当前位置:文档之家› MATLAB电液位置伺服控制系统设计及仿真

MATLAB电液位置伺服控制系统设计及仿真

MATLAB电液位置伺服控制系统设计及仿真
MATLAB电液位置伺服控制系统设计及仿真

数控机床工作台电液位置伺服控制系统设

计及仿真

姓名:雷小舟

专业:机械电子工程

子方向:机电一体化

武汉工程大学机电液一体化实验室

位置伺服系统是一种自动控制系统。因此,在分析和设计这样的控制系统时,需要用自动控制原理作为其理论基础,来研究整个系统的动态性能,进而研究如何把各种元件组成稳定的和满足稳定性能指标的控制系统。若原系统不稳定可通过调整比例参数和采用滞后校正使系统达到稳定,并选取合适的参数使系统满足设计要求。 1 位置伺服系统组成元件及工作原理

数控机床工作台位置伺服系统有不同的形式,一般均可以由给定环节、比较环节、校正环节、执行机构、被控对象或调节对象和检测装置或传感器等基本元件组成[1]。根据主机的要求知系统的控制功率比较小、工作台行程比较大,所以采用阀控液压马达系统。

系统物理模型如图1所示。

图1 数控机床工作台位置伺服系统物理模型

系统方框图如图2所示。

图2 数控机床工作台位置伺服系统方框图

数控机床工作台位置伺服系统是指以数控机床工作台移动位移为控制对象的自动控制系统。位置伺服系统作为数控机床的执行机构,集电力电子器件、控制、驱动及保护为一体。数控机床的工作台位置伺服系统输出位移能自动地、快速而准确地复现输入位移的变化,是因为工作台输出端有位移检测装置(位移传感器)将位移信号转化为电信号反馈到输入端构成负反馈闭环控制系统。反馈信号与输入信号比较得到差压信号,然后把差压信号通过伺服放大器转化为电流信号,送入电液伺服阀(电液转换、功率放大元件)转换为大功率的液压信号(流量与压力)输出,从而使液压马达的四通滑阀有开口量就有压力油输出到液压马达,驱动液压马达带动减速齿轮转动,从而带动滚珠丝杠运动。因滚珠丝杠与工作台相连所以当滚珠丝杠 运动时,工作台也发生相应的位移。

2数控工作台的数学模型 2.1 工作台负载分析

工作台负载主要由切削力c F ,摩擦力f F 和惯性力a F 三部分组成,则总负载力为:

a f c L F F F F ++=

2.2液压执行机构数学模型

工作台由液压马达经减速器和滚珠丝杠驱动。 根据力矩平衡方程,减速器输入轴力矩L T 为:

i

t F T L L π2=

式中:t 为丝杠导程,m/r ;i 为减速器传动比,'/m m i θθ=,m θ,'

m θ分别为齿轮减速器输

入轴、输出轴角位移,rad 。

由运动传递原理知,液压马达最大转速max n 为:

t

iv n max

max

=

式中:max v 为工作台的最大运动速度,m/s 。

由液压马达输出力矩表达式可知,液压马达所需排量m Q 为:

L L m m p T D Q /22ππ==

式中:

L p 为液压马达负载压力,MPa ,一般取3/2s L

p p

=,s p 为液压系统压力,MPa ;m

D 为液压马达弧度排量,rad /m 3

。 液压马达负载流量为:max n Q q m L =

伺服阀压降

V p 为:L s V p p p -=

考虑泄漏等影响,L q 可以增大10~20%,根据L q 和V p ,查手册得额定流量,选择合适的液压泵和电液伺服阀。

阀控马达液压伺服系统模型:

(1)伺服阀的线性流量方程为:L c v q L p K x K Q -=

位置伺服系统动态分析经常是在零位工作条件下进行的,此时增量和变量相等。

式中参数:q K 为阀的流量增益;c K 为阀的流量压力系数,v x 为滑阀阀芯的位移;L p 为负载压力,21p p p L -=

(2)液压马达的流量连续性方程:

L e

t

L im m m L sp V p C s D Q βθ4+

+=

式中参数:m D 液压马达的体积排量;m θ液压马达的角位移;im C 液压马达的内泄露系数;e β系统的有效体积弹性模量 (3)液压马达的力矩平衡方程:

L m m m m t m L T G s B s J D p +++=θθθ

式中参数:t J 为液压马达运动部分(包括折算到液压马达轴上)负载的总惯量;m B 为液压马达粘性阻尼系数;G 为负载的扭转弹簧刚度;L T 作用于液压马达轴上的任意外负载力矩。 工作台质量折算到液压马达轴的转动惯量为:

2

22

4i t m J t t π=

考虑到齿轮、丝杆和液压马达的惯性,t J 可适当放大20~50%。 2.3电液伺服控制系统的传递函数 放大器的增益a K 为:

e

a U I K ?=

式中:I ?为输出电流,A ;e U 为输入电压,V 。 液压固有频率为:

t

t m e h J V D 2

4βω=

式中:t V 为液压马达的容积,3

m 。 液压阻尼比为:

t

t

e m

c h V J D K βξ0=

假定阻尼比仅由阀的流量—压力系数产生。零位流量—压力系数0c K 可近似计算为:

μ

π322

0c s c c wr p q K =

=

阀控马达的传递函数:

?

??

?

??++???

?

??+

-=

1241222s s s T s K V D K x D K h h h L ce

e t

m ce v m q

m ωξωβθ

如此,以阀芯位移为

v x 输入,以液压马达的角位移m θ为输出的传涕函数为:

?

??

? ??++=1222s s s D K x h h h m

q

v m

ωξωθ

以负载力矩为L T 输入,以液压马达的角位移m θ为输出的传递函数为:

?

??

? ??++????

??+-

=

1241222s s s s K V D K T h h h ce

e t

m ce L m ωξωβθ

因为负载特性没有弹性负载,因此液压马达和负载的传递函数为:

?

??

? ??++=12/1220s s s D q h h h m

m

ωξωθ

电液伺服阀的传递函数:

力反馈两级电液伺服阀的传递函数可以表示为:

1

222

++

=?s s K I

Q sv

sv

sv

sv ωξω

式中:sv ω以及sv ξ由伺服阀生产商给出数据。 空载流量0q 为:V

s

n

p p q q =0 阀的额定流量增益sv K 为:n

m sv I q K ?=

式中,m q 0为所查样本阀处于最大阀压差时的空载流量,s /m 3

减速齿轮与丝杠的传递函数为:

i

t x K m

p

s πθ2=

=

位移传感器和放大器的动态特性可以忽略,其传递函数可以用它们的增益表示。 传感器增益f K 为:p

f f x U K =

式中:f U 为反馈电压信号;p x 为工作台位移。

根据以上确定的传递函数,可绘制出数控机床工作台位置伺服系统的模型如图3所示。 图3见草稿。

故系统的开环传递函数为:

()()?

??

