当前位置:文档之家› 喇叭音腔设计原理

喇叭音腔设计原理

喇叭音腔设计原理
喇叭音腔设计原理

关于喇叭音腔设计的基本原理

新闻出处:21ic 发布时间: 2007-10-20

lldwsw 发布于 2007-10-20 9:39:00

关于喇叭的音腔设计,基本上我们停留在一个概念上,而没有一套完整的理论指导。我们知道的音腔设计,往往是如下的理解:

1:要有音腔,起扩音用,至于为什么要有音腔,则不明白。

2:音腔要求密封,若密封不好,则导致低音很差。

3:音腔孔不能开的太大,若开的太大,会导致音量变小。

以上三点是我们最常关心的,我们往往按要求去做,没有问过为什么。

本人试着用射频理论推导喇叭音腔设计:

对比天线与喇叭

天线喇叭

媒质真空空气

作用电能转换成电磁场能量电能转换成声音能量

主要器件天线喇叭

附属器件匹配电路音腔

原理电磁场理论震动波理论

目的获得最大的能量输出,合适的频响最大的能量输出,合适的频响

结论只有合适的天线和合适的匹配电路,才能获得最大的能量和合适的频响只有高效的喇叭和合适的音腔,才能获得最大的能量和合适的频响

通过以上,我们基本上清楚,喇叭跟天线具有类似的功能,就是起能量转换作用,其中喇叭是关键器件,它是电能到声能的根本,但是附属器件音腔决定了它的最大输出功率和频率响应,接下来我们主要讨论音响系统是如何获得最大能量的。

先举一个例子,我们用手拍空气,对空气做功基本上等于0,假如我们拿一把特别大的扇子,扇不动,对空气做功也等于0。

对空气做功其实就是对空气发生,假如这个频率在我们能够听到的范围内,就是声音了。

那么通过上面的例子可以说明,用手对空气做功有一个极点,也就是说有一个最大值。我们用以下公式来看:

P = F × V

P为功率,对外界做功的功率,F为力的大小,V为速度。

这个公式说明F太小,或者V太小,都不可能对外做功,只有两个值乘积项决定对外的功率。

接下来我们看看喇叭是不是跟手一样,就是一个振膜加一个动力线圈,振膜决定这个扇子的面积大小,动力线圈相当于人的力。

因为喇叭的振膜是不可能变的,除非换个喇叭,在喇叭振膜,电能信号的频率一定的情况下,我们来描述这个音响系统应该如何提高输出能量:

对比P =F × V公式,我们对喇叭提出一个具体对外做功的简易公式。

因为F正比振膜面积(S),所以写成 F =K × S,K为系数。

V由喇叭的动力线圈决定,动力线圈的动力由电场产生,动力线圈的阻力由两部分产生,一是空气对振膜的阻力(K×S),反对振膜震动,而是喇叭自身振膜的弹力反对振膜震动(Fz)。对于音响系统来说K×S一般远远小于Fz。这个原因如下。看一个音响系统,动不动就是100 W之类的,而声音大小也没有多少,据说一个人一年高声唱歌,产生的能量只能烧一壶水,可见声音的能量还是很少很少的,绝大部分的音响系统,它的能量都消耗在喇叭上,发热了。所以空气不能影响动力线圈,可以认为V一定。

那么公式就成了P =K × S * V

因为信号一定,喇叭的振膜面积S也一定,若想改变P,则只能改变K,目的是提高K,其实K就由音腔决定,如下:

假如我们现在的空气密度增加一倍,则K增加一倍,假如只对一部分空气做功,则产生的力就能提升,这是因为空气动力学原理dV / V = dF / F,也就是说在一定的空间内对空气做功,空气体积的变化跟力的变化成正比。这个就是音腔原理,就是要划出一部分空气,提高K值,让喇叭对这部分空气做功,产生声音,之后这部分能量再传到整个空间中,在这儿音腔当作了能量传递的中间环节。

以上合理的解释了上面提到的第一点,为什么要有音腔,对于2,3都可以类似的分析,对于2,还需要分析声音的相位问题,因为喇叭有两面,可以当作两个音源来考虑,相位差180°,对于第三点,可以整合到第一点里,都是影响K值。

主要针对便携式小音腔设计,比如手机,随身听之类。

手机音腔部品选型及音腔结构设计指导及规范

手机音腔部品选型及音腔结构设计指导及规范 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

手机音腔部品选型及音腔结构设计指导及规范 1. 声音的主观评价 声音的评价分为主观和客观两个方面,客观评价主要依赖于频响曲线﹑SPL值等声学物理参数,主观则因人而异。一般来说,高频是色彩,高中频是亮度,中低频是力度,低频是基础。音质评价术语和其声学特性的关系如下表示: 从人耳的听觉特性来讲,低频是基础音,如果低频音的声压值太低,会显得音色单纯,缺乏力度,这部分对听觉的影响很大。对于中频段而言,由于频带较宽,又是人耳听觉最灵敏的区域,适当提升,有利于增强放音的临场感,有利于提高清晰度和层次感。而高于 8KHz略有提升,可使高频段的音色显得生动活泼些。一般情况下,手机发声音质的好坏可以用其频响曲线来判定,好的频响曲线会使人感觉良好。 声音失真对听觉会产生一定的影响,其程度取决于失真的大小。对于输入的一个单一频率的正弦电信号,输出声信号中谐波分量的总和与基波分量的比值称为总谐波失真(THD),其对听觉的影响程度如下:THD<1%时,不论什么节目信号都可以认为是满意的; THD>3%时,人耳已可感知; THD>5%时,会有轻微的噪声感; THD>10%时,噪声已基本不可忍受。 对于手机而言,由于受到外形和Speaker尺寸的限制,不可能将它与音响相比,因此手机铃声主要关注声音大小、是否有杂音、是否有良好的中低音效果。 2. 手机铃声的影响因素 铃声的优劣主要取决于铃声的大小、所表现出的频带宽度(特别是低频效果)和其失真度大小。对手机而言,Speaker、手机声腔、音频电路和MIDI选曲是四个关键因素,它们本身的特性和相互间的配合决定了铃声的音质。 Speaker单体的品质对于铃声的各个方面影响都很大。其灵敏度对于声音的大小,其低频性能对于铃声的低音效果,其失真度大小对于铃声是否有杂音都是极为关键的。

