当前位置:文档之家› MATLAB电液位置伺服控制系统设计及仿真教案资料

MATLAB电液位置伺服控制系统设计及仿真教案资料

MATLAB电液位置伺服控制系统设计及仿真教案资料
MATLAB电液位置伺服控制系统设计及仿真教案资料

M A T L A B电液位置伺服控制系统设计及仿真

数控机床工作台电液位置伺服控制系统设

计及仿真

姓名:雷小舟

专业:机械电子工程

子方向:机电一体化

武汉工程大学机电液一体化实验室

位置伺服系统是一种自动控制系统。因此,在分析和设计这样的控制系统时,需要用自动控制原理作为其理论基础,来研究整个系统的动态性能,进而研究如何把各种元件组成稳定的和满足稳定性能指标的控制系统。若原系统不稳定可通过调整比例参数和采用滞后校正使系统达到稳定,并选取合适的参数使系统满足设计要求。 1 位置伺服系统组成元件及工作原理

数控机床工作台位置伺服系统有不同的形式,一般均可以由给定环节、比较环节、校正环节、执行机构、被控对象或调节对象和检测装置或传感器等基本元件组成[1]。根据主机的要求知系统的控制功率比较小、工作台行程比较大,所以采用阀控液压马达系统。

系统物理模型如图1所示。

图1 数控机床工作台位置伺服系统物理模型

系统方框图如图2所示。

图2 数控机床工作台位置伺服系统方框图

数控机床工作台位置伺服系统是指以数控机床工作台移动位移为控制对象的自动控制系统。位置伺服系统作为数控机床的执行机构,集电力电子器件、控制、驱动及保护为一体。数控机床的工作台位置伺服系统输出位移能自动地、快速而准确地复现输入位移的变化,是因为工作台输出端有位移检测装置(位移传感器)将位移信号转化为电信号反馈到输入端构成负反馈闭环控制系统。反馈信号与输入信号比较得到差压信号,然后把差压信号通过伺服放大器转化为电流信号,送入电液伺服阀(电液转换、功率放大元件)转换为大功率的液压信号(流量与压力)输出,从而使液压马达的四通滑阀有开口量就有压力油输出到液压马达,驱动液压马达带动减速齿轮转动,从而带动滚珠丝杠运动。因滚珠丝杠与工作台相连所以当滚珠丝杠 运动时,工作台也发生相应的位移。

2数控工作台的数学模型 2.1 工作台负载分析

工作台负载主要由切削力c F ,摩擦力f F 和惯性力a F 三部分组成,则总负载力为:

a f c L F F F F ++=

2.2液压执行机构数学模型

工作台由液压马达经减速器和滚珠丝杠驱动。 根据力矩平衡方程,减速器输入轴力矩L T 为

:

式中:t 为丝杠导程,m/r ;i 为减速器传动比,'/m m i θθ=,m θ,'

m θ分别为齿轮减速器输

入轴、输出轴角位移,rad 。

由运动传递原理知,液压马达最大转速max n 为

:

式中:max v 为工作台的最大运动速度,m/s 。

由液压马达输出力矩表达式可知,液压马达所需排量m Q 为:

L L m m p T D Q /22ππ==

式中:

L p 为液压马达负载压力,MPa ,一般取3/2s L

p p

=,s p 为液压系统压力,MPa ;

m D 为液压马达弧度排量,rad /m 3。

液压马达负载流量为:max n Q q m L =

伺服阀压降

V p 为:L s V p p p -=

考虑泄漏等影响,L q 可以增大10~20%,根据L q 和V p ,查手册得额定流量,选择合适的液压泵和电液伺服阀。

阀控马达液压伺服系统模型:

(1)伺服阀的线性流量方程为:L c v q L p K x K Q -=

位置伺服系统动态分析经常是在零位工作条件下进行的,此时增量和变量相等。 式中参数:q K 为阀的流量增益;c K 为阀的流量压力系数,v x 为滑阀阀芯的位移;L p 为负载压力,21p p p L -=

(2)

液压马达的流量连续性方程:

式中参数:m D 液压马达的体积排量;m θ液压马达的角位移;im C 液压马达的内泄露系数;

e β系统的有效体积弹性模量

(3)液压马达的力矩平衡方程:

L m m m m t m L T G s B s J D p +++=θθθ

式中参数:t J 为液压马达运动部分(包括折算到液压马达轴上)负载的总惯量;m B 为液压马达粘性阻尼系数;G 为负载的扭转弹簧刚度;L T 作用于液压马达轴上的任意外负载力矩。 工作台质量折算到液压马达轴的转动惯量为:

考虑到齿轮、丝杆和液压马达的惯性,t J 可适当放大20~50%。 2.3电液伺服控制系统的传递函数 放大器的增益a K 为:

式中:I ?为输出电流,A ;e U 为输入电压,V 。 液压固有频率为:

式中:t V 为液压马达的容积,3

m 。 液压阻尼比为:

假定阻尼比仅由阀的流量—压力系数产生。零位流量—压力系数0c K 可近似计算为:

阀控马达的传递函数:

如此,以阀芯位移为

v x 输入,以液压马达的角位移m θ为输出的传涕函数为:

以负载力矩为L T 输入,以液压马达的角位移m θ为输出的传递函数为:

式中:sv ω以及sv ξ由伺服阀生产商给出数据。 式中,m q 0为所查样本阀处于最大阀压差时的空载流量,s /m 3

减速齿轮与丝杠的传递函数为:

位移传感器和放大器的动态特性可以忽略,其传递函数可以用它们的增益表示。

式中:f U 为反馈电压信号;p x 为工作台位移。

根据以上确定的传递函数,可绘制出数控机床工作台位置伺服系统的模型如图3所示。 图3见草稿。

故系统的开环传递函数为:

式中:开环增益系数v K 为:m f s sv a v D K K K K K /=

2.4系统的技术要求:

“位置”误差mm 05.0±<+pf p e e (指令或干扰为“位置”输入); “速度”误差mm 1-dB f 。 3仿真实验

3.1仿真实验参数

仿真实验已知参数见如下:

N 400=c F ;N 1600=f F ;s /m 08.0max =v ;2max s /m 2.1=a ;kg 800=t m ;

r /m 102.12-?=t ;2=i ;pa 10635?=s p ;36m 1010-?=t V ;m 1051.22-?=w ;

m 1056-?=c r ;pa 108.12-?=μ;s /rad 600=sv ω;5.0=sv ξ;100=f K ;1=

a K 。

3.2仿真传递函数的确定

将已知参数代入2中各式,计算各项后,可得 伺服阀的传递函数为:

负载特性没有弹性负载时液压马达和负载的传递函数为

:

???

? ??+?+?=

135734.1235710484.1226

s s s q m

θ 系统的开环传递函数为:

()()???

