当前位置:文档之家› 麦芽糖醇的生产工艺

麦芽糖醇的生产工艺

麦芽糖醇的生产工艺
麦芽糖醇的生产工艺

麦芽糖醇是由麦芽糖经氢化还原制成的双糖醇。工业上其生产工艺可分为两大部分,第一部分是将淀粉水解制成高麦芽糖浆,第二部分是将制得的高麦芽糖浆加氢还原制成麦芽糖醇。整个工艺流程如下:

淀粉一调浆(浓度10%~20%,pH6.0~6.4)一液化(100℃,DE10~12)一糖化(45~50℃,pH5.8~6.0)一压滤一脱色(pH4.5~5.0,80℃,30rain,20~25转/分)一压滤一离子交换(流速700kg/h,40cI=左右)一真空浓缩(0.086~0.092Mpa,50~53~C)一高麦芽糖浆一备料(浓度12%~15%)一调pH(7.5~8.0)一进料反应(温度120~C~130~C,压力8Mpa)一过滤脱色一离子

交换一蒸发浓缩一成品。

操作要点:

高麦芽糖浆制备。

(1)调浆:先将一定量的水加入调浆罐中,开动搅拌器,逐渐加入淀粉,将淀粉调成浓度为10%~20%的淀粉乳,调粉时充分搅拌,防止结团。待淀粉完全调匀后,加入0.1%左右的纯碱,将pH调至6.0~6.4,为提高淀粉酶的活力,加入0.2%~0.5%(对淀粉而言)的氯化钙,搅拌均匀。

(2)液化:该工序对提高麦芽糖的产率很关键,应严格操作。将调好的淀粉乳打入贮罐,d 一淀粉酶的加入量按5U/g淀粉计,IO0~C液化至DE值1O~12。同时立即升温100℃以上,保持5min,进行高温灭酶。经过高温处理后的淀粉液化液,分散性好,不易发生凝沉,利于糖化操作。

(3)糖化:将液化冷却至45~50℃,调节pH至5.8~6.0,加异淀粉酶20U/g淀粉和鲜麸皮,13一淀粉酶10U/g淀粉,糖化3O~40h,得到含80%~95%麦芽糖,5%~15%麦芽三糖的糖化液。

(4)压滤:其作用是除去糖化液中的杂质,保证后面工序的顺利进行。用板框式压滤机压滤,以硅藻土或压碎珍珠石为助滤剂,至得到澄清的滤液为止。

(5)脱色:按滤液干物质的0.5~1.0%加入粉末活性炭,加入前先将活性炭与等量滤液混合,这样易于活性炭的混合。脱色操作条件:pH4.5~5.0,80℃,30min,以20~25rpm 的速度搅拌,然后以硅藻土为助滤剂(用量为0.3—0.5kg/m2),用板框式压滤机压滤。先用少量糖化液把硅藻土调匀,然后用泵打入加滤机,压力要求在0.1MPa以下,使硅藻土均匀地沉积在滤面上,开始滤出的滤液不清,将其回流到脱色罐,直至液澄清为止,关闭回流管,将滤液送至贮缸,过滤压力应控制在0.2~0.3MPa。

(6)离子交换:通过离子交换除去滤液中的金属离子、离子型色素以及残留的可溶性含氮物等杂质,可进一步提高糖液的纯度和热稳定性,使其无色透明。离子交换流程:糖化液一阳柱一阴柱一阳柱一阴柱。选用强酸性阳树脂和强碱性阴树脂,使用前离子树脂经浸泡膨胀后,分别装入阴、阳柱中,再经酸洗、碱洗、水选后即可使用,交换时控制流速约700kg/h,温度为40℃左右。树脂使周期的长短视糖浆中杂质含量而定,杂质量高则使用周期短。

(7)真空浓缩:真空度维持在0.086—0.092MPa,糖液温度约为50~53℃,真空度不低于0.066MPa,蒸汽压力控制在0.2~0.3MPa。浓缩至固形物含量40~60%,停汽放空,即可作为制备麦芽糖醇的原料。

注意事项:液化时要特别注意DE值必须控制在最低范围。及时灭酶处理,防止DE值过高影响麦芽糖的产率。

麦芽糖醇的制备。

将固形物含量为40%~60%的无色纯净的高麦芽糖浆在碱性条件下,按淀粉投入量的8%加入镍催化剂。在高压釜中通入5~18MPa氢气,在此条件下麦芽糖开始吸收H 进行加氢反应。氢化结束后,即得麦芽糖醇液。然后过滤除去糖液中的催化剂,再经活性碳和离

子交换处理(操作要求及步骤与前述操作相同),便可得到澄清的麦芽糖醇。最后经真空浓缩、喷雾干燥等工序即可制成麦芽糖醇浆或粒状产品。影响麦芽糖醇质量的因素有:液化后的DE值;糖化后麦芽糖的含量,含量大于90%的高含量麦芽糖才能产出高含量的麦芽糖醇;氢化后麦芽糖醇的含量,氢化效果对后续的结晶有很大影响,提高氢化转化率,降低残糖的含量,将大大增加麦芽糖醇的结晶能力,通常氢化后应保证麦芽糖醇含量大于85%。#p#分页标题#e#

目前,市场上销售的麦芽糖醇主要以固形物75%的麦芽糖醇糖浆为主,麦芽糖醇的含量普遍在50%左右,由于麦芽三糖醇之类的高级糖醇含量高,使麦芽糖醇溶液的黏度增大,抑制结晶的出现,因此生产结晶麦芽糖醇就比较困难。要生产高纯度的麦芽糖醇必须先生产高纯度的麦芽糖,由于麦芽糖醇产品中对山梨醇含量有限制,因此在选择糖化时要提高麦芽糖的含量,还要控制葡萄糖的生成,糖化酶的选择十分重要。离交和反应的控制对最终生成麦芽糖醇的含量影响较大,离交后物料pH偏低会使部分麦芽糖分解成葡萄糖,使反应后产品山梨醇含量过高。反应过程还要注意控制人料浓度、pH值、反应时间、反应温度。由于麦芽糖醇熔点较高,可以选择较高的干燥温度,但由于麦芽糖醇黏度大,必须在瞬间干燥,因此可以采用全结晶工艺生产结晶麦芽糖醇,即以液体麦芽糖醇为原料在融化状态下喷雾干燥来生产粉末状固体产品。