音箱的音腔计算方法

ASW计算公式开口腔计算公式:V A = (2S x Q。)² x V AS(L) 通带纹波系数是带通式音箱的重要设计参数。选取合适的封闭腔带通Q值QB,查表得出fL和fH,用f。/Q。分别乘以这两个系,求出音箱频响曲线上下降3dB的两个频率点,要求与设计值相符。带通Q值越高,音箱的灵敏度越高,但通频带越窄;带通Q值取得越低,音箱的灵敏度越低,但通频带越宽。导相管的调振频率fB = QB x ( f。/ Q。) 导相管长度L=[(c²S]/(4*3.14²*fb²*V)] -0.82*S?² 密封腔计算公式:VB = V AS / a 顺性比a = (QB² / Q。²) – 1 箱体总容积为V = VA + VB 单腔倒相式音箱计算公式 1.低频扬声器单元的品质因数Q。、谐振频率f。及等效容积V AS是决定音箱低频响应的重要参数。品质因数Q。、谐振频率f。及等效容积V AS由喇叭供应商给出,或自己根护喇叭的基本性能参数进行公式计算,在已知品质因数Q。、谐振频率f。的前提下计算VAS。2.箱体容积计算公式:VB = V AS / a 箱体顺性比a值可由倒相音箱设计图表查出(91页图3-9),设QL=7。也可由下面的简表进行估算,如下表:3.确定倒相管截面积。 4.确定导相管长度,可用公式:L=[(c²S]/(4*3.14²*fb²*V)] -0.82*S?² 5.音箱的调整要点:原则是将倒相箱的谐振频率调整到最合适的频率点,使音箱的低频响应平坦。调整音箱的系统品质因数,使音箱的低音深沉,听起来即不干涩也不混浊;调整分频网络的分频点和相位特性,使音箱各频段的声压均匀,频率响应曲线平坦。一般的设计流程多媒体音箱并不是简单的将功放音箱结合到一块,因为使用环境上的不同,所以在设计上也应该注意到这个问题。但是很少有厂家注意到这个问题,这些厂家大多只是注意到了音箱外表的美与丑,根本没有考虑到音箱的工作环境,也就是说根本没有进行正确的音箱设计,所以其音质平平也就不足为奇了。有关这个问题以前曾先生写过不少文章,大家可以参看,我在此着重的谈一谈作为一款高质量重放声音的多媒体音箱的具体的设计过程,以及如何处理在设计时所遇到的问题。一选择合适的单元多媒体音箱工作状态处于近场小环境听音,因此决定了我们只能使用小容积箱体,选择小口径单元,这要求单元拥有合理的重放声压,以及足够宽的重放带宽。但从性能价格比来看,在中高档多媒体音箱中还是采用稍大一些口径的单元为好,4.5寸的口径可以认为是最易于做到性能价格比的一种尺寸,同时如果要生产高保真产品的话5寸是一种不错的口径。我觉得现在的多媒体音箱大都体积偏小,不过惠威的M200是一种不错的入门产品。我认为现代多媒体音箱应该将箱体控制在4--8升之间,当然还要与相关参数相配合,也就是我们常说的Thiele-Small参数一定要合适,而不是片面的夸大某一参数。由于低音单元口径小,所以更应该注意低频大动态性能,因为低音单元的震动系统最大线性位移量即反映了扬声器系统的大动态性能。如线性位移量偏小,则在高声压级大动态时,不但低音不能有效重放而且各种失真也会增大,特别是影响音质的奇次谐波失真。现在大多数多媒体音箱的磁路设计也欠佳,磁体小,上下夹板导磁率低,对振盆控制能力低,因此而引起的非线性失真也较大。因此在现代多媒体音箱中的总的失真率将达到7%左右或更高。这在HI-FI看起来是不可容忍的。还有就是振盆材料,由于近年来低档PP盆,防弹布盆,玻璃纤维盆,碳纤维盆的价格日益低下,再加上外观好,因此更多的被用在了多媒体音箱上来,但殊不知,后三种振盆的自阻尼很小,工作状态是极难控制的,一般在中高端的某一频率点上会产生很多的失真,大到不可忍受的地步,这个频率点就是我们常说的盆分裂点。因为现代多媒体音箱都没有分频器,再加上设计不合理的箱体,是很难压制这个分裂点的。而第一种振盆即PP盆,虽然听起来韧性好,中频饱满,低频富有弹性,但由于刚性相对较低,因而在大音量下引起的失真也较大。中频的层次感也不是很好。而相对个性较小,较容易控制的质量好的纸盆单元,却很难见到有厂家应用。就个人DIY制作而言,南京的110,150系列防磁低音,银笛的QG4,QG5系列防磁高音单元,都是不错的DIY选择,要求高一点的还可以选择惠威,发友等厂家专为多媒体音箱设计的

喇叭基础知识

喇叭基础知识 、扬声器的种类(按工作原理分): ……按扬声器的工作原理为分为:电动式(动圈式)、电磁式、静电式、压电式、离子式、气动式等. 在各种类型的扬声器中,运用最多、最广泛的是电动式扬声器(动圈式),它是应用电动……原理的电声换能器 ? 、电动扬声器的组成: 1. 磁路系统:T 铁、磁铁、华司 2. 振动系统:鼓纸、弹波、音圈 3. 辅助系统:支架、压边、防尘帽、端子、导线、磁路系统中的各零件作用与要求: 1. T 铁、华司: 作用:起导磁作用. 要求:磁阻小,导磁率高的材料. 目前,导磁率最高的材料是坡莫合金,其次为电工钝铁、硅钢片、低碳钢;因坡莫合金价格昂贵,不易加工,故喇叭界几乎没有人使用它,电工钝铁在高要求时有使用到,比如高档汽车喇叭,目前普遍使用的是低碳钢(含碳量在0.1%-0.6%之间),其优点是: (1) .硬度适中,易加工成型; (2) .价格便宜,在成本上有很大的优势; (3) .导磁率高; 2. 磁铁: 扬声器所用的磁体大致可分为三类: (1) .铝、镍、钴磁体:它是由铝、镍、钴、铁为主要成分浇铸而成,特点是磁能积高、剩磁高曾在扬声器中广泛应用,但终因钴的缺乏,价格高逐步被铁氧体取代. 使用注意事项: A. ALNico(铝镍钻)是高Br、低He的永磁材料,导磁率在3以上宜做成长柱体或长棒体,尽 量减少退磁场作用. B. ALNico 永磁构成的磁路,必须整体饱和充磁,如拆卸之后再重新组装时,须再次饱和充磁. C. ALNico 磁体本身矫顽力低,在使用过程中严禁使用任何铁器接触ALNico 永磁体. D. ALNico 磁体温度系数小. E. 电阻为47U Q. (2) .铁氧体磁体: 永磁铁氧体由氧化铁和锶(钡)等元素组成,具有较高的磁通密度和矫顽力,不氧化,性能稳定,是目前广泛应用的磁体,其成分为MO、6F62O3,扬声器中主要应用各向异性(参数特性)钡铁氧体,锶铁氧体,用氧化钡(锶)和三氧化二铁粉末混合,在高温炉中熔烧而成,它具有材料来源容易、价格低廉、矫顽力大、对外磁场稳定等一系列优点. 特性: A. He大,适合设计成扁平形状,即高与直径尺寸比小于1. B. 价格便宜,耐氧化、腐蚀,重量轻.

