当前位置:文档之家› 基于电液伺服的位置控制系统设计与仿真分析

基于电液伺服的位置控制系统设计与仿真分析

基于电液伺服的位置控制系统设计与仿真分析
基于电液伺服的位置控制系统设计与仿真分析

基于电液伺服的位置控制系统设计与仿真分析

摘要:利用matlab软件中的动态仿真工具simulink建立了电液伺服控制系统仿真模型,通过对该电液伺服控制系统进行仿真,给出仿真结果,并详细地进行性能分析和研究,对于改进系统的设计以及提高液压系统的可靠性都具有重要意义。

关键词:电液伺服位置控制设计仿真分析

1、研究背景

电液伺服控制系统多数具有良好的控制性能,并具有一定的鲁棒性,利用计算机对其进行仿真,无论对其性能分析,还是系统辅助设计,都有重要的意义[1]。

本文利用matlab软件中的动态仿真工具simulink,构造了电液伺服控制系统仿真模型,对其进行仿真,并详细地对其进行系统性能分析。

2、系统的分析

图2.1为某数控机床工作台位置伺服系统的系统方框原理图。由于系统的控制功率较小、工作台行程较大,所以采用阀控液压马达系统。用液压马达驱动,通过滚珠丝杠装置把旋转运动变为直线运动。(如图2.1)

工作台负载主要由切削力、摩擦力和惯性力三部分组成。假定系统在所有负载都存在的条件下工作,则总负载力为三部分组成。则总负载力为:

=3500n (1)

伺服阀选择液控型变量柱塞泵和电液伺服阀[3];位移传感器选用差动式变压器式,其增益为。放大器采用高输出阻抗的伺服放大器,放大倍数待定。

3、系统传递函数

由放大器增益、电液伺服阀的传递函数和液压—马达负载的传递函数组成,则伺服系统的开环传递函数为:

4、系统仿真分析

由以上计算得到传递函数:

(1)通过simulink仿真,可得到可机床工作台液压伺服系统的仿真模型[2],当=90时,系统的仿真输出结果如下图4.1所示。

从系统的单位阶跃响应曲线可以看出,系统的阶跃响应性能优良,系统稳定性良好,响应快速,调节时间短。

(2)绘制系统的bode图,求取系统的幅频性能指标。

通过matlab运行程序得出结果如图4.2所示。

如图4.2所示,可以看出:=11.6db、=52.8°,相角裕度和幅值裕度为正值,该系统稳定。

5、结语

在液压系统设计中,利用matlab/simulink,能够大大简化设计流程,在仿真过程中可以方便地模拟实际系统,反复调整各种参数,很快达到最佳设计要求,充分体现了matlab/simulink工具的优越性[1]。通过本文的研究,可以为系统的设计和应用提供有利的理论支持[4]。

参考文献

[1]胡良谋,李景超,曹克强.基于matlab/simulink的电液伺服控制系统的建模与仿真研究[j].机床与液压,2003,(3):230-232. [2]薛定宇.基于matlab/simulink的系统仿真技术与应用[m].北京:清华大学出版社,2002.

[3]王春行.液压伺服控制系统[m]北京:机械工业出版社,1989.

[4]徐志扬.基于matlab的液压伺服系统的仿真研究[j].液压与气动,2011(9):2-3.

作者简介

管峰,男,汉,1988年1月13日;中国石油大学(北京)硕士研究生;研究方向:现代机械设计理论与方法,污染源在线监测技术。

电液控制系统方案

:平顶山平煤集团飞行化工 ' 15MW机组调试作业指导书' 汽轮机数字电液控制系统 调试方案 新乡华新电力工程有限公司 2006年7月19日

-中电松H足仝K 批准:审定: 审核: 编写:

-中电 ----------------------------------------------------------------------------------------------------------------------------------- 1 目的 (3) 2 依据 (3) 3. 调试范围及系统简介 (3) 4 调试前的准备 (5) 5 控制装置的功能测试 (5) 6 回路检查及信号传动 (8) 7 与液压系统的联动调试及有关配合试验 (9) 8 系统恢复,系统投运及启动试验 (9) 9 安全注意事项10

-中---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 1 目的 为了检验电液控制系统的功能,记录制造和现场整定数据,发现并及时消除系统中可能存在的不足,完善控制系统,必须进行静态试验和动态调整。为了规范调试人员的行为,明确参与控制系统改造启动调试各方的职责,提高DEH控制系统的调试质量,使系统如期投入稳定运行,特编制此方案。 2 依据 2.1南京汽轮电机有限公司《DEH-NK系列汽轮机综合控制系统技术说明书》 2.2南京汽轮电机有限公司《CC15- 3.43/0.98/0.49 型15MW抽汽式汽轮机调 节系统说明书》 2.3《汽轮机启动运行说明书》 2.4南京汽轮电机有限公司的其它图纸资料 2.5机组原设计图纸资料 2.6有关合同/协议条款 3 调试范围及系统简介 3.1概况 飞行集团化工有限公司#4汽轮机系南京汽轮电机有限公司生产的CC15-3.43/0.98/0.49 型中温中压冲动式双抽凝汽式汽轮机。DEH电子控制装置采用南京科远控制有限公司的的DEH-NK综合控制系统,装置包括1个控制机柜,一个操作员站。 3.3主要功能: 3.3.1转速控制和程序启动方式 3.3.2功率控制方式 3.3.3主汽压力控制方式 3.3.4阀门试验和阀位限制 3.3.5超速保护功能 3.3.6甩负荷保护 3.3.7超速试验 3.3.8控制回路连锁保护

电液伺服跑偏控制系统设计

电液伺服跑偏控制系统设计 前言随着20世纪自动化技术的巨大进步,自动控制理论得到不断地发展和完善。正是针对设计任务,通过设计方案的分析比较之后,选择电液控制系统来设计此次任务。首先介绍了液压控制的一些基本概念,对研究对象和任务作出了整体的介绍,并简述了液压控制技术的发展史。然后在明确设计要求的情况下,对设计任务进行分析。通过机液伺服跑偏控制系统和电液伺服跑偏控制系统的分析对比,最终选择了电液伺服跑偏控制系统的设计方案,从而进入本课题研究要点。接着对电液伺服跑偏控制系统做了具体的设计,先是对电液伺服机构进行了分析,得出了电液伺服系统的数学模型,进而分析了其特点。接着又对系统做了静、动态计算及分析,确定了供油压力,选取了伺服阀,并求取了各元件的传递

