当前位置:文档之家› 丙烯酰胺产品特性

丙烯酰胺产品特性

丙烯酰胺产品特性
丙烯酰胺产品特性

丙烯酰胺产品特性:

丙烯酰胺(Acrylamide),分子式:C3H5NO ,分子量:71.08 ,纯品熔点84-86 ℃,沸点125℃,本品为白色结晶,易溶于水、乙醇、乙醚、丙酮、氯仿等溶剂,丙烯酰胺是一种不饱和酰胺,分子具有两个活性中心,能反应生成多种化合物。

用途:

1、丙烯酰胺广泛应用于石油开采、洗煤、造纸、纺织、污水处理、冶金、制糖、建筑、涂料、医药及日化工业。特别适用于生产分子量分布较均匀的超高分子量聚丙烯酰胺及油田化学品;

2、作为聚合单休与其它单体形成多元聚合物;

3、助剂、添加剂合成的原料。

丙烯酰胺的聚合

在丙烯酰胺聚合时,常用化学催化系统或光催化系统进行。

(1)化学催化系统:丙烯酰胺的化学催化聚合过程是在引发剂和加速剂组成的系统中完成的。参与反应的引发剂有过硫酸铵(或过硫酸钾)和过氧化氢,而参与反应的加速剂则有二甲胺丙腈等。由于丙烯酰胺聚合时,可在酸性或碱性条件下进行,所以选用的引发剂和加速剂就应随酸碱性变化而变化。

当丙烯酰胺(Arc)、交联剂(Bis)和四甲基乙二胺(tetramethyl ethylene diamine,TEMED)的水溶液中加入过硫酸铵(ammoniumpersulfate,AP)时,AP[(NH4)2S20s]立即产生自由基(S:OU—2S07),Arc与自由基作用后,随即“活化”,活化的Arc彼此连接形成多聚长链。含有这种多聚体链的溶液尽管比较黏稠但不能形成凝胶,只有当Bis存在时才能形成凝胶。在AP-TEMED催化系统中,Arc和Bis聚合的初速率与AP浓度的平方根成正比,并且在碱性条件下反应迅速。例如,7%的Arc溶液完全聚合,当pH8.8时,仅需0.5h;而当pH4.3时,则需1.5h。此外,温度、氧分子和杂质等也都会影响聚合速度。一般在室温下比在o℃时聚合快,溶液预先抽气比不抽气的聚合快。

(2)光催化系统:该系统的催化剂是维生素B2。光聚合过程是在光激发下催化完成的。维生素B:在氧及紫外线作用下,生成含自由基的产物,自由基的作用如同上述的AP试剂一样。通常将混合液置于一荧光灯旁,即可使反应发生。用维生素B2催化时,可不加TEMED,但是加入后可使聚合速度加快。光聚合形成的凝胶呈乳白色,透明度较差。用这种催化剂的优点是,用量极少(1ml/100mi),对分析样品无任何不良影响;聚合时间可以通过改变光照时间和强度来延长或缩短。

化学聚合的孔径比光聚合的小,重复性和透明度也比后者好。但是化学聚合的引发剂AP 是强氧化剂,若残存于凝胶中往往会使某些蛋白质分子丧失活性,或者产生畸变的电泳图谱。丙烯酰胺溶液聚合反应全部过程如下:除丙烯酰胺外,在反应过程中加了3种试剂(小料),第一号(小料)在投放;第二号(小料)在投放,当温度达到时再投放第三号;它们投放的剂量比分别是:水1g;丙烯酰胺1g;(第一号)1g;(第二号)1g;(第三号保险粉)1g。适当保温等其自然冷却以后成为透明状胶体。

AM聚合引发体系中尚有一类由含胺基的功能性单体与过氧化物组成的引发体系。如引入叔胺类功能性单体,它既可以参与氧化还原引发聚合,其自身又可以参与聚合,所得聚合物链

结构不同于纯PAM,有利于提高PAM水溶液的粘度。

hellomydram132009-12-20 16:16:20

丙烯酰胺(Polyacrylamide)简称PAM,由丙烯酰胺单体聚合而成,是一种水溶性线型高分子物质。单体丙烯酰胺化学性质非常活泼,在双键及酰胺基处可进行一系列的化学反应,采用不同的工艺,导入不同的官能基团,可以得到不同电荷产品:阴离子、阳离子、非离子、两性离子聚丙烯酰胺。PAM的平均分子量从数千到数千万以上沿键状分子有若干官能基团,在水中可大部分电离,属于高分子电解质。根据它可离解基团的特性分为阴离子型(如--COOH,--SO3H,--OSO3H等)阳离子型(如--NH3OH,--NH2OH,-CONH3OH)和非离子型。产品外观为白色粉末,易溶于水,几乎不溶于苯,乙醚、酯类、丙酮等一般有机溶剂,其水溶液几近透明的粘稠液体,属非危险品,无毒、无腐蚀性,固体PAM有吸湿性,吸湿性随离子度的增加而增加,PAM热稳定性好;加热到100℃稳定性良好,但在150℃以上时易分解产中氮气,在分子间发生亚胺化作用而不溶于水,密度(克)毫升23℃1.302。玻璃化湿度153℃,PAM在应力作用下表现出非牛顿流动性。

[编辑本段]使用特性

1)絮凝性:PAM能使悬浮物质通过电中和,架桥吸附作用,起絮凝作用。

2)粘合性:能通过机械的、物理的、化学的作用,起粘合作用。

3)降阻性:PAM能有效地降低流体的摩擦阻力,水中加入微量PAM就能降阻50—80%。

4)增稠性:PAM在中性和酸条件下均有增稠作用,当PH值在10以上PAM易水解。呈半网状结构时,增稠将更明显。

[编辑本段]PAM的作用原理简介

1)絮凝作用原理:PAM用于絮凝时,与被絮凝物种类表面性质,特别是动电位,粘度、浊度及悬浮液的PH值有关,颗粒表面的动电位,是颗粒阻聚的原因加入表面电荷相反的PAM,能速动电位降低而凝聚。

2)吸附架桥:PAM分子链固定在不同的颗粒表面上,各颗粒之间形成聚合物的桥,使颗粒形成聚集体而沉降。

3)表面吸附:PAM分子上的极性基团颗粒的各种吸附。

4)增强作用:PAM分子链与分散相通过种种机械、物理、化学等作用,将分散相牵连在一起,形成网状,从而起增强作用。

[编辑本段]分类介绍

聚丙烯酰胺按分子所带电荷性质可以分为阳离子聚丙烯酰胺、阴离子聚丙烯酰胺、两性离子聚丙烯酰胺和非离子聚丙烯酰胺。

阴离子聚丙烯酰胺

[产品应用] 1、主要用作絮凝剂:对于悬浮颗粒,较粗、浓度高、粒子带阳电荷,水PH 值为中性或碱性的污水,由于阴离子聚丙烯酰胺分子链中含有一定量极性基能吸附水中悬浮的固体粒子,使粒子间架桥形成大的絮凝物。因此它加速悬浮液中的粒子的沉降,有非常明显的加快溶液的澄清,促进过滤等效果。该产品广泛用于化学工业废水、废液的处理,市政污水处理。自来水工业、高浊度水的净化、沉清、洗煤、选矿、冶金、钢铁工业、锌、铝加工业、电子工业等水处理。2、用于石油工业、采油、钻井泥浆、废泥浆处理、防止水窜、降低摩阻、提高采收率、三次采油得到广泛运用。3、用于纺织上浆剂、浆液性能稳定、