扬声器工作原理

扬声器原理 第一部分一般原理 1.扬声器的定义 1993年出版的《电声辞典》指出:扬声器是“能将电信号转换成声信号并辐射到空气中去的电声换能器“扬声器”一词是由“Speaker”、“Loudspeaker”而来。扬声器俗称喇叭。 ν2.扬声器的分类 按工作原理分类,可分电动式、电磁式、静电式、压电式、离子式等。 ν按辐射方式分类,可分为直接辐射式扬声器、号筒式扬声器、耳机扬声器。 ν按用途分类分为:高保真(Hi-Fi)扬声器、监听扬声器、扩声类扬声器、收音机、录音机、电视机用扬声器、警报用扬声器、水下及船舶扬声器、汽车扬声器、还有家庭影院要求的扬声器。 3.动圈式扬声器工作原理 在各种类型的扬声器中,运用最多、最广泛的是电动式扬声器,又称动圈式扬声器,它是应用电动原理的电声换能器件。根据法拉第定律,当载流导体通过磁场时,会受到一个电动力,其方向符合弗来明左手定则,力与电流、磁场方向互相垂直,受力大小与电流、导线长度、磁通密度成正比。当音圈输入交变音频电流时,音圈受到一个交变推动力产生交变运动,带动纸

盆振动,反复推动空气而发音。目前使用最广泛的纸盆扬声器、号筒扬声器都属于电动式扬声器。扬声器尺寸标示方法圆形扬声器的标称尺寸通常用扬声器盆架的最大直径表示,如我们平时所说的8英寸扬声器,它的盆架外径为200MM; 椭圆形扬声器的标称尺则用椭圆的长短轴表示,如我们平时所说的4×6英寸扬声器的盆架尺寸为100MM×160MM;习惯上常用英寸表示,两者之间关系是1英寸约等于25.4MM。4.扬声器的结构 锥形扬声器是目前应用最广泛的电动式扬声器,也是一种直接辐射式扬声器,它通过一个呈圆锥形的锥盆直接向周围空间辐射声波。一只完整的锥形扬声器可分成以下三大部分:振动系统由锥盆、折环、定位支片、防尘罩和音圈组成; 磁路系统由磁体、上导磁板、下导磁板、磁极心组成; 辅助系统则由盆架、压条、引出线和接线端片等组成。 5.锥盆 锥盆是扬声器的主要发声部件,在一定程度上决定了扬声器的有效频率范围和失真大小。根据锥盆截面形状的不同,锥形扬声器的锥盆可以分为直线形、抛物线形和指数形3种,不同的截面形状曲线,其频响曲线不一致,音质也会有所不同。指数形适合做中高频或全频带扬声器,抛物线形适合做低频单元。6.折环

音腔结构设计思考与总结

音腔结构设计思考与总结 通过参观XX电机厂,就音腔与Speaker方面,与其公司技术人员交换意见,结合本公司的产品结构,现归纳如下,如有不同意见,请各位提出您宝贵的意见,进行分析讨论,以比较不同方案优缺点,最后论证及确认这些结构方式适用范围及其可行性。 一、Speaker音腔出声孔的结构设计 1、Speaker前腔设计方式及说明: 1)音腔出声孔为穿插方式的结构形式: a、红色为硅胶 b、黄色为面壳 c、青色为Speaker 公司目前采用的设计(图1) 喇叭前腔H1尺寸较小,以使前腔空间小,同时要防止喇叭振膜在振动中接触到塑胶平面,即要求留有足够的振动空间,当然,这个H1不是越大越好,它有一个相对腔体出声孔面积较佳的权益值(以前是通过试听方式作调整)。

结构方式(2) 喇叭前腔之对应的塑胶做成弧面,即可以使得H1尺寸加大,但要 考虑H2尺寸,保证面壳胶厚有足够的强度。其目的是合理增加喇叭之前腔腔体的空间。此情况,喇叭网粘剂为液体最好。 注意: 1、作成弧面的情况,喇叭网若是背双面胶,那么装配就不方便,喇叭网不易装平; 2、作成弧面的情况,装配硅胶垫需为平面,以使装配牢固可靠。 2)音腔孔为碰穿方式: 3.m m 000. mm 50TC700音腔孔(图 3)

分析: 1、 结构及加工上:H=3.0mm,W=0.5mm,模具强度不够好,来料品质 不能保证; 2、 音腔孔0.50x3.0mm :尺寸太小、太深,喇叭振动过程中需要的气 流循环(空气进出音腔孔)出现不连续现象,导致削弱高音,影响音量大小。 改善方法: 1、 穿插结构方式:(如TC700S )不仅可以解除模具加工强度不良问 题,同时可以很好地控制音腔孔大小,从而改善气流循环,音量大小得以改善。 2、 也可以在TC700音腔孔(图3)上作如下的改善,详见下图(图 4) 060080.. mm —10020 ..±R W (示意图4---仅作示意) 说明:在后模开一个沉台,宽度为2.50mm 左右,尽可能圆滑过渡,音腔孔尺寸请上图所示。这样也可以改善音量效果。(当然此结构在TC700相应

音箱的音腔计算

ASW计算公式 开口腔计算公式:VA = (2S x Q。)² x VAS(L) 通带纹波系数是带通式音箱的重要设计参数。 选取合适的封闭腔带通Q值QB,查表得出fL和fH,用f。/Q。分别乘以这两个系,求出音箱频响曲线上下降3dB的两个频率点,要求与设计值相 符。带通Q值越高,音箱的灵敏度越高,但通频带越窄;带通Q值取得越低,音箱的灵敏度越低,但通频带越宽。 导相管的调振频率fB = QB x ( f。/ Q。) 导相管长度L=[(c²S]/(4*3.14²*fb²*V)] -0.82*S?² 密封腔计算公式:VB = VAS / a 顺性比a = (QB² / Q。²) – 1 箱体总容积为V = VA + VB 单腔倒相式音箱计算公式 1.低频扬声器单元的品质因数Q。、谐振频率f。及等效容积VAS是决定音箱低频响应的重要参数。 品质因数Q。、谐振频率f。及等效容积VAS由喇叭供应商给出,或自己根护喇叭的基本性能参数进行公式计算,在已知品质因数Q。、谐振频率f。的前提下计算VAS。 2.箱体容积计算公式:VB = VAS / a 箱体顺性比a值可由倒相音箱设计图表查出(91页图3-9),设QL=7。也可由下面的简表进行估算,如下表: 3.确定倒相管截面积。 4.确定导相管长度,可用公式: L=[(c²S]/(4*3.14²*fb²*V)] -0.82*S?² 5.音箱的调整要点: 原则是将倒相箱的谐振频率调整到最合适的频率点,使音箱的低频响应平坦。调整音箱的系统品质因数,使音箱的低音深沉,听起来即不干涩也不混浊;调整分频网络的分频点和相位特性,使音箱各频段的声压均匀,频率响应曲线平坦。