? ??++???? ??++=

135768.23571600160026.5982222s s s s s s H s G 根据以上确定的传递函数,用Simulink 可绘制出数控机床工作台位置伺服系统的模型如图

4所示。

图4数控机床工作台位置伺服系统模型

3.3仿真实验结果分析 3.3.1系统稳定性

根据系统开环传递函数做出1=a K 时仿真Bode 图(如图5),增益裕量

dB 82.4-=m G ,相位裕量ο26-=m P 均为负值,此时系统不稳定。

为了使系统稳定,考虑将图中0dB 线上移,使相位裕量ο

50=γ,此时增益裕量

dB 7.11=g K ,穿越频率79.7rad/s ,由dB 39lg 20=v K ,得开环增益为:90=v K ,故放

大器增益为:15.026

.59890

26.598===

v a K K

上式计算出的a K 为校正后的值,下面做出15.0=a K 时开环系统的Bode 图,如图6。

可以看出:增益裕量dB 5.11=m G ,相位裕量ο

50=m P 均为正值,此时系统稳定。

所以15.0=a K 就是所求的放大器增益。

图51=a K 时开环系统的Bode 图

图615.0=a K 时开环系统的Bode 图

15.0=a K 时,系统的仿真输出如图7所示,当输入V 1=r u 时输出m 01.0=p x 。系统是

稳定的。

由图7可得,系统的瞬态性能指标其数值大小各为:

(1)上升时间r t :s 0232.0=r t ; (2)峰值时间p t :s 0332.0=p t ; (3)最大超调量p M :%18=p M ;

(4)调整时间s t :s 0836.0=s t 。

3.3.2闭环系统的频宽

机床工作台液压伺服系统的开环系统Nichols 仿真曲线如图8所示,由曲线中-3dB 与Nichols 线的交点分析得出:闭环系统频带宽度Hz 17dB 3=-f 。

图7数控机床工作台液压伺服系统仿真结果(Ka=0.15)

图8开环系统Nichols 仿真曲线

3.3.3系统的稳态误差分析 系统的位置误差f e 为:f

a n

f K K I e =

式中:n I 为系统的输入信号。 系统的速度误差r e 为:v

r K v

e =

式中:v 为工作台运动速度。

对于干扰来说,系统是0型的。启动和切削不处于同一动作阶段,静摩擦干扰就不必考虑。伺服放大器的温度零漂为0.5%~ 1%n I 、伺服阀的零漂和滞环为1%~2%n I 、执行元件的不灵敏区为0.5 %~1%n I 。

假定上述干扰量之和为±2%n I ,由此引起的系统的位置误差为:

对指令输入来说,系统是I 型的,最大速度s /m 08.0max =v 时的速度误差为:

综上所述,所设计的系统能达到的性能指标为m 1045

-?±=f e ,m 10915.84

-?=r e ,

Hz 17dB 3=-f 能在稳定性、频带宽度及稳态误差等性能指标方面满足预定性能要求。

4结论

根据要求设计出某数控机床工作台电液位置伺服控制装置,建立了电液位置伺服控制系统的数学模型和传递函数,在MATLAB 环境下进行仿真,并确定出使系统稳定的开环增益。同时应用频率响应法对电液伺服控制系统的性能进行了分析,从而得到了满足要求的可靠的电液伺服系统。

电力电子的matlab仿真

电力电子的 MATLAB 仿真
计算机控制技术 课程设计资料
2010 年 4 月

前 言
电力电子技术综合了电子电路、电机拖动、计算机控制等多学科知识,是一门实践性和应用形 很强的课程。由于电力电子器件自身的开关非线性,给电力电子电路的分析带来了一定的复杂性和 困难,一般常用波形分析的方法来研究。仿真技术为电力电子电路的分析提供了崭新的方法。 我们在电力电子技术课程的教学中引入了仿真,对于加深学生对这门课程的理解起到了良好的 作用。掌握了仿真的方法,学生的想法可以通过仿真来验证,对培养学生的创新能力很有意义,并 且可以调动学生的积极性。实验实训是本课程的重要组成部分,学校的实验实训条件毕竟是有限的, 也受到学时的限制。而仿真实训不受时间、空间和物质条件的限制,学生可以在课外自行上机。仿 真在促进教学改革、加强学生能力培养方面起到了积极的推动作用。

目录
第一章 MATLAB 基础
1
1.1 MATLAB 介绍
1
1.2 MATLAB 的安装与启动
2
1.3 MATLAB 环境
3
第二章 MATLAB/Simulink/Power System 工具箱简介 7
2.1 Simulink 工具箱简介 7
2.2 Power System 工具箱简介 10
2.3
Simulink/Power System 的模型窗口 13
2.4
Simulink/Power System 模块的基本操作 17
第三章 电力电子电路仿真实训 21
实训一
单相半波可控整流电路仿真实训 21
实训二
单相桥式半控整流电路仿真实训 29
实训三
单相桥式全控整流电路仿真实训 35
实训四
单相桥式全控有源逆变电路仿真实训 42
实训五 单相交流调压电路仿真实训 45
实训六 降压斩波电路仿真实训 48
实训七 升压斩波电路仿真实训 51
实训八 升降压斩波电路实训 54
实训九
三相半波不可控整流电路仿真实训 57
实训十
三相半波可控整流电路仿真实训 59
实训十一
三相桥式全控整流电路仿真实训 67
实训十二
三相半波可控整流电路有源逆变电路仿真实训 72
实训十三
三相桥式有源逆变电路仿真实训 75

伺服系统设计.

辽宁工程技术大学《电力拖动自动控制系统》课程设计 目录 1、前言 (1) 1.1设计目的 (1) 1.2设计内容 (1) 2、伺服系统的基本组成原理及电路设计 (2) 2.1伺服系统基本原理及系统框图 (2) 2.2 伺服系统的模拟PD+数字前馈控制 (4) 2.3 伺服系统的程序 (6) 3、仿真波形图 (9) 结论 (12) 心得与体会 (13) 参考文献 (14)

1、前言 1.1设计目的 1、使学生进一步掌握电力拖动自动控制系统的理论知识,培养学生工程设计能力和综合分析问题、解决问题的能力; 2、使学生基本掌握常用电子电路的一般设计方法,提高电子电路的设计和实验能力; 3、熟悉并学会选用电子元器件,为以后从事生产和科研工作打下一定的基础。 1.2设计内容 1、分析和设计具有三环结构的伺服系统,用绘图软件(matlab)画原理图还有波形图; 2、分析并理解具有三环结构的伺服系统原理。

2、伺服系统的基本组成原理及电路设计 2.1伺服系统基本原理及系统框图 伺服系统三环的PID控制原理: 以转台伺服系统为例,其控制结构如图2-1所示,其中r为框架参考角位置输入信号, 为输出角位置信号. 图2-1 转台伺服系统框图 伺服系统执行机构为典型的直流电动驱动机构,电机输出轴直接与负载-转动轴相连,为使系统具有较好的速度和加速度性能,引入测速机信号作为系统的速度反馈,直接构成模拟式速度回路.由高精度圆感应同步器与数字变换装置构成数字式角位置伺服回路. 转台伺服系统单框的位置环,速度环和电流环框图如图2-2,图2-3和图2-4所示. 图2-2 伺服系统位置环框图 图2-3 伺服系统速度环框图

