程中,使触媒活性下降,产生副反应生成使燃料特性变坏的副生物,所以,在酯交换反应前,有去除的必要.D/OIL 制造过程中,配合高速分离,真空脱水,脱酸等,几乎可以全部除去废食用油中的杂质。饱和脂肪酸采用烙合法断链转换成不饱和脂肪酸。 STEP-2 甲醇触媒的溶解 水分等杂质含有量在所定值以下的甲醇和触媒混合后,用来调制甲醇溶液.此过程中,特别要注意的是,由于溶解热的突然沸腾,有必要控制溶解速度和溶液的温度。另有,KOH触媒由于吸水性较高,所以,在储藏和使用阶段尽量防止吸收水分、一旦,吸收了大量的水分时, KOH就会变得难于溶解,将会影响到下一个工序。

STEP-3 酯交换反应 将经过前处理的原料油和触媒,甲醇混合,在65度左右时进行酯交换反应(Ⅲ--4)。在此工序中,为了达到完全反应的目的(tri-di-mono-甘油酯的转化率在99%以上),有必要控制甲醇/原料油比,触媒/原料油比,搅拌速度,反应时间等的参数。。通常,甲醇/原料油比和触媒/原料比越大,反应速度越快,投入化学反应理论以上的过剩甲醇时,不只是D/OIL的制造原价升高, D/OIL中的残存甲醇浓度也升高,燃料特性反而恶化。还有,此工程,如果原料油中水分和游离脂肪酸有残留的情况下,会引起如下图所示的副反应。过量甲醇通过闪蒸分离后经精馏回用。 STEP-4 甘油的分离 反应结束后,从酯交换反应的生成物甘油和甲酯的混合物中分离出甘油. 甘油的分离,虽然可以利用甘油(1.20g/cm3) 和甲酯(0.88g/cm3)的比重差,使之自然沉降,不仅分离速度很慢,也不能使甘油完全分离.所以, .D/OIL的制造过程是通过高效率的高速离心分离机来进行分离的. STEP-5 甲酯的精制 甲酯的精制是通过蛋白页岩吸附剂,去除生物柴油中的碱性氮、和黄曲霉素。

乳腺生物反应器的相关技术及前景展望

乳腺生物反应器的相关技术及前景展望 摘要:文章分析了乳腺生物反应器的发展背景、研究概况;从定义、原理、建 立乳腺反应器的基本方法方面详细的讲解了相关知识;从现在应用的相关生物工 程技术入手,分析了各种方法的可借鉴优点以及存在的不足,并且提出了可以解 决的办法;展望将来乳腺生物反应器广阔的科研前景和巨大的经济潜力 关键词:乳腺生物反应器;生物工程;转基因技术 1国际国内背景 1.1 生物工程发展 在新技术革命的影响下,传统的化学药物模式正在为生理药学模式逐步替代,预示着医药工业体系的划时代变革。在生物工程药物的生产中,基因工程技术的 运用显示出了其无与伦比的优越性:基因工程技术能明显提高生化药物的生产效率;基因工程提供了大规模制取传统技术难以制备的人体内活性物质的技术;基 因工程药物对过去难以治疗的一些病症有特殊效果。基因工程药物一般毒副作用 较小。 1.2 乳腺生物反应器的研究概况 1980年Gordon 用显微注射法将外源胸苷激酶基因转入小鼠基因组,首开转基 因小鼠之先河。1982年,Palmiter 等成功地获得了转人生长激素的“硕鼠”轰动了 整个生命科学领域。1987年Gordon 将人组织纤溶酶原激活剂(t-PA)cDNA与小鼠 乳清酸蛋白(WAP)基因启动区构建融合表达结构,首建乳腺生物反应器小鼠模型。1991年Wright等在羊的乳腺中表达了人抗胰蛋白酶基因,且其含量高达35g/L。 此后,转基因动物乳腺生物反应器的研究进一步深入,相继获得了多种珍贵蛋白,人α1-抗胰蛋白酶、人尿激酶、人凝血因子Ⅸ等诸多重要蛋白在转基因动物中业 已获得有效表达,显示出乳腺生物反应器美好的应有前景。 2 乳腺生物反应器 2.1 乳腺生物反应器定义及特点 动物乳腺生物反应器是基于转基因技术平台,使外源基因导入动物基因组中 并定位表达于动物乳腺,利用动物乳腺天然、高效合成并分泌蛋白的能力,在动 物的乳汁中生产一些具有重要价值产品的转基因动物的总称。乳腺生物反应器生 产的外源蛋白种类广泛,从小分子肽到大分子复杂蛋白质,从生物活性酶到抗体、病毒抗原蛋白均可有效生产。 2.3乳腺生物反应器的应用现状 乳腺生物反应器的应用主要体现在四个方面:建立转基因动物生物反应器模型;生产药用珍稀蛋白;提高乳汁的营养价值,并降低有达物质的含量,如导入 乳铁蛋白基因以提高乳铁蛋白在乳中的含量,导入溶酶基因以降低乳中细菌的含量;改变乳汁的组成成分,使其性质更接近人乳,提高乳汁的应用价值。 2.4表达载体} 制备乳腺生物反应器的关键是保证目的蛋白特异性在乳腺中的高效表达,传 统表达载体都是选用某种乳蛋白基因的调控序列作为启动子元件。目前,已经克 隆并用作构建载体的乳蛋白基因主要有β-乳球蛋白(BLG)基因、aS1-酪蛋白基因、β-酪蛋白基因、乳清酸蛋白(WAP)以及乳清白蛋白基因。 3 常用的转基因技术及其应用前景 3.1 常用的转基因技术种类 转基因技术是制备乳腺生物反应器的核心技术。目前制备动物乳腺生物反应