扬声器的工作原理

扬声器的工作原理【转贴】 上一篇/ 下一篇 2007-04-04 12:32:57 查看( 92 ) / 评论( 5 ) / 评分( 10 / 0 ) 一、术语 扬声器(speaker,loudspeaker),俗称喇叭;1993年出版的《电声辞曲》指出:扬声器是能将电信号转换成声信号并辐射到 空气中去的电声换能器。 据有关资料记载,最早发明扬声器在1877年,德国人西门子(E.W.Scimens)提出了扬声器雏型专利,他首先提出了由一个圆 形线圈放置在径向磁场组成的电动结构。 1924年,美国的赖斯(C.W.Rice)和凯洛格(E.W.Kollogg)发明了电动式扬声器。 二、扬声器易响却难精 扬声器在全世界每年的产量数以亿计,它在通信、广播、教育、日常生活等方面有广泛的用途,和布、帛、菽、粟一样成为人们不可须夷离开的东西。对我们从事扬声器设计、制造的技术人员来说,对扬声器的理论、实践、工艺等方面需要深入、系统、全面的了解。有人讲扬声器很简单,不过是雕虫小技,谁都可以生产扬声器,这话不能说全无道理,声学本来就是一个小学科,扬声器更是一个小器件。不过十几个到几十个部件,生产的门槛确是不高,但问题的另一面是扬声器又不容易做好。 扬声器是一个电声器件,是电声学研究的内容之一。电声学是包括电子学、声学、电磁学、磁学等的交叉学科。扬声器虽然只有不多的几十个部件,但是其复杂繁难的程度远远超过我们的想象。这是因为: (1)扬声器的能量转换层次多、反馈多。通常遇到的器件能量转换只是一种一次。例如电动机是将电能转换为机械能。发电机是将机械能转换为电能。电灯是将电能转换为光能。电池是将化学能转换为电能。这里发生的只是一种能量向另一种能量的转换。而扬声器有所不同,它是将电能转换为机械能,再将机械能转换成电能,这是在诸种换能器中不常见的。它的层次多、反馈多自然带来系统的复杂性和多样性。在一个扬声器系统中同时存在电学部分、声学部分、能和力学部分(机械振动部分)。(2)扬声器的工作状态不仅不是静止的,而且是振动的,这种振动又是在三维空间。这个三维空间的振动系统,具有多个边界条件,因此它的振动分析极为复杂,一般的数学工具已不够用。荷兰学者Frankort等导出锥体微分方程,是具有14个变量的联立一阶微分方程,而且扬声器的振动还与频率和时间有关,实际上它处于多维空间之中。 (3)扬声器振动系统只在低频区为一集中参数系统。在频率升高时振动系统不再是刚体。在分析扬声器时,常采用等效电路法,将扬声器看成由集中参数组成的等效电路。因为我们对电路理论是熟悉的,所以用电路理论来分析扬声器会得心应手。在分析扬声器振动时,假设扬声器是一个刚体,这样分析起来相应方便。但是上述的假设只是在低音频段是合适的。在频率升

压电扬声器最终设计方案

考试序列号 项目名称:平板压电扬声器设计 课程名称:大学物理实验 学院:机电工程学院 专业班级:2011级机械类(创新实验班)组员: 曾劲松曾俊贤陈集辉陈思豪梁荣光联系方式: 任课教师:钟老师 2012年11月08日

平板压电扬声器设计方案 一、便携式产品的发展趋势 随着便携式消费电子的发展,人们对便携式电子设备小型轻薄的要求越来越高,陶瓷压电扬声器以其超轻、超薄、高效、无需大音腔等特点逐渐被众多便携式消费类电子产品所青睐。便携式消费产品向着超薄轻小的方向发展!;怎样做到外形纤薄!,并且延长单次充电电池使用时间已成为各类消费产品的主要设计考虑。这样的系统需求对单个电子元器件提出了更薄、更小、更省电的要求。 因此,为了迎合市场的需要,我们决定做一个结构简单,形状规则,占用空间小,实用的平板压电扬声器。 二、陶瓷压电扬声器的基本特点 与动圈式扬声器相比,压电扬声器的振膜是被粘接在它上面的压电材料带动产生弯曲的,因此振膜的外形几乎没有限制;而动圈式扬声器的振膜或纸盆通常都是圆形或者椭圆形的,这样常会限制产品的外形设计。所有的动圈式扬声器都必须有一个磁铁以驱动音圈,这样就增加了扬声器的总体高度及重量。但是陶瓷压电扬声器却无需磁铁驱动,这样就可以达到一种很薄的外形从而降低终端产品的高度。 面对设计小巧的手机和越来越薄的电脑,动圈式扬声器成为制造商能否生产出超薄产品的制约因素。陶瓷压电扬声器能以超薄、紧凑的封装提供极具竞争力的声压电平;具有取代传统的动圈式扬声器的巨大潜力。陶瓷压电和动圈式扬声器的主要区别如表下所示: 驱动陶瓷压电扬声器的放大器电路有与驱动传统动圈式扬声器不同的输出驱动要求。陶

扬声器工作原理.

扬声器工作原理 摘要:实现了一种全集成可变带宽中频宽带低通滤波器,讨论分析了跨导放大器-电容(OTA—C)连续时间型滤波器的结构、设计和具体实现,使用外部可编程电路对所设计滤波器带宽进行控制,并利用ADS软件进行电路设计和仿真验证。仿真结果表明,该滤波器带宽的可调范围为1~26 MHz,阻带抑制率大于35 dB,带内波纹小于0.5 dB,采用1.8 V电源,TSMC 0.18μm CMOS工艺库仿真,功耗小于21 mW,频响曲线接近理想状态。关键词:Butte 电动式扬声器工作原理: 电动式扬声器又称为动圈式扬声器;它是应用电动原理的电声换能器件;它是目前运用最多、最广泛的扬声器,究其原因主要有三条: 1.电动式扬声器结构简单、生产容易,而且本身不需要大的空间,导致价格便宜,可以大量普及。 2.这类扬声器可以做到性能优良,在中频段可以获得均匀的频率响应。 3.这类扬声器在不断改进中,几十年扬声器发展史,就是扬声器设计、工艺、材料不断改进的历史,也是性能与时俱进的历史。 电动式扬声器其形状大多是锥形、球顶形;锥形扬声器(cone speaker)的结构。 锥形扬声器的结构可以分为三个部分: 1>振动系统包括振膜、音圈、定心支片、防尘罩等; 2>磁路系统包括导磁上板、导磁柱、导磁下板、磁体等;

3>辅助系统包括盆架、压边、接线架、相位塞条。 根据法拉第定律,当载流导体通过磁场时,会受到一个电动力,其方向符合弗来明左手定则,力与电流、磁场方向互相垂直,受力大小与电流、导线长度、磁通密度成正比。当音圈输入交变音频电流时,音圈受到一个交变推动力产生交变运动,带动纸盆振动,反复推动空气而发声。 使电动式扬声器的振膜发生振动的力,即为磁场对载流导体的作用力,这个效应我们称它为电动式换能器的力效应,其大小由下式规定: F=B L i 式中:B为磁隙中的磁感应密度(强度),其单位为N/(A.m)<牛顿/(安培.米)>又称为特斯拉(T) L为音圈导线的长度,单位:米 i为流经音圈的电流,单位:安培 F为磁场对音圈的作用力,单位:牛顿 但是,在通电音圈受力运动的同时,由于会切割磁隙中的磁力线从而在音圈内产生感应电动势,这个效应我们称它为电动式换能器的电效应,其感应电动势的大小为: е=Вiν

喇叭的工作原理

喇叭的工作原理 工作原理: 当按下方向盘上或其他位置的喇叭按钮时,来自蓄电池的电流会通过回路流到喇叭继电器的电磁线圈上,电磁线圈吸引继电器的动触点开关闭合,电流就会流到喇叭处。电流使喇叭内部的电磁铁工作,从而使振动膜振动而发出声音。 分类: 喇叭按其发音动力有电喇叭和气喇叭之分;按外形分有螺旋形、筒形和盆形三类;按声频可分为高音和低音喇叭;按接线方式可分为单线制和双线制喇叭;按有无触点可分为有触点式(普通式)电喇叭和无触点式(电子式)电喇叭。其中,气喇叭主要用于具有空气制动装置的重型载重车上,电喇叭具有结构简单、体积小、质量轻、声音悦耳且维修方便的特点,因而在中小型车辆中获得了广泛应用。 电喇叭的维护: (1)经常保持喇叭外表清洁,各接线要牢靠。 (2)经常检查、紧固喇叭和支架的固定螺钉,保证其搭铁可靠。 (3)喇叭的固定方法对其发音影响较大。为了使喇叭的声音正常,喇叭不能做刚性安装,因而固定在缓冲支架上,即在喇叭与固定支架之间要装有片状弹簧或橡皮垫。 (4)经常检查发电机输出电压。电压过高会烧坏喇叭触点,电压过低(低于喇叭的额定电压)喇叭将发出异常声音。