函数,绘制了系统方块图,得出系统的各个参数。然后还要对系统进行校正,得到更为优良的设计参数,使系统更加完善,以进一步提高系统的性能。最后利用了先进电脑仿真技术MATLAB 对所做的系统进行仿真,通过改变系统的各个参数进行分析、比较,从而可看出系统的各个参数对系统的响应速度和稳定性的影响,本论文在王慧老师的悉心教导之下,通过研读各著作期刊,经过多次的修改。于作者水平有限,论文中难免出现点差错,恳请读者指正。 1 1 绪论液压伺服控制系统是以液压动力元件作驱动装置所组成的反馈控制系统。在这种系统中,输出量能够自动地、快速而准确地复现输入量的变化规律。与此同时,还对输入信号进行功率放大,因此也是一个功率放大装置。液压伺服控制系统是以液体压力能为动力的机械量自动控制系统。按系统中实现信号传输和控制方式不同分为机液伺服系统和电液伺服系

电液位置伺服控制系统设计方法

电液位置伺服控制系统设计方法 电液位置伺服系统是最基本和最常用的一种液压伺服系统,如机床工作台的位置、板带轧机的板厚、带材跑偏控制、飞机和船舶的舵机控制、雷达和火炮控制系统以及振动试验台等。在其它物理量的控制系统中,如速度控制和力控制等系统中,也常有位置控制小回路作为大回路中的一个环节 电液位置伺服系统主要是用于解决位置跟随的控制问题,其根本任务就是通过执行机构实现被控量对给定量的及时和准确跟踪,并要具有足够的控制精度。电液伺服系统的动态特性是衡量一套电液伺服系统设计及调试水平的重要指标。它由电信号处理装置和若干液压元件组成,元件的动态性能相互影响,相互制约及系统本身所包含的非线性,致使其动态性能复杂。因此,电液伺服控制系统的设计及仿真受到越来越多的重视。 液压伺服系统的基本设计步骤 ○1分析整理所需的设计参数,明确设计要求;○2拟定控制方案,构成控制系统原理图;○3确定动力元件参数(如供油压力、执行元件规格、伺服阀容量)和其他组成元件;○4分析计算系统的静、动态特性,确定回路放大系数和设计校正措施等。○5根据技术要求设计出系统以后,需要检查所设计的系统是否满足全部性能指标,如不满足,可通过调整参数或改变系统结构(即校正)等方法重复设计过程,直至满足要求为止。因为设计是试探性的,所以设计方法具有很大的灵活性,在设计中结合MATLAB的SIMULINK软件进行仿真,对系统的参数进行调整和可靠性作进一步验证,最终可以得出比较可靠的电液伺服系统。 (一)组成控制系统原理图 由于系统的控制功率比较小、工作台行程比较大,所以采用阀控液压马达系统。系统方块原理如图1

(二)由静态计算确定动力元件参数,选择位移传感器和伺服放大器 1.绘制负载轨迹图 负载力由切削力c F ,摩擦力f F 和惯性力a F 三部分组成。摩擦力具有“下降”特性,为了简化,可认为与速度无关,是定值,取最大值f F = 1500N 惯性力按最大加速度考虑 a max F 800t m a N == 假定系统是在最恶劣的负载条件下工作(即所有负载力都在存在,且速度最大)下工作,则总负载力为 max f F F F F =l c a =++400+1500+800=2700N 2.选取供油压力 5s P 6310Pa =? 3.求取液压马达排量 设齿轮减速比'm i=/2m θθ=,丝杠导程2 1.210/t m r -=?,则所需液压马达力矩为 2 2700 1.210 2.58222 L L F t T N m i ππ-??===?? 取L s 2P =P 3,则液压马达弧度排量为-63L 5s 3T 3 2.58D ==0.610m /2P 26310 m rad ?=??? 液压马达每转排量为-63-632D 20.610m / 3.710m /m m Q r r ππ==??=? 计算出的液压马达排量需标准化。按选取的标准化值再计算负载压力L P 值。本例液压马达排量计算符合标准化。 4.确定伺服阀规格 液压马达的最大转速为2max max 2 2810800/min 13.3/1.210iv n r r s t --??====? 所以负载流量为-6-6max q 3.71013.3/49.2110l m Q n r s ==??=? 此时伺服阀的压降为 55L s Lmax s -6T 2.58P P P 631020.010D 0.610 v m P Pa Pa =-=-=?-=?? 考虑到泄漏等影响,将q l 增大15%,取q l = 3.4L/min 。根据q l 和v P ,查得额定流量为