落浆少、织物断头率低、布面光洁。4、用于造纸工业、一是提高填料、颜料等存留率。以降低原材料的流失和对环境的污染;二是提高纸张的强度(包括干强度和湿强度),另外,使用PAM还可以提高纸抗撕性和多孔性,以改进视觉和印刷性能,还用于食品及茶叶包装纸中。5、其他行业,食品行业,用于甘蔗糖、甜菜糖生产中蔗汁澄清及糖浆磷浮法提取。酶制剂发酵液絮凝澄清工业,还用于饲料蛋白的回收、质量稳定、性能好,回收的蛋白粉对鸡的成活率提高和增重、产蛋无不良影响,合成树脂涂料,土建灌浆材料堵水,建材工业、提高水泥质量、建筑业胶粘剂,填缝修复及堵水剂,土壤改良、电镀工业、印染工业等。

阳离子聚丙烯酰胺

阳离子聚丙烯酰胺在酸性或碱性介质中均呈现阳电性,它通常会比阴离子或非离子型聚丙烯酰胺分子量低,其澄洁污水的性能主要是通过电荷中和作用而获得。这类絮凝剂的功能主要是絮凝带负的电荷,具有除浊、脱色功能。在酒精厂、味精厂、制糖厂、肉制品厂、饮料厂、印染厂的等废水处理中用阳离子聚丙烯酰胺要比用阴离子聚丙烯酰胺,非离子聚丙烯酰胺或无机盐效果要高数倍或数十倍,因为这类废水普遍带有阴电荷。目前使用水溶性偶氮引发剂AIBA等,已能将其分子量提高到千万以上。

阳离子聚丙烯酰胺适用高速离心机、带式压滤机、板框压滤机等专用污泥脱水机械,具有形成絮团速度快,絮团粗大,耐挤压和剪切、成团性好,易与滤布剥离等特点。所以脱水率高,滤饼含液低,用量少,能大大降低用户使用成本。也能用于盐酸、中浓度硫酸等液体,分离净化其中所含的悬浊性物质。因此该产品广泛应用于城市污水处理厂、啤酒厂、食品厂、制革厂、造纸厂、石油化工厂、油田、冶金、化学工业和化妆品等污泥脱水处理上。

非离子聚丙烯酰胺

[产品应用]

1、主要用作絮凝剂:由于其分子链中含有一定量极性基因能吸附水中悬浮的固体粒子,使粒子间形成大的絮凝物。它加速悬浮液中的粒子的沉降,有非常明显的加快溶液的澄清,促进过滤等效果,广泛用于化学工业废水、废液的处理,市政污水处理。尤其当污水呈酸性时,采用本产品最为适宜。可与无机絮凝剂聚铁、聚铝等无机盐配合使用。

2、用于石油工业、采油、钻井泥浆、废泥浆处理、防止水窜、降低摩阻、提高采收率、三次采油得到广泛运用。

3、用于纺织上浆剂、浆液性能稳定、落浆少、织物断头率低、布面光洁。

4、用于造纸工业、一是提高填料、颜料等存留率。以降低原材料的流失和对环境的污染;二是提高纸张的强度(包括干强度和湿强度),另外,使用PAM还可以提高纸抗撕性和多孔性,以改进视觉和印刷性能,还用于食品及茶叶包装纸中。

5、其他行业,食品行业,用于甘蔗糖、甜菜糖生产中蔗汁澄清及糖浆磷浮法提取。酶制剂发酵液絮凝澄清工业,还用于饲料蛋白的回收、质量稳定、性能好,回收的蛋白粉对鸡的成活率提高和增重、产蛋无不良影响,合成树脂涂料,土建灌浆材料堵水,建材工业、提高水泥质量、建筑业胶粘剂,填缝修复及堵水剂,土壤改良、电镀工业、印染工业等。

两性离子聚丙烯酰胺

产品形态:两性离子聚丙烯酰胺(ACPAM)外观为白色粉粒。

产品特点:两性离子聚丙烯酰胺因分子内含阳离子基和阴离子基,它具备了一般阳离子絮凝剂的使用特点外,表现了更优异的性能。此类絮凝剂可在大范围的PH值内使用,具有更高的滤水量,较底的滤饼含水率,也可用于强酸浸提矿石或从含金属的酸性催化剂中回收有价值的金属。两性离子型绝非阴离子型、阳离子型的混合。如果把阳离子聚丙烯酰胺与阴离子聚丙烯酰胺配合使用则会发生反应产生沉淀。所以两性离子产品最为理想。

主要用途:油田调剖堵水剂、与交联剂、稳定剂、促凝剂联合作用,生成具有重要聚合凝胶和树脂凝胶的高强凝剂胶堵水剂。它通过附、物理堵塞等作用堵塞地层孔隙和裂缝,调整比例,可控制凝胶时间,以适应不同地质清况。各种油污,有机、无机、污水、复杂污水的处理。在PH变化不定的污水系统中。用于污泥脱水。用于造纸助剂。

包装、贮存及注意事项:

本品无毒,注意防潮、防雨,避免阳光曝晒。贮存期:2年,25kg纸袋(内衬塑料袋外为贴塑牛皮纸袋)。堆高不超过10层

纳米核壳结构简介

核壳结构微纳米材料应用技术 摘要 (2) 1核壳型纳米粒子的定义及分类 (2) 1.1 核壳型纳米粒子定义 (2) 1.2 核壳型纳米粒子分类 (2) 2 核壳结构微纳米材料形成机理 (3) 3有机—有机核壳结构微纳米材料制备 (3) 3.1乳液聚合法 (3) 3.2悬浮聚合法 (3) 4有机—无机核壳结构微纳米材料制备 (4) 4.1无皂聚合法 (4) 4.2化学共沉淀法 (4) 5无机—无机核壳结构微纳米材料制备 (4) 5.1种子沉积法 (5) 5.2水热法 (5) 6 核壳结构微纳米材料的应用 (6) 6.1 核壳结构微纳米材料的医学应用 (6) 6.2 核壳结构微纳米材料作为催化剂 (6) 参考文献 (7)

摘要 纳米科学被认为是21世纪头等重要的科学领域,它所研究的是人类过去从为涉及的非宏观、非围观的中间领域,使人们改造自然的能力延伸到分子、原子水平,标志这人类的科学技术进入了一个新的时代。纳米结构由于既有纳米微粒的特性如量子效应、小尺寸效应、表面效应等优点,又存在由纳米结构组合引起的新效应,如量子耦合效应和协同效应等,而且纳米结构体系很容易通过外场(电、磁、光)实现对其性能的控制。核壳型纳米微粒由于表面覆盖有与核物质不同性质纳米粒子,因此表面活性中心被适当的壳所改变,常表现出不同于模板核的性能,如不同的表面化学组成、稳定性的增加、较高的比表面积等,这些粒子被人为设计和可控制备以满足特定的要求。 关键词:纳米核壳纳米材料的应用 1核壳型纳米粒子的定义及分类 1.1 核壳型纳米粒子定义 核壳型纳米粒子是以一个尺寸在微米至纳米级的球形颗粒为核,在其表面包覆数层均匀纳米薄膜而形成的一种复合多相结构,核与壳之间通过物理或化学作用相互连接。广义的核壳材料不仅包括由相同或不同物质组成的具有核壳结构的复合材料,还包括空球、微胶囊等材料。 核壳型复合微球集无机、有机、纳米粒子的诸多特异性质与一体,并可通过控制核壳的厚度等实现复合性能的调控。通过对核壳结构、尺寸剪裁,可调控它们的磁学、光学、电学、催化等性质,因而有诸多不同于单组分胶体粒子的性质。他在材料学、化学组装、药物输送等领域具有极大的潜在应用价值。 1.2 核壳型纳米粒子分类 (1)无机—无机核壳结构微纳米材料:核壳均为无机材料的复合微纳米材料。 (2)无机—有机核壳结构微纳米材料:核为有机材料,壳为无机材料的复合微纳米材料。 (3)有机—无机核壳结构微纳米材料:核为无机材料,壳为有机材料的复合微纳米材料。 (4)有机—有机核壳结构微纳米材料:核壳均为有机材料的复合微纳米材料。 (5)复杂核壳结构微纳米材料:具有多层核壳结构,核壳多分分分别为有机或者无机材料。