? ??++???? ??++=

12122222s s s s s K s H s G h h h sv sv sv v

ωξωωξω 式中:开环增益系数v K 为:m f s sv a v D K K K K K /=

2.4系统的技术要求:

“位置”误差mm 05.0±<+pf p e e (指令或干扰为“位置”输入); “速度”误差mm 1-dB f 。 3仿真实验

3.1仿真实验参数

仿真实验已知参数见如下:

N 400=c F ;N 1600=f F ;s /m 08.0max =v ;2max s /m 2.1=a ;kg 800=t m ;

r /m 102.12-?=t ;2=i ;pa 10635?=s p ;36m 1010-?=t V ;m 1051.22-?=w ;

m 1056-?=c r ;pa 108.12-?=μ;s /rad 600=sv ω;5.0=sv ξ;100=f K ;1=a K 。

3.2仿真传递函数的确定

将已知参数代入2中各式,计算各项后,可得 伺服阀的传递函数为:

1600

5.026001042172

26

0+?+?=?-s s I

Q

负载特性没有弹性负载时液压马达和负载的传递函数为:

???

? ??+?+?=

135734.1235710484.1226

s s s q m

θ 系统的开环传递函数为:

()()???

? ??++???? ??++=

135768.23571600160026.5982222s s s s s s H s G

根据以上确定的传递函数,用Simulink 可绘制出数控机床工作台位置伺服系统的模型如图

4所示。

图4数控机床工作台位置伺服系统模型

3.3仿真实验结果分析 3.3.1系统稳定性

根据系统开环传递函数做出1=a K 时仿真Bode 图(如图5),增益裕量dB 82.4-=m G ,

相位裕量 26-=m

P 均为负值,此时系统不稳定。 为了使系统稳定,考虑将图中0dB 线上移,使相位裕量

50=γ,此时增益裕量

dB 7.11=g K ,穿越频率79.7rad/s ,由dB 39lg 20=v K ,得开环增益为:90=v K ,故放

大器增益为:15.026

.59890

26.598===

v a K K

上式计算出的a K 为校正后的值,下面做出15.0=a K 时开环系统的Bode 图,如图6。 可以看出:增益裕量dB 5.11=m G ,相位裕量

50=m P 均为正值,此时系统稳定。 所以15.0=a K 就是所求的放大器增益。

图51=a K 时开环系统的Bode 图

图615.0=a K 时开环系统的Bode 图

15.0=a K 时,系统的仿真输出如图7所示,当输入V 1=r u 时输出m 01.0=p x 。系统是稳

定的。

由图7可得,系统的瞬态性能指标其数值大小各为:

(1)上升时间r t :s 0232

.0=r t ; (2)峰值时间p t :s 0332.0=p t ; (3)最大超调量p M :%18=p M ;

(4)调整时间s t :s 0836.0=s t 。

3.3.2闭环系统的频宽

机床工作台液压伺服系统的开环系统Nichols 仿真曲线如图8所示,由曲线中-3dB 与Nichols 线的交点分析得出:闭环系统频带宽度Hz 17dB 3=-f 。

图7数控机床工作台液压伺服系统仿真结果(Ka=0.15)

图8开环系统Nichols 仿真曲线

3.3.3系统的稳态误差分析 系统的位置误差f e 为:f

a n

f K K I e =

式中:n I 为系统的输入信号。 系统的速度误差r e 为:v

r K v

e =

式中:v 为工作台运动速度。 对于干扰来说,系统是0型的。启动和切削不处于同一动作阶段,静摩擦干扰就不必考虑。

伺服放大器的温度零漂为0.5%~ 1%n I 、伺服阀的零漂和滞环为1%~2%n I 、执行元件的不灵敏区为0.5 %~1%n I 。

假定上述干扰量之和为±2%n I ,由此引起的系统的位置误差为:

m 104100

15.003

.002.05-?±=??±==

f a n f K K I e

对指令输入来说,系统是I 型的,最大速度s /m 08.0max =v 时的速度误差为:

m 10915.815

.026.59808.04-?=?==

v r K v e 综上所述,所设计的系统能达到的性能指标为m 1045

-?±=f e ,m 10915.84-?=r e ,

Hz 17dB 3=-f 能在稳定性、频带宽度及稳态误差等性能指标方面满足预定性能要求。

4结论

根据要求设计出某数控机床工作台电液位置伺服控制装置,建立了电液位置伺服控制系统的数学模型和传递函数,在MATLAB 环境下进行仿真,并确定出使系统稳定的开环增益。同时应用频率响应法对电液伺服控制系统的性能进行了分析,从而得到了满足要求的可靠的电液伺服系统。

伺服系统设计.

辽宁工程技术大学《电力拖动自动控制系统》课程设计 目录 1、前言 (1) 1.1设计目的 (1) 1.2设计内容 (1) 2、伺服系统的基本组成原理及电路设计 (2) 2.1伺服系统基本原理及系统框图 (2) 2.2 伺服系统的模拟PD+数字前馈控制 (4) 2.3 伺服系统的程序 (6) 3、仿真波形图 (9) 结论 (12) 心得与体会 (13) 参考文献 (14)

1、前言 1.1设计目的 1、使学生进一步掌握电力拖动自动控制系统的理论知识,培养学生工程设计能力和综合分析问题、解决问题的能力; 2、使学生基本掌握常用电子电路的一般设计方法,提高电子电路的设计和实验能力; 3、熟悉并学会选用电子元器件,为以后从事生产和科研工作打下一定的基础。 1.2设计内容 1、分析和设计具有三环结构的伺服系统,用绘图软件(matlab)画原理图还有波形图; 2、分析并理解具有三环结构的伺服系统原理。

2、伺服系统的基本组成原理及电路设计 2.1伺服系统基本原理及系统框图 伺服系统三环的PID控制原理: 以转台伺服系统为例,其控制结构如图2-1所示,其中r为框架参考角位置输入信号, 为输出角位置信号. 图2-1 转台伺服系统框图 伺服系统执行机构为典型的直流电动驱动机构,电机输出轴直接与负载-转动轴相连,为使系统具有较好的速度和加速度性能,引入测速机信号作为系统的速度反馈,直接构成模拟式速度回路.由高精度圆感应同步器与数字变换装置构成数字式角位置伺服回路. 转台伺服系统单框的位置环,速度环和电流环框图如图2-2,图2-3和图2-4所示. 图2-2 伺服系统位置环框图 图2-3 伺服系统速度环框图

电液伺服跑偏控制系统设计

电液伺服跑偏控制系统设计 前言随着20世纪自动化技术的巨大进步,自动控制理论得到不断地发展和完善。正是针对设计任务,通过设计方案的分析比较之后,选择电液控制系统来设计此次任务。首先介绍了液压控制的一些基本概念,对研究对象和任务作出了整体的介绍,并简述了液压控制技术的发展史。然后在明确设计要求的情况下,对设计任务进行分析。通过机液伺服跑偏控制系统和电液伺服跑偏控制系统的分析对比,最终选择了电液伺服跑偏控制系统的设计方案,从而进入本课题研究要点。接着对电液伺服跑偏控制系统做了具体的设计,先是对电液伺服机构进行了分析,得出了电液伺服系统的数学模型,进而分析了其特点。接着又对系统做了静、动态计算及分析,确定了供油压力,选取了伺服阀,并求取了各元件的传递

