当前位置:文档之家› 扬声器与音腔设计

扬声器与音腔设计

手机音腔部品选型及音腔结构设计指导及规范

手机音腔部品选型及音腔结构设计指导及规范 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

手机音腔部品选型及音腔结构设计指导及规范 1. 声音的主观评价 声音的评价分为主观和客观两个方面,客观评价主要依赖于频响曲线﹑SPL值等声学物理参数,主观则因人而异。一般来说,高频是色彩,高中频是亮度,中低频是力度,低频是基础。音质评价术语和其声学特性的关系如下表示: 从人耳的听觉特性来讲,低频是基础音,如果低频音的声压值太低,会显得音色单纯,缺乏力度,这部分对听觉的影响很大。对于中频段而言,由于频带较宽,又是人耳听觉最灵敏的区域,适当提升,有利于增强放音的临场感,有利于提高清晰度和层次感。而高于 8KHz略有提升,可使高频段的音色显得生动活泼些。一般情况下,手机发声音质的好坏可以用其频响曲线来判定,好的频响曲线会使人感觉良好。 声音失真对听觉会产生一定的影响,其程度取决于失真的大小。对于输入的一个单一频率的正弦电信号,输出声信号中谐波分量的总和与基波分量的比值称为总谐波失真(THD),其对听觉的影响程度如下:THD<1%时,不论什么节目信号都可以认为是满意的; THD>3%时,人耳已可感知; THD>5%时,会有轻微的噪声感; THD>10%时,噪声已基本不可忍受。 对于手机而言,由于受到外形和Speaker尺寸的限制,不可能将它与音响相比,因此手机铃声主要关注声音大小、是否有杂音、是否有良好的中低音效果。 2. 手机铃声的影响因素 铃声的优劣主要取决于铃声的大小、所表现出的频带宽度(特别是低频效果)和其失真度大小。对手机而言,Speaker、手机声腔、音频电路和MIDI选曲是四个关键因素,它们本身的特性和相互间的配合决定了铃声的音质。 Speaker单体的品质对于铃声的各个方面影响都很大。其灵敏度对于声音的大小,其低频性能对于铃声的低音效果,其失真度大小对于铃声是否有杂音都是极为关键的。

音箱的音腔计算方法

ASW计算公式开口腔计算公式:V A = (2S x Q。)² x V AS(L) 通带纹波系数是带通式音箱的重要设计参数。选取合适的封闭腔带通Q值QB,查表得出fL和fH,用f。/Q。分别乘以这两个系,求出音箱频响曲线上下降3dB的两个频率点,要求与设计值相符。带通Q值越高,音箱的灵敏度越高,但通频带越窄;带通Q值取得越低,音箱的灵敏度越低,但通频带越宽。导相管的调振频率fB = QB x ( f。/ Q。) 导相管长度L=[(c²S]/(4*3.14²*fb²*V)] -0.82*S?² 密封腔计算公式:VB = V AS / a 顺性比a = (QB² / Q。²) – 1 箱体总容积为V = VA + VB 单腔倒相式音箱计算公式 1.低频扬声器单元的品质因数Q。、谐振频率f。及等效容积V AS是决定音箱低频响应的重要参数。品质因数Q。、谐振频率f。及等效容积V AS由喇叭供应商给出,或自己根护喇叭的基本性能参数进行公式计算,在已知品质因数Q。、谐振频率f。的前提下计算VAS。2.箱体容积计算公式:VB = V AS / a 箱体顺性比a值可由倒相音箱设计图表查出(91页图3-9),设QL=7。也可由下面的简表进行估算,如下表:3.确定倒相管截面积。 4.确定导相管长度,可用公式:L=[(c²S]/(4*3.14²*fb²*V)] -0.82*S?² 5.音箱的调整要点:原则是将倒相箱的谐振频率调整到最合适的频率点,使音箱的低频响应平坦。调整音箱的系统品质因数,使音箱的低音深沉,听起来即不干涩也不混浊;调整分频网络的分频点和相位特性,使音箱各频段的声压均匀,频率响应曲线平坦。一般的设计流程多媒体音箱并不是简单的将功放音箱结合到一块,因为使用环境上的不同,所以在设计上也应该注意到这个问题。但是很少有厂家注意到这个问题,这些厂家大多只是注意到了音箱外表的美与丑,根本没有考虑到音箱的工作环境,也就是说根本没有进行正确的音箱设计,所以其音质平平也就不足为奇了。有关这个问题以前曾先生写过不少文章,大家可以参看,我在此着重的谈一谈作为一款高质量重放声音的多媒体音箱的具体的设计过程,以及如何处理在设计时所遇到的问题。一选择合适的单元多媒体音箱工作状态处于近场小环境听音,因此决定了我们只能使用小容积箱体,选择小口径单元,这要求单元拥有合理的重放声压,以及足够宽的重放带宽。但从性能价格比来看,在中高档多媒体音箱中还是采用稍大一些口径的单元为好,4.5寸的口径可以认为是最易于做到性能价格比的一种尺寸,同时如果要生产高保真产品的话5寸是一种不错的口径。我觉得现在的多媒体音箱大都体积偏小,不过惠威的M200是一种不错的入门产品。我认为现代多媒体音箱应该将箱体控制在4--8升之间,当然还要与相关参数相配合,也就是我们常说的Thiele-Small参数一定要合适,而不是片面的夸大某一参数。由于低音单元口径小,所以更应该注意低频大动态性能,因为低音单元的震动系统最大线性位移量即反映了扬声器系统的大动态性能。如线性位移量偏小,则在高声压级大动态时,不但低音不能有效重放而且各种失真也会增大,特别是影响音质的奇次谐波失真。现在大多数多媒体音箱的磁路设计也欠佳,磁体小,上下夹板导磁率低,对振盆控制能力低,因此而引起的非线性失真也较大。因此在现代多媒体音箱中的总的失真率将达到7%左右或更高。这在HI-FI看起来是不可容忍的。还有就是振盆材料,由于近年来低档PP盆,防弹布盆,玻璃纤维盆,碳纤维盆的价格日益低下,再加上外观好,因此更多的被用在了多媒体音箱上来,但殊不知,后三种振盆的自阻尼很小,工作状态是极难控制的,一般在中高端的某一频率点上会产生很多的失真,大到不可忍受的地步,这个频率点就是我们常说的盆分裂点。因为现代多媒体音箱都没有分频器,再加上设计不合理的箱体,是很难压制这个分裂点的。而第一种振盆即PP盆,虽然听起来韧性好,中频饱满,低频富有弹性,但由于刚性相对较低,因而在大音量下引起的失真也较大。中频的层次感也不是很好。而相对个性较小,较容易控制的质量好的纸盆单元,却很难见到有厂家应用。就个人DIY制作而言,南京的110,150系列防磁低音,银笛的QG4,QG5系列防磁高音单元,都是不错的DIY选择,要求高一点的还可以选择惠威,发友等厂家专为多媒体音箱设计的