聚丙烯酰胺合成方法

聚丙烯酰胺合成工艺 (1)A原理:丙烯酰胺在自由基引发剂作用下经自由基聚合反应合成聚丙烯酰胺: C H O NH2 H2C 引发剂 CH2 H C C O NH2 n 丙烯酰胺在醇或吡啶溶液中,经强碱催化剂如烷氧钠的作用下,经阴离子聚合反应则生成聚β-丙酰胺。 C H O NH2 H2C 碱 阴离子聚合反应 CH2 CH2CONH n 工业生产中采用自由基聚合反应以生产聚丙烯酰胺,所用的自由基引发剂或引发剂来源种类甚多,包括过氧化物、过硫酸盐、氧化-还原体系、偶氮化合物、超声波、紫外线、离子气体、等离子体、高能辐射等。 工业生产中采用的聚合方法,主要是溶液聚合法和反相乳液聚合法,以前者应用最为广泛。此外也有采用γ-射线辐照引发固相聚合的报道。 B.丙烯酰胺水溶液聚合存在的问题:①聚合热为82.8 kJ/mol,相对来说放出的热量甚大,因此水溶液聚合法中如何及时导出聚合热成为生产中的重要技术问题之一。②是如何降低残余单体含量。因为丙烯酰胺单体毒性甚大,为了减少其危害性,特别是用于水质处理时对残余单体的含量要求低于0.1%。③是如何将聚合反应得到的高粘度流体或凝胶转变为固体物,即干燥脱水问题。④是如何自由控制产品分子量。 丙烯酰胺于25 o C, pH=1时链增长速率常数k p与链终止速率常数k t分别为(1.72±0.3)×104和(16.3±0.7)×106Lmol-1s-1,与动力学链长成正比的k p/k t1/2=4.2±0.2,此数值甚高,所以不存在链转移时,聚丙烯酰胺可获得平均分子量超过2

×107的产品。 丙烯酰胺在水溶液中进行自由基聚合时,可能产生交联生成不溶解的聚合物,当聚合反应温度过高时,此现象更为严重。理论解释认为歧化终止生成的聚合物端基具有双键,参与聚合反应或发生向聚合物进行链转移所致。此外引发剂过硫酸盐与聚丙烯酰胺加热时也会导致生成凝胶。 有人研究了工业产品聚丙烯酰胺的含氮量,发现含氮量低于理论值,认为这是由于分子内脱NH 3生成酰亚胺基团所致。 C C 22O O C C O O H NH 3 高纯度丙烯酰胺易聚合为超高分子量的聚丙烯酰胺,为了生产要求的分子量范围,须加有链转移剂,链转移常数如表所示。

建筑胶水配方汇总聚乙烯醇与丙烯酰胺共聚和新型环保901胶水

建筑胶水配方汇总聚乙烯醇与丙烯酰胺共聚和新型环保901胶水 一、聚乙烯醇与丙烯酰胺共聚: 本配方将聚乙烯醇(PVA)与丙烯酰胺(AM)建筑共聚胶水的性能和成本推向了极至,最大限度地提高胶水的强度、保水性、施工性;久放不分层、储存时间长,适应各种粉料(包括: 石膏粉、双飞粉、滑石粉、黑水泥、装饰白水泥324-425白水泥等等)调配,手感轻松,二遍三遍披刮不起毛、不拉皮、不脱粉,固含量 1.8%左右。 二、901环保无醛净味建筑胶水901聚乙烯醇建筑胶水在熬制时不用甲醛、丙烯酰胺及各种胶粉等化学原料,该胶水不管是冬天或炎热的夏天都是无味的、无挥发有害气体、不污染环境,完全符合: 国际环保标准,是真正的环保产品。 该环保胶水与丙烯酰胺共聚胶水的区别: 1、是不用甲醛熬制的最新技术,无甲醛、无毒、无味、无挥发有害气体。 2、熬胶工序简单,一次性完成完全反应,冬夏放久不凝胶。 3、粘结力强(粘石膏条牢固)、易施工、单调大白粉滑石粉不脱粉、二遍三遍不卷皮、耐水性强。 4、该胶水可以代替乳液生产工程乳胶漆。 5、提高工效、降低成本。 A、901环保无醛净味胶水生产工艺(配方1) 聚乙烯醇(2499-2899)5%,KJ100助剂250G;KJ200胶水增稠剂6kg。 生产工艺:

(按1吨电气混合动力胶水反应釜计算) (1)将第一次50℃水400kg通过加水口加入反应釜内。 (2)开启脉冲开关,同时打开搅拌开关,加入KJ100助剂250克,投入聚乙烯醇50kg。 (3)继续升温到98℃,恒温溶解,使聚乙烯醇完全溶解。 (4)然后加入KJ200增稠剂6kg溶液到反应釜内,反应15—20分钟。而后再加水至1000kg位置,搅拌均匀,放料。。。 B、901环保无醛净味胶水生产工艺(配方2) 聚乙烯醇(2499-2899) 1."5%,KJ200胶水增稠剂,4%,T18-S 2."5kg,防腐剂1kg。 二、生产工艺: (按1吨电气混合动力胶水反应釜计算) (1)将气阀门打开,加50℃热水200kg倒入反应釜内。 (2)开启加热开关,加水到位置时开搅拌开关,然后加入聚乙烯醇15kg,同时投入KJ100助剂250克。 (3)继续升温到98℃,恒温溶解聚乙烯醇,完全溶解。 (4)关闭脉冲开关,然后加入KJ200增稠剂4kg溶液,,反应15分钟。 (5)再加冷水至胶水1000kg,边加水边投入T18—S纤维素5kg溶液,搅拌均匀后,过滤放料. C、108丙烯酰胺共聚建筑胶水新配方

食品中丙烯酰胺的危害、暴露评估及检测方法

编号 食品毒理学(综述) 题目:食品中丙烯酰胺的危害、暴露评估及检测方法 食品学院营养与卫生学专业 班级食硕1005 学号s100109030 学生姓名张锦 二〇一一年二月