新型的一次性使用生物反应器iCELLis

ATMI LifeSciences The Source of Bioprocess Efficiency ? Integrity ? iCELLis ? Single-Use Bioreactor for Process Intensification

F l e x i b l e,F a s t,E f f e c t i v e

Features and Configurations ? Integrated mixing system for evenly-distributed media circulation and low shear stress ? Specialized carriers specifically adapted to adherent cell cultures ? Unique waterfall media oxygenation for high oxygen transfer ? Single-use bioreactor made from USP Class VI rigid plastic to ensure process reliability ? Modular height of fixed-bed – from 2cm to 10cm – offering several configurations of small and large scale The iCELLis bioreactor is available in two formats: ? The iCELLis nano system for feasibility studies and small-scale production ? The iCELLis 500 system for industrial scale manufacturing (up to 500m 2) 1234 5 678The iCELLis 500 bioreactor on its fully-integrated skid 9 T able 1: Configurations of iCELLis bioreactors at small and manufacturing scale

生物反应器的现状及发展趋势

生物反应器的现状及发展趋势 【摘要】:生物反应器的研制不仅对现有生物产业的发展起着关键作用,而且可以用于进行高附加值化合物、药物等的生产。生物反应器在生物产品研究工作中是一个必不可少的重要工具和手段。人类正面临人口膨胀、陆地资源减少和环境恶化等全球性问题。传统的生产模式已经很难适应经济快速发展的需要,生物反应器的研究工作正在世界范围内蓬勃兴起。本文对生物反应器的现状及发展趋势进行了综述。 【关键词】:生物反应器;结构;功能;优缺点; 1 生物反应器的定义 生物反应器:生物反应器是利用酶或生物体(如微生物)所具有的生物功能,在体外进行生化反应的装置系统,是一种生物功能模拟机,如发酵罐、固定化酶或固定化细胞反应器等。 2 生物反应器的分类 2.1 发酵罐 2.1.1 发酵罐的主要构造 其主体一般为不锈钢制成的主式圆筒,其容积在一平方米至数百平方米。内部及顶部、底部有附件。 2.1.2 发酵罐的主要分类 (1)通气机械搅拌罐 通气机械搅拌罐(后面简称发酵罐)是许多发酵过程的首选设备,具有高传质和传热能力,理想的气液混合效果,较长的液体停留时间和较宽的操作气速。但缺点也明显,郾剪切力较大,损害许多剪切敏感型微生物能耗大,混合不均。因此,发扬通风搅拌罐的优势,克服其缺点是当前发酵罐研究的重点之一。通风搅拌罐改进工作主要在搅拌系统,包括搅拌器和多层搅拌系统的优化,搅拌器主要是采用新型搅拌器或改进标准搅拌器,目的是减少桨叶尾流的漩涡以便节能,或者改变反应器的流态,使得剪切力可以均匀的分布,保护反应器中的微生物。多层搅拌系统很早就开始使用,但由于对其工作机理研究不够深人,多年来一直采用简单的经验设计方法,没有发挥其应有的优势。 目前对于通风搅拌发酵罐的认识已经到了一个新的高度,主要表现在研究的内容和手段两面面,从内容看,对多层搅拌系统的研究不只是以单搅拌研究为基础的延伸,而是以多层搅拌为研究目标研究的深度和广度都在扩展,同时,研究溶液性质对传质和混合的影响,使得得出的成果更接近实际,为进一步的精确设计提供了相当的基础,尽管目前这些进步还不能实现完全通过计算就可实现发酵罐的放大设计。当然,这些成果的取得是伴随研究手段取得的进步,一些先进的仪器和技术为深入了解现象的内在规律提供了可能,如用于观察流体流动状态的多普勒流体分析仪、多普勒速度仪,分析工具计算流体力学及软件,准确测量体积氧传递系数Kla动压法等等。对于气液系统,用最小的功率消耗获得最大的气含率是最重要的设计目标,组合搅拌系统的底搅拌必须采用纯径向流搅拌器(如圆盘直叶涡轮搅拌桨),顶部采用混合流搅拌桨(如折叶开启式涡轮搅拌桨)向下输送液流,且液流应在湍流状态。得到最大的气含率就相当于得到最大的气液传质系数,这个结论有助于在设计时找出获得最大传质系数Kla同时功耗最低的设计参数。同样在搅拌系统设计中,引进新型高教的搅拌器可以进一步提高发酵罐的效率和表现。另外,搅拌系统设计的另一个重要原则就是对发酵液的理化性质的关注,由于发酵液成分复杂。对K-a的影响也是比较显著的,因此,根据发酵液的特性设计搅拌系统也是非常必要的,由于目前还无法量化描述发酵液成分对发酵过程传质传热的影响,大型发酵罐的设计应以小型试验为基础,选择适合的关联式作为放大依据。可能是最佳的设计方法。尽管,对发酵罐搅拌系统的研究已经取得了许多可喜的进展,但仍有许多同题需要深入研究。总体上,

相关主题
文本预览
相关文档 最新文档