音腔结构设计思考与总结

音腔结构设计思考与总结 通过参观XX电机厂,就音腔与Speaker方面,与其公司技术人员交换意见,结合本公司的产品结构,现归纳如下,如有不同意见,请各位提出您宝贵的意见,进行分析讨论,以比较不同方案优缺点,最后论证及确认这些结构方式适用范围及其可行性。 一、Speaker音腔出声孔的结构设计 1、Speaker前腔设计方式及说明: 1)音腔出声孔为穿插方式的结构形式: a、红色为硅胶 b、黄色为面壳 c、青色为Speaker 公司目前采用的设计(图1) 喇叭前腔H1尺寸较小,以使前腔空间小,同时要防止喇叭振膜在振动中接触到塑胶平面,即要求留有足够的振动空间,当然,这个H1不是越大越好,它有一个相对腔体出声孔面积较佳的权益值(以前是通过试听方式作调整)。

结构方式(2) 喇叭前腔之对应的塑胶做成弧面,即可以使得H1尺寸加大,但要 考虑H2尺寸,保证面壳胶厚有足够的强度。其目的是合理增加喇叭之前腔腔体的空间。此情况,喇叭网粘剂为液体最好。 注意: 1、作成弧面的情况,喇叭网若是背双面胶,那么装配就不方便,喇叭网不易装平; 2、作成弧面的情况,装配硅胶垫需为平面,以使装配牢固可靠。 2)音腔孔为碰穿方式: 3.m m 000. mm 50TC700音腔孔(图 3)

分析: 1、 结构及加工上:H=3.0mm,W=0.5mm,模具强度不够好,来料品质 不能保证; 2、 音腔孔0.50x3.0mm :尺寸太小、太深,喇叭振动过程中需要的气 流循环(空气进出音腔孔)出现不连续现象,导致削弱高音,影响音量大小。 改善方法: 1、 穿插结构方式:(如TC700S )不仅可以解除模具加工强度不良问 题,同时可以很好地控制音腔孔大小,从而改善气流循环,音量大小得以改善。 2、 也可以在TC700音腔孔(图3)上作如下的改善,详见下图(图 4) 060080.. mm —10020 ..±R W (示意图4---仅作示意) 说明:在后模开一个沉台,宽度为2.50mm 左右,尽可能圆滑过渡,音腔孔尺寸请上图所示。这样也可以改善音量效果。(当然此结构在TC700相应