食品中丙烯酰胺的危害、暴露评估及检测方法 摘要:丙烯酰胺(acrylamide,AA)是日常生活中常见的一种化合物,也是公共卫生、食品安全研究的热点毒性物质,近几年来对丙烯酰胺神经毒性、遗传毒性、生殖毒性等的研究方兴未艾。本文着重介绍丙烯酰胺的理化特性、代谢途径、遗传生殖毒性、生殖毒性等方面的状况,并简要介绍了其危害评估及检测方法。 关键词:丙烯酰胺;遗传毒性;生殖毒性;神经毒性 0 引言 丙烯酰胺(CH2=CH-CONH2,AA)是一种白色晶体物质,分子量为70.08,密度为11229/L,熔点为85℃,沸点为125℃,室温下稳定,可溶于水、乙醇、乙醚、丙酮和三氯甲烷,不溶于苯、庚烷等非极性溶剂。在酸中稳定性强,在碱中容易分解,对光线敏感。可生物降解,不会在环境中积累。丙烯酰胺是1950年以来广泛用于生产化工产品聚丙烯酰胺的前体物质。聚丙烯酰胺主要用于水的净化处理、纸浆的加工及管道的内涂层等[1]。在欧盟,丙烯酰胺年产量约为8-10万吨。2002年4月瑞典国家食品管理局和瑞典斯德哥尔摩大学的科学家经研究首次发现,在某些高温油炸和烧烤的淀粉类食品,如炸薯条、炸土豆片、谷物、面包等中发现含量很高的丙烯酰胺,其含量比世界卫生组织(WHO)规定的饮水中丙烯酰胺的含量(<1μg/d)高出500倍以上[2,3]。之后挪威、英国、瑞士和美国等国家也相继报道了类似结果。 1 丙烯酰胺的代谢 丙烯酰胺可通过多种途径被人体吸收,其中经消化道吸收最快,在体内各组织广泛分布,包括母乳,并且能透过血胎屏障[4]。经口给予大鼠0.1 mg/kg bw 的丙烯酰胺,其绝对生物利用率为23-48%。丙烯酰胺在人体和试验动物体内的主要代谢途径是相似的。进入人体内的丙烯酰胺约90%被代谢,仅少量以原型经尿液排出。另外一个主要途径是与谷胱苷肽(GSH)结合,通过谷胱苷肽—S—转移酶(GST)催化,产生的代谢物(N-乙酰-S-半胱氨酸)通过尿液大量排出[5]。丙烯酰胺进入体内后,在细胞色素P4502E1的作用下,生成活性环氧丙酰胺(glycidamide)[6]。该环氧丙酰胺比丙烯酰胺更容易与DNA上的鸟嘌呤结合形成加合物,导致遗传物质损伤和基因突变;因此,被认为是丙烯酰胺的主要致癌活性代谢产物。研究报道,给予大小鼠丙烯酰胺后,在小鼠肝、肺、睾丸、白细胞、肾和大鼠肝、甲状腺、睾丸、乳腺、骨髓、白细胞和脑等组织中均检出了环氧丙酰胺鸟嘌呤加合物。目前,尚未见人体丙烯酰胺暴露后形成DNA加合物的报道。 此外丙烯酰胺和环氧丙酰胺还可与血红蛋白形成加合物,在给予动物丙烯酰胺和摄入含有丙烯酰胺食品的人群体内均检出血红蛋白加合物,因此可用该血红

钛酸钡纳米颗粒聚集球的形成机理

[Article] https://www.doczj.com/doc/c17197531.html, 物理化学学报(Wuli Huaxue Xuebao ) Acta Phys.-Chim.Sin.2011,27(12),2927-2932 December Received:July 20,2011;Revised:September 21,2011;Published on Web:October 10,2011.? Corresponding author.Email:jiangxp64@https://www.doczj.com/doc/c17197531.html,,zhq_0425@https://www.doczj.com/doc/c17197531.html,;Tel:+86-798-8499237. The project was supported by the National Natural Science Foundation of China (91022027,51062005,50862005).国家自然科学基金(91022027,51062005,50862005)资助项目 ?Editorial office of Acta Physico-Chimica Sinica 钛酸钡纳米颗粒聚集球的形成机理 展红全 江向平 * 李小红罗志云陈超李月明 (景德镇陶瓷学院材料科学与工程学院,江西省先进陶瓷材料重点实验室,江西景德镇333403) 摘要: 采用水热法合成了具有新颖结构的钛酸钡纳米颗粒聚集球.X 射线衍射(XRD)结果显示该聚集球为立 方相,随着时间的延长其结晶性增强.利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、高分辨透射电子显微镜(HRTEM)和电子衍射(ED)谱研究了该纳米颗粒聚集球的生长特点.结果表明该聚集球是由5-8nm 的纳米颗粒定向连接生长而成,整个聚集球对外显示类单晶的现象.聚集球的大小约为60nm,随着时间的延长有长大的趋势.X 射线能谱(EDX)分析结果和Johnson-Mehl-Avrami (JMA)方程动力学模拟结果表明,在颗粒球形成初始阶段主要是Ba 2+离子的扩散成核作用占主导地位.这种“扩散成核-定向生长”的形成过程揭示了钛酸钡纳米颗粒聚集球的生长机理.关键词: 钛酸钡;JMA 方程;水热法;扩散机理;定向生长 中图分类号: O643.12 Formation Mechanism of Barium Titanate Nanoparticle Aggregations ZHAN Hong-Quan JIANG Xiang-Ping *LI Xiao-Hong LUO Zhi-Yun CHEN Chao LI Yue-Ming (Jiangxi Key Laboratory of Advanced Ceramic Materials,Department of Material Science and Engineering, Jingdezhen Ceramic Institute,Jingdezhen 333403,Jiangxi Province,P .R.China )Abstract:A novel nanoparticle aggregation structure of barium titanate was obtained by the hydrothermal method.Powder X-ray diffraction (XRD)revealed that the aggregates crystallized in the cubic phase.The crystallization of the products became more significant with reaction progress.The growth characteristics of the aggregates was further confirmed by scanning electron microscopy (SEM),transmission electron microscopy (TEM),high resolution transmission electron microscopy (HRTEM),and electron diffraction (ED)spectroscopy.The aggregation was composed of many 5-8nm nanoparticles by orientation attachment and we found that the ED patterns indicated a single-crystal property for the aggregates.The size of the aggregates was about 60nm and they grew as the reaction continued.From the results of energy dispersive X-ray (EDX)spectroscopy analysis and kinetics modeling using the Johnson-Mehl-Avrami (JMA)equation,the diffusion nucleation of Ba 2+ion was found to be dominant during the early stages of aggregation formation.The growth process of “diffusion nucleation -orientation attachment ”revealed the formation mechanism of barium titanate nanoparticle aggregations.Key Words:Barium titanate; JMA equation; Hydrothermal method; Diffusion mechanism; Orientation attachment doi:10.3866/PKU.WHXB20112927 2927

聚乙烯醇(108建筑胶水)

聚乙烯醇.丙烯酰胺胶水详解 目前的丙烯酰胺胶水做法有两种:一种是丙烯酰胺共聚后与聚乙烯醇水溶液进行混合,另一种是丙烯酰胺和聚乙烯醇一起在引发剂下进行共聚。现在常用的是第二种的生产方法。那么这里有个疑问,这两种方法有没有区别?聚乙烯醇和丙烯酰胺是否会发生反应?丙烯酰胺主要含有双键和酰氨基的两个官能团,能与各种活性单体反应。聚乙烯醇主要含有羟基一个官能团。可以进行缩醛化、酯化、醚化等反应。丙烯酰胺水溶液单独共聚,主要进行的是以双键为主的自由基聚合反应。聚乙烯醇和丙烯酰胺之间能否反应,国内相关的文献报道比较少。唯一可参照的是淀粉和丙烯酰胺之间的接枝反应。在接枝反应中采用氧化还原体系以丙烯酰胺单体接枝改性大分子淀粉。但聚乙烯醇的分子量比较大,与丙烯酰胺的接枝反应速度远远低于丙烯酰胺单体之间的双键自由基共聚反应。通过降低聚乙烯醇的分子量,可以提高两者的反应速度。如聚乙烯醇高温溶解后,加入一定量的双氧水,降低聚乙烯醇的聚合度。但降低聚合度的话,胶水的粘接强度和稠度都会有所损失,所以这一方法不适合实际应用。所以,我们可以得出结论:聚乙烯醇和丙烯酰胺之间可以进行接枝反应,但相对于丙烯酰胺单体之间的双键自由基共聚反应,基本上可以忽略不计。从实际生产中我们也可以看出,共聚和复配,基本性能差不多。唯一区别的是,丙烯酰胺与聚乙烯醇一起反应后,两者之间的混溶性比较好,不容易分层。丙烯酰胺单体在氧化还原体系下发生自由基聚合反应,那我们通过操控聚合反应来达到我们所需要的聚合产物。那首先明确一点,我们需要什么样的聚合产物? 我个人认为,在建筑胶水里,我们通过反应来控制胶水的分子量、离子*联度。 分子量——分子量大小,分子量越大,稠度越高; 离子性——阴离子、阳离子、非离子和两性离子; 交联度——线型、星型、交联网络; 分子量是不是越大越好?胶水是不是越稠越好吗?当然不是,如果稠的胶水好用,那很简单,聚丙烯酰胺多加一点。事实上,我碰到很多客户反应,同样的原料,胶水做稠了反而不好批了。 我们的胶水是需要哪种离子型比较好。丙烯酰胺胶水最容易反应生成阴离子型,增稠效果比较好,但是对水泥有絮凝作用。非离子型增稠效果差一点,但对水泥的絮凝比较小一点。 线型的聚合物,粘接强度差,通过交联后成网络结构,强度提高,但交联过度,水溶性变差,胶水有点发白(浑浊)。 因此,我们先明确一下我们需要什么样的胶水:合理的分子量(稠度),非离子型,合