函数,绘制了系统方块图,得出系统的各个参数。然后还要对系统进行校正,得到更为优良的设计参数,使系统更加完善,以进一步提高系统的性能。最后利用了先进电脑仿真技术MATLAB 对所做的系统进行仿真,通过改变系统的各个参数进行分析、比较,从而可看出系统的各个参数对系统的响应速度和稳定性的影响,本论文在王慧老师的悉心教导之下,通过研读各著作期刊,经过多次的修改。于作者水平有限,论文中难免出现点差错,恳请读者指正。 1 1 绪论液压伺服控制系统是以液压动力元件作驱动装置所组成的反馈控制系统。在这种系统中,输出量能够自动地、快速而准确地复现输入量的变化规律。与此同时,还对输入信号进行功率放大,因此也是一个功率放大装置。液压伺服控制系统是以液体压力能为动力的机械量自动控制系统。按系统中实现信号传输和控制方式不同分为机液伺服系统和电液伺服系

电液位置伺服控制系统设计方法

电液位置伺服控制系统设计方法 电液位置伺服系统是最基本和最常用的一种液压伺服系统,如机床工作台的位置、板带轧机的板厚、带材跑偏控制、飞机和船舶的舵机控制、雷达和火炮控制系统以及振动试验台等。在其它物理量的控制系统中,如速度控制和力控制等系统中,也常有位置控制小回路作为大回路中的一个环节 电液位置伺服系统主要是用于解决位置跟随的控制问题,其根本任务就是通过执行机构实现被控量对给定量的及时和准确跟踪,并要具有足够的控制精度。电液伺服系统的动态特性是衡量一套电液伺服系统设计及调试水平的重要指标。它由电信号处理装置和若干液压元件组成,元件的动态性能相互影响,相互制约及系统本身所包含的非线性,致使其动态性能复杂。因此,电液伺服控制系统的设计及仿真受到越来越多的重视。 液压伺服系统的基本设计步骤 ○1分析整理所需的设计参数,明确设计要求;○2拟定控制方案,构成控制系统原理图;○3确定动力元件参数(如供油压力、执行元件规格、伺服阀容量)和其他组成元件;○4分析计算系统的静、动态特性,确定回路放大系数和设计校正措施等。○5根据技术要求设计出系统以后,需要检查所设计的系统是否满足全部性能指标,如不满足,可通过调整参数或改变系统结构(即校正)等方法重复设计过程,直至满足要求为止。因为设计是试探性的,所以设计方法具有很大的灵活性,在设计中结合MATLAB的SIMULINK软件进行仿真,对系统的参数进行调整和可靠性作进一步验证,最终可以得出比较可靠的电液伺服系统。 (一)组成控制系统原理图 由于系统的控制功率比较小、工作台行程比较大,所以采用阀控液压马达系统。系统方块原理如图1

(二)由静态计算确定动力元件参数,选择位移传感器和伺服放大器 1.绘制负载轨迹图 负载力由切削力c F ,摩擦力f F 和惯性力a F 三部分组成。摩擦力具有“下降”特性,为了简化,可认为与速度无关,是定值,取最大值f F = 1500N 惯性力按最大加速度考虑 a max F 800t m a N == 假定系统是在最恶劣的负载条件下工作(即所有负载力都在存在,且速度最大)下工作,则总负载力为 max f F F F F =l c a =++400+1500+800=2700N 2.选取供油压力 5s P 6310Pa =? 3.求取液压马达排量 设齿轮减速比'm i=/2m θθ=,丝杠导程2 1.210/t m r -=?,则所需液压马达力矩为 2 2700 1.210 2.58222 L L F t T N m i ππ-??===?? 取L s 2P =P 3,则液压马达弧度排量为-63L 5s 3T 3 2.58D ==0.610m /2P 26310 m rad ?=??? 液压马达每转排量为-63-632D 20.610m / 3.710m /m m Q r r ππ==??=? 计算出的液压马达排量需标准化。按选取的标准化值再计算负载压力L P 值。本例液压马达排量计算符合标准化。 4.确定伺服阀规格 液压马达的最大转速为2max max 2 2810800/min 13.3/1.210iv n r r s t --??====? 所以负载流量为-6-6max q 3.71013.3/49.2110l m Q n r s ==??=? 此时伺服阀的压降为 55L s Lmax s -6T 2.58P P P 631020.010D 0.610 v m P Pa Pa =-=-=?-=?? 考虑到泄漏等影响,将q l 增大15%,取q l = 3.4L/min 。根据q l 和v P ,查得额定流量为

自动控制原理课程设计 速度伺服控制系统设计

自动控制原理课程设计题目速度伺服控制系统设计 专业电气工程及其自动化 姓名 班级 学号 指导老师 机电工程学院 2009年12月

目录一课程设计设计目的 二设计任务 三设计思想 四设计过程 五应用simulink进行动态仿真六设计总结 七参考文献

一、课程设计目的: 通过课程设计,在掌握自动控制理论基本原理、一般电学系统自动控制方法的基础上,用MATLAB实现系统的仿真与调试。 二、设计任务: 速度伺服控制系统设计。 控制系统如图所示,要求利用根轨迹法确定测速反馈系数' k,以 t 使系统的阻尼比等于0.5,并估算校正后系统的性能指标。 三、设计思想: 反馈校正: 在控制工程实践中,为改善控制系统的性能,除可选用串联校正方式外,常常采用反馈校正方式。常见的有被控量的速度,加速度反馈,执行机构的输出及其速度的反馈,以及复杂系统的中间变量反馈等。反馈校正采用局部反馈包围系统前向通道中的一部分环节以实现校正,。从控制的观点来看,采用反馈校正不仅可以得到与串联校正同样的校正效果,而且还有许多串联校正不具备的突出优点:第一,反馈校正能有效地改变被包围环节的动态结构和参数;第二,在一定

条件下,反馈校正装置的特性可以完全取代被包围环节的特性,反馈校正系数方框图从而可大大削弱这部分环节由于特性参数变化及各种干扰带给系统的不利影响。 该设计应用的是微分负反馈校正: 如下图所示,微分负反馈校正包围振荡环节。其闭环传递函数为 B G s ()=00t G s 1G (s)K s +() =22t 1T s T K s ζ+(2+)+1 =22'1 T s 21Ts ζ++ 试中,' ζ=ζ+ t K 2T ,表明微分负反馈不改变被包围环节的性质,但由于阻尼比增大,使得系统动态响应超调量减小,振荡次数减小,改善了系统的平稳性。 微分负反馈校正系统方框图

伺服控制系统(设计)

第一章伺服系统概述 伺服系统是以机械参数为控制对象的自动控制系统。在伺服系统中,输出量能够自动、快速、准确地跟随输入量的变化,因此又称之为随动系统或自动跟踪系统。机械参数主要包括位移、角度、力、转矩、速度和加速度。 近年来,随着微电子技术、电力电子技术、计算机技术、现代控制技术、材料技术的快速发展以及电机制造工艺水平的逐步提高,伺服技术已迎来了新的发展机遇,伺服系统由传统的步进伺服、直流伺服发展到以永磁同步电机、感应电机为伺服电机的新一代交流伺服系统。 目前,伺服控制系统不仅在工农业生产以及日常生活中得到了广泛的应用,而且在许多高科技领域,如激光加工、机器人、数控机床、大规模集成电路制造、办公自动化设备、卫星姿态控制、雷达和各种军用武器随动系统、柔性制造系统以及自动化生产线等领域中的应用也迅速发展。 1.1伺服系统的基本概念 1.1.1伺服系统的定义 “伺服系统”是指执行机构按照控制信号的要求而动作,即控制信号到来之前,被控对象时静止不动的;接收到控制信号后,被控对象则按要求动作;控制信号消失之后,被控对象应自行停止。 伺服系统的主要任务是按照控制命令要求,对信号进行变换、调控和功率放大等处理,使驱动装置输出的转矩、速度及位置都能灵活方便的控制。