音箱的音腔计算

ASW计算公式 开口腔计算公式:VA = (2S x Q。)² x VAS(L) 通带纹波系数是带通式音箱的重要设计参数。 选取合适的封闭腔带通Q值QB,查表得出fL和fH,用f。/Q。分别乘以这两个系,求出音箱频响曲线上下降3dB的两个频率点,要求与设计值相 符。带通Q值越高,音箱的灵敏度越高,但通频带越窄;带通Q值取得越低,音箱的灵敏度越低,但通频带越宽。 导相管的调振频率fB = QB x ( f。/ Q。) 导相管长度L=[(c²S]/(4*3.14²*fb²*V)] -0.82*S?² 密封腔计算公式:VB = VAS / a 顺性比a = (QB² / Q。²) – 1 箱体总容积为V = VA + VB 单腔倒相式音箱计算公式 1.低频扬声器单元的品质因数Q。、谐振频率f。及等效容积VAS是决定音箱低频响应的重要参数。 品质因数Q。、谐振频率f。及等效容积VAS由喇叭供应商给出,或自己根护喇叭的基本性能参数进行公式计算,在已知品质因数Q。、谐振频率f。的前提下计算VAS。 2.箱体容积计算公式:VB = VAS / a 箱体顺性比a值可由倒相音箱设计图表查出(91页图3-9),设QL=7。也可由下面的简表进行估算,如下表: 3.确定倒相管截面积。 4.确定导相管长度,可用公式: L=[(c²S]/(4*3.14²*fb²*V)] -0.82*S?² 5.音箱的调整要点: 原则是将倒相箱的谐振频率调整到最合适的频率点,使音箱的低频响应平坦。调整音箱的系统品质因数,使音箱的低音深沉,听起来即不干涩也不混浊;调整分频网络的分频点和相位特性,使音箱各频段的声压均匀,频率响应曲线平坦。

压电扬声器最终设计方案

考试序列号 项目名称:平板压电扬声器设计 课程名称:大学物理实验 学院:机电工程学院 专业班级:2011级机械类(创新实验班)组员: 曾劲松曾俊贤陈集辉陈思豪梁荣光联系方式: 任课教师:钟老师 2012年11月08日

平板压电扬声器设计方案 一、便携式产品的发展趋势 随着便携式消费电子的发展,人们对便携式电子设备小型轻薄的要求越来越高,陶瓷压电扬声器以其超轻、超薄、高效、无需大音腔等特点逐渐被众多便携式消费类电子产品所青睐。便携式消费产品向着超薄轻小的方向发展!;怎样做到外形纤薄!,并且延长单次充电电池使用时间已成为各类消费产品的主要设计考虑。这样的系统需求对单个电子元器件提出了更薄、更小、更省电的要求。 因此,为了迎合市场的需要,我们决定做一个结构简单,形状规则,占用空间小,实用的平板压电扬声器。 二、陶瓷压电扬声器的基本特点 与动圈式扬声器相比,压电扬声器的振膜是被粘接在它上面的压电材料带动产生弯曲的,因此振膜的外形几乎没有限制;而动圈式扬声器的振膜或纸盆通常都是圆形或者椭圆形的,这样常会限制产品的外形设计。所有的动圈式扬声器都必须有一个磁铁以驱动音圈,这样就增加了扬声器的总体高度及重量。但是陶瓷压电扬声器却无需磁铁驱动,这样就可以达到一种很薄的外形从而降低终端产品的高度。 面对设计小巧的手机和越来越薄的电脑,动圈式扬声器成为制造商能否生产出超薄产品的制约因素。陶瓷压电扬声器能以超薄、紧凑的封装提供极具竞争力的声压电平;具有取代传统的动圈式扬声器的巨大潜力。陶瓷压电和动圈式扬声器的主要区别如表下所示: 驱动陶瓷压电扬声器的放大器电路有与驱动传统动圈式扬声器不同的输出驱动要求。陶