电液伺服系统的仿真与自校正PID控制器的设计

文章编号:!""#$%&’(()""!)"*$""%%$"* 电液伺服系统的仿真与自校正+,-控制器的设计! 高翔!,孔丽英),孙贵芳% (!.海军工程大学动力工程学院,湖北武汉&%""%%;).西江大学,广东肇庆*)("""; %.海军%/""!部队,辽宁大连!!(""") 摘要:对一个试验用电液伺服系统进行了理论建模和仿真研究,引入了一个非线性状态方程模型来描述电液伺服系统的动态特性.通过仿真结果与实际系统的响应相比较,验证了所建立的理论模型的准确性.在此仿 真模型基础上,设计了一个适用的自校正+,-控制器, 并且对其控制特性进行了仿真研究.关键词:电液伺服系统;仿真;非线性特性;自校正+,-控制器 中图分类号:0+)!&文献标识码:1 电液伺服系统在机械制造、船舶操纵和工业过程控制中得到了越来越广泛的应用.随着自动化技术的发展和自动化程度的不断提高,对电液伺服系统的稳定性、快速性、准确性、自适应性和鲁棒性等控制品质提出了更高的要求.为满足这些要求,一方面要提高液压系统本身的制造技术和品质特性;另一方 面选择合适的控制器是关键.一般情况下, 控制器可分为两大类,一类是基于被控系统的精确数学模型的控制器,称为传统型控制器,它包括+,-控制器、超前和滞后校正控制器、最优化控制器和自适应控制器等;另一类为人工智能型控制器,这类控制器不依赖于被控系统的精确数学模型,而依赖于人的经验知识,或者依赖于系统的输入与输出之间的非线性映射模型,例如模糊逻辑控制器和人工神经网络控制器等.第一类控制器已形成比较完善的理论体系和分析与综合方法;第二类控制器正处于大量研究和开发之中,理论体系还不完备.本文重点研究应用于电液伺服系统中的传统型控制器. 从传统控制理论的思想和方法出发,要求建立被控系统的精确数学模型,准确地描述其动力学特性,这是设计理想控制器的基础和前提条件.常用的描述系统动力学特性的数学方法有:微分方程、差分方程、传递函数和状态方程等.其中,状态方程更适合于描述非线性动力学系统的动态特性.本文采用状 态方程来建立电液伺服系统的动力学模型.该状态方程模型是否准确或有效,可以通过234536[!,)]环境 下的789:58;<[%]仿真结果与实际系统响应的比较来验证. 本文在理论建模与模拟仿真的基础上,将自适应控制理论引入传统的+,-控制器中,通过基于继电反馈的整定方法,在系统处于继电反馈闭环下观察其极限环振荡,再由极限环振荡的特征辨识出被控系统动态过程的基本性质,然后根据=8>?5>@AB8CDE5F 方法确定+,-控制器的参数,从而实现了自校正+,-控制器的设计,并通过仿真研究自适应+,-控制器的控制品质. !试验用电液伺服系统的组成和结构原理 试验用电液伺服系统由轴向柱塞泵、液压缸(G>H@E4D IJ/"K)*L !(L !""=M/*#&)、电液伺服阀(G>H@E4D &N7)O2!"A&))、溢流阀和其它辅助元件等组成(见图!).此外, 还配有一个测量与控制系统,它由位移传感器、压力传感器、G0,A’!*A,;4>@P3C>卡、,QA!)"卡和&’(A+I 等组成.该测量与控制系统可以放大、测量和记录液压油源压力!F 和!@、液压缸两腔的压力!1和!R 、液压缸活塞杆的运动位移"(#) 和运动速度$(#)%由&’($+I 实现的数字控制器可根据反馈信号与指令信号作出控制决策, 输出控制作用信号&(#)给电液伺服阀的驱动放大器,从而实现计算机控制% 第!%卷第*期 )""!年!"月海军工程大学学报STUGB1V TK B1W1V UB,WOG7,0M TK OBJ,BOOG,BJ WE5.!%BE.*TC4.)""! !收稿日期:)""!A"&A%";修订日期:)""!A"*A!%作者简介:高翔(!#(%A ),男,副教授,博士生. 万方数据

电液伺服控制系统的设计

。 电液伺服控制系统的设计与仿真 引言 电液伺服系统具有响应速度快、输出功率大、控制精确性高等突出优点,因而在航空航天、军事、冶金、交通、工程机械等领域得到广泛应用。随着电液伺服阀的诞生,使液压伺服技术进入了电液伺服时代,其应用领域也得到广泛的扩展。随着液压系统逐渐趋于复杂和对液压系统仿真要求的不断提高,传统的利用微分方程和差分方程建模进行动态特性仿真的方法已经不能满足需要。因此,利用AMESim、Matlab/Simulink等仿真软件对电液伺服控制系统进行动态仿真,对于改进系统的设计以及提高液压系统的可靠性都具有重要意义。 1 液压系统动态特性研究概述 随着液压技术的不断发展与进步和应用领域与范围的不断扩大,系统柔性化与各种性能要求更高,采用传统的以完成执行机构预定动作循环和限于系统静态性能的系统设计远远不能满足要求。因此,现代液压系统设计研究人员对系统动态特性进行研究,了解和掌握液压系统动态工作特性与参数变化,以提高系统的响应特性、控制精度以及工作可靠性,是非常必要的。 液压系统动态特性简述 … 液压系统动态特性是其在失去原来平衡状态到达新的平衡状态过程中所表现出来的特性,原因主要是由传动与控制系统的过程变化以及外界干扰引起的。在此过程中,系统各参变量随时间变化性能的好坏,决定系统动态特性的优劣。系统动态特性主要表现为稳定性(系统中压力瞬间峰值与波动情况)以及过渡过程品质(执行、控制机构的响应品质和响应速度)问题。 液压系统动态特性的研究方法主要有传递函数分析法、模拟仿真法、实验研究法和数字仿真法等。数字仿真法是利用计算机技术研究液压系统动态特性的一种方法。先是建立液压系统动态过程的数字模型——状态方程,然后在计算机上求出系统中主要变量在动态过程的时域解。该方法适用于线性与非线性系统,可以模拟出输入函数作用下系统各参变量的变化情况,从而获得对系统动态过程直接、全面的了解,使研究人员在设计阶段就可预测液压系统动态性能,以便及时对设计结果进行验证与改进,保证系统的工作性能和可靠性,具有精确、适应性强、周期短以及费用低等优点。 仿真环境简介 基于Matlab平台的Simulink是动态系统仿真领域中著名的仿真集成环境,它在众多领域得到广泛应用。Simulink借助Matlab的计算功能,可方便地建立各种模型、改变仿真参数,有效解决了仿真技术中的问题。Simulink提供了交互的仿真环境,既可通过下拉菜单进行仿真,也可通过命令进行仿真。虽然Simulink提供了丰富的模块库,但是在Matlab/Simulink下对液压系统进行建模及仿真需要做很多简化工作,而模型的简化使得仿真结果往往出现一定的误差。AMESim (Advanced Modeling Environment for Simulation of Engineering Systems)是法国IMAGINE公司开发的一套高级仿真软件。它是一个图形化的开发环境,用于工程系统的建模、仿真和动态性能分析。AMESim的特点是面向工程应用从而使其成为

自动控制原理课程设计方案——旋压机电液伺服系统设计方案

第一章绪论 1.1题目概述 由原题目已知数据可画出系统方框图: 已知技术参数和设计要求: (1)σp≤25%; t s≤0.25s; (2)速度信号V=0.5m/min时,误差e(t)≤0.05mm; 1 .2旋压机电液伺服系统背景简介 旋压技术是先进制造技术的重要组成部分,是局部连续塑性成形工艺,属于回转成形范畴,主要用于形成薄壁空心回转体零件。该技术广泛应用于航空航天、火箭、导弹、兵器等军事工业和通用机械、汽车等民用工业中。旋压机的仿形系统对旋压加工产品的质量及加工精度的影响至关重要。大型立式强力旋压机采用的是电液仿形技术,其液压系统包含了旋轮座纵向和横向液压系统、辅助系统等主要系统。旋轮座横向电液伺服系统和纵向电液伺服系统组成了旋轮座仿形系统,该系统利用电液比例伺服阀控制液压油缸活塞杆的位移量,并通过按加工精度要求输入预定变化规律的控制信号来实现对位移量的精确控制,从而达到所要求的加工精度。采用电液比例伺服控制技术不仅改善了系统的控制性能,而且大大简化了液压系统,降低了费用,同时还提高了系统的可靠性。