1.1.2伺服系统的组成 伺服系统是具有反馈的闭环自动控制系统。它由检测部分、误差放大部分、部分及被控对象组成。 1.1.3伺服系统性能的基本要求 1)精度高。伺服系统的精度是指输出量能复现出输入量的精确程度。 2)稳定性好。稳定是指系统在给定输入或外界干扰的作用下,能在短暂的调节过程后,达到新的或者恢复到原来的平衡状态。 3)快速响应。响应速度是伺服系统动态品质的重要指标,它反映了系统的跟踪精度。 4)调速范围宽。调速范围是指生产机械要求电机能提供的最高转速和最低转速之比。 5)低速大转矩。在伺服控制系统中,通常要求在低速时为恒转矩控制,电机能够提供较大的输出转矩;在高速时为恒功率控制,具有足够大的输出功率。 6)能够频繁的启动、制动以及正反转切换。 1.1.4 伺服系统的种类 伺服系统按照伺服驱动机的不同可分为电气式、液压式和气动式三种;按照功能的不同可分为计量伺服和功率伺服系统,模拟伺服和功率伺服系统,位置

毕业设计152辽宁工程技术大学电液伺服跑偏控制系统设计

前言 随着20世纪自动化技术的巨大进步,自动控制理论得到不断地发展和完善。本文正是针对设计任务,通过设计方案的分析比较之后,选择电液控制系统来设计此次任务。 本文首先介绍了液压控制的一些基本概念,对研究对象和任务作出了整体的介绍,并简述了液压控制技术的发展史。然后在明确设计要求的情况下,对设计任务进行分析。通过机液伺服跑偏控制系统和电液伺服跑偏控制系统的分析对比,最终选择了电液伺服跑偏控制系统的设计方案,从而进入本课题研究要点。 接着本文对电液伺服跑偏控制系统做了具体的设计,先是对电液伺服机构进行了分析,得出了电液伺服系统的数学模型,进而分析了其特点。接着又对系统做了静、动态计算及分析,确定了供油压力,选取了伺服阀,并求取了各元件的传递函数,绘制了系统方块图,得出系统的各个参数。 然后还要对系统进行校正,得到更为优良的设计参数,使系统更加完善,以进一步提高系统的性能。最后利用了先进电脑仿真技术MATLAB对所做的系统进行仿真,通过改变系统的各个参数进行分析、比较,从而可看出系统的各个参数对系统的响应速度和稳定性的影响。 本论文在王慧老师的悉心教导之下,通过研读各著作期刊,经过多次的修改。由于作者水平有限,论文中难免出现点差错,恳请读者指正。

1 绪论 液压伺服控制系统是以液压动力元件作驱动装置所组成的反馈控制系统。在这种系统中,输出量(位移、速度、力等)能够自动地、快速而准确地复现输入量的变化规律。与此同时,还对输入信号进行功率放大,因此也是一个功率放大装置。 液压伺服控制系统是以液体压力能为动力的机械量(位移、速度和力)自动控制系统。按系统中实现信号传输和控制方式不同分为机液伺服系统和电液伺服系统两种。 机液伺服系统的典型实例是飞机、汽车和工程机械主离合器操纵装置上常用的液压助力器,机床上液压仿形刀架和汽车与工程机械上的液压动力转向机构等。 电液伺服控制系统是以液压为动力,采用电气方式实现信号传输和控制的机械量自动控制系统。按系统被控机械量的不同,它又可以分为电液位置伺服系统、电液速度伺服控制系统和电液力控制系统三种。电液位置伺服控制系统适合于负载惯性大的高速、大功率对象的控制,它已在飞行器的姿态控制、飞机发动机的转速控制、雷达天线的方位控制、机器人关节控制、带材跑偏、张力控制、材料试验机和加载装置等中得到应用。 1.1 液压伺服控制系统的组成 液压伺服控制系统不管多么复杂,都是由以下一些基本元件组成的,如图1-1所示: 图1-1 电液伺服控制系统 Fig.1-1 electro-hydraulic servo system 1)输入元件——也称指令元件,它给出输入信号(指令信号)加于系统的输入端。该元件可以是机械的、电气的、气动的等。如靠模、指令电位器或计算机等。 2)反馈测量元件——测量系统的输出并转换为反馈信号。这类元件也是多种形式的。各种传感器常作为反馈测量元件。如测速机、阀套,以及其它类型传感器。 3)比较元件——相当于偏差检测器,它的输出等于系统输入和反馈信号之差,如加法器、阀芯与阀套组件等。 4)液压放大与转换元件——接受偏差信号,通过放大、转换与运算(电液、机液、

电液伺服控制系统的设计

。 电液伺服控制系统的设计与仿真 引言 电液伺服系统具有响应速度快、输出功率大、控制精确性高等突出优点,因而在航空航天、军事、冶金、交通、工程机械等领域得到广泛应用。随着电液伺服阀的诞生,使液压伺服技术进入了电液伺服时代,其应用领域也得到广泛的扩展。随着液压系统逐渐趋于复杂和对液压系统仿真要求的不断提高,传统的利用微分方程和差分方程建模进行动态特性仿真的方法已经不能满足需要。因此,利用AMESim、Matlab/Simulink等仿真软件对电液伺服控制系统进行动态仿真,对于改进系统的设计以及提高液压系统的可靠性都具有重要意义。 1 液压系统动态特性研究概述 随着液压技术的不断发展与进步和应用领域与范围的不断扩大,系统柔性化与各种性能要求更高,采用传统的以完成执行机构预定动作循环和限于系统静态性能的系统设计远远不能满足要求。因此,现代液压系统设计研究人员对系统动态特性进行研究,了解和掌握液压系统动态工作特性与参数变化,以提高系统的响应特性、控制精度以及工作可靠性,是非常必要的。 液压系统动态特性简述 … 液压系统动态特性是其在失去原来平衡状态到达新的平衡状态过程中所表现出来的特性,原因主要是由传动与控制系统的过程变化以及外界干扰引起的。在此过程中,系统各参变量随时间变化性能的好坏,决定系统动态特性的优劣。系统动态特性主要表现为稳定性(系统中压力瞬间峰值与波动情况)以及过渡过程品质(执行、控制机构的响应品质和响应速度)问题。 液压系统动态特性的研究方法主要有传递函数分析法、模拟仿真法、实验研究法和数字仿真法等。数字仿真法是利用计算机技术研究液压系统动态特性的一种方法。先是建立液压系统动态过程的数字模型——状态方程,然后在计算机上求出系统中主要变量在动态过程的时域解。该方法适用于线性与非线性系统,可以模拟出输入函数作用下系统各参变量的变化情况,从而获得对系统动态过程直接、全面的了解,使研究人员在设计阶段就可预测液压系统动态性能,以便及时对设计结果进行验证与改进,保证系统的工作性能和可靠性,具有精确、适应性强、周期短以及费用低等优点。 仿真环境简介 基于Matlab平台的Simulink是动态系统仿真领域中著名的仿真集成环境,它在众多领域得到广泛应用。Simulink借助Matlab的计算功能,可方便地建立各种模型、改变仿真参数,有效解决了仿真技术中的问题。Simulink提供了交互的仿真环境,既可通过下拉菜单进行仿真,也可通过命令进行仿真。虽然Simulink提供了丰富的模块库,但是在Matlab/Simulink下对液压系统进行建模及仿真需要做很多简化工作,而模型的简化使得仿真结果往往出现一定的误差。AMESim (Advanced Modeling Environment for Simulation of Engineering Systems)是法国IMAGINE公司开发的一套高级仿真软件。它是一个图形化的开发环境,用于工程系统的建模、仿真和动态性能分析。AMESim的特点是面向工程应用从而使其成为