麦芽糖精制流程图

麦芽糖浆(饴糖、高麦芽糖浆、超高麦芽糖浆) 麦芽糖浆是以淀粉为原料,经酶法或酸酶结合的方法水解而制成的一种以麦芽糖为主(40%~50%以上)的糖浆,按制法与麦芽糖含量不同可分为饴糖、高麦芽糖浆和超高麦芽糖浆等。 饴糖是最早的淀粉糖产品,距今已有2 000余年的历史,传统生产工艺是以大米或其他粮食为原料,煮熟后加麦芽作为糖化剂,淋出糖液经煎熬浓缩即为成品。该糖浆含有40%~60%的麦芽糖,其余主要是糊精、少量麦芽三糖和葡萄糖,具有麦芽的特殊香味和风味,因此又称为麦芽饴糖。20世纪60年代起已被酶法糖化工艺所取代。所谓酶法糖化是先将淀粉质原料磨浆,加热糊化,用α一淀粉酶液化,然后用植物(麦芽、大豆、甘薯等) β一淀粉酶糖化作成糖浆,再经脱色和离子交换精制成酶法饴糖,称为高麦芽糖浆。高麦芽糖浆制造时,若在糖化时将淀粉分子中的支链淀粉分支点的α一1,6键先用脱支酶水解,使之成为直链糊精,再经β一淀粉酶作用,可生成更多的麦芽糖,其中糊精的比例很低,麦芽糖的含量在70%以上,这种糖浆被称为超高麦芽糖浆活液体麦芽糖浆(表6~2)。 1 饴糖 饴糖为我国自古以来的一种甜食品,以淀粉质原料——大米、玉米、高梁、薯类经糖化剂作用生产的,糖分组成主要为麦芽糖、糊精及低聚糖,营养价值较高,甜味柔和、爽口,是婴幼儿的良好食品。我国特产“麻糖”、“酥糖”,麦芽糖块、花生糖等都是饴糖的再制品。 饴糖生产根据原料形态不同,有固体糖化法与液体酶法,前者用大麦芽为糖化剂,设备简单,劳动强度大,生产效率低,后者先用α一淀粉酶对淀粉浆进行液化,再用麸皮或麦芽进行糖化,用麸皮代替大麦芽,既节约粮食,又简化工序,现已普遍使用。但用麸皮作糖化剂,用前需对麸皮的酶活力进行测定,β一

(财务管理)财务分析报告作业

云天化集团公司2008年财务报表分析报告 班级会计72 姓名李静尧学号1917212 一、2008年云天化集团公司经营活动情况概述 公司主营业务为化肥、化工原料及产品的生产、销售,主要产品为合成氨、尿素、硝酸铵、复合肥、季戊四醇、聚甲醛、甲酸钠。CPIC 主营业务为生产、销售玻璃纤维系列产品,主要产品为无碱玻璃纤维和浸润剂。天合公司主营业务为生产、销售复混肥,主要产品为复混肥。天安公司主营业务为生产、销售液氨,主要产品为液氨。天盟公司主营业务为尿素、复混肥、复合肥、磷肥、钾肥、农药、种子、农膜、农业机具等农业生产资料及季戊四醇、共聚甲醛、甲酸钠、甲醇、甲醛、液氨、玻璃纤维及其制品等化工、建材产品的销售与服务。天勤公司主营业务为研发、生产、销售玻璃纤维织物系列产品。天腾公司主营业务为肥料销售、研发。金新化工主营业务为生产、销售尿素,主要产品为尿素。 报告期内生产合成氨496,120 吨、散尿素695,696 吨、硝铵78,228 吨、季戊四醇12,164吨、聚甲醛35,597 吨、甲酸钠8,788 吨、玻璃纤维系列产品323,832 吨、玻璃纤维电子布28,478,310 米、复混肥66,534 吨,分别完成年度计划的82.69%、99.39%、97.79%、97.31%、98.88%、99.86%、94.95%、61.31%、38.02%。 报告期内销售尿素721,940 吨、硝铵78,238 吨、季戊四醇11,579 吨、聚甲醛33,204吨、甲酸钠10,652 吨、玻璃纤维系列产品308,125 吨、玻璃纤维电子布23,309,464 米、复混肥57,885 吨,产销率分别为103.77%、100.01%、95.19%、93.28%、121.21%、95.15%、81.85%、87.00%,分别完成年度计划的100.27%、97.80%、92.63%、89.74%、121.05%、90.34%、50.18%、33.08%。 报告期内实现营业收入770,420 万元,比去年同期增加28.29%,主要是因为CPIC 新增生产线,产销量增加及天盟公司商贸收入增加所致;利润总额90,369 万元,比去年同期增加1.89%,CPIC 销售收入增加及天盟公司商贸收入增加使利润随之增加;净利润82,356 万元,比去年同期减少2.07%,主要是本年度没有技术改造购买国产设备抵免企业所得税优惠政策,使公司所得税费用增加,公司净利润下降;归属于母公司所有者的净利润65,720 万元,比去年同期减少3.59%。报告期内,营业收入、利润总额及净利润分别完成年度计划的108.49%、98.71%、102.33%。 报告期,现金及现金等价物比期初净增加额64,423 万元,增加的主要原因是筹资活动产生的现金净流量增加。 截至2008 年12 月31 日,公司总资产为1,765,621 万元,比上年末增加37.72%, 股东权益合计为543,143 万元,其中归属于母公司的股东权益为367,397 万元,比上年末增加7.53%。

季戊四醇生产工艺

df文档 河北大学硕士学位论文姓名:石敏瑜申请学位级别:硕士专业:应用化学指导教师:白国义20100501 摘 要 摘 要 双季戊四醇是一种重要的精细化工中间体,不论是在实验室研究还是在工业生产中都具有十分重要的意义。本文对双季戊四醇及其衍生物的合成与废水处理工艺进行了系统的研究。首先,以甲醛、乙醛和氢氧化钠为原料,对单、双季戊四醇的合成工艺进行了研究。为提高双季戊四醇的选择性,系统地考察了反应物的物质的量之比、反应终温、单季戊四醇加入量等因素对反应的影响,确定了最佳反应条件:在反应终温为46℃,n(甲醛):n(乙醛):n(氢氧化钠) = 6.0:1:1.2 时,加入质量分数为 6 wt%的单季戊四醇,乙醛的转化率接近100.0%,单季戊四醇的选择性为91.2%,双季戊四醇的选择性为 4.7%。接着,以双季、丙烯酸为原料,合成了双季戊四醇六丙烯酸酯。考察了阻聚剂和酸催化剂的加入量对反应的影响,确定了最佳实验条件:在酸醇摩尔比为7.5:1,对苯二酚加入量 3 wt%,对甲苯磺酸加入量为4 wt%时,双季戊四醇六丙烯酸酯收率为90.6%。此外,还建立了一种基于TiO2 光催化剂的单(双)季戊四醇废水处理工艺。制备了一系列的TiO2 催化剂用于单(双)季戊四醇的废水处理,并发现TiO2-HY 催化剂具有较高的催化活性和稳定性。通过XRD,SEM,XPS 等系列表征,发现TiO2-HY 催化剂粒径22.6 nm,以金红石相存在。pH 为6,50 mL 废水中催化剂加入量为0.06 g 时,在光照16 h,废水中总有机物的降解率可达90.5%。 关键词 双季戊四醇合成 衍生物 废水处理 TiO2 I Abstract Abstract Dipentaerythritol (DPE) is an important fine chemical intermediate, which has a great significance both in the laboratory and industrial production. Synthesis of DPE and its derivative, together with the technology for the disposal of its wastewater, are studied in this paper. The synthesis of pentaerythritol (PE) and DPE were studied systematically, using formaldehyde, aldehyde and 骚年美女网https://www.doczj.com/doc/c217669126.html, NaOH as the starting material. The influence of the molar ratio of the reactants, final reaction temperature, and dosage of PE were optimized. The conversion of aldehyde is nearly 100.0% and the selectivity of PE and DPE are 91.2% and 4.7%, respectively, while the final reaction temperature is 46℃, the molar ratio is n(formaldehyde): n(aldehyde): n(NaOH) = 6.0:1:1.2, and the dosage of PE is 6 wt%. The synthesis of dipentaerythritol hexaacrylate was also studied, using DPE, crylic acid as the starting material. The influence of dosage of inhibitor and acid catalyst were optimized. The yield of dipentaerythritol hexaacrylate is 90.6%, while the molar ratio is n(crylic acid): n(DPE) = 7.5:1, t