电液伺服跑偏控制系统设计

电液伺服跑偏控制系统设计 前言随着20世纪自动化技术的巨大进步,自动控制理论得到不断地发展和完善。正是针对设计任务,通过设计方案的分析比较之后,选择电液控制系统来设计此次任务。首先介绍了液压控制的一些基本概念,对研究对象和任务作出了整体的介绍,并简述了液压控制技术的发展史。然后在明确设计要求的情况下,对设计任务进行分析。通过机液伺服跑偏控制系统和电液伺服跑偏控制系统的分析对比,最终选择了电液伺服跑偏控制系统的设计方案,从而进入本课题研究要点。接着对电液伺服跑偏控制系统做了具体的设计,先是对电液伺服机构进行了分析,得出了电液伺服系统的数学模型,进而分析了其特点。接着又对系统做了静、动态计算及分析,确定了供油压力,选取了伺服阀,并求取了各元件的传递

函数,绘制了系统方块图,得出系统的各个参数。然后还要对系统进行校正,得到更为优良的设计参数,使系统更加完善,以进一步提高系统的性能。最后利用了先进电脑仿真技术MATLAB 对所做的系统进行仿真,通过改变系统的各个参数进行分析、比较,从而可看出系统的各个参数对系统的响应速度和稳定性的影响,本论文在王慧老师的悉心教导之下,通过研读各著作期刊,经过多次的修改。于作者水平有限,论文中难免出现点差错,恳请读者指正。 1 1 绪论液压伺服控制系统是以液压动力元件作驱动装置所组成的反馈控制系统。在这种系统中,输出量能够自动地、快速而准确地复现输入量的变化规律。与此同时,还对输入信号进行功率放大,因此也是一个功率放大装置。液压伺服控制系统是以液体压力能为动力的机械量自动控制系统。按系统中实现信号传输和控制方式不同分为机液伺服系统和电液伺服系

电力电子MatLab仿真指导

SIMULINK仿真工具简介 SIMULINK是Mathworks公司开发的MATLAB仿真工具之一,其主要功能是实现动态系统建模﹑仿真与分析. SIMULINK支持线性系统仿真和非线性系统仿真;可以进行连续系统仿真,也可以进行离散系统仿真,或者两者混合的系统仿真;同时也支持具有多种采样速率的采样系统仿真.利用SIMULINK对系统进行仿真与分析,可以对系统进行适当的实时修正或者按照仿真的最佳效果来调试及确定控制系统的参数,以提高系统的性能,减少设计系统过程中反复修改时间,从而实现高效率地开发实际系统的目标. SIMULINK最早出现在MATLAB4.0版的核心执行文件中.在MATLAB4.2版以后, SIMULINK则以MATLAB的工具包形式出现,需要单独安装.在MATLAB5.0版中, SIMULINK为2.0版,在MATLAB5.3版中, SIMULINK升级为3.0版,而在MATLAB6.1版中, SIMULINK则升级为4.1版.本书只对SIMULINK4.1版进行介绍. SIMULINK4.1版是用来建模﹑分析和仿真各种动态系统的交互环境,包括连续系统﹑离散系统和混杂系统. SIMULINK提供了采用鼠标拖动的方法建立系统框图模型的图形交互界面. SIMULINK提供了大量的功能模块以方便拥护快速地建立系统模型. 建模时只需要使用鼠标拖动库中的功能模块并将它们连接起来.使用者可以通过将模块组成字子系统来建立多级模型. SIMULINK对模块和连接的数目没有限制. SIMULINK还支持Stateflow,用来仿真事件驱动过程. SIMULINK框图提供了交互性很强的非线性仿真环境,可以通过下拉菜单执行仿真,或使用命令进行批处理.仿真结果可以在运行的同时通过示波器或图形窗口显示. SIMULINK的开放式结构允许用户扩展仿真环境的功能.如用MATLA B﹑FORTRAN和C代码生成自定义块库,并拥有自己的图标和界面,或者将用户原来由FORTRAN或C语言编写的代码连接起来. 由于SIMULINK可以直接利用MATLAB的数学﹑图形和编程功能,用户可以直接在SIMULINK下完成数据分析﹑优化参数等工作.工具箱提供的高级的设计和分析能力可以通过SIMULINK的屏蔽手段在仿真过程中执行. SIMULINK的模型库可以通过专用元件集进一步扩展 MATLAB6.5.1有两张光盘,其中第二张帮助文件,把第一张碟放进光驱,系统会自动进入安装程序。在安装过程只要输入用户名称、公司及产品注册码等。安装完之后,在 Windows桌面上会自动生成MA TLAB的快捷方式图标。

三边封制袋机系统

XINJE

三边封制袋机整体解决方案 一、项目介绍 U项目工艺介绍 三边封制袋机用于加工各种塑-塑,纸-塑等复合材料,是各种中封袋,三边封的理想制袋设备。 随着世界各个行业的髙速发展?越来越多的世界知名生产商希望通过提高整线制袋生产速度来获得更大的利润。多品种、髙品质包装袋需求的日益增强,客户对制袋机控制系统有了更高的要求,针对制袋机原有的控制系统无法达到恒张力且速度慢,工控机系统不便于维护和完成特殊工艺的制袋,信捷公司推出三边封制袋机控制系统,该控制系统采用底层集成速度控制、电子齿轮控制方式。使制袋机机貞?正达到高速恒张力,很好的满足了各种不同材料的制袋机要求。该系统结合行业特征在高温、髙湿、高腐、强电磁干扰的环境中通过了可靠性验证。 2.项目应用的产品 二、控制系统的构成 系统硬件的构成 经过实践,信捷电气以XCC系列PLC为核心系统的配置,可以帮助客户稳泄实现180 袋/分的速度。制袋机的工艺流程如下图所示:

i:主轴伺服电机 4:送料2伺服电机 2:切刀伺服电机 5:送料3伺服电机 3:送料1伺服电机 I氏尿班} 严也亦I e > |FF漓慈

切刀模式 1、单切模式: 2、双切模式: 各个伺服动作说明: 1、主轴伺服:启动时主轴以一个设左的速度运行(袋/分),带动横封和纵封上下运动, 由限位开光3给岀一个启动拉料信号(拉料1,拉料2,拉料3启动信号)、拉料禁止信号(一个制袋动作没有完成如果有此信号说明超速,应停机)、高位停车信号(停车时保持在高位)。现场是只有一个高位信号:伺服分三段速度,每段速度、髙度可以设左。 2、切刀伺服:拉料1结束后,切刀伺服带动切刀正转,上限位到下限位后反转,回到上限 位后停止,完成一次切刀动作。 3、送料1伺服:主轴伺服带动横封纵封上下一次给出一个启动信号,送料1伺服按照设左 的速度运行,工作方式有两种,一种是上长模式:设立长度的脉冲走完则停止, 另一种是左标模式:走完设左的脉冲数低速寻标,光电1有信号则停止。 4、送料2伺服:送料1运行时同步跟随送料1的速度和位置,在跟随中如限位开关1 有信号

伺服控制系统(设计)