旋压技术,也叫金属旋压成形技术,是通过旋转使工件受力点由点到线由线到面,同时在某个方向给予一定的压力使金属材料沿着这一方向变形和流动而成形为某一形状的技术。旋压成形过程是将金属板料或空心零件的毛坯固定在旋压机的芯模上,在毛坯随机床转动同时,用旋轮将毛坯逐点压下,使其形状或者壁厚发生局部连续塑性变形,从而制成所需的产品的成形过程。可以生产更接近最终形状(净性)的金属零件。这里,金属材料必须具有塑性变形或流动性能,旋压成形也不等同于塑性变形,它是集塑性变形和流动变形的复杂过程,特别需要指出的是,我们所说的旋压成形技术不是单一的强力旋压或普通旋压,它是两者的结合。强力旋压用于各种筒、锥体异形体的旋压成型壳体的加工技术,是一种比较老的成熟的方法和工艺,也叫滚压法。旋压是综合了锻造、挤压、拉伸、弯曲、环压、横轧和滚压等工艺特点的少无切削加工的先进工艺。它通常被认为只能成形轴对称回转体零件,而近年来所开展的三维非轴对称零件旋压技术研究表明,旋压已突破其原有的理论范畴及加工范围。旋压件的基本形状大致可分为圆筒形、圆锥形、凹形、凸形、管形、阶梯形、缩口形等,还有由这些形状组成的复合形状。旋压加工具有设备简单、节省原材料、成本低廉和产品质量高等优点。陶瓷的制坯工艺可能为金属旋压提供工艺雏型。在我国早在三千五百年至四千年前的殷商时代,就会应用陶轮或陶车制作陶坯(例如罐、壶和盘等容器、器皿、装饰品),后来又在十世纪初期发明金属旋压工艺,并且将有色金属薄板(如金、银、锡和铜等)制成空心件如:精美的银碗、银碟等器皿。一直到十三世纪,金属旋压技术才传播到英国,其后将近五百多年,在1840年左右,才由约旦传播到美国和欧洲各国。强力旋压技术是直到上个世纪五十年代才从普通旋压技术的基础上发展起来的。最早是在瑞典、德国被用于民间工业,到1953年美国的普拉特惠特尼公司和洛奇西普来机床厂合作才制成了三台旋压机床,初次成功将这种技术应用到航空工业中。由于旋压工艺的先进性、经济性和实用性,且该工艺具有变形力小,节约原材料等特点,近四十多年来,国外工业发达国家的金属旋压工艺技术有了飞跃的发展,日趋成熟。其主要标志为:金属旋压设备己经定型,工艺流程比较稳定,产品多种多样,应用日益广泛。目前世界上在强力旋压技术的发展和应用上,美国和德国居于领先水平,其工艺已经成熟,设备己系列化、性能最为先进。近几年西班牙又异军突起,其他国家在强力旋压的探讨和应用上正在

毕业设计152辽宁工程技术大学电液伺服跑偏控制系统设计

前言 随着20世纪自动化技术的巨大进步,自动控制理论得到不断地发展和完善。本文正是针对设计任务,通过设计方案的分析比较之后,选择电液控制系统来设计此次任务。 本文首先介绍了液压控制的一些基本概念,对研究对象和任务作出了整体的介绍,并简述了液压控制技术的发展史。然后在明确设计要求的情况下,对设计任务进行分析。通过机液伺服跑偏控制系统和电液伺服跑偏控制系统的分析对比,最终选择了电液伺服跑偏控制系统的设计方案,从而进入本课题研究要点。 接着本文对电液伺服跑偏控制系统做了具体的设计,先是对电液伺服机构进行了分析,得出了电液伺服系统的数学模型,进而分析了其特点。接着又对系统做了静、动态计算及分析,确定了供油压力,选取了伺服阀,并求取了各元件的传递函数,绘制了系统方块图,得出系统的各个参数。 然后还要对系统进行校正,得到更为优良的设计参数,使系统更加完善,以进一步提高系统的性能。最后利用了先进电脑仿真技术MATLAB对所做的系统进行仿真,通过改变系统的各个参数进行分析、比较,从而可看出系统的各个参数对系统的响应速度和稳定性的影响。 本论文在王慧老师的悉心教导之下,通过研读各著作期刊,经过多次的修改。由于作者水平有限,论文中难免出现点差错,恳请读者指正。

1 绪论 液压伺服控制系统是以液压动力元件作驱动装置所组成的反馈控制系统。在这种系统中,输出量(位移、速度、力等)能够自动地、快速而准确地复现输入量的变化规律。与此同时,还对输入信号进行功率放大,因此也是一个功率放大装置。 液压伺服控制系统是以液体压力能为动力的机械量(位移、速度和力)自动控制系统。按系统中实现信号传输和控制方式不同分为机液伺服系统和电液伺服系统两种。 机液伺服系统的典型实例是飞机、汽车和工程机械主离合器操纵装置上常用的液压助力器,机床上液压仿形刀架和汽车与工程机械上的液压动力转向机构等。 电液伺服控制系统是以液压为动力,采用电气方式实现信号传输和控制的机械量自动控制系统。按系统被控机械量的不同,它又可以分为电液位置伺服系统、电液速度伺服控制系统和电液力控制系统三种。电液位置伺服控制系统适合于负载惯性大的高速、大功率对象的控制,它已在飞行器的姿态控制、飞机发动机的转速控制、雷达天线的方位控制、机器人关节控制、带材跑偏、张力控制、材料试验机和加载装置等中得到应用。 1.1 液压伺服控制系统的组成 液压伺服控制系统不管多么复杂,都是由以下一些基本元件组成的,如图1-1所示: 图1-1 电液伺服控制系统 Fig.1-1 electro-hydraulic servo system 1)输入元件——也称指令元件,它给出输入信号(指令信号)加于系统的输入端。该元件可以是机械的、电气的、气动的等。如靠模、指令电位器或计算机等。 2)反馈测量元件——测量系统的输出并转换为反馈信号。这类元件也是多种形式的。各种传感器常作为反馈测量元件。如测速机、阀套,以及其它类型传感器。 3)比较元件——相当于偏差检测器,它的输出等于系统输入和反馈信号之差,如加法器、阀芯与阀套组件等。 4)液压放大与转换元件——接受偏差信号,通过放大、转换与运算(电液、机液、