丙烯酰胺生产废水的处理工艺

丙烯酰胺生产废水的处理工艺 摘要丙烯酰胺之聚合物和衍生物广泛用于石油、医药、造纸、纺织、采矿、水处理、沙化土壤改良、种子包衣、养殖业、食品加工等行业,号称百业助剂,它是以石化产品丙烯腈为原料加工而成的。废水主要由发酵液膜分离工序与丙烯酰胺精制工序产生,目前采用的处理方案还是传统一般的废水处理技术,整个系统主要由厌氧和好氧两个步骤组成。但废水中含有大量的染菌体悬浮物,这部分悬浮物如果不去除,将会对后续的工艺造成很大的影响。另外废水中的氨氮量高,常规处理达不到排水要求。 关键词丙烯酰胺;生产废水;处理工艺 1 丙烯酰胺废水处理背景 丙烯酰胺之聚合物和衍生物广泛用于石油、医药、造纸、纺织、采矿、水处理、沙化土壤改良、种子包衣、养殖业、食品加工等行业,号称百业助剂,它是以石化产品丙烯腈为原料加工而成的。 废水主要由发酵液膜分离工序与丙烯酰胺精制工序产生,目前采用的处理方案还是传统一般的废水处理技术,整个系统主要由厌氧和好氧两个步骤组成。但废水中含有大量的染菌体悬浮物,这部分悬浮物如果不去除,将会对后续的工艺造成很大的影响。另外废水中的氨氮量高,常规处理达不到排水要求。 2 丙烯酰胺废水处理方法 丙烯酰胺生产废水的处理方法,包括调节池、高效混凝沉淀器和生化处理,其特征在于:调节池中安装一套在线pH计,连续检测进水pH值;高效混凝沉淀器适用于废水快速混凝处理的高效水质净水装置。废水通过高效混凝沉淀器处理后,去除废水中大部分的悬浮物;所述的生化处理是对预处理后的废水进行A2/O生化处理,A2/O工艺的生物反应器池分为厌氧段、缺氧段、好氧段。A2/O 脱氮工艺是通过厌氧、缺氧和好氧交替变化的生物环境完成脱氮反应的。 采用国内领先的高效混凝沉淀技术,去除废水中大部分的悬浮物。后序采用A2/O工艺,它是在A—O工艺的基础上开发,旨在能够脱氮的工艺。 A2/O工艺的生物反应器池分为厌氧段、缺氧段、好氧段,A2/O脱氮工艺是通过厌氧、缺氧和好氧交替变化的生物环境完成脱氮反应的。在厌氧条件下,通过水解酸化反应,将有机氮转换为氨氮。在缺氧条件下,反硝化菌利用污水中的有机碳作为电子工供体,以硝酸盐作为电子受体“无氧呼吸”,将回流液中硝态氮还原成氮气释放出来。完成反硝化过程。而在好氧条件下,硝化菌把污水中的氨氮氧化成硝酸盐,再向缺氧池回流,为脱氮做好必要的准备。 2.1丙烯酰胺废水处理工艺流程示意图(如图1) 2.2工艺简要说明 丙烯酰胺生产及生活废水混合进入中和调节池,用液碱或稀盐酸进行pH调节,当有染菌废水流入时,进水切入事故池,事故池的废水按比例进入中和调节池。调节池出水泵入高效混凝沉淀器,本工艺采用一步提升后均为自流,通过加药在高效混凝沉淀器内去除掉水中大部分悬浮物。出水进入二级UASB反应器,将水中主要有机污染物分解成小分子中间产物,同时加入特殊菌种,将废水中的COD分解转化。UASB的出水进入A/O反应池,经过硝化和反硝化,在降低COD 的同时达到降低氨氮的目的。泥水混合液经二沉池分离后,废水达到排水标准排入管网,污泥回流至A/O反应池。

《水质丙烯酰胺的测定高效液相色谱-质谱质谱法》

《水质丙烯酰胺的测定固相萃取-高效液相色谱-质谱/质谱法》 编制说明 (送审稿) 《水质丙烯酰胺的测定高效液相色谱-质谱/质谱法》 标准编制组 2012年10月

目次 1 项目背景 (1) 1.1 任务来源 (1) 1.2 工作过程 (1) 2 标准制订的必要性分析 (1) 2.1 丙烯酰胺的环境危害.......................... .. (1) 2.2 相关环保标准和环保工作的需要 (2) 2.3 新建标准方法的优势 (2) 3 国内外相关分析方法实施情况与存在问题 (2) 4 标准制订的基本原则和技术路线 (3) 4.1 标准制订的基本原则 (3) 4.2 标准的适应范围和主要技术内容 (3) 4.3 标准制订的技术路线 (3) 5 方法研究报告 (5) 5.1 方法研究的目的 (5) 5.2 方法原理 (5) 5.3 试剂和材料 (5) 5.4 仪器和设备 (6) 5.5 样品 (6) 5.6 分析步骤............................. (7) 5.7 结果计算与表述 (9) 5.8检出限、精密度和准确度 (10) 5.9 质量保证和质量控制 (12) 6 方法验证 (12) 6.1 方法验证方案 (13) 6.2 方法验证过程 (13) 7 标准主要技术内容的解释 (13) 8 对实施本标准的建议 (14) 9 质量保证和质量控制 (14)

9.2 空白 (14) 9.2 加标 (14) 9.3 平行样 (14) 9.4 校准标准点 (14) 10 参考文献 (14)