MATLAB电液位置伺服控制系统设计及仿真教案资料

M A T L A B电液位置伺服控制系统设计及仿真

数控机床工作台电液位置伺服控制系统设 计及仿真 姓名:雷小舟 专业:机械电子工程 子方向:机电一体化 武汉工程大学机电液一体化实验室

位置伺服系统是一种自动控制系统。因此,在分析和设计这样的控制系统时,需要用自动控制原理作为其理论基础,来研究整个系统的动态性能,进而研究如何把各种元件组成稳定的和满足稳定性能指标的控制系统。若原系统不稳定可通过调整比例参数和采用滞后校正使系统达到稳定,并选取合适的参数使系统满足设计要求。 1 位置伺服系统组成元件及工作原理 数控机床工作台位置伺服系统有不同的形式,一般均可以由给定环节、比较环节、校正环节、执行机构、被控对象或调节对象和检测装置或传感器等基本元件组成[1]。根据主机的要求知系统的控制功率比较小、工作台行程比较大,所以采用阀控液压马达系统。 系统物理模型如图1所示。 图1 数控机床工作台位置伺服系统物理模型 系统方框图如图2所示。 图2 数控机床工作台位置伺服系统方框图 数控机床工作台位置伺服系统是指以数控机床工作台移动位移为控制对象的自动控制系统。位置伺服系统作为数控机床的执行机构,集电力电子器件、控制、驱动及保护为一体。数控机床的工作台位置伺服系统输出位移能自动地、快速而准确地复现输入位移的变化,是因为工作台输出端有位移检测装置(位移传感器)将位移信号转化为电信号反馈到输入端构成负反馈闭环控制系统。反馈信号与输入信号比较得到差压信号,然后把差压信号通过伺服放大器转化为电流信号,送入电液伺服阀(电液转换、功率放大元件)转换为大功率的液压信号(流量与压力)输出,从而使液压马达的四通滑阀有开口量就有压力油输出到液压马达,驱动液压马达带动减速齿轮转动,从而带动滚珠丝杠运动。因滚珠丝杠与工作台相连所以当滚珠丝杠 运动时,工作台也发生相应的位移。 2数控工作台的数学模型 2.1 工作台负载分析 工作台负载主要由切削力c F ,摩擦力f F 和惯性力a F 三部分组成,则总负载力为: a f c L F F F F ++=

自动控制原理课程设计方案——旋压机电液伺服系统设计方案

第一章绪论 1.1题目概述 由原题目已知数据可画出系统方框图: 已知技术参数和设计要求: (1)σp≤25%; t s≤0.25s; (2)速度信号V=0.5m/min时,误差e(t)≤0.05mm; 1 .2旋压机电液伺服系统背景简介 旋压技术是先进制造技术的重要组成部分,是局部连续塑性成形工艺,属于回转成形范畴,主要用于形成薄壁空心回转体零件。该技术广泛应用于航空航天、火箭、导弹、兵器等军事工业和通用机械、汽车等民用工业中。旋压机的仿形系统对旋压加工产品的质量及加工精度的影响至关重要。大型立式强力旋压机采用的是电液仿形技术,其液压系统包含了旋轮座纵向和横向液压系统、辅助系统等主要系统。旋轮座横向电液伺服系统和纵向电液伺服系统组成了旋轮座仿形系统,该系统利用电液比例伺服阀控制液压油缸活塞杆的位移量,并通过按加工精度要求输入预定变化规律的控制信号来实现对位移量的精确控制,从而达到所要求的加工精度。采用电液比例伺服控制技术不仅改善了系统的控制性能,而且大大简化了液压系统,降低了费用,同时还提高了系统的可靠性。

旋压技术,也叫金属旋压成形技术,是通过旋转使工件受力点由点到线由线到面,同时在某个方向给予一定的压力使金属材料沿着这一方向变形和流动而成形为某一形状的技术。旋压成形过程是将金属板料或空心零件的毛坯固定在旋压机的芯模上,在毛坯随机床转动同时,用旋轮将毛坯逐点压下,使其形状或者壁厚发生局部连续塑性变形,从而制成所需的产品的成形过程。可以生产更接近最终形状(净性)的金属零件。这里,金属材料必须具有塑性变形或流动性能,旋压成形也不等同于塑性变形,它是集塑性变形和流动变形的复杂过程,特别需要指出的是,我们所说的旋压成形技术不是单一的强力旋压或普通旋压,它是两者的结合。强力旋压用于各种筒、锥体异形体的旋压成型壳体的加工技术,是一种比较老的成熟的方法和工艺,也叫滚压法。旋压是综合了锻造、挤压、拉伸、弯曲、环压、横轧和滚压等工艺特点的少无切削加工的先进工艺。它通常被认为只能成形轴对称回转体零件,而近年来所开展的三维非轴对称零件旋压技术研究表明,旋压已突破其原有的理论范畴及加工范围。旋压件的基本形状大致可分为圆筒形、圆锥形、凹形、凸形、管形、阶梯形、缩口形等,还有由这些形状组成的复合形状。旋压加工具有设备简单、节省原材料、成本低廉和产品质量高等优点。陶瓷的制坯工艺可能为金属旋压提供工艺雏型。在我国早在三千五百年至四千年前的殷商时代,就会应用陶轮或陶车制作陶坯(例如罐、壶和盘等容器、器皿、装饰品),后来又在十世纪初期发明金属旋压工艺,并且将有色金属薄板(如金、银、锡和铜等)制成空心件如:精美的银碗、银碟等器皿。一直到十三世纪,金属旋压技术才传播到英国,其后将近五百多年,在1840年左右,才由约旦传播到美国和欧洲各国。强力旋压技术是直到上个世纪五十年代才从普通旋压技术的基础上发展起来的。最早是在瑞典、德国被用于民间工业,到1953年美国的普拉特惠特尼公司和洛奇西普来机床厂合作才制成了三台旋压机床,初次成功将这种技术应用到航空工业中。由于旋压工艺的先进性、经济性和实用性,且该工艺具有变形力小,节约原材料等特点,近四十多年来,国外工业发达国家的金属旋压工艺技术有了飞跃的发展,日趋成熟。其主要标志为:金属旋压设备己经定型,工艺流程比较稳定,产品多种多样,应用日益广泛。目前世界上在强力旋压技术的发展和应用上,美国和德国居于领先水平,其工艺已经成熟,设备己系列化、性能最为先进。近几年西班牙又异军突起,其他国家在强力旋压的探讨和应用上正在

《伺服控制系统课程设计》

《伺服控制系统课程设计》 指导书 ?动化与电??程学院 ?零??年??