制季戊四醇的方法

1.4 季戊四醇的制备 美国人于20世纪30年代发现,甲醛与乙醛在碱性催化剂氢氧化钠作用下,可以发生缩合反应,偶然间发现了制备出季戊四醇的方法,从此季戊四醇的工业化生产便在美国实现了。季戊四醇的应用范围及市场需求不断扩大,导致国内及国外都加大了对季戊四醇生产技术的研究,季戊四醇的开发研究进入了火热的时期。 季戊四醇的制备根据催化剂的不同,总体来说分为两种途径,一种途径是选用强碱性催化剂,例如氢氧化钠,氢氧化钾,氢氧化钙,然而这个过程最大的缺点是形成大量副产物甲酸盐,甲酸盐没有合适的销路;另一种途径是选择碱性较弱的胺类作为反应的催化剂,尤其是三乙胺,非常适合作为此反应的催化剂,在三乙胺的催化作用下,甲醛与乙醛发生反应,三羟甲基乙醛是羟醛缩合反应的主要产物,然后通过加氢反应,制得最终产物季戊四醇[30]。 1.4.1 Cannizzaro 缩合法 甲醛、乙醛会发生反应生成三羟甲基乙醛,该制备过程选择的催化剂大多为碱性较强的催化剂,生产的中间产物再经过Cannizzaro 反应生成季戊四醇,整个反应过程的机理研究已相当成熟,Cannizzaro 缩合法制备季戊四醇的过程分为两个阶段,Cannizzaro 缩合法的第一步反应是过量甲醛与乙醛混合发生羟醛缩合反应,生成三羟甲基乙醛[31]。Cannizzaro 缩合法的第一步反应是可逆反应,具体的反应过程如下所示: CH 3CHO +HCHO CH 2OHCH 2CHO CH 2OHCH 2CHO HCHO +OH -OH -(CH 2OH)2CHCHO (CH 2OH)2CHCHO HCHO OH -+(CH 2OH)3CCHO 经过羟醛缩合反应制得中间产物三羟甲基乙醛,再与甲醛进一步发生Cannizzaro 反应,最终制得产物季戊四醇,并且有相应的副产物甲酸盐生成,第二步反应的具体机理如下: (CH 2OH)3CCHO HCHO ++OH -(CH 2OH)4C +HCOO -

2020年聚乙烯醇膜行业分析研究报告

2020年聚乙烯醇膜行业分 析研究报告

目录 一、中国聚乙烯醇膜行业概况 (4) 1、聚乙烯醇膜市场规模达7000亿元,保持稳中向好发展趋势 (4) 2、中国聚乙烯醇膜行业PEST分析 (5) 3、聚乙烯醇膜行业处于初级阶段,资源整合盈利亟待突破 (6) 4、中国聚乙烯醇膜行业存在的问题分析 (7) 5、行业进入洗牌期,信息化趋势明显 (8) 二、中国聚乙烯醇膜行业市场分析 (9) 1、市场结构多元化,服务包装占比突出 (9) 2、行业地位逐步提高,影响力突出 (10) 3、行业规模同比增长19.6% (11) 4、行业的覆盖人群规模大、服务及服务用户占比高 (11) 5、生产服务状况今非昔比 (11) 6、市场策略连锁直销、渠道销售模式 (11) 7、价格走势遵循一般行业服务走势规律 (12) 三、中国聚乙烯醇膜行业政策环境 (12) 1、十三五规划解读 (12) 2、地级市的标准需要参考省级区域的标准 (12) 3、财政税收政策较为全面 (13) 4、政策走势日趋重视,技术环境开拓创新 (13) 四、中国聚乙烯醇膜行业竞争格局 (13) 1、竞争企业介绍 (13) 2、行业竞争力分析 (14) 3、竞争焦点介绍 (14) 4、竞争技术介绍 (14)

5、竞争趋势与影响 (15) 五、中国聚乙烯醇膜行业发展趋势预测 (15) 1、行业特征分析 (15) 2、行业发展趋势分析 (16) 3、行业前景 (17) 4、商机发掘 (18) 5、发展路径与未来走向 (18) 六、中国聚乙烯醇膜行业投资策略分析 (18) 1、投资机会 (18) 2、投资风险 (19) 3、投资建议 (19) 4、投资回报 (20)

麦芽糖的生产工艺与要点

麦芽糖的生产工艺与要点-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

麦芽糖的生产工艺与要点 1.调浆 浓度17——18波美度—— 温度≤45℃ 糖浆必须均匀,无团块,流动性好。而搞α-淀粉酶添加量为400——450ml/T干基。 2.液化 一次喷射温度105——110℃带压保温时间4——5分钟。二次喷射温度125——135℃带压保温时间1——2分钟。层流罐反应温度95——98℃,反应时间110分钟左右,液化液的终止DE值15——20%,碘色反应呈现棕色或浅棕色。 3.糖化 液化后的液化液经降温至58——60℃,再泵入糖化罐内。糖化的工艺将根据不同的产品而不一。一般而言加糖化酶之前,液化液的DE值为20%,PH值调至,温度55——56℃,加入真菌酶200ml/T干基,糖化时间44——46小时,糖化液最终DE值为46——48%。 另一种常规工艺是:加酶前液化液DE值20%,——,温度58——62℃,先加入真菌酶200ml/T干基,14小时后再添加复合糖化酶100ml/T干基,糖化总时间26小时,糖化液最终DE值为52——55%。 糖化时间到即刻升温80—85℃灭酶出料,也可用喷射器灭酶。