(5)洗车时,不能用水直接冲洗喇叭筒,以免水进入喇叭筒而使喇叭不响。 (6)在检修喇叭时,应注意各金属垫和绝缘垫的位置,不可装错。 (7)喇叭连续发音不得超过10s,以免损坏喇叭。 相关法律规定: 1、机动车驶近急弯、坡道顶端等影响安全视距的路段以及超车或者遇有紧急情况时,应当减速慢行,并鸣喇叭示意。 2、机动车遇有前方车辆停车排队等候或者行驶缓慢时,应当停车等候或者依次行驶,不得进入非机动车道、人行道行驶,不得鸣喇叭催促车辆、行人。 也就是说,汽车喇叭的作用,是特殊路段的提前示警,是某些紧急状况下的警示,以保证交通安全。

关于喇叭音腔设计的基本原理

关于喇叭音腔设计的基本原理 新闻出处:21ic 发布时间: 2007-10-20 lldwsw 发布于 2007-10-20 9:39:00 关于喇叭的音腔设计,基本上我们停留在一个概念上,而没有一套完整的理论指导。我们知道的音腔设计,往往是如下的理解: 1:要有音腔,起扩音用,至于为什么要有音腔,则不明白。 2:音腔要求密封,若密封不好,则导致低音很差。 3:音腔孔不能开的太大,若开的太大,会导致音量变小。 以上三点是我们最常关心的,我们往往按要求去做,没有问过为什么。 本人试着用射频理论推导喇叭音腔设计: 对比天线与喇叭 天线喇叭 媒质真空空气 作用电能转换成电磁场能量电能转换成声音能量 主要器件天线喇叭 附属器件匹配电路音腔 原理电磁场理论震动波理论 目的获得最大的能量输出,合适的频响最大的能量输出,合适的频响 结论只有合适的天线和合适的匹配电路,才能获得最大的能量和合适的频响只有高效的喇叭和合适的音腔,才能获得最大的能量和合适的频响 通过以上,我们基本上清楚,喇叭跟天线具有类似的功能,就是起能量转换作用,其中喇叭是关键器件,它是电能到声能的根本,但是附属器件音腔决定了它的最大输出功率和频率响应,接下来我们主要讨论音响系统是如何获得最大能量的。 先举一个例子,我们用手拍空气,对空气做功基本上等于0,假如我们拿一把特别大的扇子,扇不动,对空气做功也等于0。 对空气做功其实就是对空气发生,假如这个频率在我们能够听到的范围内,就是声音了。 那么通过上面的例子可以说明,用手对空气做功有一个极点,也就是说有一个最大值。我们用以下公式来看:

P = F × V P为功率,对外界做功的功率,F为力的大小,V为速度。 这个公式说明F太小,或者V太小,都不可能对外做功,只有两个值乘积项决定对外的功率。 接下来我们看看喇叭是不是跟手一样,就是一个振膜加一个动力线圈,振膜决定这个扇子的面积大小,动力线圈相当于人的力。 因为喇叭的振膜是不可能变的,除非换个喇叭,在喇叭振膜,电能信号的频率一定的情况下,我们来描述这个音响系统应该如何提高输出能量: 对比P = F × V公式,我们对喇叭提出一个具体对外做功的简易公式。 因为F正比振膜面积(S),所以写成 F =K × S,K为系数。 V由喇叭的动力线圈决定,动力线圈的动力由电场产生,动力线圈的阻力由两部分产生,一是空气对振膜的阻力(K×S),反对振膜震动,而是喇叭自身振膜的弹力反对振膜震动(Fz)。 对于音响系统来说K×S一般远远小于Fz。这个原因如下。看一个音响系统,动不动就是100W之类的,而声音大小也没有多少,据说一个人一年高声唱歌,产生的能量只能烧一壶水,可见声音的能量还是很少很少的,绝大部分的音响系统,它的能量都消耗在喇叭上,发热了。 所以空气不能影响动力线圈,可以认为V一定。 那么公式就成了P =K × S * V 因为信号一定,喇叭的振膜面积S也一定,若想改变P,则只能改变K,目的是提高K,其实K就由音腔决定,如下: 假如我们现在的空气密度增加一倍,则K增加一倍,假如只对一部分空气做功,则产生的力就能提升,这是因为空气动力学原理dV / V = dF / F,也就是说在一定的空间内对空气做功,空气体积的变化跟力的变化成正比。这个就是音腔原理,就是要划出一部分空气,提高K值,让喇叭对这部分空气做功,产生声音,之后这部分能量再传到整个空间中,在这儿音腔当作了能量传递的中间环节。 以上合理的解释了上面提到的第一点,为什么要有音腔,对于2,3都可以类似的分析,对于2,还需要分析声音的相位问题,因为喇叭有两面,可以当作两个音源来考虑,相位差180°,对于第三点,可以整合到第一点里,都是影响K值。 主要针对便携式小音腔设计,比如手机,随身听之类。

压电扬声器最终设计方案

考试序列号 项目名称: 课程名称:模拟电子技术实验 学院:自动化学院 专业班级:电气信息类(创新实验班)组员: 联系方式: 任课教师: 时间:2013年12月21 日

平板压电扬声器设计方案 一、陶瓷压电扬声的发展趋势 随着便携式消费电子的发展,人们对便携式电子设备小型轻薄的要求越来越高,陶瓷压电扬声器以其超轻、超薄、高效、无需大音腔等特点逐渐被众多便携式消费类电子产品所青睐。便携式消费产品向着超薄轻小的方向发展!;怎样做到外形纤薄!,并且延长单次充电电池使用时间已成为各类消费产品的主要设计考虑。这样的系统需求对单个电子元器件提出了更薄、更小、更省电的要求。 因此,为了迎合市场的需要,我们决定做一个结构简单,形状规则,占用空间小,实用的平板压电扬声器。 二、陶瓷压电扬声器的基本特点 与动圈式扬声器相比,压电扬声器的振膜是被粘接在它上面的压电材料带动产生弯曲的,因此振膜的外形几乎没有限制;而动圈式扬声器的振膜或纸盆通常都是圆形或者椭圆形的,这样常会限制产品的外形设计。所有的动圈式扬声器都必须有一个磁铁以驱动音圈,这样就增加了扬声器的总体高度及重量。但是陶瓷压电扬声器却无需磁铁驱动,这样就可以达到一种很薄的外形从而降低终端产品的高度。 面对设计小巧的手机和越来越薄的电脑,动圈式扬声器成为制造商能否生产出超薄产品的制约因素。陶瓷压电扬声器能以超薄、紧凑的封装提供极具竞争力的声压电平;具有取代传统的动圈式扬声器的巨大潜力。陶瓷压电和动圈式扬声器的主要区别如表下所示:扬声器类型优点缺点 陶瓷压电扬声器超薄外形,严格的制造公差, 所需声腔很小, 效率高,散热好,寿命长, 无磁场,无电磁辐射 需要高压才能驱动, 低频响应不是很好, 容性负载 动圈式扬声器技术成熟,成本低, 频率响应很好 尺寸较大,制造公差宽松,所 需声腔较大, 效率低 驱动陶瓷压电扬声器的放大器电路有与驱动传统动圈式扬声器不同的输出驱动要求。陶