?、伺服控制系统课程设计的意义、?标和程序 (3) ?、伺服控制系统课程设计内容及要求 (5) 三、考核?式和报告要求 (11)

?、伺服控制系统课程设计的意义、?标和程序 (?)伺服控制系统程设计的意义 伺服控制系统课程设计是?动化专业?才培养计划的重要组成部分,是实现培养?标的重要教学环节,是?才培养质量的重要体现。通过伺服控制系统课程设计,可以培养考??所学基础课及专业课知识和相关技能,解决具体的?程问题的综合能?。本次课程设计要求考?在指导教师的指导下,独?地完成伺服控制系统的设计和仿真,解决与之相关的问题,熟悉伺服控制系统中控制器设计与整定、电机建模和仿真和其他检测装置的选型以及?程实践中常?的设计?法,具有实践性、综合性强的显著特点。因?对培养考?的综合素质、增强?程意识和创新能?具有?常重要的作?。 伺服控制系统课程设计是考?在课程学习结束后的实践性教学环节;是学习、深化、拓宽、综合所学知识的重要过程;是考?学习、研究与实践成果的全?总结;是考?综合素质与?程实践能?培养效果的全?检验;也是?向?程教育认证?作的重要评价内容。 (?)课程设计的?标 课程设计基本教学?标是培养考?综合运?所学知识和技能,分析与解决?程实际问题,在实践中实现知识与能?的深化与升华,同时培养考?严肃认真的科学态度和严谨求实的?作作风。使考?通过综合课程设计在具备?程师素质??更快地得到提?。对本次课程设计有以下???的要求: 1.主要任务 本次任务在教师指导下,独?完成给定的设计任务,考?在完成任务后应编写提交课程设计报告。 2.专业知识

电液伺服控制系统

6-1 怎样区分一个系统是位置、速度或力电-液伺服控制系统。 按系统被控制的物理量的性质来区分,如果是要实现位置控制,当然就是位置电液伺服系统。 6-2 试比较电-液伺服系统与机-液伺服系统的主要优缺点和性能特点。 机液伺服系统的指令给定、反馈和比较都是采用机械构件,优点是简单可靠,价格低廉,环境适应性好,缺点是偏差信号的校正及系统增益的调整不如电气方便,难以实现远距离操作,另外,反馈机构的摩擦和间隙都会对系统的性能产生不利影响。机液伺服系统一般用于响应速度和控制精度要求不是很高的场合,绝大多数是位置控制系统。 电液伺服系统的信号检测、校正和放大等都较为方便,易于实现远距离操作,易于和响应速度快、抗负载刚度大的液压动力元件实现整合,具有很大的灵活性和广泛的适应性。特别是电液伺服系统与计算机的结合,可以充分运用计算机快速运算和高效信息处理的能力,可实现一般模拟控制难以完成的复杂控制规律,因而功能更强,适应性更广。电液伺服系统是液压控制领域的主流系统。 6-3 为什么说电-液伺服系统一般都要加以校正。 当电液位置伺服控制系统的某些性能指标不甚满意时,简单的方法可通过增大系统的开环增益来提高响应速度和控制精度,但提高开环增益受系统稳定性条件的制约,也就是受液压固有频率和阻尼比的限制。全面改善系统的性能仅仅靠调整开环增益是远远不够的,通过对电液伺服系统进行针对性的校正,往往能够获得更高性能的电液伺服系统,并且不同的校正方法,会得到不同的改善效果。 6-4 怎样才能简化位置电-液伺服控制系统。 当电液伺服阀的频宽与液压固有频率相近时,电液伺服阀的传递函数可用二阶环节来表示;当电液伺服阀的频宽大于液压固有频率(3~5倍)时,电液伺服阀的传递函数可用一阶环节来表示。又因为电液伺服阀的响应速度较快,与液压动力元件相比,其动态特性可以忽略不计,而把它看成比例环节。一般的液压位置伺服系统往往都能够简化成以下的这种形式。 ()()V 2h h h 21K G s H s s s s ζωω=??++ ??? 6-5 怎样理解系统刚度高,误差小。 以负载误差为例,对于I 型系统稳态负载误差为()ce L L022v m K e T K i D ∞= ,负载误差()L e ∞的大小与负载干扰力矩L0T 成正比,而与系统的闭环静刚度22V m ce K i D K 成反比,所以当系统的刚 度高时误差较小。

第六章电液比例阀与比例控制回路(2015)

第六章
电液比例阀及 比例控制回路
6.1 概述
本 章 介 绍
6.2 电液比例阀 6.3 电液比例控制基本回路 6.4 电液比例控制工业应用

6.1 概述
从广义讲,凡是输出量,如压力、流量、位移、速度、加速 度等,能随输入信号连续地按比例地变化的控制系统,都称 为比例控制系统。从这个意义上说,伺服控制也是一种比例 控制。电液比例控制可以分为开环控制和闭环控制。
图6-1 电液比例开环控制系统方框图
图6-2 电液比例闭环控制系统方框图

目前,最常用的分类方式是按被控对象(量或参数)来进行分 类。则电液比例控制系统可以分为: 比例流量控制系统 比例压力控制系统 比例流量压力控制系统 比例速度控制系统 比例位置控制系统 比例力控制系统 比例同步控制系统

电液比例控制技术的发展动力
1.传统的液压控制方式是开关型控制。它通过电磁驱动或手动驱动来 实现液压流体的通、断和方向控制,从而实现被控对象的机械化和自 动化。但是这种方式无法实现对液流流量、压力连续地按比例地控制 ,同时控制的速度比较低、精度差、换向时冲击比较大。
2.当需要高性能的速度或位置控制时,以前电液伺服阀曾经是唯一实 用的解决办法。电液伺服阀是一种高技术条件的方向和流量控制阀, 不可避免地带来成本高、不耐污染、维修不便等问题。在并不需要伺 服阀的全部性能潜力的应用场合,这些问题可能成为主要的缺点。
3.发展电液比例阀的主要目的在于填补从简单的通/断电磁阀控制与复 杂的电液伺服控制之间的空白。虽然比例阀的部分性能指标不如伺服 阀,但对许多应用场合来已经够用了,同时可以体现出明显的成本和维 护优势。

伺服驱动系统方案设计

伺服驱动系统设计方案 伺服电机的原理: 伺服的基本概念是准确、精确、快速定位。与普通电机一样,交流伺服电机也由定子和转子构成。定子上有两个绕组,即励磁绕组和控制绕组,两个绕组在空间相差90°电角度。伺服电机内部的转子是永磁铁,驱动控制的u/V/W三相电形成电磁场转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度{线数)。 伺服电动机又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降作用:伺服电机,可使控制速度,位置精度非常准确。 交流伺服电机的工作原理和单相感应电动机无本质上的差异。但是,交流伺服电机必须具备一个性能,就是能克服交流伺服电机的所谓“自转”现象,即无控制信号时,它不应转动,特别是当它已在转动时,如果控制信号消失,它应能立即停止转动。而普通的感应电动机转动起来以后,如控制信号消失,往往仍在继续转动。 交流伺服电动机的工作原理与分相式单相异步电动机虽然相似,但前者的转子电阻比后者大得多,所以伺服电动机与单机异步电动机相比,有三个显著特点: 1、起动转矩大 由于转子电阻大,其转矩特性曲线如图3中曲线1所示,与普通异步电动机的转矩特性曲线2相比,有明显的区别。它可使临界转差率S0>1,这样不仅使转矩特性(机械特性)更接近于线性,而且具有较大的起动转矩。因此,当定子一有控制电压,转子立即转动,即具有起动快、灵敏度高的特点。 图3 伺服电动机的转矩特性