《水质丙烯酰胺的测定高效液相色谱-质谱/质谱法》 编制说明 1. 项目背景 1.1 任务来源 《水质丙烯酰胺的测定高效液相色谱-质谱/质谱法》标准的制定工作,是按照陕西省质量技术监督局陕质监标【2011】第6号文《关于下达2011年第一批地方标准修制订计划的通知》规定起草的,由陕西省环境监测中心站负责制定,项目计划编号为25号。 1.2 工作过程 标准制定任务下达后,陕西省环境监测中心站立即成立了标准编制组。编制组在查阅国内外相关文献、标准的基础上,制定实施方案,进行开题论证。按照方案,进行了方法的条件优化实验,确定方法蓝本,然后在实验室内和实验室间进行方法的验证实验,最后,根据验证结果,完成标准(征求意见稿)的编制。 2. 标准制订的必要性分析 2.1 丙烯酰胺的环境危害 丙烯酰胺,分子式:C 3H 5 NO,分子量为71.08,为白色结晶固体,无气味, 熔点:84.5℃,饱和蒸汽压:0.21Kpa(84.5℃)。溶于水、乙醇、乙醚、丙酮等,但不溶于苯。丙烯酰胺是聚丙烯酰胺的单体,聚丙烯酰胺是一种水溶性高分子聚合物,主要应用于水的净化处理方面。 据统计,在发达国家水处理应用方面,美国占聚丙烯酰胺总用量的36%、西欧占35%、日本占49%;近年来,聚丙烯酰胺在我国水处理方面应用也越来越广泛,虽然聚丙烯酰胺被认为是无毒的,但其单体的毒性却是被肯定的;丙烯酰胺已被国家癌症中心(IARC)列为Ⅳ类致癌物,急性毒性实验证明丙烯酰胺有神经毒性、生殖、发育毒性,动物实验证明丙烯酰胺可导致遗传物质的改变和癌症的发生。在饮用水和地表水中,丙烯酰胺主要来源于使用有丙烯酰胺单体残留的聚丙烯酰胺絮凝剂。所以水中丙烯酰胺的分析是环境分析中的一项重要内容。

纳米材料

绪论 1、纳米科技的提出:源自于费曼大师1959年在美国物理学会年会上的一次演讲。Richard Feynman:世界上首位提出纳米科技构想的科学家。 2、纳米材料 (1)纳米材料的定义:物质结构在三维空间至少有一维处于纳米尺度,或由纳米结构单元组成且具有特殊性质的材料(也是以维数划分纳米材料的原因) (2)纳米尺度:1-100 nm范围的几何尺; 纳米的单位:1 nm = 10^-9 m,即千分之一微米(μm)。 (3)纳米结构单元:具有纳米尺度结构特征的物质单元,包括纳米团簇、纳米颗粒、纳米管、纳米线、纳米棒、纳米片等 (4)纳米材料的维度: ○1零维:纳米团簇、纳米颗粒、量子点(三维尺度均为纳米级,没有明显的取向性,近等轴状) ○2一维:纳米线、纳米棒、纳米管(单向延伸、二维尺度为纳米级、第三维尺度不限,、直径大于100 nm,具有纳米结构) ○3二维:纳米片、纳米带、超晶格、纳米薄膜(一维尺度为纳米级,面状分布,,厚度大于100 nm,具有纳米结构) ○4三维:纳米花、四脚针等(包含纳米结构单元,三维尺寸均超过纳米尺度,由不同型低维纳米结构单元复合形成) (5)纳米材料的分类○1具有纳米尺度外形的材料 ○2以纳米结构单元作为主要结构组分所构成的材料 3、久保理论:即金属的超微粒子将出现量子限域效应,显示出与块体金属显著不同的性能;金属纳米粒子,量子限域效应。 4、扫描隧道电子显微镜(STM):将探针靠近导电材料表面进行扫描,获得表面图像。分辨率达0.1~0.2 nm,可以直接观察和移动原子。 5、原子力显微镜(AFM):利用针尖和材料原子间的相互微弱作用力来获得材料表面的形貌图像。可用于研究半导体、导体和绝缘体。 AFM三大特点:原子级高分辨率、观察活生命样品和加工样品的力行为成就。6、纳米科技的研究内容:纳米科学、纳米技术与纳米工程 分支学科:纳米力学:研究物体在纳米尺度的力学性质 纳米物理学:研究物质在纳米尺度上的物理现象及表征 纳米化学:研究纳米尺度范围的化学过程及反应 纳米生物学:利用纳米的手段解决生物学问题,在分子水平揭示细胞内外的物质、能量与信息交换机制; 纳米医学:利用纳米科技解决医学问题的边缘交叉学科 纳米材料学:包括纳米材料的成分、结构、性能与使用效能四个方面。 成分:是影响性能的基础 结构:决定材料性能的关键材料 性能:各种物理或化学性质 效能:材料在使用条件下的表现

聚丙烯酰胺合成工艺

聚丙烯酰胺聚合工艺 (1)理论基础丙烯酰胺在自由基引发剂作用下经自由基聚合反应合成聚丙烯酰胺: C H O NH2 H2C 引发剂 CH2 H C C O NH2 n 丙烯酰胺在醇或吡啶溶液中,经强碱催化剂如烷氧钠的作用下,经阴离子聚合反应则生成聚β-丙酰胺。 C H O NH2 H2C 碱 阴离子聚合反应 CH2 CH2CONH n 工业生产中采用自由基聚合反应以生产聚丙烯酰胺,所用的自由基引发剂或引发剂来源种类甚多,包括过氧化物、过硫酸盐、氧化-还原体系、偶氮化合物、超声波、紫外线、离子气体、等离子体、高能辐射等。 工业生产中采用的聚合方法,主要是溶液聚合法和反相乳液聚合法,以前者应用最为广泛。此外也有采用γ-射线辐照引发固相聚合的报道。 丙烯酰胺水溶液聚合为聚丙烯酰胺水溶液时,聚合热为82.8 kJ/mol。相对来说放出的热量甚大,因此水溶液聚合法中如何及时导出聚合热成为生产中的重要技术问题之一。其次一个问题是如何降低残余单体含量。因为丙烯酰胺单体毒性甚大,为了减少其危害性,特别是用于水质处理时对残余单体的含量要求低于0.1%。第三个问题是如何将聚合反应得到的高粘度流体或凝胶转变为固体物,即干燥脱水问题。第四个问题是如何自由控制产品分子量。 丙烯酰胺于25 o C, pH=1时链增长速率常数k p与链终止速率常数k t分别为(1.72±0.3)×104和(16.3±0.7)×106Lmol-1s-1,与动力学链长成正比的k p/k t1/2=4.2±0.2,此数值甚高,所以不存在链转移时,聚丙烯酰胺可获得平均分子量超过2

×107的产品。 丙烯酰胺在水溶液中进行自由基聚合时,可能产生交联生成不溶解的聚合物,当聚合反应温度过高时,此现象更为严重。理论解释认为歧化终止生成的聚合物端基具有双键,参与聚合反应或发生向聚合物进行链转移所致。此外引发剂过硫酸盐与聚丙烯酰胺加热时也会导致生成凝胶。 有人研究了工业产品聚丙烯酰胺的含氮量,发现含氮量低于理论值,认为这是由于分子内脱NH 3生成酰亚胺基团所致。 C C 22O O C C O O H NH 3 高纯度丙烯酰胺易聚合为超高分子量的聚丙烯酰胺,为了生产要求的分子量范围,须加有链转移剂,链转移常数如表所示。