第一章伺服系统概述 伺服系统是以机械参数为控制对象的自动控制系统。在伺服系统中,输出量能够自动、快速、准确地跟随输入量的变化,因此又称之为随动系统或自动跟踪系统。机械参数主要包括位移、角度、力、转矩、速度和加速度。 近年来,随着微电子技术、电力电子技术、计算机技术、现代控制技术、材料技术的快速发展以及电机制造工艺水平的逐步提高,伺服技术已迎来了新的发展机遇,伺服系统由传统的步进伺服、直流伺服发展到以永磁同步电机、感应电机为伺服电机的新一代交流伺服系统。 目前,伺服控制系统不仅在工农业生产以及日常生活中得到了广泛的应用,而且在许多高科技领域,如激光加工、机器人、数控机床、大规模集成电路制造、办公自动化设备、卫星姿态控制、雷达和各种军用武器随动系统、柔性制造系统以及自动化生产线等领域中的应用也迅速发展。 1.1伺服系统的基本概念 1.1.1伺服系统的定义 “伺服系统”是指执行机构按照控制信号的要求而动作,即控制信号到来之前,被控对象时静止不动的;接收到控制信号后,被控对象则按要求动作;控制信号消失之后,被控对象应自行停止。 伺服系统的主要任务是按照控制命令要求,对信号进行变换、调控和功率放大等处理,使驱动装置输出的转矩、速度及位置都能灵活方便的控制。

1.1.2伺服系统的组成 伺服系统是具有反馈的闭环自动控制系统。它由检测部分、误差放大部分、部分及被控对象组成。 1.1.3伺服系统性能的基本要求 1)精度高。伺服系统的精度是指输出量能复现出输入量的精确程度。 2)稳定性好。稳定是指系统在给定输入或外界干扰的作用下,能在短暂的调节过程后,达到新的或者恢复到原来的平衡状态。 3)快速响应。响应速度是伺服系统动态品质的重要指标,它反映了系统的跟踪精度。 4)调速范围宽。调速范围是指生产机械要求电机能提供的最高转速和最低转速之比。 5)低速大转矩。在伺服控制系统中,通常要求在低速时为恒转矩控制,电机能够提供较大的输出转矩;在高速时为恒功率控制,具有足够大的输出功率。 6)能够频繁的启动、制动以及正反转切换。 1.1.4 伺服系统的种类 伺服系统按照伺服驱动机的不同可分为电气式、液压式和气动式三种;按照功能的不同可分为计量伺服和功率伺服系统,模拟伺服和功率伺服系统,位置

matlab电力电子仿真教程

MATLAB在电力电子技术中的应用 目录 MATLAB在电力电子技术中的应用 (1) MATLAB in power electronics application (2) 目录 (4) 1绪论 (6) 1.1关于MATLAB软件 (6) 1.1.1MATLAB软件是什么 (6) 1.1.2MATLAB软件的特点和基本操作窗口 (7) 1.1.3MATLAB软件的基本操作方法 (10) 1.2电力电子技术 (12) 1.3MATLAB和电力电子技术 (13) 1.4本文完成的主要内容 (14) 2MATLAB软件在电路中的应用 (15) 2.1基本电气元件 (15) 2.1.1基本电气元件简介 (15) 2.1.2如何调用基本电器元件功能模块 (17) 2.2如何简化电路的仿真模型 (19) 2.3基本电路设计方法 (19) 2.3.1电源功能模块 (19) 2.3.2典型电路设计方法 (20) 2.4常用电路设计法 (21) 2.4.1ELEMENTS模块库 (21) 2.4.2POWER ELECTRONICS模块库 (22) 2.5MATLAB中电路的数学描述法 (22) 3电力电子变流的仿真 (25) 3.1实验的意义 (25) 3.2交流-直流变流器 (25)

3.2.1单相桥式全控整流电路仿真 (26) 3.2.2三相桥式全控整流电路仿真 (38) 3.3三相交流调压器 (53) 3.3.1无中线星形联结三相交流调压器 (53) 3.3.2支路控制三角形联结三相交流调压器 (59) 3.4交流-交流变频电路仿真 (64) 3.5矩阵式整流器的仿真 (67)

自动控制原理课程设计 速度伺服控制系统设计

自动控制原理课程设计题目速度伺服控制系统设计 专业电气工程及其自动化 姓名 班级 学号 指导老师 机电工程学院 2009年12月

目录一课程设计设计目的 二设计任务 三设计思想 四设计过程 五应用simulink进行动态仿真六设计总结 七参考文献

一、课程设计目的: 通过课程设计,在掌握自动控制理论基本原理、一般电学系统自动控制方法的基础上,用MATLAB实现系统的仿真与调试。 二、设计任务: 速度伺服控制系统设计。 控制系统如图所示,要求利用根轨迹法确定测速反馈系数' k,以 t 使系统的阻尼比等于0.5,并估算校正后系统的性能指标。 三、设计思想: 反馈校正: 在控制工程实践中,为改善控制系统的性能,除可选用串联校正方式外,常常采用反馈校正方式。常见的有被控量的速度,加速度反馈,执行机构的输出及其速度的反馈,以及复杂系统的中间变量反馈等。反馈校正采用局部反馈包围系统前向通道中的一部分环节以实现校正,。从控制的观点来看,采用反馈校正不仅可以得到与串联校正同样的校正效果,而且还有许多串联校正不具备的突出优点:第一,反馈校正能有效地改变被包围环节的动态结构和参数;第二,在一定

条件下,反馈校正装置的特性可以完全取代被包围环节的特性,反馈校正系数方框图从而可大大削弱这部分环节由于特性参数变化及各种干扰带给系统的不利影响。 该设计应用的是微分负反馈校正: 如下图所示,微分负反馈校正包围振荡环节。其闭环传递函数为 B G s ()=00t G s 1G (s)K s +() =22t 1T s T K s ζ+(2+)+1 =22'1 T s 21Ts ζ++ 试中,' ζ=ζ+ t K 2T ,表明微分负反馈不改变被包围环节的性质,但由于阻尼比增大,使得系统动态响应超调量减小,振荡次数减小,改善了系统的平稳性。 微分负反馈校正系统方框图