伺服驱动系统设计方案

?、伸缩缝损坏现状 伺服驱动系统设计方案 伺服电机的原理: 伺服的基本概念是准确、精确.快速定位。与普通电机一样,交流伺服电机也由定子和转子构成。;^^子上有两个绕组,即励磁绕组和控制绕组,两个绕组在空间柑差90°电角度。 伺服电机内部的转子是永磁铁,驱动控制的U/V/W三相电形成电磁场转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反惯值与目标值进行比较,调整转子转动的角度0伺服电机的精度决世于编码器的精度{线数)。 伺服电动机又称执行电动机?在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出.其主要特点是,当信号电压为零时无自转现彖.转速随着转矩的增加而匀速下降作用:伺服电机/可使控制速度,位置精度非常准确。 交流伺服电机的工作原理和单相感应电动机无本质上的差异。但是,交流伺服电机必须具备一个性能,就是能克服交流伺服电机的所谓“自转"现象,即无控制信号时,它不应转动,特别是当它已在转动时.如果控制信号消失,它应能立即停止转动。而普通的感应电动机转动起来以后,如控制信号消失,往往仍在继续转动。 交流伺服电动机的工作原理与分相式单相异步电动机虽然相似,但前者的转子电阻比后者大得多,所以伺服电动机与单机异步电动机相比,有三个显著特点: lx起动转矩大 由于转子电阻大,苴转矩特性曲线如图3中曲线1所示,与普通异步电动机的转矩特性曲线2 相比,有明显的区别。它可使临界转差率so>r这样不仅使转矩特性(机械特性)更接近于线性,而且具有较大的起动转矩0因此,当;^子一有控制电压,转子立即转动,即具有起动快、灵敏度髙的特点。

电液伺服控制系统概述

电液伺服控制系统概述 摘要:电液伺服控制是液压领域的重要分支。多年来,许多工业部门和技术领域对高响应、高精度、高功率——重量比和大功率液压控制系统的需要不断扩大,促使液压控制技术迅速发展。特别是控制理论在液压系统中的应用、计算及电子技术与液压技术的结合,使这门技术不论在原件和系统方面、理论与应用方面都日趋完善和成熟,并形成一门学科。目前液压技术已经在许多部门得到广泛应用,诸如冶金、机械等工业部门及飞机、船舶部门等。 关键词:电液伺服控制液压执行机构 伺服系统又称随机系统或跟踪系统,是一种自动控制系统。在这种系统中,执行元件能以一定的精度自动地按照输入信号的变化规律动作。液压伺服系统是以液压为动力的自动控制系统,由液压控制和执行机构所组成。 一、电液控制系统的发展历史 液压控制技术的历史最早可以追溯到公元前240年,一位古埃及人发明的液压伺服机构——水钟。而液压控制技术的快速发展则是在18世纪欧洲工业革命时期,在此期间,许多非常实用的发明涌现出来,多种液压机械装置特别是液压阀得到开发和利用,使液压技术的影响力大增。18世纪出现了泵、水压机及水压缸等。19世纪初液压技术取得了一些重大的进展,其中包括采用油作为工作流体及首次用电来驱动方向控制阀等。第二次世界大战期间及战后,电液技术的发展加快。出现了两级电液伺服阀、喷嘴挡板元件以及反馈装置等。20世纪50~60年代则是电液元件和技术发展的高峰期,电液伺服阀控制技术在军事应用中大显身手,特别是在航空航天上的应用。这些应用最初包括雷达驱动、制导平台驱动及导弹发射架控制等,后来又扩展到导弹的飞行控制、雷达天线的定位、飞机飞行控制系统的增强稳定性、雷达磁控管腔的动态调节以及飞行器的推力矢量控制等。电液伺服驱动器也被用于空间运载火箭的导航和控制。电液控制技术在非军事工业上的应用也越来越多,最主要的是机床工业。在早些时候,数控机床的工作台定位伺服装置中多采用电液系统(通常是液压伺服马达)来代替人工操作,其次是工

电液伺服系统

电液伺服系统 电液伺服系统是一种由电信号处理装置和液压动力机构组成的反馈控制系统。根据输入信号的形式不同,又可分为模拟伺服系统和数字伺服系统两类。下面对模拟伺服系统和数字伺服系统作一简单的说明。 模拟伺服系统 在模拟伺服系统中,全部信号都是连续的模拟量,如图1所示。在此系统中,输入信号、反馈信号、偏差信号以及其放大、校正都是连续的模拟量。电信号可以是直流量,也可以是交流量。直流量和交流量相互转换可以通过调制器或解调器完成。模拟伺服系统重复精度高,但分辨能力较低(绝对精度低)。伺服系统的精度在很大程度上取决于检测装置的精度,而模拟式检测装置的精度一般低于数字式检测装置,所以模拟伺服系统分辨能力低于数字伺服系统。另外模拟伺服系统中微小信号容易受到噪声和零漂的影响,因此当输入信号接近或小于输入端的噪声和零漂时,就不能进行有效的控制了。 图1 模拟伺服系统方块图 数字伺服系统 在数字伺服系统中,全部信号或部分信号是离散参量。因此数字伺服系统又分为数字伺服系统和数字—模拟伺服系统两种。在全数字伺服系统中,动力元件必须能够接收数字信号,可采用数字阀或电液步进马达。数字模拟混合式伺服系统如2所示。数控装置发出的指令脉冲与反馈脉冲相比较后产生数字偏差,经数模转化器把信号变为模拟偏差电压,后面的动力部分不变,仍是模拟元件。系统输出通过数字检测器(即模数转换器)变为反馈脉冲信号。

图2 数字伺服系统方块图 数字伺服系统有很高的绝对精度,受模拟量的噪声和零漂的影响很小。当要求较高的绝对精度,而不是重复精度时,常采用数字模拟系统。从经济性可靠性方面来看,简单的伺服系统采用采用模拟型控制为宜。 系统特点及使用场合 电液伺服系统综合了电气和液压两方面的优点,具有控制精度高、响应速度快、输出功率大、信号处理灵活、易于实现各种参量的反馈等优点。因此,在负载质量大又要求响应速度快的场合最为适合,其应用已遍及国民经济的各个领域,比如飞机与船舶舵机的控制、雷达与火炮的控制、机床工作台的位置控制、板带轧机的板厚控制、电炉冶炼的电极位置控制、各种飞机车里的模拟台的控制、发电机转速的控制、材料试验机及其他实验机的压力控制等等。 电液位置伺服系统分析 电液位置伺服系统是最基本和最常用的一种液压伺服系统。当采用电位器作为指令装置和反馈测量装置,就可以构成直流电液位置伺服系统。采用自整角机或旋转变压器作为质量装置和反馈测量装置,就可以构成交流电液位置伺服系统。图3是一个典型的电液位置伺服控制系统。图中反馈电位器与指令电位器接成桥式电路。反馈电位器滑臂与控制对象相连,其作用是把控制对象位置的变化转换成电压的变化。反馈电位器与指令电位器滑臂间的电位差(反映控制对象位置与指令位置的偏差)经放大器放大后,加于电液伺服阀转换为液压信号,以推动液压缸活塞,驱动控制对象向消除偏差方向运动。当偏差为零时,停止驱动,因而使控制对象的位置总是按指令电位器给定的规律变化。 图3 电液位置伺服系统图 电液伺服系统中常用的位置检测元件有自整角机、旋转变压器、感应同步器和差动变压器等。伺服放大器为伺服阀提供所需要的驱动电流。电液伺服阀的作