关于喇叭音腔设计的基本原理

关于喇叭音腔设计的基本原理 新闻出处:21ic 发布时间: 2007-10-20 lldwsw 发布于 2007-10-20 9:39:00 关于喇叭的音腔设计,基本上我们停留在一个概念上,而没有一套完整的理论指导。我们知道的音腔设计,往往是如下的理解: 1:要有音腔,起扩音用,至于为什么要有音腔,则不明白。 2:音腔要求密封,若密封不好,则导致低音很差。 3:音腔孔不能开的太大,若开的太大,会导致音量变小。 以上三点是我们最常关心的,我们往往按要求去做,没有问过为什么。 本人试着用射频理论推导喇叭音腔设计: 对比天线与喇叭 天线喇叭 媒质真空空气 作用电能转换成电磁场能量电能转换成声音能量 主要器件天线喇叭 附属器件匹配电路音腔 原理电磁场理论震动波理论 目的获得最大的能量输出,合适的频响最大的能量输出,合适的频响 结论只有合适的天线和合适的匹配电路,才能获得最大的能量和合适的频响只有高效的喇叭和合适的音腔,才能获得最大的能量和合适的频响 通过以上,我们基本上清楚,喇叭跟天线具有类似的功能,就是起能量转换作用,其中喇叭是关键器件,它是电能到声能的根本,但是附属器件音腔决定了它的最大输出功率和频率响应,接下来我们主要讨论音响系统是如何获得最大能量的。 先举一个例子,我们用手拍空气,对空气做功基本上等于0,假如我们拿一把特别大的扇子,扇不动,对空气做功也等于0。 对空气做功其实就是对空气发生,假如这个频率在我们能够听到的范围内,就是声音了。 那么通过上面的例子可以说明,用手对空气做功有一个极点,也就是说有一个最大值。我们用以下公式来看:

P = F × V P为功率,对外界做功的功率,F为力的大小,V为速度。 这个公式说明F太小,或者V太小,都不可能对外做功,只有两个值乘积项决定对外的功率。 接下来我们看看喇叭是不是跟手一样,就是一个振膜加一个动力线圈,振膜决定这个扇子的面积大小,动力线圈相当于人的力。 因为喇叭的振膜是不可能变的,除非换个喇叭,在喇叭振膜,电能信号的频率一定的情况下,我们来描述这个音响系统应该如何提高输出能量: 对比P = F × V公式,我们对喇叭提出一个具体对外做功的简易公式。 因为F正比振膜面积(S),所以写成 F =K × S,K为系数。 V由喇叭的动力线圈决定,动力线圈的动力由电场产生,动力线圈的阻力由两部分产生,一是空气对振膜的阻力(K×S),反对振膜震动,而是喇叭自身振膜的弹力反对振膜震动(Fz)。 对于音响系统来说K×S一般远远小于Fz。这个原因如下。看一个音响系统,动不动就是100W之类的,而声音大小也没有多少,据说一个人一年高声唱歌,产生的能量只能烧一壶水,可见声音的能量还是很少很少的,绝大部分的音响系统,它的能量都消耗在喇叭上,发热了。 所以空气不能影响动力线圈,可以认为V一定。 那么公式就成了P =K × S * V 因为信号一定,喇叭的振膜面积S也一定,若想改变P,则只能改变K,目的是提高K,其实K就由音腔决定,如下: 假如我们现在的空气密度增加一倍,则K增加一倍,假如只对一部分空气做功,则产生的力就能提升,这是因为空气动力学原理dV / V = dF / F,也就是说在一定的空间内对空气做功,空气体积的变化跟力的变化成正比。这个就是音腔原理,就是要划出一部分空气,提高K值,让喇叭对这部分空气做功,产生声音,之后这部分能量再传到整个空间中,在这儿音腔当作了能量传递的中间环节。 以上合理的解释了上面提到的第一点,为什么要有音腔,对于2,3都可以类似的分析,对于2,还需要分析声音的相位问题,因为喇叭有两面,可以当作两个音源来考虑,相位差180°,对于第三点,可以整合到第一点里,都是影响K值。 主要针对便携式小音腔设计,比如手机,随身听之类。

压电扬声器最终设计方案

考试序列号 项目名称: 课程名称:模拟电子技术实验 学院:自动化学院 专业班级:电气信息类(创新实验班)组员: 联系方式: 任课教师: 时间:2013年12月21 日