基于PLC控制的20Kg连续铸造机系统_潘美君

收稿日期:2012-07-02 基于PLC 控制的20Kg 连续铸造机系统 潘美君1,朱红梅1,黄嘉靖2 (1.黄河鑫业有限公司,青岛 西宁 811600;2.青海省工业职业技术学校,青岛 西宁 810020) 摘 要:为了有效控制20kg 连续铸造机的运行过程与监视,降低20kg 连续铸造机的运行故障,提高20kg 连续铸造机的生产效率的目 的;采用成熟的PLC 控制技术,运用PLC 模块化编程的方法;获得了运用成熟的PLC 能实时有效的控制20kg 连续铸造机平稳运行的结果;得到了采用PLC 自动控制系统,可有效实现控制20kg 连续铸造机平稳运行的结论。本文的创新点在于采用PLC 控制系统代替了传统的电气控制系统;采用本系统具有经济高效、稳定、维护方便、降低电能损耗等优点。 关键词:20kg 连续铸造机;Logix5000;ControlNet 中图分类号:TM571.61 文献标识码:B 文章编号:1003-7241(2013)01-0092-04 Control Foundry Machine System Based on PLC PAN Mei-Jun 1 , ZHU Hong-Mei 1 , HUANG Jia-jing2 (1. Huanghe Xinye Co.,Ltd., Xining 811600 China;2. Qinghai industrial School, Xining 810020 China) Abstract: In order to effectively control the operation of the casting machine with the monitoring process,to reduce operating faults and improve production efficiency of casting machine, the mature PLC control technology and modular program-ming method are adopted. The PLC automatic control system can control the casting machine running smoothly. The control system can instead of the advantage of economic efficiency, stable, easy maintenance, reduce the electric power etc. Key words: 20 kg continuous casting machine; Logix5000; controlNet 1 引言 20kg 铝锭铸造机是贵阳奥特机电有限公司在通过对同类产品的调研基础上,总结了目前国内外该产品的使用经验,并针对存在的问题,结合最新技术,本着“技术先进、高效可靠、操作维修方便”的原则开发的新一代产品。随找工业现代化进程加快,对生产过程的自动控制和信息通信提出了更高的要求[1]。工业自动化系统从单机的PLC 控制发展到多PLC 网络控制。目前,PLC 技术已经广泛应用于“过程自动化”和“制造自动化”两大领域,通过本文的介绍说明PLC 在制造自动化领域的应用。 2 20Kg 连续铸造机工艺流程及控制要求 2.1 工艺流程 20kg 连续铸造机为一普通铝锭连续铸造的自动化生产线。金属铝水从混合炉出来,经溜槽和分配器注入水平式的铸造机上铸模而凝固成型。铸锭、冷却及堆垛等工序全部为自动化操作,堆垛后采用气动打捆机对铝锭进行打捆。生产工艺过程如图1。 2.2 控制要求 2.2.1 设有手动,半自动,自动三种工作方式 手动工作方式:用于对某一机构进行操作,并用于自动工作方式前协调各部动作;半自动工作方式:用于对铸造机、冷却输送机、堆垛机、成品输送机进行单体操 图1 生产工艺流程图

伺服控制系统应用课程

伺服控制系统应用 一、培训时间:4天、老师边讲、学员边练习,每个学员自 带电脑 二、课程大纲 1 伺服电动机的结构和工作原理 2 伺服驱动器的结构和工作原理 3 伺服驱动器主电路的接线 4 伺服驱动器位置控制模式的接线 5 伺服驱动器速度控制模式的接线 6 伺服驱动器转矩控制模式的接线 7 伺服放大器控制端子内部原理图 8 伺服放大器各端子的功能 【主办单位】中国电子标准协会 【咨询热线】0 7 5 5 – 2 6 5 0 6 7 5 7 1 3 7 9 8 4 7 2 9 3 6 李生 【报名邮箱】martin#https://www.doczj.com/doc/5312181441.html, (请将#换成@) 9 伺服放大器和外围设备接线举例 10 伺服放大器基本参数的设置 11 利用PLC对伺服电机进行7段速的控制(应用案例举例) 12 伺服电机在速度控制模式下对工作台进行往返的控制(应用案例举例) 13 伺服电机转矩控制模式举例(应用案例举例) 14 伺服电机位置和速度复合模式的控制(应用案例举例) 三、老师介绍 程老师 男,高级技师。有着多年的职业教育经验,主要研究是自动控制技术,擅长三菱、西门子系列PLC、变频器、伺服等应用。2009年广州市人社局授予“广州市技术能手”称号。2011年公派德国学习交流,学习德国先进职教理念。2013年广州市人设局授予“广州市机电一体化专业带头人”。2014年7月,被广州市人设局派往清华大学进修学习。 本人在工控应用领域,教学成果显著,从2008年开始开发系列的视频教程,这些教程由浅到深,通俗易懂,因此在现在工控应用领域有一定的影响力,讲解的视频教程有三菱FX系列,三菱Q系列,西门子200系列,西门子300/400系列共20多个教程。

电液位置伺服控制系统设计方法

电液位置伺服控制系统设计方法 电液位置伺服系统是最基本和最常用的一种液压伺服系统,如机床工作台的位置、板带轧机的板厚、带材跑偏控制、飞机和船舶的舵机控制、雷达和火炮控制系统以及振动试验台等。在其它物理量的控制系统中,如速度控制和力控制等系统中,也常有位置控制小回路作为大回路中的一个环节 电液位置伺服系统主要是用于解决位置跟随的控制问题,其根本任务就是通过执行机构实现被控量对给定量的及时和准确跟踪,并要具有足够的控制精度。电液伺服系统的动态特性是衡量一套电液伺服系统设计及调试水平的重要指标。它由电信号处理装置和若干液压元件组成,元件的动态性能相互影响,相互制约及系统本身所包含的非线性,致使其动态性能复杂。因此,电液伺服控制系统的设计及仿真受到越来越多的重视。 液压伺服系统的基本设计步骤 ○1分析整理所需的设计参数,明确设计要求;○2拟定控制方案,构成控制系统原理图;○3确定动力元件参数(如供油压力、执行元件规格、伺服阀容量)和其他组成元件;○4分析计算系统的静、动态特性,确定回路放大系数和设计校正措施等。○5根据技术要求设计出系统以后,需要检查所设计的系统是否满足全部性能指标,如不满足,可通过调整参数或改变系统结构(即校正)等方法重复设计过程,直至满足要求为止。因为设计是试探性的,所以设计方法具有很大的灵活性,在设计中结合MATLAB的SIMULINK软件进行仿真,对系统的参数进行调整和可靠性作进一步验证,最终可以得出比较可靠的电液伺服系统。 (一)组成控制系统原理图 由于系统的控制功率比较小、工作台行程比较大,所以采用阀控液压马达系统。系统方块原理如图1

(二)由静态计算确定动力元件参数,选择位移传感器和伺服放大器 1.绘制负载轨迹图 负载力由切削力c F ,摩擦力f F 和惯性力a F 三部分组成。摩擦力具有“下降”特性,为了简化,可认为与速度无关,是定值,取最大值f F = 1500N 惯性力按最大加速度考虑 a max F 800t m a N == 假定系统是在最恶劣的负载条件下工作(即所有负载力都在存在,且速度最大)下工作,则总负载力为 max f F F F F =l c a =++400+1500+800=2700N 2.选取供油压力 5s P 6310Pa =? 3.求取液压马达排量 设齿轮减速比'm i=/2m θθ=,丝杠导程2 1.210/t m r -=?,则所需液压马达力矩为 2 2700 1.210 2.58222 L L F t T N m i ππ-??===?? 取L s 2P =P 3,则液压马达弧度排量为-63L 5s 3T 3 2.58D ==0.610m /2P 26310 m rad ?=??? 液压马达每转排量为-63-632D 20.610m / 3.710m /m m Q r r ππ==??=? 计算出的液压马达排量需标准化。按选取的标准化值再计算负载压力L P 值。本例液压马达排量计算符合标准化。 4.确定伺服阀规格 液压马达的最大转速为2max max 2 2810800/min 13.3/1.210iv n r r s t --??====? 所以负载流量为-6-6max q 3.71013.3/49.2110l m Q n r s ==??=? 此时伺服阀的压降为 55L s Lmax s -6T 2.58P P P 631020.010D 0.610 v m P Pa Pa =-=-=?-=?? 考虑到泄漏等影响,将q l 增大15%,取q l = 3.4L/min 。根据q l 和v P ,查得额定流量为