电液位置伺服系统研究现状

电液位置伺服系统研究现状 张如兴 摘要当系统中被控制的物理量是位置量,同时检测反馈信号以及输入指令信号也是位置信号的由机构和液压元件组成的闭环控制系统。信号的传输是机械液压方式的,这一类系统称为机液位置伺服系统。机液伺服系统的优点是结构简单、工作可靠、抗污染能力强、造价低廉,因此广泛应用于航空、航天、舰船、工程机械、汽车、动力工程、机床控制、和农业机械等各个领域。机液伺服系统的缺点是机械连接件较多,因此不可避免饿带来了间隙、摩擦和刚度的影响。但是,由于它所具有的优点,应用的历史悠久,而且也广泛。 关键词位置伺服系统、伺服阀、应用范围 电液伺服位置系统在不断的进步中,越来越来得到广泛的应用。现在我就浅谈电液伺服位置系统得到一些应用和现状。 电液伺服阀是电液伺服控制系统的核心控制元件,其性能直接决定和制约着整个电液伺服控制系统的控制精度、响应特性、工作可靠性及寿命。随着航空、航天和军事工业对电液伺服系统性能要求的提高,民用工业对低成本、易维护、环保型电液伺服系统需求,传统电液伺服阀已不能满足要求。为提高伺服阀性能,国内外展开了以新型功能材料为基础的高频响、高精度电液伺服阀,以结构改进为基础的大流量、抗污染、低成本型电液伺服阀,以及以水作为介质的水压伺服阀的研究。 l新型功能材料在电液伺服阀中的应用 1.1超磁致伸缩材料 超磁致伸缩材料(GMM)的基本物理原理为磁致伸缩效应,即物体随磁化方向伸长或缩短的现象Ⅲ。此种材料做成的转换器具有输出力大、响应速度快、控制精度高等优点。 1.2压电材料/电致伸缩材料 压电材料(1rZT)和电致伸缩材料(PMN)部是电介质,在其极化方向上施加一定强度的电场.则会引起材料的机械变形.去掉电场后叉能恢复到原状态”。此种材料做成的转换器同样具有输出力大、响应速度快、控错精度高等优点.与GMM材料相比,研究成熟,价格低,但其需要较高的驱动电压。 1.3形状记忆台金 形状记忆台金(SMA)是指其宥一定初始形状的合盒在低温下经塑性形变并固定成另一种形变后,通过加热到某一l晦界温度以上叉可恢复成初始形状的一类合金此种材料做成的转换器体积小精度低,价格较低。 1.4磁流变流体 磁流变流体(MRF)属可控流体,由高磁导率、低磁滞性的微小软磁性颗粒和非导磁性液体混合而成的悬浮体。在外磁场作用下,表面黏度系数陡然增大两个数量级以上;当外加磁场增强时,会在一瞬间(0.1 s左右)变成类固体,失去流动性当撤销磁场后,材料立即恢复原状"。 国内哈尔滨工业大学利用MRF在外加磁场作用下,具有较大磁化强度的特点,提出了在力矩马达衔铁和铁芯的工作气隙中加入MRF,利用MRF来改善伺服阀动态性能的方法。实验表明,添加磁流变流体后消除了射流管伺服阀的自激震荡,但响应速度降低。 1.5电流变流体

电液伺服控制系统的设计

电液伺服控制系统 的设计

电液伺服控制系统的设计与仿真 引言 电液伺服系统具有响应速度快、输出功率大、控制精确性高等突出优点,因而在航空航天、军事、冶金、交通、工程机械等领域得到广泛应用。随着电液伺服阀的诞生,使液压伺服技术进入了电液伺服时代,其应用领域也得到广泛的扩展。随着液压系统逐渐趋于复杂和对液压系统仿真要求的不断提高,传统的利用微分方程和差分方程建模进行动态特性仿真的方法已经不能满足需要。因此,利用AMESim、 Matlab/Simulink等仿真软件对电液伺服控制系统进行动态仿真,对于改进系统的设计以及提高液压系统的可靠性都具有重要意义。 1 液压系统动态特性研究概述 随着液压技术的不断发展与进步和应用领域与范围的不断扩大,系统柔性化与各种性能要求更高,采用传统的以完成执行机构预定动作循环和限于系统静态性能的系统设计远远不能满足要求。因此,现代液压系统设计研究人员对系统动态特性进行研究,了解和掌握液压系统动态工作特性与参数变化,以提高系统的响应特性、控制精度以及工作可靠性,是非常必要的。 1.1 液压系统动态特性简述 液压系统动态特性是其在失去原来平衡状态到达新的平衡状态过程中所表现出来的特性,原因主要是由传动与控制系统的过程变化以及外界干

动态特性的优劣。系统动态特性主要表现为稳定性(系统中压力瞬间峰值与波动情况)以及过渡过程品质(执行、控制机构的响应品质和响应速度)问题。 液压系统动态特性的研究方法主要有传递函数分析法、模拟仿真法、实验研究法和数字仿真法等。数字仿真法是利用计算机技术研究液压系统动态特性的一种方法。先是建立液压系统动态过程的数字模型——状态方程,然后在计算机上求出系统中主要变量在动态过程的时域解。该方法适用于线性与非线性系统,能够模拟出输入函数作用下系统各参变量的变化情况,从而获得对系统动态过程直接、全面的了解,使研究人员在设计阶段就可预测液压系统动态性能,以便及时对设计结果进行验证与改进,保证系统的工作性能和可靠性,具有精确、适应性强、周期短以及费用低等优点。 1.2 仿真环境简介 基于Matlab平台的Simulink是动态系统仿真领域中著名的仿真集成环境,它在众多领域得到广泛应用。Simulink借助Matlab的计算功能,可方便地建立各种模型、改变仿真参数,有效解决了仿真技术中的问题。Simulink提供了交互的仿真环境,既可经过下拉菜单进行仿真,也可经过命令进行仿真。虽然Simulink提供了丰富的模块库,可是在Matlab/Simulink下对液压系统进行建模及仿真需要做很多简化工作,而模型的简化使得仿真结果往往出现一定的误差。AMESim (Advanced Modeling Environment for Simulation of Engineering Systems)是法国IMAGINE公司开发的一套高级仿真软件。它是一个图形化的开发环境,用于工程系统的建

相关主题
文本预览
相关文档 最新文档