平板压电扬声器设计方案 一、陶瓷压电扬声的发展趋势 随着便携式消费电子的发展,人们对便携式电子设备小型轻薄的要求越来越高,陶瓷压电扬声器以其超轻、超薄、高效、无需大音腔等特点逐渐被众多便携式消费类电子产品所青睐。便携式消费产品向着超薄轻小的方向发展!;怎样做到外形纤薄!,并且延长单次充电电池使用时间已成为各类消费产品的主要设计考虑。这样的系统需求对单个电子元器件提出了更薄、更小、更省电的要求。 因此,为了迎合市场的需要,我们决定做一个结构简单,形状规则,占用空间小,实用的平板压电扬声器。 二、陶瓷压电扬声器的基本特点 与动圈式扬声器相比,压电扬声器的振膜是被粘接在它上面的压电材料带动产生弯曲的,因此振膜的外形几乎没有限制;而动圈式扬声器的振膜或纸盆通常都是圆形或者椭圆形的,这样常会限制产品的外形设计。所有的动圈式扬声器都必须有一个磁铁以驱动音圈,这样就增加了扬声器的总体高度及重量。但是陶瓷压电扬声器却无需磁铁驱动,这样就可以达到一种很薄的外形从而降低终端产品的高度。 面对设计小巧的手机和越来越薄的电脑,动圈式扬声器成为制造商能否生产出超薄产品的制约因素。陶瓷压电扬声器能以超薄、紧凑的封装提供极具竞争力的声压电平;具有取代传统的动圈式扬声器的巨大潜力。陶瓷压电和动圈式扬声器的主要区别如表下所示:扬声器类型优点缺点 陶瓷压电扬声器超薄外形,严格的制造公差, 所需声腔很小, 效率高,散热好,寿命长, 无磁场,无电磁辐射 需要高压才能驱动, 低频响应不是很好, 容性负载 动圈式扬声器技术成熟,成本低, 频率响应很好 尺寸较大,制造公差宽松,所 需声腔较大, 效率低 驱动陶瓷压电扬声器的放大器电路有与驱动传统动圈式扬声器不同的输出驱动要求。陶

手机音腔设计规范

电声部品选型及音腔结构设计 1. 声音的主观评价 声音的评价分为主观和客观两个方面,客观评价主要依赖于频响曲线﹑SPL值等声学物理参数,主观则因人而异。一般来说,高频是色彩,高中频是亮度,中低频是力度,低频是基础。音质评价术语和其声学特性的关系如下表示: 从人耳的听觉特性来讲,低频是基础音,如果低频音的声压值太低,会显得音色单纯,缺乏力度,这部分对听觉的影响很大。对于中频段而言,由于频带较宽,又是人耳听觉最灵敏的区域,适当提升,有利于增强放音的临场感,有利于提高清晰度和层次感。而高于8KHz略有提升,可使高频段的音色显得生动活泼些。一般情况下,手机发声音质的好坏可以用其频响曲线来判定,好的频响曲线会使人感觉良好。 声音失真对听觉会产生一定的影响,其程度取决于失真的大小。对于输入的一个单一频率的正弦电信号,输出声信号中谐波分量的总和与基波分量的比值称为总谐波失真(THD),其对听觉的影响程度如下:THD<1%时,不论什么节目信号都可以认为是满意的; THD>3%时,人耳已可感知; THD>5%时,会有轻微的噪声感; THD>10%时,噪声已基本不可忍受。 对于手机而言,由于受到外形和Speaker尺寸的限制,不可能将它与音响相比,因此手机铃声主要关注声音大小、是否有杂音、是否有良好的中低音效果。 2. 手机铃声的影响因素 铃声的优劣主要取决于铃声的大小、所表现出的频带宽度(特别是低频效果)和其失真度大小。对手机而言,Speaker、手机声腔、音频电路和MIDI选曲是四个关键因素,它们本身的特性和相互间的配合决定了铃声的音质。 Speaker单体的品质对于铃声的各个方面影响都很大。其灵敏度对于声音的大小,其低频性能对于铃声的低音效果,其失真度大小对于铃声是否有杂音都是极为关键的。 手机声腔则可以在一定程度上调整Speaker的输出频响曲线,通过声腔参数的调整改变铃声的高、低音效果,其中后声腔容积大小主要影响低音效果,前声腔和出声孔面积主要影响高音效果。 音频电路输出信号的失真度和电压对于铃声的影响主要在于是否会出现杂音。例如,当输出信号的失真度超过10%时,铃声就会出现比较明显的杂音。此外,输出电压则必须与Speaker相匹配,否则,输出电压过大,导致Speaker在某一频段出现较大失真,同样会产生杂音。