丙烯酸酯乳液胶黏剂配方组成-生产工艺及应用

丙烯酸酯乳液胶黏剂配方组成,生产工艺及应用导读:本文详细介绍了丙烯酸酯乳液胶黏剂的分类,组成,配方等等,需要注意的是,本文中所列出配方表数据经过修改,如需要更详细的内容,请与我们的技术工程师联系。 1. 背景 丙烯酸乳液型胶粘剂是我国20世纪80年代以来发展最快的一种聚合物乳液胶粘剂,它一般是由丙烯酸酯类和甲基丙烯酸酯类共聚或加入醋酸乙烯酯等其它单体共聚而成。该胶粘剂耐候性、耐水性、耐老化性能特别好,并目具有优良的抗氧化性和很大的断裂仲长率,广泛用于包装、涂料、建筑、纺织以及皮革等行业。 随着人们对环境保护的愈发重视,环境友好型产品越来越受到普遍的关注,乳液型胶粘剂因具有无毒无害、无环境污染、不易燃易爆、生产成本低、使用方便等优点而逐渐成为未来胶粘剂的发展趋势。 禾川化学是一家专业从事精细化学品以及高分子分析、研发的公司,具有丰富的分析研发经验,经过多年的技术积累,可以运用尖端的科学仪器、完善的标准图谱库、强大原材料库,彻底解决众多化工企业生产研发过程中遇到的难题,利用其八大服务优势,最终实现企业产品性能改进及新产品研发。 样品分析检测流程:样品确认—物理表征前处理—大型仪器分析—工程师解谱—分析结果验证—后续技术服务。有任何配方技术难题,可即刻联系禾川化学技术团队,我们将为企业提供一站式配方技术解决方案! 2. 丙烯酸乳液胶黏剂 聚丙烯酸酯是一类具有多种性能的、用途广泛的聚合物,其乳液一般是以丙烯酸甲酯、丙烯酸乙酯或丙烯酸丁酯为主要单体,与甲基丙烯酸酯单体、苯乙烯、丙烯腈等共聚形成乳液。对聚合物的结构或聚合方法加以改进,可使得改性后的丙烯酸酯胶黏剂性能更加优异。 2.1有机硅改性 有机硅树脂具有优异的耐高低温性能和耐水性能,利用有机硅对聚丙烯酸酯类乳液胶粘剂改性成为近年来研究的热点。有机功能烷氧基硅烷作为粘合促进剂和交联剂,广泛用于胶粘剂、密封胶和涂料等领域。有专家研究了一种专用于水

纳米材料习题答案

纳米材料习题答案 1、简单论述纳米材料的定义与分类。 答:最初纳米材料是指纳米颗粒和由它们构成的纳米薄膜和固体。 现在广义: 纳米材料是指在三维空间中至少有一维处在纳米尺度范围,或由他们作为基本单元构成的材料。 如果按维数,纳米材料可分为三大类: 零维:指在空间三维尺度均在纳米尺度,如:纳米颗粒,原子团簇等。 一维:指在空间有两处处于纳米尺度,如:纳米丝,纳米棒,纳米管等。 二维:指在三维空间中有一维处在纳米尺度,如:超薄膜,多层膜等。 因为这些单元最具有量子的性质,所以对零维,一维,二维的基本单元,分别又具有量子点,量子线和量子阱之称。 2、什么是原子团簇谈谈它的分类。 3、通过Raman 光谱中任何鉴别单壁和多臂碳纳米管如何计算单壁碳纳米管直径 答:利用微束拉曼光谱仪能有效地观察到单臂纳米管特有的谱线,这是鉴定单臂纳米管非常灵敏的方法。 100-400cm-1范围内出现单臂纳米管的特征峰,单臂纳米管特有的环呼吸振动模式;1609cm-1,这是定向多壁纳米管的拉曼特征峰。 单臂管的直径d与特征拉曼峰的波数成反比,即d = 224/w d:单壁管的直径,nm;w:为特征拉曼峰的波数cm-1

4、论述碳纳米管的生长机理(图)。 答:碳纳米管的生长机理包括V-L-S机理、表面(六元环)生长机理。 (1)V-L-S机理:金属和碳原子形成液滴合金,当碳原子在液滴中达到饱和后开始析出来形成纳米碳管。根据催化剂在反应过程中的位置将其分为顶端生长机理、根部生长机理。 ①顶端生长机理:在碳纳米管顶部,催化剂微粒没有被碳覆盖的的部分,吸附并催化裂解碳氢分子而产生碳原子,碳原子在催化剂表面扩散或穿过催化剂进入碳纳米管与催化剂接触的开口处,实现碳纳米管的生长,在碳纳米管的生长过程中,催化剂始终在碳纳米管的顶端,随着碳纳米管的生长而迁移; ②根部生长机理:碳原子从碳管的底部扩散进入石墨层网络,挤压而形成碳纳米管,底部生长机理最主要的特征是:碳管一末端与催化剂微粒相连,另一端是不含有金属微粒的封闭端; (2)表面(六元环)生长机理:碳原子直接在催化剂的表面生长形成碳管,不形成合金。 ①表面扩散机理:用苯环坐原料来生长碳纳米管,如果苯环进入催化剂内部,会被分解而产生碳氢化合物和氢气同时副产物的检测结果为只有氢气而没有碳氢化化物。说明苯环没有进入催化剂液滴内部,而只是在催化剂表面脱氢生长,也符合“帽式”生长机理。 5、论述气相和溶液法生长纳米线的生长机理。 (1)气相法反应机理包括:V-L-S机理、V-S机理、碳纳米管模板法、金属原位生长。 ①V-L-S机理:反应物在高温下蒸发,在温度降低时与催化剂形成低共熔液滴,小液滴相互聚合形成大液滴,并且共熔体液滴在端部不断吸收粒子和小的液滴,最后由于微粒的过饱和而凝固形成纳米线。 ②V-S机理:首先沉底经过处理,在其表面形成许多纳米尺度的凹坑蚀丘,这些凹坑蚀丘为纳米丝提供了成核位置,并且它的尺寸限定了纳米丝的临界成核直径,从而使生长的丝为纳米级。 ③碳纳米管模板法:采用碳纳米管作为模板,在一定温度和气氛下,与氧化物反应,碳纳米管一方面提供碳源,同时消耗自身;另一方面提供了纳米线生长的场所,同时也限制了生成物的生长方向。 ④金属原位生长: (2)溶液法反应机理包括溶液液相固相、选择性吸附。 ①S-L-S机理:SLS 法和 VLS 法很相似,二者的主要差别在于 SLS 法纳米线成长的 液态团簇来源于溶液相,而 VLS 法则来自蒸气相。

聚丙烯酰胺合成方法

聚丙烯酰胺合成工艺 ( 1) A 原理:丙烯酰胺在自由基引发剂作用下经自由基聚合反应合成聚丙烯酰胺: O引发剂H H2C C C NH2CH 2C n H C O NH 2 丙烯酰胺在醇或吡啶溶液中,经强碱催化剂如烷氧钠的作用下,经阴离子聚合反应则生成聚β-丙酰胺。 O碱 H2C C C NH2CH2 CH2 CONH H阴离子聚合反应n 工业生产中采用自由基聚合反应以生产聚丙烯酰胺,所用的自由基引发剂或引发剂来源种类甚多,包括过氧化物、过硫酸盐、氧化-还原体系、偶氮化合物、超 声波、紫外线、离子气体、等离子体、高能辐射等。 工业生产中采用的聚合方法,主要是溶液聚合法和反相乳液聚合法,以前者应用最为广泛。此外也有采用γ-射线辐照引发固相聚合的报道。 B.丙烯酰胺水溶液聚合存在的问题:①聚合热为82.8 kJ/mol,相对来说放出的热 量甚大,因此水溶液聚合法中如何及时导出聚合热成为生产中的重要技术问题之 一。②是如何降低残余单体含量。因为丙烯酰胺单体毒性甚大,为了减少其危害性,特别是用于水质处理时对残余单体的含量要求低于0.1%。③是如何将聚合反应得到的高粘度流体或凝胶转变为固体物,即干燥脱水问题。④是如何自由控制产品分子量。 丙烯酰胺于 25 o C, pH=1 时链增长速率常数k p与链终止速率常数k t分别为( 1.72± 0.3)× 104和( 16.3±0.7)× 106-1 -1,与动力学链长成正比的k p t1/2 Lmol s/k=4.2± 0.2,此数值甚高,所以不存在链转移时,聚丙烯酰胺可获得平均分子量超过2