毕业设计152辽宁工程技术大学电液伺服跑偏控制系统设计

前言 随着20世纪自动化技术的巨大进步,自动控制理论得到不断地发展和完善。本文正是针对设计任务,通过设计方案的分析比较之后,选择电液控制系统来设计此次任务。 本文首先介绍了液压控制的一些基本概念,对研究对象和任务作出了整体的介绍,并简述了液压控制技术的发展史。然后在明确设计要求的情况下,对设计任务进行分析。通过机液伺服跑偏控制系统和电液伺服跑偏控制系统的分析对比,最终选择了电液伺服跑偏控制系统的设计方案,从而进入本课题研究要点。 接着本文对电液伺服跑偏控制系统做了具体的设计,先是对电液伺服机构进行了分析,得出了电液伺服系统的数学模型,进而分析了其特点。接着又对系统做了静、动态计算及分析,确定了供油压力,选取了伺服阀,并求取了各元件的传递函数,绘制了系统方块图,得出系统的各个参数。 然后还要对系统进行校正,得到更为优良的设计参数,使系统更加完善,以进一步提高系统的性能。最后利用了先进电脑仿真技术MATLAB对所做的系统进行仿真,通过改变系统的各个参数进行分析、比较,从而可看出系统的各个参数对系统的响应速度和稳定性的影响。 本论文在王慧老师的悉心教导之下,通过研读各著作期刊,经过多次的修改。由于作者水平有限,论文中难免出现点差错,恳请读者指正。

1 绪论 液压伺服控制系统是以液压动力元件作驱动装置所组成的反馈控制系统。在这种系统中,输出量(位移、速度、力等)能够自动地、快速而准确地复现输入量的变化规律。与此同时,还对输入信号进行功率放大,因此也是一个功率放大装置。 液压伺服控制系统是以液体压力能为动力的机械量(位移、速度和力)自动控制系统。按系统中实现信号传输和控制方式不同分为机液伺服系统和电液伺服系统两种。 机液伺服系统的典型实例是飞机、汽车和工程机械主离合器操纵装置上常用的液压助力器,机床上液压仿形刀架和汽车与工程机械上的液压动力转向机构等。 电液伺服控制系统是以液压为动力,采用电气方式实现信号传输和控制的机械量自动控制系统。按系统被控机械量的不同,它又可以分为电液位置伺服系统、电液速度伺服控制系统和电液力控制系统三种。电液位置伺服控制系统适合于负载惯性大的高速、大功率对象的控制,它已在飞行器的姿态控制、飞机发动机的转速控制、雷达天线的方位控制、机器人关节控制、带材跑偏、张力控制、材料试验机和加载装置等中得到应用。 1.1 液压伺服控制系统的组成 液压伺服控制系统不管多么复杂,都是由以下一些基本元件组成的,如图1-1所示: 图1-1 电液伺服控制系统 Fig.1-1 electro-hydraulic servo system 1)输入元件——也称指令元件,它给出输入信号(指令信号)加于系统的输入端。该元件可以是机械的、电气的、气动的等。如靠模、指令电位器或计算机等。 2)反馈测量元件——测量系统的输出并转换为反馈信号。这类元件也是多种形式的。各种传感器常作为反馈测量元件。如测速机、阀套,以及其它类型传感器。 3)比较元件——相当于偏差检测器,它的输出等于系统输入和反馈信号之差,如加法器、阀芯与阀套组件等。 4)液压放大与转换元件——接受偏差信号,通过放大、转换与运算(电液、机液、

电力电子技术matlab仿真.doc

本文前言 MATLAB的简介 MATLAB是一种适用于工程应用的各领域分析设计与复杂计算的科学计算软件,由美国Mathworks公司于1984年正式推出,1988年退出3.X(DOS)版本,19992年推出4.X(Windows)版本;19997年腿5.1(Windows)版本,2000年下半年,Mathworks公司推出了他们的最新产品MATLAB6.0(R12)试用版,并于2001年初推出了正式版。随着版本的升级,内容不断扩充,功能更加强大。近几年来,Mathworks公司将推出MATLAB语言运用于系统仿真和实时运行等方面,取得了很多成绩,更扩大了它的应用前景。MATLAB已成为美国和其他发达国家大学教学和科学研究中最常见而且必不可少的工具。 MATLAB是“矩阵实验室”(Matrix Laboratory)的缩写,它是一种以矩阵运算为基础的交互式程序语言,着重针对科学计算、工程计算和绘图的需要。在MATLAB中,每个变量代表一个矩阵,可以有n*m个元素,每个元素都被看做复数摸索有的运算都对矩阵和复数有效,输入算式立即可得结果,无需编译。MATLAB强大而简易的做图功能,能根据输入数据自动确定坐标绘图,能自定义多种坐标系(极坐标系、对数坐标系等),讷讷感绘制三维坐标中的曲线和曲面,可设置不同的颜色、线形、视角等。如果数据齐全,MATLAB通常只需要一条命令即可做图,功能丰富,可扩展性强。MATLAB软件包括基本部分和专业扩展部分,基本部分包括矩阵的运算和各种变换、代数和超越方程的求解、数据处理和傅立叶变换及数值积分风,可以满足大学理工科学生的计算需要,扩展部分称为工具箱,它实际上使用MATLAB的基本语句编成的各种子程序集,用于解决某一方面的问题,或实现某一类的新算法。现在已经有控制系统、信号处理、图象处理、系统辨识、模糊集合、神经元网络及小波分析等多种工具箱,并且向公式推倒、系统仿真和实时运行等领域发展。MATLAB语言的难点是函数较多,仅基本部分就有七百多个,其中常用的有二三百个。 MATLAB在国内外的大学中,特别是数值计算应用最广的电气信息类学科中,已成为每个学生都应该掌握的工具。MATLAB大大提高了课程教学、解题作业、分析研究的效率。