手机音腔喇叭(BOX)设计参考资料

关于音腔喇叭设计 先说单speaker,现在用的最多的了!不过从发展趋势来看为追求好的音效双speaker将成为以后大主题。不管是双还是单重视后音腔的设计,这对音质有很大的影响:尽量做大些,还要密封好些!现在的趋势是要求音量越来越大,特别是国产手机,有的做到100分贝以上,但是音量不是唯一指标,和谐悦耳的铃声才是设计目标!音源对铃声的影响非常重要,选择合适的音源可以很好的体现设计效果! 选择音源: 1.尽量选用口径大的speaker。 2.对speaker的特性曲线要求低频时也能有高的音压,并且在曲线在1K~10K的区间要曲线平稳,当然能在1K以下做到很好水准就体现speaker研发生产实力了。 结构上的设计: 受到手机空间的限制,多设计都是用到二合一单边发声的,产品最终的音效都不是很好,扬声器与受话器的设计要领不一样,共用一个音腔确实会有一定问题,有这么些建议: 1.Φ13mm Speaker 前容积高度:0.3~1.0mm 出音孔高度: Φ1.0,4~8孔(3mm2~6mm2 ) 后容积高度:3~5Cm3 洩漏孔高度:4~6mm2 2.Φ15mm Speaker 前容积高度:0.3~1.0mm 出音孔高度: Φ1.0,4~8孔(3mm2~6mm2 ) 后容积高度:3~5Cm3 洩漏孔高度:4~6mm2 3. Φ16~20m/m Speaker 前容积高度:0.3~1.0mm 出音孔高度: Φ1.0,4~8孔(3mm2~6mm2 ) 后容积高度:5~7Cm3 洩漏孔高度:5mm2 对于单面发声的后音腔设计,我们一般把整个前端作为后音腔,通过LCD PCB上密封整个前端,较大的后音腔能够能够弥补前期不足! 现在的流行趋势是分开,特别是双speaker强烈要求speaker与Receiver分开,这样才能到达要求的立体效果! 对于双speaker最好使出声孔的位置避免在一个面上,现在市面上看到最多就是放在翻盖的头部两侧,或者放在转轴两侧(三星x619),这跟声音波形原理有关的,同在一个面上消减幅度很快,效果不会太好的!双speaker的设计关键是要体现立体效果,在设计上有以下要点: 1.出声孔的位置,如上所述; 2.两个speaker的后音腔要求分开,独立密封; 3.两个speaker之间的切线(切线指的是两个水平放置,两个园之间的切线距离)最小距离要求在10mm以上; 4.要求大些的后音腔; 5.注意音源的选择,其实说道音腔,主要的一个原则就是,前音腔要密闭,后音腔要尽可能大,泻露孔尽可能距离speaker远一点。 声腔结构对手机音质的影响 声腔结构对手机电气性能的影响对手机音质的影响 手机外壳声孔大高频截止频率可延伸至5~10KHz 声音浑厚、丰满 手机外壳声孔小截止频率一般在5KHz左右声音单调、尖锐 Speaker与手机外壳形成的前腔大对频率响应曲线无明显影响声音比较空旷 Speaker与手机外壳形成的前腔小对频率响应曲线无明显影响声音无共鸣感 手机内腔大频率响应曲线低频Fo附近相对较高声音感觉不清晰 手机内腔小频率响应曲线低频Fo附近相对较低声音低音感觉不足 泄漏孔*近Speaker 频率响应曲线低频下跌声音尖锐,低音不足 泄漏孔远离Speaker 无影响无影响

手机音腔设计要点

扬声器与手机音腔设计 常州熙春电子有限公司 2006-3-20

纲要 声腔结构对手机音质的影响 ?一、 ?二、Speaker电气性能对手机电气性能以及音质的影响 ?三、Speaker声腔结构设计 ?四、Receiver声腔设计 ?五、手机设计中的成本考虑

纲要 ?六、扬声器主要技术参数?七、熙春电子产品 ?八、结束语

一、声腔结构对手机音质的影响 声腔结构对手机电气性能的影响对手机音质的影响手机外壳声孔大高频截止频率可延伸至5~10KHz声音浑厚、丰满手机外壳声孔小截止频率一般在5KHz左右声音单调、尖锐 Speaker与手机外壳形成的前腔大 对频率响应曲线无明显影响声音比较空旷 Speaker与手机外壳形成的前腔小声音无共鸣感 手机内腔大频率响应曲线低频F o 附近相对较高声音感觉不清晰 手机内腔小频率响应曲线低频F o 附近相对较低声音低音感觉不足泄漏孔靠近Speaker频率响应曲线低频下跌声音尖锐,低音不足泄漏孔远离Speaker无影响无影响

二、Speaker电气性能对手机电气性能以及音质的影响 Speaker电气性能对手机电气性能影响对音质的影响 谐振频率(F o )高谐振频率(F o )高声音尖锐 谐振频率(F o )低谐振频率(F o )低低音较好 灵敏度高灵敏度高声音大而有力灵敏度低灵敏度低声音小而无力高频截止频率高高频截止频率高(手机声孔较大 时) 声音丰满高频截止频率低高频截止频率低声音单调总谐波失真(THD)高总谐波失真(THD)高声音浑浊总谐波失真(THD)低总谐波失真(THD)低声音清晰功率大功率大声音可以较大功率小功率小声音相对较小