糖化酶加入后搅拌30分钟即可,随后静态糖化反应,搅拌应机械或空气型,压缩空气要经过洁净处理。 糖化罐要定期消毒,以防微生物染菌发酵。 4.一次脱色过滤 糖液内加入303型糖用湿炭,%/T干基,80℃条件下搅拌30分钟再进行压滤,机内压≤,滤液应澄清,基本无色,无碳粒,透光率≥95%。 正常生产可利用脱色回碳,新湿碳添加量为%/T干基,滤布安装平整不重叠,不错位,压紧装置应将压滤机压至极限,要保持压滤机碳层均匀,饱和后压滤机用水和气冲洗滤饼,使其含糖量≤2%。 5.二次脱色 加入303型糖用炭%/T干基,压滤机内压≤,滤液清澈,无色透明,有光泽,无碳粒,透光率≥97%。 6.离交; 用板式换热器将糖温降正≤50℃,糖液通过阳-阴-阳-阴床进行离子交换和脱色,流量为单罐树脂,体积的倍/h。一般是四对离交柱交替使用,即结合形式为(1,2)(2,3)(3,4)(4,1)。当第一对阳阴交换柱出液的电导率≥120US/cm或颜色明显变黄时停止进液。原第二对阳阴交换柱成为第一对,而备用的交换柱将作为第二对使用。 调节离交液PH值应利用现有的阳柱而不必滴加酸。 离交液的质量标准:透明.清澈.无色.无异物.无泡沫层.电导率≤50us/cm,PH≥,透光率≥99%。

论文中期检查报告范文

论文中期检查报告范文_毕业论文中期检查报 告 篇一 本论文首先对会计环境的研究理论及现状进行阐述。然后透过对文献及会计环境的研究现状进行分析,微观到宏观,由点及面,反复论证.在论文的最后,结合其现阶段的发展状况,提出若干政策性推荐。 开题以来所做的具体工作和取得的进展或成果 1.收集和整理资料,参阅部分收集到的资料,对论文命题有了初步的认识。 2.完成开题报告,并透过指导老师和论文开题答辩小组审查。 3.查找与阅读论文相关的适宜的英文文献,对其进行翻译并完成。 4.寻找实习单位,进行为期一个月的实习,实习资料涉及社会实践和与论文相关的实地研究。 5.实习期间写下实习周记。 6.透过文献研究和实践研究,对论文命题有了较为全面的理解后,结合前人的研究成果,完成论文初稿的撰写 存在的主要问题及解决办法 到目前为止,在论文的写作中主要有以下几个问题:

1.对论文所涉及的知识认识得不够深刻,所以对命题的探讨但是深入。 2.研究中引入的数据不够,对相关问题的支撑程度不足。 3.论文的各部分之间的衔接不够强,有的地方缺少逻辑。 导致上述问题主要有两个原因 一是撰写不够严密。 二是是研究不够深入, 针对这两个原因,解决方法有: 1.对论文所涉及的知识以及前人的研究成果理解程度需要更加深刻,在这个基础上才能得到有深度的结论。 2.需要对已完成的资料进行多次审阅,从资料、结构及用语等方面给予调整。 3.对于写作过程中遇到的具体难题要多向指导老师请求援助。 下一步的主要研究任务、具体设想与安排 在往后的论文写作中主要研究任务是在已完成的基础上给予完善,具体的方法是参阅更多的相关研究文章,尤其是研究较为完整系统的书籍,深度提取其成果,结合本文的研究方向与思路来引用,其中具体资料包

制季戊四醇的方法

制季戊四醇的方法

1.4 季戊四醇的制备 美国人于20世纪30年代发现,甲醛与乙醛在碱性催化剂氢氧化钠作用下,可以发生缩合反应,偶然间发现了制备出季戊四醇的方法,从此季戊四醇的工业化生产便在美国实现了。季戊四醇的应用范围及市场需求不断扩大,导致国内及国外都加大了对季戊四醇生产技术的研究,季戊四醇的开发研究进入了火热的时期。 季戊四醇的制备根据催化剂的不同,总体来说分为两种途径,一种途径是选用强碱性催化剂,例如氢氧化钠,氢氧化钾,氢氧化钙,然而这个过程最大的缺点是形成大量副产物甲酸盐,甲酸盐没有合适的销路;另一种途径是选择碱性较弱的胺类作为反应的催化剂,尤其是三乙胺,非常适合作为此反应的催化剂,在三乙胺的催化作用下,甲醛与乙醛发生反应,三羟甲基乙醛是羟醛缩合反应的主要产物,然后通过加氢反应,制得最终产物季戊四醇[30]。 1.4.1 Cannizzaro 缩合法 甲醛、乙醛会发生反应生成三羟甲基乙醛,该制备过程选择的催化剂大多为碱性较强的催化剂,生产的中间产物再经过Cannizzaro 反应生成季戊四醇,整个反应过程的机理研究已相当成熟,Cannizzaro 缩合法制备季戊四醇的过程分为两个阶段,Cannizzaro 缩合法的第一步反应是过量甲醛与乙醛混合发生羟醛缩合反应,生成三羟甲基乙醛[31]。Cannizzaro 缩合法的第一步反应是可逆反应,具体的反应过程如下所示: CH 3CHO +HCHO CH 2OHCH 2CHO CH 2OHCH 2CHO HCHO +OH - OH 2OH)2CHCHO (CH 2OH)2CHCHO HCHO OH +2OH)3CCHO 经过羟醛缩合反应制得中间产物三羟甲基乙醛,再与甲醛进一步发生Cannizzaro 反应,最终制得产物季戊四醇,并且有相应的副产物甲酸盐生成,第二步反应的具体机理如下: (CH 2OH)3CCHO HCHO ++-(CH 2OH)4C +HCOO -

啤酒生产工艺流程

啤酒生产工艺流程

啤酒生产工艺流程 啤酒生产工艺流程可以分为制麦、糖化、发酵、包装四个工序。现代化的啤酒厂一般已经不再设立麦芽车间,因此制麦部分也将逐步从啤酒生产工艺流程中剥离。) 一个典型的啤酒生产工艺流程图如下(不包括制麦部分): 注:本图来源于中国轻工业出版社出版管敦仪主编《啤酒工业手册》一书。 图中代号所表示的设备为: 1、原料贮仓 2、麦芽筛选机 3、提升机 4、麦芽粉碎机 5、糖化锅 6、大米筛选机 7、大米粉碎机 8、糊化锅 9、过滤槽10、麦糟输送11、麦糟贮罐12、煮沸锅/回旋槽13、外加热器14、酒花添加罐15、麦汁冷却器16、空气过滤器17、酵母培养及添加罐18、发酵罐19、啤酒稳定剂添加罐20、缓冲罐21、硅藻土添加罐22、硅藻土过滤机23、啤酒精滤机24、清酒罐25、洗瓶机26、灌装机27、杀菌机28、贴标机29、装箱机 (一)制麦工序 大麦必须通过发芽过程将内含的难溶性淀料转