× 107的产品。 丙烯酰胺在水溶液中进行自由基聚合时,可能产生交联生成不溶解的聚合物,当聚合反应温度过高时,此现象更为严重。理论解释认为歧化终止生成的聚合物端 基具有双键,参与聚合反应或发生向聚合物进行链转移所致。此外引发剂过硫酸 盐与聚丙烯酰胺加热时也会导致生成凝胶。 有人研究了工业产品聚丙烯酰胺的含氮量,发现含氮量低于理论值,认为这是由于分子内脱 NH 3生成酰亚胺基团所致。 COCO C C NH3 NH2 NH2O N O H 高纯度丙烯酰胺易聚合为超高分子量的聚丙烯酰胺,为了生产要求的分子量范 围,须加有链转移剂,链转移常数如表所示。 链转移剂温度,o C链转移常数× 104 单体250.0786 ±0.0107 单体400.120 ±0.0328 聚丙烯酰胺<50可忽略 H2O25近于零 H2O2255 K S O 825 4.12 ±2.38 22 K2S2O84026.3 ±7.08 HSO751700 3 CH3OH300.13 (CH3)2CHOH5019

SDS-PAGE分离胶配方表-及其原理

SDS-PAGE电泳原理: 聚丙烯酰胺凝胶是由丙烯酰胺(简称Acr) 和交联剂N,N’—亚甲基双丙烯 酰胺(简称Bis)在催化剂作用下,聚合交联而成的具有网状立体结构的凝胶,并以此为支持物进行电泳。聚丙烯酰胺凝胶电泳可根据不同蛋白质分子所带电荷的差异及分子大小的不同所产生的不同迁移率将蛋白质分离成若干条区带,如果分离纯化的样品中只含有同一种蛋白质,蛋白质样品电泳后,就应只分离出一条区带。 SDS是一种阴离子表面活性剂能打断蛋白质的氢键和疏水键,并按一定的比例和蛋白质分子结合成复合物,使蛋白质带负电荷的量远远超过其本身原有的电荷,掩盖了各种蛋白分子间天然的电荷差异。因此,各种蛋白质-SDS 复合物在电泳时的迁移率,不再受原有电荷和分子形状的影响,而只是棒长的函数。这种电泳方法称为SDS-聚丙烯酰胺凝胶电泳(简称SDS—PAGE)。由于SDS-PAGE 可设法将电泳时蛋白质电荷差异这一因素除去或减小到可以略而不计的程度,因此常用来鉴定蛋白质分离样品的纯化程度,如果被鉴定的蛋白质样品很纯,只含有一种具三级结构的蛋白质或含有相同分子量亚基的具四级结构的蛋白质,那么SDS—PAGE 后,就只出现一条蛋白质区带。 TEMED:通过催化过硫酸铵形成自由基而加速丙烯酰胺与双丙烯酰胺的聚合。 过硫酸铵(AP):提供驱动丙烯酰胺与双丙烯酰胺所必须的自由基。 SDS—PAGE 可分为圆盘状和垂直板状、连续系统和不连续系统。本实验采用垂直板状不连续系统。所谓“不连续”是指电泳体系由两种或两种以上的缓冲液、pH 和凝胶孔径等所组成。 1.蛋白样品浓缩效应 在不连续电泳系统中,含有上、下槽缓冲液(Tris—Gly,pH8.3)、浓缩胶缓 冲液(Tris—HCl,pH6.8)、分离胶缓冲液(Tris—HCl,pH8.8),两种凝胶的浓度(即孔径)也不相同。在这种条件下,缓冲系统中的HCl 几乎全部解离成Cl-,两槽中的Gly (pI=6.0,pK a=9.7)只有很少部分解离成Gly 的负离子,而酸性蛋白质也可解离出负离子。这些离子在电泳时都向正极移动。C1—速度最快(先导离子),其次为蛋白质,Gly 负离子最慢(尾随离子)。由于C1—很快超过蛋白离子,因此在其后面形成一个电导较低、电位梯度较陡的区域,该区电位梯度最高,这是在电泳过程中形成的电位梯度的不连续性,导致蛋白质和Gly 离子加快移动,结 果使蛋白质在进入分离胶之前,快、慢离子之间浓缩成一薄层,有利于提高电泳的分辨率。 2.分子筛效应 蛋白质离子进入分离胶后,条件有很大变化。由于其pH 升高(电泳进行时 常超过9.0),使Gly 解 离成负离子的效应增加;同时因凝胶的浓度升高,蛋白质的泳动受到影响,迁移率急剧下降。此两项变化,使Gly 的移动超过蛋白质,上述的高电压梯度不复 存在,蛋白质便在一个较均一的pH 和电压梯度环境中,按其分子的大小移动。分离胶的孔径有一定的大小,对不同相对分子质量的蛋白质来说,通过时受到的阻滞程度不同,即使净电荷相等的颗粒,也会由于这种分子筛的效应,把不同大小的蛋白质相互分开。

聚丙烯酰胺-残留丙烯酰胺含量的测定-气相色谱法

FCLHCSL0065 聚丙烯酰胺 残留丙烯酰胺含量的测定 气相色谱法 F_CL_HC_SL0065 聚丙烯酰胺-残留丙烯酰胺含量的测定-气相色谱法 1 范围 本方法适用于粉状及胶状非离子型聚丙烯酰胺和阴离子型聚丙烯酰胺中残留丙烯酰胺含量的测定。 本方法适用于丙烯酰胺含量高于0.01%,特别是高于0.05%的试样的测定。 2 方法提要 用规定体积和浓度的甲醇-水溶液浸取聚丙烯酰胺至平衡,用气相色谱法测定浸取液中丙烯酰胺色谱峰面积,并将其与丙烯酰胺标准样品的工作曲线比较,即可得到聚丙烯酰胺中残留丙烯酰胺的含量。 3 试剂和材料 3.1 甲醇。 3.2 甲醇-水溶液:体积比为8:2。 3.3 氮气:纯度99.99%。 3.4 载体:Chromosorb W-HP 型,粒度60目~80目。 3.5 固定液:聚乙二醇,分子量20 000。 3.6 丙烯酰胺标准样品:纯度大于99%。工业品或化学纯的固体丙烯酰胺经二次重结晶处理,可得99%以上的丙烯酰胺标准样品。 4 仪器 4.1 气相色谱仪:具有氢火焰离子化检测器,敏感度小于或等于1×10-10g/s 。 4.2 进样器:2μL 或5μL 微量注射器。 4.3 色谱柱:长2m ,内径3mm 的不锈钢柱,装填表面涂有与其重量比为20%聚乙二醇固定液的Chromosorb W-HP 载体。使用前该色谱柱需在175℃~180℃,以20mL/min 的氮气留老化处理12h 以上。 4.4 记录器:满标量程5mV 。 4.5 分析天平:感量0.0001g 。 4.6 康氏振荡器或电磁搅拌器。 5 试样溶液的制备 5.1 粉状聚丙烯酰胺试样 5.1.1 在已经干燥好的100mL 磨口具塞锥形瓶中称量2.8g ~3.1g 试样,准确至0.0001g ,用移液管移取30mL 甲醇-水溶液,盖好瓶塞。 5.1.2 摇动锥形瓶,使试样分散均匀,在室温下放置20h 。 5.1.3 将锥形瓶妥善地固定在康氏振荡器或电磁搅拌器上,勿使瓶塞松动,于室温下振荡4h 。 5.1.4 静置后取上层清液作为试样溶液。 5.2 胶状聚丙烯酰胺试样 5.2.1 在已干燥的250mL 磨口具塞锥形瓶中称量试样,准确至0.0001g 。 5.2.2 加入相当于试样含水体积4倍的甲醇。 中国分析网

相关主题
文本预览
相关文档 最新文档