扬声器构造及工作原理

扬声器特征 (1)扬声器有两个接线柱(两根引线),当单只扬声器使用时两根引脚不分正负极性,多只扬声器同时使用时两个引脚有极性之分。 (2)扬声器有一个纸盆,它的颜色通常为黑色,也有白色。 (3)扬声器的外形有圆形和椭圆形两大类。 (4)扬声器纸盆背面是磁铁,外磁式扬声器用金属螺丝刀去接触磁铁时会感觉到磁性的存在;内磁式扬声器中没有这种感觉,但是外壳内部确有磁铁。 (5)扬声器装在机器面板上或音箱内。 [编辑本段]扬声器解析 扬声器是一种把电信号转变为声信号的换能器件,扬声器的性能优劣对音质的影响很大。(一)扬声器的种类 扬声器的种类很多,按其换能原理可分为电动式(即动圈式)、静电式(即电容式)、电磁式(即舌簧式)、压电式(即晶体式)等几种,后两种多用于农村有线广播网中;按频率范围可分为低频扬声器、中频扬声器、高频扬声器,这些常在音箱中作为组合扬声器使用。(1)低频扬声器 对于各种不同的音箱,对低频扬声器的品质因素——Q0值的要求是不同。对闭箱和倒相箱来说,Q0值一般在0.3~0.6之间最好。一般来说,低频扬声器的口径、磁体和音圈直径越大,低频重放性能、瞬态特性就越好,灵敏度也就越高。低音单元的结构形式多为锥盆式,也有少量的为平板式。低音单元的振膜种类繁多,有铝合金振膜、铝镁合金振膜、陶瓷振膜、碳纤维振膜、防弹布振膜、玻璃纤维振膜、丙烯振膜、纸振膜等等。采用铝合金振膜、玻璃纤维振膜的低音单元一般口径比较小,承受功率比较大,而采用强化纸盆、玻璃纤维振膜的低音单元重播音乐时的音色较准确,整体平衡度不错。 (2)中频扬声器 一般来说,中频扬声器只要频率响应曲线平坦,有效频响范围大于它在系统中担负的放声频带的宽度,阻抗与灵敏度和低频单元一致即可。有时中音的功率容量不够,也可选择灵敏度较高,而阻抗高于低音单元的中音,从而减少中音单元的实际输入功率。中音单元一般有锥盆和球顶两种。只不过它的尺寸和承受功率都比高音单元大而适合于播放中音频而已。中音单元的振膜以纸盆和绢膜等软性物质为主,偶尔也有少量的合金球顶振膜。 (3)高频扬声器 高音单元顾名思义是为了回放高频声音的扬声器单元。其结构形式主要有号解式、锥盆式、球顶式和铝带式等几大类。 (二)电动式扬声器的结构和工作原理 电动式扬声器应用最广泛,它又分为纸盆式、号筒式和球顶形三种。这里只介绍前两种。 1、纸盆式扬声器 纸盆式扬声器又称为动圈式扬声器。 它由三部分组成:①振动系统,包括锥形纸盆、音圈和定心支片等;②磁路系统,包括永义磁铁、导磁板和场心柱等;③辅助系统,包括盆架、接线板、压边和防尘盖等。当处于磁场中的音圈有音频电流通过时,就产生随音频电流变化的磁场,这一磁场和永久磁铁的磁场发生相互作用,使音圈沿着轴向振动,由于扬声器结构简单、低音丰满、音质柔和、频带宽,但效率较低。 2、号筒式扬声器 号筒式扬声器的结构,它由振动系统(高音头)和号筒两部分构成。振动系统与纸盆扬声器相似,不同的是它的振膜不是纸盆,而是一球顶形膜片。振膜的振动通过号筒(经过两次反射)向空气中辐射声波。它的频率高、音量大,常用于室外及方场扩声。

手机音腔设计规范

电声部品选型及音腔结构设计 1. 声音的主观评价 声音的评价分为主观和客观两个方面,客观评价主要依赖于频响曲线﹑SPL值等声学物理参数,主观则因人而异。一般来说,高频是色彩,高中频是亮度,中低频是力度,低频是基础。音质评价术语和其声学特性的关系如下表示: 从人耳的听觉特性来讲,低频是基础音,如果低频音的声压值太低,会显得音色单纯,缺乏力度,这部分对听觉的影响很大。对于中频段而言,由于频带较宽,又是人耳听觉最灵敏的区域,适当提升,有利于增强放音的临场感,有利于提高清晰度和层次感。而高于8KHz略有提升,可使高频段的音色显得生动活泼些。一般情况下,手机发声音质的好坏可以用其频响曲线来判定,好的频响曲线会使人感觉良好。 声音失真对听觉会产生一定的影响,其程度取决于失真的大小。对于输入的一个单一频率的正弦电信号,输出声信号中谐波分量的总和与基波分量的比值称为总谐波失真(THD),其对听觉的影响程度如下:THD<1%时,不论什么节目信号都可以认为是满意的; THD>3%时,人耳已可感知; THD>5%时,会有轻微的噪声感; THD>10%时,噪声已基本不可忍受。 对于手机而言,由于受到外形和Speaker尺寸的限制,不可能将它与音响相比,因此手机铃声主要关注声音大小、是否有杂音、是否有良好的中低音效果。 2. 手机铃声的影响因素 铃声的优劣主要取决于铃声的大小、所表现出的频带宽度(特别是低频效果)和其失真度大小。对手机而言,Speaker、手机声腔、音频电路和MIDI选曲是四个关键因素,它们本身的特性和相互间的配合决定了铃声的音质。 Speaker单体的品质对于铃声的各个方面影响都很大。其灵敏度对于声音的大小,其低频性能对于铃声的低音效果,其失真度大小对于铃声是否有杂音都是极为关键的。 手机声腔则可以在一定程度上调整Speaker的输出频响曲线,通过声腔参数的调整改变铃声的高、低音效果,其中后声腔容积大小主要影响低音效果,前声腔和出声孔面积主要影响高音效果。 音频电路输出信号的失真度和电压对于铃声的影响主要在于是否会出现杂音。例如,当输出信号的失真度超过10%时,铃声就会出现比较明显的杂音。此外,输出电压则必须与Speaker相匹配,否则,输出电压过大,导致Speaker在某一频段出现较大失真,同样会产生杂音。