变为用于酿造工序的可溶性糖类。大麦在收获后先贮存2-3月,才能进入麦芽车间开始制造麦芽。为了得到干净、一致的优良麦芽,制麦前,大麦需先经风选或筛选除杂,永磁筒去铁,比重去石机除石,精选机分级。 制麦的主要过程为:大麦进入浸麦槽洗麦、吸水后,进入发芽箱发芽,成为绿麦芽。绿麦芽进入干燥塔/炉烘干,经除根机去根,制成成品麦芽。从大麦到制成麦芽需要10天左右时间。 制麦工序的主要生产设备为:筛(风)选机、分级机、永磁筒、去石机等除杂、分级设备;浸麦槽、发芽箱/翻麦机、空调机、干燥塔(炉)、除根机等制麦设备;斗式提升机、螺旋/刮板/皮带输送机、除尘器/风机、立仓等输送、储存设备。 (二)糖化工序 麦芽、大米等原料由投料口或立仓经斗式提升机、螺旋输送机等输送到糖化楼顶部,经过去石、除铁、定量、粉碎后,进入糊化锅、糖化锅糖化分解成醪液,经过滤槽/压滤机过滤,然后加入酒花煮沸,去热凝固物,冷却分离

聚乙烯醇水凝胶的制备方法及设备

1.实验 1.1试剂和仪器 (1)仪器:Alpha-Centau“FT.IR型红外光谱仪 (日本岛津),S540—SEM型扫描电镜(日本日立),热 分析(DT A_TG)(Du Pont 1090B型热分析仪),紫 外一可见光谱仪(日本日立)UV-3400紫外可见分光光度计,PH孓3C型精密pH计(上海精密科学有限 公司)。 (2)试剂:壳聚糖(CS)(浙江玉环县化工厂,分 子量:1.5×105,脱乙酰度:93%),聚乙烯醇(PVA) (佛山市化工实验厂,日本进口分装,Mw一1.o× 105),冰乙酸(分析纯),甲醛(37%,分析纯),盐酸 (分析纯),氢氧化钠(分析纯)。 1.2水凝胶的制备及其溶胀性能测试 1.2.1水凝胶的制备 取50mL圆底烧瓶,向其中加入o.5 g CS、 15mL二次水和2mL冰乙酸(3 m01/L),搅拌均匀 后,再加入o.39 PVA,搅拌混合均匀,然后抽真空, 向其中加入2mL甲醛(37%),室温反应24h;成胶 后,取出,切成1mm3左右的颗粒,用二次水浸泡,每 天换1次水,1周后取出;真空干燥,最后置于干燥 器中备用。

2. 实验 1.1 实验样品的制备 1.1.1 银溶胶的制备 将0.001mol/L的单宁酸和0.1mol/L的Naz COs溶液加热 至6O℃并搅拌,逐滴滴加0,001mol/L的AgNO3。当混合物颜 色逐渐加深至橙红色时,形成稳定的银溶胶。反应的关键是控 制AgNOa溶液的滴加速度和加入量。其反应机理l1]为: 6 AgNOs+ 6H52046+ 3 Na2C03— 6Ag +C76H52049+6 NaNO3+3 0 1.1.2 Ag/聚乙烯醇复合水凝胶的制备 制备浓度为1O%的PVA溶胶,将新制备的银溶胶在搅拌 的条件下加入PVA溶胶中,其混合液在室温下静置5min后倒 入模具中,放入THCD-04低温恒温槽中,采用冷冻一解冻法使之 结晶成型。每个循环的冷冻一解冻工艺见图1。按此做7个循环 制得样品,即得到Ag/PVA水凝胶。同理可制得Ag 浓度为 O%、0.125%、0.25 、0.5% (即Ag 占PVA的质量百分比 为:O%、1.25%、2.5 和5 )的Ag/PVA复合水凝胶。将样品制成哑铃形,测试区宽度约4mm,厚度约lmm(每个样品在测试前用千分尺精确测定其宽度和厚度)。每个样品裁5个样条,结果取平均值。2.1 Ag/PVA复合水凝胶的制备 微粒由于比表面积很大和表面不饱和键较多,具有很高的 表面能,所以极易团聚_3]。如果金属微粒发生团聚,则其光、电、

阻燃剂调查分析报告

阻燃剂的调查分析报告 阻燃剂的作用是阻止材料引燃或抑制火焰传播。橡胶和塑料等高分子材料的耐热和耐燃性能较差阻燃剂,可提高橡塑制品的使用安全性能,因此成为橡塑制品加工的重要添加剂之一。世界各国对防灾减灾日益重视,安全环保领域的立法也日趋完善,大大促进了阻燃剂的研究开发和生产使用,阻燃剂已成为精细化工领域的重要产品之一。国内阻燃剂的研发工作始于19世纪60年代,经过多年的发展,虽然有了较大的进步,但整体工艺技术和应用技术水平仍落后于世界发达国家,因此阻燃剂特别是环保型阻燃剂的研究开发十分重要。 1 阻燃剂的产品分析 1.1 阻燃剂的定义 阻燃剂又称难燃剂,耐火剂或防火剂,赋予易燃聚合物难燃性的功能性助剂,是一种用于改善可燃易燃材料燃烧性能的特殊的化工助剂,广泛应用于各类装修材料的阻燃加工中。经过阻燃剂加工后的材料,在受到外界火源攻击时,能够有效地阻止、延缓或终止火焰的传播,从而达到阻燃的作用。 1.2 阻燃剂的分类 根据不同的划分标准可将阻燃剂分为以下几类: 按所含阻燃元素分类:按所含阻燃元素可将阻燃剂分为卤系阻燃剂、磷系阻燃剂、氮系阻燃剂、磷-卤系阻燃剂、磷-氮系阻燃剂等几类。 按组分的不同分类:按组分的不同可分无机盐类阻燃剂、有机阻燃剂和有机、无机混合阻燃剂三种。 按使用方法分类:按使用方法的不同可把阻燃剂分为添加型和反应型。 1.3阻燃剂概述 (1)有卤阻燃剂情况介绍 含卤阻燃剂(特别是溴系阻燃剂)被广泛用于高分子阻燃材料,并起到了较好的阻燃作用。卤系阻燃剂主要以终止链自由基反应机理和隔离膜机理发挥阻燃效果。 国内阻燃剂市场的主流品种,主要有溴系和氯系两种。