电液伺服控制系统的应用研究

电液伺服控制系统的应用研究 【摘要】电液伺服控制是液压技术领域的重要分支。多年来,许多工业部门和技术领域对高响应、高精度、高功率—重量比和大功率液压控制系统的需要不断扩大,促使液压控制技术迅速发展。特别是控制理论在液压系统中的应用、计算及电子技术与液压技术的结合,使这门技术不论在元件和系统方面、理论与应用方面都日趋完善和成熟,并形成一门学科。目前液压技术已经在许多部门得到广泛应用,诸如冶金、机械等工业部门及飞机、船舶部门等。我国于50年代开始液压伺服元件和系统的研究工作,现已生产几种系列电液伺服产品,电液伺服控制系统的研究工作也取得很大进展。 【关键词】电液伺服控制应用 1、电液控制系统的特点、构成及分类 电液控制系统是一门比较年轻的技术,它的发展和普遍应用还不到50年,然而,凭借它的优点却形成了流体传动与控制的一个重要分支,并成为现代控制工程的基本技术构成之一。 1.1电液控制系统的特点 1) 液压执行元件的功率--重量比和转矩--惯性矩比(或力--质量比)大,具有很大的功率传递密度,可以构成体积小、重量轻、响应速度快的大功率控制单元。 2) 液压系统的负载刚度大,精度高。由于液压杠、执行元件的泄漏很少,液体介质的体积弹性模量又很大,故具有较大的速度--负载刚性,即速度--力或转速--力矩曲线斜率的倒数很大,因此有可能用于开环系统。用于闭环系统时则表现为位置刚度大,其定位精度受负载变化的影响小。 3) 液压控制系统可以安全,可靠并迅速地实现频繁的带负载启动和制动,进行正反向直线或回转运动和动力控制,而且具有很大的调速范围。 电气或电子技术和液压传动及控制相结合的产物--电液控制系统兼备了电气和液压的双重优势,形成了具有竞争力和自身技术特点。 当然,在某些场合下,指令和反馈元件也可全部采用机械、气动或液压元件,此时,即称为机械--液压控制系统和气动--液压控制系统。 1.2 电液控制系统的构成 工程实际中系统的指令及放大单元多采用电子设备。电机械转换器往往是动圈式或动铁式电磁元件和伺服电机、步进电机等。液压转换及放大器件可以是各类开关式,伺服式和比例式器件实际上是一功率放大单元。液压执行元件通常是液压缸和液压马达,其输出参数只能是位移、速度、加速度和力或者转角、角速

S形曲线在伺服控制系统中的应用分析

S形曲线在伺服控制系统中的应用分析 发表时间:2007-12-6郝为强来源:《伺服控制》网络版 关键字:伺服系统机械共振S形曲线Simulink 信息化调查找茬投稿收藏评论好文推荐打印社区分享 工业控制领域常用的位置或速度控制曲线包括梯形曲线、S形曲线等。本文对伺服控制系统仿真模型,并对该模型进行了仿真分析。仿真结果表明,S形速度控制曲线较之梯形曲线能够带来更小的负载速度超调与调整时间。 伺服系统具有优异的控制带宽,快速的响应速度和定位精度,已被越来越广泛地应用到 机械控制系统中。机械系统中常用的传动方式有带传动、链传动、齿轮传动等等。带传动结 构简单、适宜远距离传输,而齿轮传动准确度高,适宜对传动精度要求较高的场合。虽然上 述传动方式各具优点,但传动刚性相差较大,比如带传动的刚性较弱,属于柔性件传动;而 齿轮传动的刚性较强。传动部分的刚性与伺服控制系统的闭环共振频率点密切相关。如果机 械传动部分的刚性较弱,如带传动,则伺服控制系统在通过增益调节而改善闭环控制带宽的 过程中很容易出现共振频率点,从而导致伺服控制系统的位置或速度跟踪出现波动,甚至出 现振荡,同时机械噪音显著增加,严重恶化了伺服控制系统的性能。 为了有效地抑制共振频率点,从而改善伺服控制系统性能,设计低通滤波器或陷波器是 伺服控制领域经常使用的方法。低通滤波器主要用来抑制高频共振,但会降低了伺服控制系 统的带宽;陷波器即为带阻滤波器,主要针对共振频率点进行抑制,由于伺服控制系统共振 频率点可能有多个,且很难准确测定,因此陷波器实际的抑制效果往往不是很理想。同时无 论是低通滤波器还是带通滤波器都存在不同程度的相位延迟,使用不当可能使得伺服控制系 统出现更大的过冲或振荡,因此使用时需要反复进行对比试验,较为复杂。 工业控制领域常用的位置或速度控制曲线包括梯形曲线、S形曲线等,见图1。 图1(a)梯形位置或速度控制曲线图

电液伺服控制系统的设计

。 电液伺服控制系统的设计与仿真 引言 电液伺服系统具有响应速度快、输出功率大、控制精确性高等突出优点,因而在航空航天、军事、冶金、交通、工程机械等领域得到广泛应用。随着电液伺服阀的诞生,使液压伺服技术进入了电液伺服时代,其应用领域也得到广泛的扩展。随着液压系统逐渐趋于复杂和对液压系统仿真要求的不断提高,传统的利用微分方程和差分方程建模进行动态特性仿真的方法已经不能满足需要。因此,利用AMESim、Matlab/Simulink等仿真软件对电液伺服控制系统进行动态仿真,对于改进系统的设计以及提高液压系统的可靠性都具有重要意义。 1 液压系统动态特性研究概述 随着液压技术的不断发展与进步和应用领域与范围的不断扩大,系统柔性化与各种性能要求更高,采用传统的以完成执行机构预定动作循环和限于系统静态性能的系统设计远远不能满足要求。因此,现代液压系统设计研究人员对系统动态特性进行研究,了解和掌握液压系统动态工作特性与参数变化,以提高系统的响应特性、控制精度以及工作可靠性,是非常必要的。 液压系统动态特性简述 … 液压系统动态特性是其在失去原来平衡状态到达新的平衡状态过程中所表现出来的特性,原因主要是由传动与控制系统的过程变化以及外界干扰引起的。在此过程中,系统各参变量随时间变化性能的好坏,决定系统动态特性的优劣。系统动态特性主要表现为稳定性(系统中压力瞬间峰值与波动情况)以及过渡过程品质(执行、控制机构的响应品质和响应速度)问题。 液压系统动态特性的研究方法主要有传递函数分析法、模拟仿真法、实验研究法和数字仿真法等。数字仿真法是利用计算机技术研究液压系统动态特性的一种方法。先是建立液压系统动态过程的数字模型——状态方程,然后在计算机上求出系统中主要变量在动态过程的时域解。该方法适用于线性与非线性系统,可以模拟出输入函数作用下系统各参变量的变化情况,从而获得对系统动态过程直接、全面的了解,使研究人员在设计阶段就可预测液压系统动态性能,以便及时对设计结果进行验证与改进,保证系统的工作性能和可靠性,具有精确、适应性强、周期短以及费用低等优点。 仿真环境简介 基于Matlab平台的Simulink是动态系统仿真领域中著名的仿真集成环境,它在众多领域得到广泛应用。Simulink借助Matlab的计算功能,可方便地建立各种模型、改变仿真参数,有效解决了仿真技术中的问题。Simulink提供了交互的仿真环境,既可通过下拉菜单进行仿真,也可通过命令进行仿真。虽然Simulink提供了丰富的模块库,但是在Matlab/Simulink下对液压系统进行建模及仿真需要做很多简化工作,而模型的简化使得仿真结果往往出现一定的误差。AMESim (Advanced Modeling Environment for Simulation of Engineering Systems)是法国IMAGINE公司开发的一套高级仿真软件。它是一个图形化的开发环境,用于工程系统的建模、仿真和动态性能分析。AMESim的特点是面向工程应用从而使其成为

基于Matlab的电力电子技术课程设计报告

《电力电子技术》 课程设计报告 题目:基于Matlab的电力电子技术 仿真分析 专业:电气工程及其自动化 班级:电气2班 学号: Z01114007 姓名:吴奇 指导教师:过希文 安徽大学电气工程与自动化学院 2015年 1 月 7 日