MATLAB电液位置伺服控制系统设计及仿真教案资料

M A T L A B电液位置伺服控制系统设计及仿真

数控机床工作台电液位置伺服控制系统设 计及仿真 姓名:雷小舟 专业:机械电子工程 子方向:机电一体化 武汉工程大学机电液一体化实验室

位置伺服系统是一种自动控制系统。因此,在分析和设计这样的控制系统时,需要用自动控制原理作为其理论基础,来研究整个系统的动态性能,进而研究如何把各种元件组成稳定的和满足稳定性能指标的控制系统。若原系统不稳定可通过调整比例参数和采用滞后校正使系统达到稳定,并选取合适的参数使系统满足设计要求。 1 位置伺服系统组成元件及工作原理 数控机床工作台位置伺服系统有不同的形式,一般均可以由给定环节、比较环节、校正环节、执行机构、被控对象或调节对象和检测装置或传感器等基本元件组成[1]。根据主机的要求知系统的控制功率比较小、工作台行程比较大,所以采用阀控液压马达系统。 系统物理模型如图1所示。 图1 数控机床工作台位置伺服系统物理模型 系统方框图如图2所示。 图2 数控机床工作台位置伺服系统方框图 数控机床工作台位置伺服系统是指以数控机床工作台移动位移为控制对象的自动控制系统。位置伺服系统作为数控机床的执行机构,集电力电子器件、控制、驱动及保护为一体。数控机床的工作台位置伺服系统输出位移能自动地、快速而准确地复现输入位移的变化,是因为工作台输出端有位移检测装置(位移传感器)将位移信号转化为电信号反馈到输入端构成负反馈闭环控制系统。反馈信号与输入信号比较得到差压信号,然后把差压信号通过伺服放大器转化为电流信号,送入电液伺服阀(电液转换、功率放大元件)转换为大功率的液压信号(流量与压力)输出,从而使液压马达的四通滑阀有开口量就有压力油输出到液压马达,驱动液压马达带动减速齿轮转动,从而带动滚珠丝杠运动。因滚珠丝杠与工作台相连所以当滚珠丝杠 运动时,工作台也发生相应的位移。 2数控工作台的数学模型 2.1 工作台负载分析 工作台负载主要由切削力c F ,摩擦力f F 和惯性力a F 三部分组成,则总负载力为: a f c L F F F F ++=

电液伺服控制系统的应用研究

电液伺服控制系统的应用研究 【摘要】电液伺服控制是液压技术领域的重要分支。多年来,许多工业部门和技术领域对高响应、高精度、高功率—重量比和大功率液压控制系统的需要不断扩大,促使液压控制技术迅速发展。特别是控制理论在液压系统中的应用、计算及电子技术与液压技术的结合,使这门技术不论在元件和系统方面、理论与应用方面都日趋完善和成熟,并形成一门学科。目前液压技术已经在许多部门得到广泛应用,诸如冶金、机械等工业部门及飞机、船舶部门等。我国于50年代开始液压伺服元件和系统的研究工作,现已生产几种系列电液伺服产品,电液伺服控制系统的研究工作也取得很大进展。 【关键词】电液伺服控制应用 1、电液控制系统的特点、构成及分类 电液控制系统是一门比较年轻的技术,它的发展和普遍应用还不到50年,然而,凭借它的优点却形成了流体传动与控制的一个重要分支,并成为现代控制工程的基本技术构成之一。 1.1电液控制系统的特点 1) 液压执行元件的功率--重量比和转矩--惯性矩比(或力--质量比)大,具有很大的功率传递密度,可以构成体积小、重量轻、响应速度快的大功率控制单元。 2) 液压系统的负载刚度大,精度高。由于液压杠、执行元件的泄漏很少,液体介质的体积弹性模量又很大,故具有较大的速度--负载刚性,即速度--力或转速--力矩曲线斜率的倒数很大,因此有可能用于开环系统。用于闭环系统时则表现为位置刚度大,其定位精度受负载变化的影响小。 3) 液压控制系统可以安全,可靠并迅速地实现频繁的带负载启动和制动,进行正反向直线或回转运动和动力控制,而且具有很大的调速范围。 电气或电子技术和液压传动及控制相结合的产物--电液控制系统兼备了电气和液压的双重优势,形成了具有竞争力和自身技术特点。 当然,在某些场合下,指令和反馈元件也可全部采用机械、气动或液压元件,此时,即称为机械--液压控制系统和气动--液压控制系统。 1.2 电液控制系统的构成 工程实际中系统的指令及放大单元多采用电子设备。电机械转换器往往是动圈式或动铁式电磁元件和伺服电机、步进电机等。液压转换及放大器件可以是各类开关式,伺服式和比例式器件实际上是一功率放大单元。液压执行元件通常是液压缸和液压马达,其输出参数只能是位移、速度、加速度和力或者转角、角速

电液伺服控制系统的设计

电液伺服控制系统 的设计

电液伺服控制系统的设计与仿真 引言 电液伺服系统具有响应速度快、输出功率大、控制精确性高等突出优点,因而在航空航天、军事、冶金、交通、工程机械等领域得到广泛应用。随着电液伺服阀的诞生,使液压伺服技术进入了电液伺服时代,其应用领域也得到广泛的扩展。随着液压系统逐渐趋于复杂和对液压系统仿真要求的不断提高,传统的利用微分方程和差分方程建模进行动态特性仿真的方法已经不能满足需要。因此,利用AMESim、 Matlab/Simulink等仿真软件对电液伺服控制系统进行动态仿真,对于改进系统的设计以及提高液压系统的可靠性都具有重要意义。 1 液压系统动态特性研究概述 随着液压技术的不断发展与进步和应用领域与范围的不断扩大,系统柔性化与各种性能要求更高,采用传统的以完成执行机构预定动作循环和限于系统静态性能的系统设计远远不能满足要求。因此,现代液压系统设计研究人员对系统动态特性进行研究,了解和掌握液压系统动态工作特性与参数变化,以提高系统的响应特性、控制精度以及工作可靠性,是非常必要的。 1.1 液压系统动态特性简述 液压系统动态特性是其在失去原来平衡状态到达新的平衡状态过程中所表现出来的特性,原因主要是由传动与控制系统的过程变化以及外界干