手机音腔设计对音质的影响

手机音腔设计对音质的影响 发表时间:2019-08-13T16:28:13.480Z 来源:《科学与技术》2019年第06期作者:王准 [导读] 阐述手机音频系统的组成,并通过音腔设计,分析其对手机音质的影响,为相关工作者提供参考借鉴。 TCL通讯科技(成都)有限公司惠州分公司广东惠州 516006 摘要:随着科学技术的发展,电子技术也日渐完善。尤其是手机等电子产品的出现,彻底改变了人们的日常生活。当前,手机已经从传统的功能收集发展到了智能手机时代,手机的音腔设计更加标准和完善,手机音频系统的质量也越来越高。本文将简单阐述手机音频系统的组成,并通过音腔设计,分析其对手机音质的影响,为相关工作者提供参考借鉴。 关键词:智能手机;音腔设计;音质 1引言 对于手机而言,最重要的功能就是语音功能,手机语音质量的高低,大多是由手机音腔设计而决定的。在传统的功能手机时代,人们对手机的基本需求仍停留在通话方面,而随着智能手机的普及,手机的功能也越来越多,音乐、视频等多种娱乐元素都对手机的音质提出了更高的要求。因此,研究分析手机音腔设计对音质的影响具有重要的现实意义。 2手机音频系统概述 2.1手机常见的电声器件概述 (1)麦克风:麦克风是手机重要的送话器,利用麦克风可以将声音转换为电信号,并提交给后续的电路处理。因此,作为手机音频系统的主要入口,一旦在对声音拾取的过程中就存在质量问题,势必影响整个手机音频系统的音质,必须慎重的对麦克风进行选择。常见的手机麦克风,可以划分为电动势麦克风、电容式麦克风、碳粒式麦克风等。 (2)扬声器:扬声器是手机音频系统的出口,是手机将电信号转化为声音信号的重要元器件。扬声器的质量高低,关系着声音复原质量的高低,也是影响手机音质的重要因素之一。作为手机当中重要的部件之一,扬声器的种类繁多,且价格差异性较大,如电容式扬声器、电磁式扬声器、气动式扬声器等。影响扬声器性能的主要参数包括扬声器的额定功率、频率响应、额定阻抗以及失真等。 (3)音频功率放大器:在手机音频系统当中,音频信号为小信号,即便是经过了前级放大,仍未较弱的信号,必须依靠音频功率放大器使其产生足够强大的电流驱动源,才能确保其满足扬声器的正常工作。根据音频功率放大器工作原理的不同,其可以划分为A类、B类、AB类以及D类等四大类音频功率放大器。 (4)受话器:受话器在手机当中,实现了音频电信号与声音之间的转换,也是手机实现通话功能的重要元器件之一。手机大多采用动圈式受话器,其工作原理类似于动圈式扬声器,当交变电流经过受话器的线圈时,线圈对磁力线完成切割,并产生振动,带动鼓膜振动,进而产生了声波,完成了音频电信号与声音之间的转换。 2.2高清语音 高清语音是近年来逐渐兴起的手机语音功能,它利用了宽带音频信号,可以对人的声音精准的重现,进一步的提高了音质的质量。高清语音之所以能够提供高语音品质,主要是将传统的窄带语音信号(300~3400Hz)扩充到了宽带语音信号(50~7000Hz)。传统的手机语音信号频段为窄带语音信号(300~3400Hz),而人类的声音可以达到20~14000Hz,这样,就导致部分声音在传输过程中产生了损耗,导致受话器重现出来的声音信号存在一定的失真。而高清语音扩大了语音信号,尽可能的提高了声音的重现度。 3 手机音腔设计分析 对于手机而言,手机音腔是直接为用户提供声音的重要接口,也是影响手机音质的关键。而在对音腔进行设计过程中,除了完成前声腔、后声腔、出声孔、防尘罩等结构设计外,还需要注重扬声器、受话器、麦克风等元器件的选择。具体设计要点体现在以下几个方面:3.1扬声器的设计 (1)频率响应曲线:对于手机扬声器而言,其频率响应曲线包含了丰富的信息,首先从声压级方面来看,基于相同输入频率的情况下,该数值的大小反映了扬声器输出音量的大小。其次扬声器的低频谐振点是扬声器的低频特性,低频谐振点的响应值也是反映扬声器对低音的还原能力。最后平台度则说明了扬声器本身声音重现过程中声音的保真度情况。 (2)失真度曲线:对于人而言,低频信号是声音的基础频段,如果该频段趋势或者压制过低,会使得音质比较单纯,缺乏质感;中频信号本身的频带范围较广,也是人耳最敏感的频段,需要通过加强次频段声音的清晰度以层次感,来提高扬声器的现象效果。最后的高频信号本身丰富了音质,使得声音更加的生动、活泼。因此,声音的失真会影响扬声器的整体性能,给人带来不好的感觉。通常情况下,扬声器的失真度水平是依靠总谐波失真(TDH)以及部分谐波失真来横梁的。 4.2后声腔 对于智能手机而言,后声腔对音质的影响最为重要,尤其是对音频信号的低频信号会产生巨大的影响。当前智能手机的音质,主要是收到低频信号、低频波峰点的频率的影响,数值越低,低音效果越高。因此,在进行手机后声腔设计过程中,主要对低频共振点的频率进行控制,以提高低频的分量,同时手机的后音腔体积又与低频共振峰点成曲线反比关系(如图1所示)。 需要格外注意的时,不同的声音的低频信号还会受到扬声器性能、特征以及单体品质的影响,因此,在对手机后声腔设计过程中,还需要重视扬声器的选择。