溴系阻燃剂是目前效能最佳品种最多的卤系阻燃剂,与氯系阻燃剂相比,同质量的溴系阻燃剂阻燃效能是氯系的2倍。目前市场上溴系代表产品有十溴联苯醚(DBDPO)、八溴联苯醚(OBDPO)、六溴环十二烷(HBCD)等。氯系主要产品为氯化石蜡(氯烃-42,52,70)和全氯戊环癸烷。 溴化联苯醚(PBDPO)类阻燃剂燃烧时产生苯并二鄂瑛、苯并呋喃类致癌物质卤系阻燃剂发烟量大,释放出来的气体具有腐蚀性,往往形成二次灾害,尤其是对人的肺部产生毒害,有逐渐被其他无卤系阻燃剂取代的趋势,国内外已部分禁用。 (2)无卤阻燃剂情况介绍 无卤阻燃剂具有环保、安全、抑烟、无毒和价廉等优点,因而无卤阻燃剂的开发已经成为当前阻燃剂研究领域的热点。无卤阻燃剂主要以无机阻燃剂、无卤膨胀型阻燃剂和有机硅阻燃剂为主。这三类阻燃剂燃烧时不发烟,不产生腐蚀性气体,被称为环保型阻燃剂。 ①无机阻燃剂 无机阻燃剂具有稳定性好,低毒或无毒,贮存过程中不挥发、不析出,原料来源丰富,价格低廉等优点,兼具阻燃、填充双重功能;并对环境友好,是很有前途的阻燃剂。无机阻燃剂包括Al(OH)3、Mg(OH)2、无机磷系等。 金属水合物:在高分子材料阻燃的长期研究中,人们发现适合作为无卤阻燃剂的金属水合物以Al(OH)3和Mg(OH)2为主。这是因为Al(OH)3和Mg(OH)2具有填充剂、阻燃剂、发烟抑制剂三重功能。当其受热分解时释放出结晶水,吸收大量的热量,产生的水蒸气降低了可燃性气体的浓度,并使材料与空气隔绝;同时生成的耐热金属氧化物Al2O3和MgO还会催化聚合物的热氧交联反应,在聚合物表面形成一层炭化膜,减弱材料燃烧时的传热、传质效应,从而不仅起到阻止燃烧的作用,还起到了消烟的作用。Al(OH)3分解温度范围为235~350℃,吸热量为968J/g。由于其分解温度较低,因此,作为阻燃剂通常只适用于加工温度较低的高分子材料。与Al(OH)3相比,Mg(OH)2具有更好的热稳定性,更强的促进基材成炭和提高氧指数的能力;分解温度高达340~490℃,能满足许多塑料树脂的混炼和加工成型,并可使添加Mg(OH)2的高分子材料能承受更高的加工温度,利于加快挤塑速率,缩短模塑时间;同时在制备过程中无有害物质排放,因此,可在许多场合替代Al(OH)3。Al(OH)3和Mg(OH)2都属于无机填充型阻燃剂。一般需要高填充量(50%以上)才能达到较好的阻燃效果。另外,与高聚物相容性也差,不易在高分子材料中分散,这些往往都会较大程度恶化高

季戊四醇

产品介绍 简介 1名称季戊四醇 2分子式C(CH2OH)4 3分子量136.15 4物化特性熔点:261~262℃沸点:276℃相对密度:1.395g/cm3折射率:1.548 溶解性:15℃时1g溶于18ml水。 溶于乙醇、甘油、乙二醇、甲酰胺。不溶于丙酮、苯、四氯化碳、乙醚和石油醚等。稳定性:在空气中很稳定,不易吸水 5 规格98单季92单季90单季双季 6外观白色结晶或粉末 明细 1图片 2储运: 干燥、清洁、通风仓库内 3用途: 用于制造醇酸树脂和油漆,制造塑料稳定剂和增塑剂,并用于制造四硝基季戊四醇起爆炸药等,也可制备航空润滑油4生产工艺: 乙醛与甲醛在碱性条件下缩合后用氢气还原或者与甲醛在强碱条件下反应得到 表格 名称季戊四醇 分子式C(CH2OH)4 分子量136.15 规格98单季92单季90单季双季 CAS码115-77-5 EINECS号204-104-9 包装25/50kg/pp bag 装箱量20MT/20’FCL 是否危险品否 监管条件无 HS编码2905.4200 起运港天津或青岛 目标市场瑞典,美国,日本 是否加托盘可不加

Introduction Name: Pentaerythrite Molecular formula: C (CH2OH) 4 Molecular weight: 136.15 Physical and Chemical property Melting point: 261 ~ 262 ° c boiling point : 276 ℃relative density: 1.395 g/cm3 refractive index: 1.548 solubility: 15 degrees 18ml soluble in water 1g. Soluble in ethanol, glycerin, glycol, armour. Insoluble in acetone, benzene, carbon tetrachloride, ether and petroleum ether, etc. Stability: the air is very stable, bibulous Specification 98 single-season 92 single-season 90 single-season double-season Appearance White crystalline or powder Particulars Picture Storage and transportation: dry, clean and perflation in the Usage: Used in the manufacture of alkyd resin and paint, manufacturing plastic stabilizers and plasticizer, and used in the manufacture of four nitro pentaeruthritol detonating explosives etc, also in aviation for lubricating preparation Production technology: Acetaldehyde and formaldehyde in alkaline conditions after the condensation with hydrogen reduction or with formaldehyde in alkali reaction conditions Sheet Name Pentaerythrite Molecular formula C(CH2OH)4 Molecular weight 136.15 Specification98% 92% 90% CAS code 115-77-5 EINECS code 204-104-9 Package 25 or 50kg/ pp bag loading 20MT/20’FCL Hazardous chemicals no Supervision condition None HS code 2905.4200 Port of loading Tianjin or Qingdao Target market Sweden USA Japan Pallet or not no

2019年聚乙烯醇PVA行业分析报告

2019年聚乙烯醇PVA 行业分析报告 2019年7月

目录 一、聚乙烯醇(PVA)及其应用 (3) (一)聚乙烯醇性能优异用途广泛 (3) (二)消费结构向高品质功能化应用转变 (5) 二、供给集中,优势产能逐步实现替代 (7) (一)全球PVA产能较为集中 (7) (二)中国西部低成本产能逐步实现供应替代 (8) 1、资源优势西部企业大举介入PVA行业 (8) 2、传统老旧产能逐步退出 (10) (三)价格回稳,开发高品质品种是发展方向 (10) 三、国内外主要PVA生产商介绍 (12) (一)日本可乐丽(Kuraray) (12) (二)皖维高新 (13)