动态特性的优劣。系统动态特性主要表现为稳定性(系统中压力瞬间峰值与波动情况)以及过渡过程品质(执行、控制机构的响应品质和响应速度)问题。 液压系统动态特性的研究方法主要有传递函数分析法、模拟仿真法、实验研究法和数字仿真法等。数字仿真法是利用计算机技术研究液压系统动态特性的一种方法。先是建立液压系统动态过程的数字模型——状态方程,然后在计算机上求出系统中主要变量在动态过程的时域解。该方法适用于线性与非线性系统,能够模拟出输入函数作用下系统各参变量的变化情况,从而获得对系统动态过程直接、全面的了解,使研究人员在设计阶段就可预测液压系统动态性能,以便及时对设计结果进行验证与改进,保证系统的工作性能和可靠性,具有精确、适应性强、周期短以及费用低等优点。 1.2 仿真环境简介 基于Matlab平台的Simulink是动态系统仿真领域中著名的仿真集成环境,它在众多领域得到广泛应用。Simulink借助Matlab的计算功能,可方便地建立各种模型、改变仿真参数,有效解决了仿真技术中的问题。Simulink提供了交互的仿真环境,既可经过下拉菜单进行仿真,也可经过命令进行仿真。虽然Simulink提供了丰富的模块库,可是在Matlab/Simulink下对液压系统进行建模及仿真需要做很多简化工作,而模型的简化使得仿真结果往往出现一定的误差。AMESim (Advanced Modeling Environment for Simulation of Engineering Systems)是法国IMAGINE公司开发的一套高级仿真软件。它是一个图形化的开发环境,用于工程系统的建

电液伺服控制系统

6-1 怎样区分一个系统是位置、速度或力电-液伺服控制系统。 按系统被控制的物理量的性质来区分,如果是要实现位置控制,当然就是位置电液伺服系统。 6-2 试比较电-液伺服系统与机-液伺服系统的主要优缺点和性能特点。 机液伺服系统的指令给定、反馈和比较都是采用机械构件,优点是简单可靠,价格低廉,环境适应性好,缺点是偏差信号的校正及系统增益的调整不如电气方便,难以实现远距离操作,另外,反馈机构的摩擦和间隙都会对系统的性能产生不利影响。机液伺服系统一般用于响应速度和控制精度要求不是很高的场合,绝大多数是位置控制系统。 电液伺服系统的信号检测、校正和放大等都较为方便,易于实现远距离操作,易于和响应速度快、抗负载刚度大的液压动力元件实现整合,具有很大的灵活性和广泛的适应性。特别是电液伺服系统与计算机的结合,可以充分运用计算机快速运算和高效信息处理的能力,可实现一般模拟控制难以完成的复杂控制规律,因而功能更强,适应性更广。电液伺服系统是液压控制领域的主流系统。 6-3 为什么说电-液伺服系统一般都要加以校正。 当电液位置伺服控制系统的某些性能指标不甚满意时,简单的方法可通过增大系统的开环增益来提高响应速度和控制精度,但提高开环增益受系统稳定性条件的制约,也就是受液压固有频率和阻尼比的限制。全面改善系统的性能仅仅靠调整开环增益是远远不够的,通过对电液伺服系统进行针对性的校正,往往能够获得更高性能的电液伺服系统,并且不同的校正方法,会得到不同的改善效果。 6-4 怎样才能简化位置电-液伺服控制系统。 当电液伺服阀的频宽与液压固有频率相近时,电液伺服阀的传递函数可用二阶环节来表示;当电液伺服阀的频宽大于液压固有频率(3~5倍)时,电液伺服阀的传递函数可用一阶环节来表示。又因为电液伺服阀的响应速度较快,与液压动力元件相比,其动态特性可以忽略不计,而把它看成比例环节。一般的液压位置伺服系统往往都能够简化成以下的这种形式。 ()()V 2h h h 21K G s H s s s s ζωω=??++ ??? 6-5 怎样理解系统刚度高,误差小。 以负载误差为例,对于I 型系统稳态负载误差为()ce L L022v m K e T K i D ∞= ,负载误差()L e ∞的大小与负载干扰力矩L0T 成正比,而与系统的闭环静刚度22V m ce K i D K 成反比,所以当系统的刚 度高时误差较小。

电液伺服控制系统的设计

电液伺服控制系统的设计与仿真 引言 电液伺服系统具有响应速度快、输出功率大、控制精确性高等突出优点,因而在航空航天、军事、冶金、交通、工程机械等领域得到广泛应用。随着电液伺服阀的诞生,使液压伺服技术进入了电液伺服时代,其应用领域也得到广泛的扩展。随着液压系统逐渐趋于复杂和对液压系统仿真要求的不断提高,传统的利用微分方程和差分方程建模进行动态特性仿真的方法已经不能满足需要。因此,利用AMESim、Matlab/Simulink等仿真软件对电液伺服控制系统进行动态仿真,对于改进系统的设计以及提高液压系统的可靠性都具有重要意义。 1 液压系统动态特性研究概述 随着液压技术的不断发展与进步和应用领域与范围的不断扩大,系统柔性化与各种性能要求更高,采用传统的以完成执行机构预定动作循环和限于系统静态性能的系统设计远远不能满足要求。因此,现代液压系统设计研究人员对系统动态特性进行研究,了解和掌握液压系统动态工作特性与参数变化,以提高系统的响应特性、控制精度以及工作可靠性,是非常必要的。 1.1 液压系统动态特性简述 液压系统动态特性是其在失去原来平衡状态到达新的平衡状态过程中所表现出来的特性,原因主要是由传动与控制系统的过程变化以及外界干扰引起的。在此过程中,系统各参变量随时间变化性能的好坏,决定系统动态特性的优劣。系统动态特性主要表现为稳定性(系统中压力瞬间峰值与波动情况)以及过渡过程品质(执行、控制机构的响应品质和响应速度)问题。 液压系统动态特性的研究方法主要有传递函数分析法、模拟仿真法、实验研究法和数字仿真法等。数字仿真法是利用计算机技术研究液压系统动态特性的一种方法。先是建立液压系统动态过程的数字模型——状态方程,然后在计算机上求出系统中主要变量在动态过程的时域解。该方法适用于线性与非线性系统,可以模拟出输入函数作用下系统各参变量的变化情况,从而获得对系统动态过程直接、全面的了解,使研究人员在设计阶段就可预测液压系统动态性能,以便及时对设计结果进行验证与改进,保证系统的工作性能和可靠性,具有精确、适应性强、周期短以及费用低等优点。 1.2 仿真环境简介 基于Matlab平台的Simulink是动态系统仿真领域中著名的仿真集成环境,它在众多领域得到广泛应用。Simulink借助Matlab的计算功能,可方便地建立各种模型、改变仿真参数,有效解决了仿真技术中的问题。Simulink提供了交互的仿真环境,既可通过下拉菜单进行仿真,也可通过命令进行仿真。虽然Simulink提供了丰富的模块库,但是在Matlab/Simulink下对液压系统进行建模及仿真需要做很多简化工作,而模型的简化使得仿真结果往往出现一定的误差。AMESim (Advanced Modeling Environment for Simulation of Engineering Systems)是法国IMAGINE公司开发的一套高级仿真软件。它是一个图形化的开发环境,用于工程系统的建模、仿真和动态性能分析。AMESim的特点是面向工程应用从而使其成为汽车、航天和航空等工业研发部门的理想仿真工具。研究人员完全可以用AMESim的各种模型库来设计系统,从而可快速达到建模仿真的最终目标,同时还提供了与Matlab、ADAMS等软件的接口,可方便地与这些软件进行联合仿真。