中文题目 基于Matlab 的电力电子技术仿真分析 一、设计目的 (1)加深理解《电力电子技术》课程的基本理论; (2)掌握电力电子电路的一般设计方法,具备初步的独立设计能力; (3)学习Matlab 仿真软件及各模块参数的确定。 二、设计工作任务及工作量的要求〔包括课程设计计算说明书(论文)、图纸、实物样品等〕: (1)根据设计题目要求的指标,通过查阅有关资料分析其工作原理, 设计电路原理图; (2)利用MATLAB 仿真软件绘制主电路结构模型图,设置相应的参数。 (3)用示波器模块观察和记录电源电压、控制信号、负载电压、电流 的波形图。 三、设计内容 (1)设计一个降压变换器(Buck Chopper ),其输入电压为200V ,负载为阻感性带反电动势负载,电阻为2欧,电感为5mH ,反电动势为80V 。开关管采用IGBT ,驱动信号频率为1000Hz ,仿真时间设置为0.02s ,观察不同占空比下(25%、50%、75%)的驱动信号、负载电流、负载电压波形,并计算相应的电压、电流平均值。 然后,将负载反电动势改变为160V ,观察电流断续时的工作波形。(最大步长为5e-6,相对容忍率为1e-3,仿真解法器采用ode23tb ) (2)设计一个采用双极性调制的三相桥式逆变电路,主电路直流电源200V ,经由6只MOSFET 组成的桥式逆变电路与三相阻感性负载相连接,负载电阻为1欧,电感为5mH ,三角波频率为1000Hz ,调制度为0.7,试观察输入信号(载波、调制波)、与直流侧假想中点N ‘的三相电压Uun ’、Uvn ’、Uwn ’,输出线电压UV 以及负载侧相电压Uun 的波形。 四、设计方案 实验1:降压变换器 dc-dc 变流电路可以将直流电变成另一固定电压或可调电压的直流电,包括直接直流变流电路和间接直流变流电路。其中,直接直流变流电路又称为斩波电路,功能是将直流电变为另一直流电。本次实验主要是在Matlab 中设计一个降压斩波电路并仿真在所给条件下的波形和数值与理论计算相对比。降压斩波电路原理图如下所示,该电路使用一个全控型器件V ,这里用IGBT ,也可采用其他器件,例如晶闸管,若采用晶闸管,还需设置使晶闸管关断的辅助电路。为在V 关断时给负载中电感电流提供通道,设置了续流二极管VD 。斩波电路主要用于电子电路的供电电源,也可拖动直流电动机或带蓄电池负载等,后两种情况下负载中均会出现反电动势,图中用m E 表示。若无反电动势,只需令0m E ,以下的分析和表达式中均适用。

伺服系统介绍.doc

一、相关概念 伺服系统(servomechanism)又称随动系统,是用来精确地跟随或复现某个过程的反馈控制系统。伺服系统使物体的位置、方位、状态等输出被控量能够跟随输入目标(或给定值)的任意变化的自动控制系统。它的主要任务是按控制命令的要求、对功率进行放大、变换与调控等处理,使驱动装置输出的力矩、速度和位置控制非常灵活方便。 在机器人中,伺服驱动器控制电机的运转。驱动器采用速度环,位置环,电流环三环闭环电路,内部还设有错误检出和保护电路。驱动器通过通信连接器,控制连接器,编码连接器跟外部输入信号和输出信号相连。通信连接器主要用于跟电脑或控制器通信。控制连接器用于跟伺服控制器联接,驱动器所需的输入信号、输出信号、控制信号和一些方式选择信号都通过该控制连接器传输,它是驱动器最为关键的连接器。编码连接器跟电机编码器连接,用于接收编码器闭环反馈信号,即速度反馈和换向信号。 伺服电机主要用于驱动机器人的关节。关节越多,机器人的柔性和精准度越高,所需要使用的伺服电机的数量就越多。机器人对伺服电机的要求非常高,必须满足快速响应、高起动转矩、动转矩惯量比大、调速范围宽,要适应机器人的形体做到体积小、重量轻,还必须经受频繁的正反向和加减速运行等苛刻的条件,做到高可靠性和稳定性。伺服电机分为直流、交流和步进,工业机器人用的较多的是交流。 机器人用伺服电机

二、伺服系统的技术现状 2.1视觉伺服系统 随着机器人技术的迅猛发展,机器人承担的任务更加复杂多样,传统的检测手段往往面临着检测范围的局限性和检测手段的单一性.视觉伺服控制利用视觉信息作为反馈,对环境进行非接触式的测量,具有更大的信息量,提高了机器人系统的灵活性和精确性,在机器人控制中具有不可替代的作用。 视觉系统由图像获取和视觉处理两部分组成,图像的获取是利用相机模型将三维空间投影到二维图像空间的过程,而视觉处理则是利用获取的图像信息得到视觉反馈的过程。基本的相机模型主要包括针孔模型和球面投影模型,统一化模型是对球面模型的推广,将各种相机的图像映射到归一化的球面上。视觉伺服中的视觉反馈主要有基于位置、图像特征和多视图几何的方法。 其中,基于位置的方法将视觉系统动态隐含在了目标识别和定位中,从而简化了控制器的设计,但是一般需要已知目标物体的模型,且对图像噪声和相机标定误差较为敏感。基于图像特征的视觉反馈构造方法,其中基于特征点的方法在以往的视觉伺服中应用较为广泛,研究较为成熟,但是容易受到图像噪声和物体遮挡的影响,并且现有的特征提取方法在发生尺度和旋转变化时的重复性和精度都不是太好,在实际应用中存在较大的问题。因此,学者们提出了基于全局图像特征的视觉反馈方法,利用更多的图像信息对任务进行描述,从而增强视觉系统的鲁棒性,但是模型较为复杂,控制器的设计较为困难,且可能陷入局部极小点。目前针对这一类系统的控制器设计的研究还比较少,一般利用局部线性化模型进行控制,只能保证局部的稳定性。多视图几何描述了物体多幅图像之间的关系,间接反映了相机之间的几何关系。相比于基于图像特征的方法,多视图几何与笛卡尔空间的关系较为直接,简化了控制器的设计。常用的多视图几何包括单应性、对极几何以及三焦张量。 2.2伺服系统控制技术 现代的机器人伺服系统多采用交流伺服驱动系统,而且正在逐渐向数字化方向转变。数字控制技术已经五孔不入,如信号处理技术中的数字滤波、数字控制器,把功能更加强大的控制器芯片已经各种智能处理模块应用到工业机器人交流伺服系统中,可以实现更好的控制性能。 最近几十年,由于微电子技术的进步,各种方便用户开发的微控制器与数字信号处理器件大量涌现市场,为各种先进的智能控制算法在控制系统中的应用提供了可能。如今,各种新型的伺服控制策略大量涌现,大有与传统控制策略一较高低的趋势下面简单介绍几种: 1)矢量控制矢量控制技术的提出,为交流伺服驱动系统的快速进步提供了理论支持。矢量控制技术的主要原理为:以转子旋转磁场作为参考系,将电动机定子矢量电流经过两次坐标变换分解为直轴电流和交轴电流分量,且使两电流分量相互正交,同时对交直轴电流分量的

相关主题
文本预览
相关文档 最新文档