喇叭及音箱基本原理

喇叭及音箱基本原理 扬声器:又称喇叭,是一种将电能转化成声能的器件,根据能量转换的方式,可分为电动式、电磁式、气动式、静电式、离子式和压电式等;按工作频段可分为:高音扬声器、中音扬声器、低音扬声器和全频带扬声器。 一、扬声器的分类 (1)电动式扬声器。在各种类型的扬声器中,运用最多、最广泛的是电动式扬声器,又称动圈式扬声器,它是应用电动原理的电声换能器件,根据法拉第定律,当载流导体通过磁场时,会受到一个电动力,其方向符合弗来明左手定则,力与电流、磁场方向互相垂直,受力大小与电流、导线长度、磁通密度成正比。当音圈输入交变音频电流时,音圈受到一个交变推动力产生交变运动,带动纸盆振动,反复推动空气而发声。 (2)电磁式扬声器。在永磁体两极之间有一可动铁心的电磁铁,当电磁铁的线圈中没有电流时,可动铁心受永磁体两磁极相等吸引力的吸引,在中央保持静止;当线圈中有电流流过时,可动铁心被磁化,而成为一条形磁体。随着电流方向的变化,条形磁体的极性也相应变化,使可动铁心绕支点作旋转运动。可动铁心的振动由悬臂传到振膜(纸盆)推动空气振动。这种电磁式扬声器频带窄,音质欠佳,除了一些特殊场合,目前很少使用。 (3)静电扬声器。利用加到电容器极板上的静电力而工作的扬声器,因正负极相向而成电容器状,所以又称为“电容扬声器”。 (4)压电扬声器。利用压电材料的逆压电效应而工作的扬声

器称为压电扬声器。 (5)离子扬声器。在一般的状态下,空气的分子是中性的、不带电。但经过高压放电后就成为带电的粒子,这种现象称游离化。把游离化的空气利用音频电压振动,则产生声波,这就是离子扬声器的原理。 (6)气流调制扬声器,又称气流扬声器。它是利用压缩空气作能源,利用音频电流调制气流发声的扬声器。它的输出功率可达数千到上万声瓦。效率约为15%。气流扬声器主要用做高强度噪声环境试验的声源或远距离广播和对近海船只预报雾警及其他报警项目,作用距离可达10km,其频率范围可达100Hz~10kHz,声压级可达165dB~175dB。 二、喇叭有关知识: 1、喇叭的工作原理: 由于通电导体(音圈)在磁场中受到力F=BIL作用而带动振膜直接向周围介质(空气)辐射声波,从而产生声音。 2、喇叭的结构: 一般动圈式喇叭是由三大部分组成,其中包括:磁路系统,振动系统和支撑系统。 i.磁路系统包括:U铁(T铁)、磁铁、华司。 1.磁铁的作用:产生永久性磁场。 2.U铁(T铁),华司的作用:形成一个良好的磁回 路,增强磁感应强度B。 ii.振动系统包括:音圈、弹波、振膜

手机音腔喇叭(BOX)设计参考资料

关于音腔喇叭设计 先说单speaker,现在用的最多的了!不过从发展趋势来看为追求好的音效双speaker将成为以后大主题。不管是双还是单重视后音腔的设计,这对音质有很大的影响:尽量做大些,还要密封好些!现在的趋势是要求音量越来越大,特别是国产手机,有的做到100分贝以上,但是音量不是唯一指标,和谐悦耳的铃声才是设计目标!音源对铃声的影响非常重要,选择合适的音源可以很好的体现设计效果! 选择音源: 1.尽量选用口径大的speaker。 2.对speaker的特性曲线要求低频时也能有高的音压,并且在曲线在1K~10K的区间要曲线平稳,当然能在1K以下做到很好水准就体现speaker研发生产实力了。 结构上的设计: 受到手机空间的限制,多设计都是用到二合一单边发声的,产品最终的音效都不是很好,扬声器与受话器的设计要领不一样,共用一个音腔确实会有一定问题,有这么些建议: 1.Φ13mm Speaker 前容积高度:0.3~1.0mm 出音孔高度: Φ1.0,4~8孔(3mm2~6mm2 ) 后容积高度:3~5Cm3 洩漏孔高度:4~6mm2 2.Φ15mm Speaker 前容积高度:0.3~1.0mm 出音孔高度: Φ1.0,4~8孔(3mm2~6mm2 ) 后容积高度:3~5Cm3 洩漏孔高度:4~6mm2 3. Φ16~20m/m Speaker 前容积高度:0.3~1.0mm 出音孔高度: Φ1.0,4~8孔(3mm2~6mm2 ) 后容积高度:5~7Cm3 洩漏孔高度:5mm2 对于单面发声的后音腔设计,我们一般把整个前端作为后音腔,通过LCD PCB上密封整个前端,较大的后音腔能够能够弥补前期不足! 现在的流行趋势是分开,特别是双speaker强烈要求speaker与Receiver分开,这样才能到达要求的立体效果! 对于双speaker最好使出声孔的位置避免在一个面上,现在市面上看到最多就是放在翻盖的头部两侧,或者放在转轴两侧(三星x619),这跟声音波形原理有关的,同在一个面上消减幅度很快,效果不会太好的!双speaker的设计关键是要体现立体效果,在设计上有以下要点: 1.出声孔的位置,如上所述; 2.两个speaker的后音腔要求分开,独立密封; 3.两个speaker之间的切线(切线指的是两个水平放置,两个园之间的切线距离)最小距离要求在10mm以上; 4.要求大些的后音腔; 5.注意音源的选择,其实说道音腔,主要的一个原则就是,前音腔要密闭,后音腔要尽可能大,泻露孔尽可能距离speaker远一点。 声腔结构对手机音质的影响 声腔结构对手机电气性能的影响对手机音质的影响 手机外壳声孔大高频截止频率可延伸至5~10KHz 声音浑厚、丰满 手机外壳声孔小截止频率一般在5KHz左右声音单调、尖锐 Speaker与手机外壳形成的前腔大对频率响应曲线无明显影响声音比较空旷 Speaker与手机外壳形成的前腔小对频率响应曲线无明显影响声音无共鸣感 手机内腔大频率响应曲线低频Fo附近相对较高声音感觉不清晰 手机内腔小频率响应曲线低频Fo附近相对较低声音低音感觉不足 泄漏孔*近Speaker 频率响应曲线低频下跌声音尖锐,低音不足 泄漏孔远离Speaker 无影响无影响