电液伺服控制系统概述

电液伺服控制系统概述 摘要:电液伺服控制是液压领域的重要分支。多年来,许多工业部门和技术领域对高响应、高精度、高功率——重量比和大功率液压控制系统的需要不断扩大,促使液压控制技术迅速发展。特别是控制理论在液压系统中的应用、计算及电子技术与液压技术的结合,使这门技术不论在原件和系统方面、理论与应用方面都日趋完善和成熟,并形成一门学科。目前液压技术已经在许多部门得到广泛应用,诸如冶金、机械等工业部门及飞机、船舶部门等。 关键词:电液伺服控制液压执行机构 伺服系统又称随机系统或跟踪系统,是一种自动控制系统。在这种系统中,执行元件能以一定的精度自动地按照输入信号的变化规律动作。液压伺服系统是以液压为动力的自动控制系统,由液压控制和执行机构所组成。 一、电液控制系统的发展历史 液压控制技术的历史最早可以追溯到公元前240年,一位古埃及人发明的液压伺服机构——水钟。而液压控制技术的快速发展则是在18世纪欧洲工业革命时期,在此期间,许多非常实用的发明涌现出来,多种液压机械装置特别是液压阀得到开发和利用,使液压技术的影响力大增。18世纪出现了泵、水压机及水压缸等。19世纪初液压技术取得了一些重大的进展,其中包括采用油作为工作流体及首次用电来驱动方向控制阀等。第二次世界大战期间及战后,电液技术的发展加快。出现了两级电液伺服阀、喷嘴挡板元件以及反馈装置等。20世纪50~60年代则是电液元件和技术发展的高峰期,电液伺服阀控制技术在军事应用中大显身手,特别是在航空航天上的应用。这些应用最初包括雷达驱动、制导平台驱动及导弹发射架控制等,后来又扩展到导弹的飞行控制、雷达天线的定位、飞机飞行控制系统的增强稳定性、雷达磁控管腔的动态调节以及飞行器的推力矢量控制等。电液伺服驱动器也被用于空间运载火箭的导航和控制。电液控制技术在非军事工业上的应用也越来越多,最主要的是机床工业。在早些时候,数控机床的工作台定位伺服装置中多采用电液系统(通常是液压伺服马达)来代替人工操作,其次是工

某旋压机电液伺服系统的设计与仿真 自控课设 哈工大

Harbin Institute of Technology 课程设计说明书 课程名称:自动控制原理 设计题目:某旋压机电液伺服系统的设计与仿真班级: 设计者: 学号: 指导老师:王述一 设计时间: 2013年2月----3月 哈尔滨工业大学

哈尔滨工业大学课程设计任务书 (s)=

*注:此任务书由课程设计指导教师填写。 目录 一:题目要求与背景…………………………………………………………………. 1.1 题目要求 1.2题目背景简介 二:基于频率响应法的设计 2.1 人工设计

2.1.1设计满足稳态误差要求的未校正系统的开环频率特性2.1.2计算系统设计要求的相角裕度 2.1.3计算系统设计要求的剪切频率 2.1.4为系统设计校正环节 2.2 计算机辅助设计 2.2.1被控对象仿真 2.2.2控制器的设计 2.2.3对校正后开环系统仿真 2.2.4对控制器的开环系统仿真 2.2.5对校正后闭环系统仿真 2.2.6 对校正系统评估 2.3 校正装置电路图 三:基于根轨迹法的设计 3.1人工设计 3.1.1 原系统根轨迹图 3.1.2 期望主导极点 3.1.3控制器的设计 3.1.4 校正后系统仿真分析 四:设计总结 五:心得体会 六:参考文献 七:附录:

一:题目要求与背景 1.1 题目要求 技术要求:;;;速度信号V=0.5m/min时,误差e(t) 系统固有传递函数为: (s)= 1.2题目背景简介 电液伺服控制起源于主要在军事工程领域发展起来的电液控制技术,而电液比例控制技术,是针对伺服控制存在的诸如功率损失大、对油液过滤要求苛刻、制造和维护费用高。而它提供的快速性在一般工业设备中又往往用不着的情况,在近30多年迅速发展起来的介于普通通断开关控制与伺服控制之间的新型电液控制技术分支。除了模拟式电液比例元件外,早在20世纪60年代人们就开始注意数字式或脉冲式比例元件的开发。这类元件的优点是对介质污染不敏感,工作可靠,重复精度高,成批产品的性能一致性好。其主要缺点是由于按载频原理实现控制,故控制信号的频宽较模拟器件低。数字式电液比例元件的电一机械转换器,主要是步进马达和按脉冲方式工作的动铁式或动圈式力马达。数字式电液比例系统实质上是一个电液数/模转换系统或载频调制系统。其控制分辨精度取决于每一脉冲的当量步长或调制精度。最近迅速发展起来的高速开关阀,为比例阀的先导控制提供了一种新型的方式。这种阀的重要特点是结构简单、响应快,目前正摆脱由于工作流量小而仅作为先导控制阀的局面,甚至更大的流量方向寻求优化结构。 第二次世界大战后期,由于喷气式飞机速度很高,因此对控制系统的快速性、动态精度和功率一重量比都提出了更高的要求。1940年底,在飞机上首先出现了电液伺服系统。经过20余年的发展,到了20世纪60年代,各种结构的电液伺服阀相继问世,电液伺服技术