需求向高品质功能性应用产品转变:聚乙烯醇(PVA)是一种性能优异、无毒无味的水溶性聚合物,最初用于维尼纶生产。随着PVA 技术与工艺的不断改进,更多不同性能的PVA 品种被开发出来,PVA 消费结构也逐步趋于分散,向各种功能性用途转变。2005 年以来,国内PVA 表观消费量增速在5%上下波动,至2017 年消费量达到约69.6 万吨。我们预计未来国内PVA 表观消费量仍将维持在5%-6%的年平均增速,需求增量主要转向高品质产品及其下游新材料应用。 低成本新产能逐步替代老旧产能:全球PVA 供给集中于中国、日本、美国等少数几个国家,2018 总产能约188.8 万吨,中国(含台湾地区)产能占比超过60%。2009 年以来,国内新进民营企业及原有生产企业在西北地区依托当地廉价煤炭资源,大举投建电石乙炔法PVA 新产能,而传统老旧产能在竞争压力下陆续关停,西部低成本优势产能逐步实现了供应替代。 开发高品质产品及其应用是行业发展方向:我国是PVA 生产大国,但产品内在质量与国外产品相比还有不小差距。未来加强高品质PVA 产品开发,拓展高附加值的下游应用是行业发展方向。 一、聚乙烯醇(PVA)及其应用 (一)聚乙烯醇性能优异用途广泛 聚乙烯醇(简称PVA)是由醋酸乙烯(VAc)经聚合醇解而制成的一种水溶性高分子聚合物,外观通常为白色片状、絮状或粉末状固

聚乙烯醇生产工艺流程

合成工艺 由乙炔站来的乙炔,进入清净系统后,进行加压进入TQ101。该塔为次氯酸钠洗涤塔,塔内液相为次氯酸钠,此溶液由氯气与烧碱进过文丘里反应器生成,然后进入TQ101循环,利用其氧化性除去乙炔中的H2S,H3P等有害杂质,除去的过程中化学反应生成 H2SO4、H3PO4、净化乙炔。 被TQ101净化的乙炔进入综合洗涤塔TQ102,此塔分为3段: 一段洗碱,目的是除去乙炔气中夹带酸性物质。 二段水洗,洗去自一段夹带的碱性滴液。 三段为填料,除去自二段带来的水滴。 从TQ102出来的乙炔,经过活性炭吸附槽,进一步除去水分和杂质,出来的是精乙炔 精乙炔与循环乙炔混合称为混合乙炔进入鼓风机GF104加压,加压后分冷、热两路进入反应器SB112: 热路-进入醋酸蒸发器ZF101与醋酸蒸汽混合反应进入反应器; 冷路-混合乙炔直接进入反应器; 冷、热两路气量的大小决定反应器的温度,是重要的控制单元。 合成反应器SB112为流化床反应器。反应器中装有大量的载有醋酸锌的活性炭(触媒),乙炔和醋酸的混合气体在GF104的加压下,使反应器中的触媒成流化态。气体与触媒充分接触并在催化剂(触媒)的作用下,醋酸与乙炔进行合成反应,约有三分之一的乙炔和醋酸转化成醋酸乙烯(VAC)、含有醋酸,乙炔,醋酸乙烯,乙醛,丁烯醛的混合气体从反应器的顶部出来进入吸收塔TQ103。 TQ103分为3段: 1段采用80℃左右的醋酸吸收,由于吸收液在吸收过程中扑集了大量的活性炭粉末,成为黑液。吸收液吸收时增加的部分铜活性炭粉末一同送往过滤毡进行过滤,滤出的清液补充进入吸收塔(TQ103)2段。 2段的循环液经循环水冷却至32℃左右,与反应生成的混合气体逆流接触,使大部分的醋酸,醋酸乙烯等被冷凝下来,不断采出。 3段循环液温度控制在0℃(介质冷冻盐水),进一步冷却2段中的未冷凝气体中的醋酸,醋酸乙烯,乙醛等物质。冷却液与2段采出汇合作为合成工序的产品(反应液),送往原料工段,经过TQ103

中国松香酯行业的分析报告

中国松香酯行业的分析报告 第一章松香酯的概况 一、松香酯的简介 1、定义 松香m酯是松香酸的多元醇酯,常用的多元醇有甘油和季戊四醇。多元醇松香酯是浅黄色的透明固体,软化点在90~110℃,酸值为10~20。用以制漆,质量比松香钙皂所制者略高。季戊四醇松香酯的软化点高于甘油松香酯,制成清漆后的干燥性能、硬度、耐水等性能优于甘油松香酯制成的清漆。如使用聚合松香或氢化松香为原料制成的相应的酯,变色倾向减少,其他性能也有一定提高。聚合松香酯的软化点高于松香酯,而氢化松香酯的软化点则有所降低。 2、特点 酯是松香最重要的衍生物,松香酯通常酸价低、熔点高、粘度强,在一般溶剂中的溶解性好,并能与许多树酯和聚合物相混,赋以硬度和光泽、粘结力和塑性,使其抗候、抗潮、耐酸和碱。由于有上述性能,松香酯广泛使用于油漆印刷、电缆、橡胶、家俱、电子工业塑料等工业。 3、松香酯的分类和用途 (1)松香甘油酯 外观:透明液体、片状或浅黄色粒状固体,颜色愈浅质量愈好

相对密度:1.095 软化点:>80℃ 折射率:1.545 酸值:<10mgKOH/g 溶解性:溶于芳香族和脂肪族烃类溶剂(石油汽油,矿物的精神,苯,乙酸乙酯,丙酮),酯,酮和氯代烃。 不溶于:水和低分子量醇。 特性 与松香相比酸值显著降低,发脆性和发粘性减小,耐候性得以改善,不再对金属有腐蚀作用。 与乙烯醋酸乙烯酯聚合物(EVA),乙烯丙烯酸乙酯,苯乙烯-异戊二烯-苯乙烯( SIS ),苯乙烯-丁二烯-苯乙烯(SBS),SBR,天然橡胶,丁基橡胶,氯丁橡胶,丙烯酸酯,低分子量聚乙烯,聚丙烯,其它非晶体高分子聚合物,邻苯二甲酸和聚2酯增塑剂,醇酸树脂,碳氢树脂及萜烯树脂等相容。 制备 松香甘油酯系由松香与甘油酯化而成,通过真空处理后制成不规则透明块状、片状或粒状固体。与NR、CR、EVA、SIS、SBS等高聚物在大比例范围形成透明体系。 质量指标引 指标名称 136 138 138(精) 外观透明固体