扬声器(喇叭)的结构图及工作原理

扬声器结构工作原理 1折环:和弹波一起定位鼓纸(振膜、纸盘)做径向运动。折环的材料一股有橡胶,布基加胶纸质等,折环的软硬的柔顺度,直接影响鼓纸在整个运动形成里的线性,影响喇叭在整个标称功率内的表现曲线。 2鼓纸:就是喇叭主要的发音部件。材料主要是纸浆加上其他材料,近年来多种特殊不同的材料进入,有聚丙烯、炭纤维,金属钛等等,甚至金刚石。但是主流还是纸浆,以方面造价低廉,另一方面容易做成喇叭振膜多要求的复杂曲面。 3T铁,夹板。材质为软铁,即纯铁,也叫电工铁,主要特性是导磁,但是没有剩磁,就是磁场消失后,它的磁性也立即消失。此铁的纯度和品质,直接影响喇叭的效率,飞线性失真等重要参数,其中夹板的厚度影响喇叭的冲程。长冲程扬声器的T铁夹板都特别厚,就是在音圈的整个行程内都可以切割平行的均匀的磁力线。夹板和T铁中柱的间隙越小,音圈运动所需的功率也就越小扬声器的效率越高。所以,磁液型的扬声器在T铁盒夹板之间注入液体,等于缩小了他们之间距离,另一方面也把音圈的热量迅速带走,提高了扬声器的功率承受能力。 4磁钢:一般叫磁铁、永磁铁,磁钢叫法更准确一些,在扬声器组装之前是没有磁性的,在和T铁夹板用粘合剂粘好后,在充磁机上充磁,最后的剩磁就是磁钢的磁性,这个剩磁量就是磁钢的磁性大小,根据法拉第电磁感应定律,磁通量越大,一定的电流在磁场中运动的力就越大,所以为了提高扬声器的功率,现在应用了许多强磁性材料,如铷铁鹏。 5音圈:一般为扁平的自粘铜漆包线饶制,是非常矛盾的部件,为了增大电流(增大功率),线径就要增大,线径大了,要求磁隙就大了,磁隙大了,功率效率反而下降,所以只能在矛盾中取中间值。音圈一般为两层绕制,单层绕制无法引出线。为了不改变磁隙大小又能增加电流形成的磁场,就只能增加音圈的直径。所以有了HiFi扬声器声称的大音圈,长冲程。音圈是绕制在一个纸质的骨架上的,大功率的扬声器骨架有的是铝箔作的,所谓铝音圈,音圈还是铜的,骨架是铝的罢了。 6屏蔽罩:防漏磁的部件,一般为软铁,但是有些低价位扬声器为了降低成本用碳钢,普通铁板制作,防漏磁效果大打折扣,其实这种形式的防漏磁已经效果不好了,还是有少量漏磁的,在严格要求的防漏磁场合,扬声器磁铁是装在T铁的中柱的位置,这样整个磁力线系统闭合,完全没有静态漏磁。当然这样就要求磁铁的磁通量非常大,加工要求也高,当然成本也高。 7引线:(以前我们叫猪尾),是编制铜线加棉线构成,主要是在扬声器震动环境下保持音圈和外部导线连接正常。

扬声器的工作原理

扬声器工作原理 电动式扬声器的工作原理 我们知道载流导体在磁场中将受到磁场院力的作用,假设我们将一根载流导线放在均匀的磁场中,导线的方向与磁场中的磁力线的方向垂直,由于磁场中的磁力线方向始终是从N极到S极,当导线中电流的方向自我们流向书本时,根据右手定则载流导线产生的磁力线方向为顺时针。载流导线所产生的磁力线方向在导线上侧均匀磁场中磁力线的方向相同,从而使总的磁力线变密载流导线所产生的磁力线方向在导线下侧与均匀磁场中的磁力线方向相反,造成部分磁力线相互抵消,从而使总的磁力线变疏。由于导线上侧磁力线密度高于直侧磁力线的密度,因此载流导线地这个均匀磁场中将受到的力也是相应改变,这就是我们常说的法拉第定律。 电动式扬声器主要是由,磁体,上下夹板,极心,音圈和振膜等部件组成。磁体位于上下夹板之间,它的作用是产生一个均匀的磁场。上下夹板和极心之间有一个很小的气隙,通常我们称为磁气隙。圆筒形的扬声器音圈悬挂在磁气隙之间,它的一端与扬声器的锥盆钢性连接,磁体有两个固定的NS极,我们假设磁体与上夹板接触的一侧为S 极,与下夹板接触的一侧为N极,那么在磁体的作用下极心与上夹板之间的磁气隙中便产生一个均匀的磁场,磁场中磁力线的方向是从N极到S极,即由极心到上夹板。当音频电流流入扬声器的音圈时,假设某一瞬间音圈中音频遇流的方向是从自我们流入书本的。根据弗来明左手定律,将左手的手掌朝向N极,使伸直的四指指向与电流方向相同,那么,与四指垂直的拇指的方向就是音圈的运动方向。当音频电流的方向改变时,音圈的运动方向也随这改变。 当音频信号电流经过扬声器的音圈时,音圈将受到一个与音频信号电流I成正比的力,由于扬声器的音圈与锥盆的钢性连接在一起,当产时圈在磁气隙中随音频电流方向不断改变,而至上下振动时,扬声器的锥盆将随着音圈的上下振动而振动,锥盆振动的快慢与输入的音频的电流频率有关,锥盆振动的幅度与输入的音频电流的强弱有关。锥盆振动时激发周围的空气发生同磁的振动,形成声波,声波传入人耳就形成我们平时所听到的声音。 对扬声器影响最大的是锥盆,锥盆是圆形或是椭圆形的锥盆振膜,它的根部与扬声器的音圈刚性连接,当音圈在磁气隙中垂直振动时它即做相应的轴运动,使周围的空气发生疏密变化。锥盆是扬声器发生的主要部件,在一定的 程度上决定了扬声器的重放有效频率的范围和失真大小。 锥形扬声器的锥盆面积一般都较大,工作时锥盆的振幅也较大,锥盆在推动周围大量空气的同时,锥盆会出现一定程度的扭曲变形,使扬声器锥盆的整体的刚性遭到破坏,整个锥盆的不同部位间出现相对的运动,锥盆不同部位的这种运动称为分割振动,当扬声器的工作频率高于某一频率时,锥盆的这种扭曲变形情况更为为严重,当锥形扬声器出现分割运动时,扬声器的失真会明显增大,是由于锥盆的刚性引起的因此,增加锥盆的刚性,改善锥盆的各项指标就成了人们努力的方向。为了使扬声器具有良好的性能指标,所以扬声器振膜的制作材料应具有密度小,机械强度 大和内部阻尼适中的特点。 定心支片是振动系统中影响扬声器品质的一重要元件。定心支片的硬度决定扬声器谐振频率的因数之一。定心支片振动时振幅的线性程度也在一定的程度上影响扬声器的失真大小,定心支片通常是一种用亚麻布浸渍酚醛树脂后热压制成的波形圆环,它的外端粘接在扬声器的盆架上,内孔则与扬声器的音圈和锥盆刚性粘接在一起。定心支片的主要作用是保持音圈在扬声器磁气隙中的正确位置,要求它和轴向顺性大,使音圈在磁气隙中的垂直振动不受影响,径向则要求能可靠的限制音圈的左右移动,使音圈不与夹板或是极心接触,从而使扬声器具有良好的机械强度和电声 特性,它的另一个作用就是防止外部灰尘进入磁气隙。 防尘罩是一种用纸质或聚酯塑料等材料制的球顶状防护罩,安装在锥盆根部与音圈结合,它一方面可以利用来增加结合部的刚性,改善扬声器的高频特性,另一方面可以防止金属屑和灰尘进入磁气隙,由于扬声器的高频能量主要靠锥盆的中部辐射。因此防尘罩的形状和所用的材料对扬声器的高频频响有很大有影响。 音圈是扬声器的驱动元件。它通常是用漆包在纸纸制等材料的圆柱形骨架上绕制。整个音圈分两面三刀层或是四层。目的是使线圈的引出线两端均匀地朝向锥盆的一侧,使引出线可以牢固的焊接在锥盆上,为了更有效的利用磁路气隙,提高扬声器的性能,有时整个扬声器的音圈用扁平的漆包线线制成,为了防止大功率的音圈在流过较大音频

相关主题
文本预览
相关文档 最新文档