电液控制系统

电液系统 摘要:电液系统具有相应快速、控制灵活等优点而广泛应用于现代工业中,对促进工业发展具有重要的作用。本文从电液控制系统的建模以及电液元件(伺服阀、比例阀)研究状况、电液系统的未来发展趋势三方面进行了阐述。 关键词:电液系统;建模;比例阀;伺服阀;发展趋势 1前言 18世纪欧洲工业革命时期,多种液压机械装置特别是液压阀得 到开发和利用,19世纪液压技术取得进展,包括采用油作为工作流 体和采用电来驱动方向控制阀,20世纪50-60年代是电液元件和技术发展的高峰期,在军事应用中得到广泛应用[1]。液压技术是以液体为工作介质,实现能量传递、转换、分配及控制的一门技术。液压系统因其响应快、功率体积比较大、抗负载刚度大以及传递运动平稳等优点而广泛应用于冶金、化工、机械制造、航空航天、武器装备等领域[2]。随着液压技术与微电子技术、传感器技术、计算机控制等技术的结合,电液技术成为现代工程控制中不可或缺的重要技术手段和环节。电液技术既有电气系统快速响应和控制灵活的优点,又有液压系统输出功率大和抗冲击性好等优点[3]。 韩俊伟对电液伺服系统的发展历史、研究现状和系统集成技术的应用进行了全面阐述,通过介绍电液伺服系统在力学环境模拟实验系统中的应用,分析了电液伺服系统的集成设计,比较了我国在电液伺服系统技术研究中的优劣势,指出电液伺服系统的未来发展趋势与挑

战[4]。许梁等从电液元件、电液控制系统、现代电液控制策略三方面对电液系统进行了阐述,指出了电液发展趋势[5]。陈刚等从电液元件、电液控制系统、计算机在电液系统中应用、现代控制理论的电液技术方面对电液系统进行了阐述,对于现代控制理论的电液技术,从PID 调节、状态反馈控制、自适应控制、变结构控制、模糊逻辑控制、神经网络控制进行了探究[6]。本文从电液系统的建模、电液元件(比例阀、伺服阀)、发展趋势研究进行综述。 2系统的建模 伺服系统是一个由多个环节构成的复杂的动力学系统,而且是一种典型的非线性时变系统。一方面由于阀口固有的流量一压力非线性、液体可压缩性、电液转换、摩擦特性、阔的工作死区等非线性,以 及阻尼系数、流量系数、油液温度等的时变性[7];另一方面由于系 统的负载及所处的现场环境的变化,导致电液伺服系统参数变化大、非线性程度高、易受外界干扰。在工作过程中容易出现非线性振动、噪声、冲击和爬行等异常现象,而且其诱因不易确定,影响设备的 稳定运行[8]。对电液系统进行准确建立模型是分析电液系统的基础。电液伺服系统本身是非线性系统 ,传统上对电液伺服系统非线性问 题的处理方式是在稳态工作点处进行泰勒级数展开。如果把工作范围限制在工作点附近,高阶无穷小就可以忽略 ,并可以把控制滑阀的 流量方程局部线性化,变量的变化范围小 ,线性化的精确性就高 ,阀 特性的线性度高,所允许的变量变化范围就大[9]。当电液伺服系统工作在远离系统的工作点时,使增量线性化模型难于奏效 ,可能得到错

电液位置伺服系统研究现状

电液位置伺服系统研究现状 张如兴 摘要当系统中被控制的物理量是位置量,同时检测反馈信号以及输入指令信号也是位置信号的由机构和液压元件组成的闭环控制系统。信号的传输是机械液压方式的,这一类系统称为机液位置伺服系统。机液伺服系统的优点是结构简单、工作可靠、抗污染能力强、造价低廉,因此广泛应用于航空、航天、舰船、工程机械、汽车、动力工程、机床控制、和农业机械等各个领域。机液伺服系统的缺点是机械连接件较多,因此不可避免饿带来了间隙、摩擦和刚度的影响。但是,由于它所具有的优点,应用的历史悠久,而且也广泛。 关键词位置伺服系统、伺服阀、应用范围 电液伺服位置系统在不断的进步中,越来越来得到广泛的应用。现在我就浅谈电液伺服位置系统得到一些应用和现状。 电液伺服阀是电液伺服控制系统的核心控制元件,其性能直接决定和制约着整个电液伺服控制系统的控制精度、响应特性、工作可靠性及寿命。随着航空、航天和军事工业对电液伺服系统性能要求的提高,民用工业对低成本、易维护、环保型电液伺服系统需求,传统电液伺服阀已不能满足要求。为提高伺服阀性能,国内外展开了以新型功能材料为基础的高频响、高精度电液伺服阀,以结构改进为基础的大流量、抗污染、低成本型电液伺服阀,以及以水作为介质的水压伺服阀的研究。 l新型功能材料在电液伺服阀中的应用 1.1超磁致伸缩材料 超磁致伸缩材料(GMM)的基本物理原理为磁致伸缩效应,即物体随磁化方向伸长或缩短的现象Ⅲ。此种材料做成的转换器具有输出力大、响应速度快、控制精度高等优点。 1.2压电材料/电致伸缩材料 压电材料(1rZT)和电致伸缩材料(PMN)部是电介质,在其极化方向上施加一定强度的电场.则会引起材料的机械变形.去掉电场后叉能恢复到原状态”。此种材料做成的转换器同样具有输出力大、响应速度快、控错精度高等优点.与GMM材料相比,研究成熟,价格低,但其需要较高的驱动电压。 1.3形状记忆台金 形状记忆台金(SMA)是指其宥一定初始形状的合盒在低温下经塑性形变并固定成另一种形变后,通过加热到某一l晦界温度以上叉可恢复成初始形状的一类合金此种材料做成的转换器体积小精度低,价格较低。 1.4磁流变流体 磁流变流体(MRF)属可控流体,由高磁导率、低磁滞性的微小软磁性颗粒和非导磁性液体混合而成的悬浮体。在外磁场作用下,表面黏度系数陡然增大两个数量级以上;当外加磁场增强时,会在一瞬间(0.1 s左右)变成类固体,失去流动性当撤销磁场后,材料立即恢复原状"。 国内哈尔滨工业大学利用MRF在外加磁场作用下,具有较大磁化强度的特点,提出了在力矩马达衔铁和铁芯的工作气隙中加入MRF,利用MRF来改善伺服阀动态性能的方法。实验表明,添加磁流变流体后消除了射流管伺服阀的自激震荡,但响应速度降低。 1.5电流变流体

相关主题
文本预览
相关文档 最新文档