季戊四醇以甲醛和乙醛为原料

季戊四醇以甲醛和乙醛为原料,在碱性催化剂(氢氧化钙或氢氧化钠。用氢氧化钙的季戊四醇生产工艺称为“钙法”;用氢氧化钠的季戊四醇生产工艺称为“钠法”)存在条件下反应制得。首先甲醛和乙醛缩合生成反应中间物五碳赤丝藻糖(季戊四糖),五碳赤丝藻糖与甲醛反应,还原生成季戊四醇,同时生成甲酸盐。副产物主要有:聚季戊四醇、季戊四醇甲醚类、季戊四醇缩甲醛、树胶和甲醛聚糖。通过合理选择和严格控制反应条件可抑制这些副反应的发生。反应物是甲醛和乙醛混合物水溶液,反应原料配比决定了最终反应产物的比例。使用NaOH为催化剂,副产物为甲酸钠。随着原料配比中甲醛对乙醛的比例增加,相应的产物中二季戊四醇量增加,单季戊四醇量减少。 国外季戊四醇生产多数采用低温钠法,连续缩合,加压脱醛,多效蒸发及先进的精制技术,产品品种多,消耗低,副产品回收完全,污染小。 ) n6 I, o# V9 l* J4 D/ C* 国内生产现状 近年来,中国季戊四醇发展迅速,不仅产能快速增加,而且生产技术也取得较大进步。1997年中国季戊四醇生产能力和产量分别为5万吨和2万吨,2002年分别增加到10万吨以上和5万吨左右。目前中国有季戊四醇生产厂家近30家,其中规模超过万吨级的企业主要有衡阳三化实业公司、湖北宜化集团公司、云天化集团公司和保定化工原料厂等。湖北宜化宜都分公司的万吨季戊四醇生产线投产,新生产线为该公司新增1.5万吨季戊四醇产量,加上原有的1.5万吨产能,该公司已经具备了年产3万吨季戊四醇的生产能力,排名亚洲第一、世界第三,季戊四醇的年销售收入将达到2.5亿元,成为该公司新的利润增长点。该公司为了确保1.5万吨季戊四醇新生产线的竞争优势,购买韩国三洋化学实业公司的单季及双季戊四醇专有技术,生产的季戊四醇羟基含量高达98%,达到国际领先水平。前5年间,中国季戊四醇产能和产量年均增长率分别为15%和20%,表观消费量从1998年的2.8万吨增加到2002年的6.1万吨、2003年的约6万吨,年均增长率约17%。2003年生产能力和产量分别增加到12万吨/年以上和6.5万吨。我国季戊四醇主要生产厂家和生产能力见表1。但是,尽管近年中国季戊四醇产能逐年增加,而前几年进口量呈现上升趋势,2002年进口量高达9822吨。进入2003年国内合成日趋成熟,而且多套万吨级装置发挥应有的规模效应,国内产量快速增长,2003年达到6.5万吨,加上亚洲周边国家季戊四醇装置较少,国际市场需求看好,2003年进口减少到2641吨,而出口大增,达到7848吨。我国近年来季戊四醇产量和进出口见表2。 表1 我国季戊四醇主要生产厂家和生产能力,吨/年

聚乙烯醇的改性研究

聚乙烯醇的改性研究 引言:本文介绍了聚乙烯醇的性质、改性的必要性以及改性的方法、最后介绍下聚乙烯醇的应用。 关键词:聚乙烯醇性质;聚乙烯醇改性;聚乙烯醇应用 一CH(OH)一基团的高聚物,由聚醋酸乙烯醋醇解而聚乙烯醇是分子主链含一CH 2 制得。其别名为PVA ,Poval,使用得最多的部门是它的特性而用于油田、纤维、胶粘剂、涂料、功能高分子材料、膜材料、造纸、土壤改良剂等等。近年来, 利用其单体开发出一系列新产品, 其附加值和新用途颇受业内人士的亲睐。[1] 1聚乙烯醇概况 1.1聚乙烯醇性质 聚乙烯醇为白色或微带黄色粉末或粒状, 密度为1.27一1.3 一。折射率(n 气)1.49 一1.53。热稳定性: 在10一140 ℃时稳定; 高于150 ℃时漫漫变色, 在170 ~200 ℃时分子间脱水, 高于250 ℃时分子内脱水, 颜色很深, 不溶解; 玻璃化温度65 ~ 87 ℃ , 无定形聚乙烯醉玻璃化温度一般为7 0 一8 0 ℃。比热(卡/克·℃ )0.4。与强酸作用, 溶解或分解。与强碱作用, 变软或溶解。与弱酸作用, 变软或溶解。对矿物油、脂肪、烃类、醇、醋、酮二硫化碳等具有良好的耐浸蚀性。分子量越低, 水溶性越好。依水解度不同, 产物溶于水或仅能溶胀。透气性很小, 除水蒸汽和氨外, 氢、氮、氧、二氧化碳等气体透过率很低。高水解度的聚乙烯醉膜在25 ℃下, 对氧的透气性几乎为零, 二氧化碳的透气性仅为0. 2g/m2 , 不吸收声音, 能很正确地传声。 根据聚合度和醉解度的不同, 聚乙烯醇可分为许多类。工业产品按聚合度分, 低聚合度在20℃,4%水溶液, 粘度为5x10-3Pa·S;中聚合度粘度为(20-30)X10-3Pa·S ; 高聚合度粘度为(40 一50)x10 -3Pa·S。根据醇解度分, 有82、86、88、90、97、98、99、l00(摩尔, % )等, 大于98者称完全醇解型, 其余均为部分醇解型, 随着醉解度的加大, 其在水中的溶解度明显下降, 醇解度为8%时水溶性最好。最普遍的产品规格是17一8和17一9两种型号, 其中17表示平均聚合度为1700一1800。[1] 1.2聚乙烯醇的特性及其改性的必要性 我国是聚乙烯醇(PVA)的生产大国,产量高达全球的1/3,主要应用范围遍及纺织、造纸、粘合剂和包装印刷等多个领域。聚乙烯醇具有良好的成膜性、优越的阻隔性,而且可生物降解、绿色环保,因此国外将聚乙烯醇作为高阻隔性包装材料的应用越来越多。在国内,原国家经济贸易委员会发布“工业行业近期发展导向”(国经贸行[20021716 号)提出“开发高阻隔性容器、包装材料,多功能薄膜、水溶性薄膜和可降解性材料的工艺和设备”,在塑料包装材料“十五”及2010 年发展规划中把聚乙烯醇高阻隔薄膜的开发作为专用包装基材新品种,列入包装薄膜重点产品的发展方向。聚乙烯醇高阻隔包装材料的加工方式有两种:涂布加工和挤出加工。现阶段国内主要以涂布加工为主。由于聚乙烯醇中含有大量的亲水性基团羟基,在高湿环境中,对水表现出强烈的亲合作用,因此聚乙烯醇虽然在干燥环境中具有很好的阻气性能,但是随着环境湿度的升高,其阻隔性能会急剧降低。因此,采用聚乙烯醇作为高阻隔性包装材料就必须进行耐水改性,

相关主题
文本预览
相关文档 最新文档