音腔的设计知识

音腔的设计知识 后音腔的设计,这对音质有很大的影响:尽量做大些,还要密封好些! 受到空间限制,我们很多设计都是用到二合一单边发声的,觉得产品最终的音效都不是很好,需要有好一些的方法去改善。 其实二合一单边发声的的确效果不是很好,扬声器与受话器的设计要领不一样,共用一个音腔确实会有问题,有这么些建议:?1. 13m/mSpeaker ?前容积高度:0.3~1.0m/m ?出音孔高度:Φ 1.0,4~8孔(3mm&sup2; ~6mm&sup2; ) ?后容积高度:3~5Cm&sup3; ?洩漏孔高度:4~6mm&sup2; ?2. 15m/mSpeaker ?前容积高度:0.3~1.0m/m ?出音孔高度:Φ 1.0,4~8孔(3mm&sup2; ~6mm&sup2; ) ?后容积高度:3~5Cm&sup3; ?洩漏孔高度:4~6mm&sup2; ?3. 16~20m/mSpeaker ?前容积高度:0.3~1.0m/m ?出音孔高度:Φ 1.0,4~8孔(3mm&sup2; ~6mm&sup2; ) ?后容积高度:5~7Cm&sup3; ?洩漏孔高度:5mm&sup2; 对于单面发声的后音腔设计,我们一般把整个前端作为后音腔,通过LCD PCB上密封整个前端,较大的后音腔能够能够弥补前期不足!现在的流行趋势是分开,特别是双speaker强烈要求speaker与reci 分开,这样才能到达要求的立体效果!对于双speaker我一直有一些问题,呵呵,现在再讨教一下啦,它们如果出声孔在同一面会有什么效果与单speaker相比较,设计时又有哪些问题需要注意呢?如果是双speaker的话,最好使出声孔的位置避免在一个面上,我们现在看到最多就是放在翻盖的头部两侧,或者放在转轴两侧(三星x619),这跟声音波形原理有关的,同在一个面上消减幅度很快,效果不会太好的!双speaker的设计关键是要体现立体效果,在设计上有一下要点:1.出声孔的位置,如上所述;2.两个speaker的后音腔要求分开,独立密封;3.两个speaker之间的切线最小距离要求在10mm 以上;4.要求大些的后音腔;5.注意音源的选择,可以跟雅马哈咨询!其实说道音腔,主要的一个原则就是,前音腔要密闭,后音腔要紧可能大,泻露孔尽可能距离speaker 远一点。声腔结构对手机音质的影响声腔结构对手机电气性能的影响对手机音质的影响手机外壳声孔大手机外壳声孔小高频截止频率可延伸至5~10KHz 截止频率一般在5KHz左右声音浑厚、丰满声音单调、尖锐Speaker与手机外壳形成的前腔大Speaker 与手机外壳形成的前腔小对频率响应曲线无明显影响声音比较空旷声音无共鸣感手机内腔大手机内腔小频率响应曲线低频Fo附近相对较高频率响应曲线低频Fo附近相对较低声音感觉不清晰声音低音感觉不足泄漏孔*近Speaker 泄漏孔远离Speaker频率响应曲线低频下跌无影响声音尖锐,低音不足无影响Speaker电气性能对手机电气性能以及音质的影响Speaker电气性能对手机电气性能影响对音质的影响谐振频率 (Fo)高谐振频率(Fo)低谐振频率(Fo)高谐振频率(Fo)低声音尖锐低音较好灵敏度高灵敏度低灵敏度高灵敏度低声音大而有力声音小而无力高频截止频率高高频截止频率低高频截止频率高(手机声孔较大时)高频截止

相关主题
文本预览
相关文档 最新文档