当前位置:文档之家› 手机音腔部品选型及音腔结构设计指导及规范

手机音腔部品选型及音腔结构设计指导及规范

手机音腔部品选型及音腔结构设计指导及规范
手机音腔部品选型及音腔结构设计指导及规范

手机音腔部品选型及音腔结构设计指导及规范

Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

手机音腔部品选型及音腔结构设计指导及规范

1. 声音的主观评价

声音的评价分为主观和客观两个方面,客观评价主要依赖于频响曲线﹑SPL值等声学物理参数,主观则因人而异。一般来说,高频是色彩,高中频是亮度,中低频是力度,低频是基础。音质评价术语和其声学特性的关系如下表示:

从人耳的听觉特性来讲,低频是基础音,如果低频音的声压值太低,会显得音色单纯,缺乏力度,这部分对听觉的影响很大。对于中频段而言,由于频带较宽,又是人耳听觉最灵敏的区域,适当提升,有利于增强放音的临场感,有利于提高清晰度和层次感。而高于

8KHz略有提升,可使高频段的音色显得生动活泼些。一般情况下,手机发声音质的好坏可以用其频响曲线来判定,好的频响曲线会使人感觉良好。

声音失真对听觉会产生一定的影响,其程度取决于失真的大小。对于输入的一个单一频率的正弦电信号,输出声信号中谐波分量的总和与基波分量的比值称为总谐波失真(THD),其对听觉的影响程度如下:THD<1%时,不论什么节目信号都可以认为是满意的;

THD>3%时,人耳已可感知;

THD>5%时,会有轻微的噪声感;

THD>10%时,噪声已基本不可忍受。

对于手机而言,由于受到外形和Speaker尺寸的限制,不可能将它与音响相比,因此手机铃声主要关注声音大小、是否有杂音、是否有良好的中低音效果。

2. 手机铃声的影响因素

铃声的优劣主要取决于铃声的大小、所表现出的频带宽度(特别是低频效果)和其失真度大小。对手机而言,Speaker、手机声腔、音频电路和MIDI选曲是四个关键因素,它们本身的特性和相互间的配合决定了铃声的音质。

Speaker单体的品质对于铃声的各个方面影响都很大。其灵敏度对于声音的大小,其低频性能对于铃声的低音效果,其失真度大小对于铃声是否有杂音都是极为关键的。

手机声腔则可以在一定程度上调整Speaker的输出频响曲线,通过声腔参数的调整改变铃声的高、低音效果,其中后声腔容积大小主要影响低音效果,前声腔和出声孔面积主要影响高音效果。

音频电路输出信号的失真度和电压对于铃声的影响主要在于是否会出现杂音。例如,当输出信号的失真度超过10%时,铃声就会出现比较明显的杂音。此外,输出电压则必须与Speaker相匹配,否则,输出电压过大,导致Speaker在某一频段出现较大失真,同样会产生杂音。

MIDI选曲对铃声的音质也有一定的影响,表现在当铃声的主要频谱与声腔和Speaker的不相匹配时,会导致MIDI音乐出现较大的变音,影响听感。

总之,铃声音质的改善需要以上四个方面共同配合与提高,才能取得比较好的效果。

3. Speake r的选型原则

扬声器(Speaker)简介

3.1.1 Speaker工作原理

扬声器又名喇叭。喇叭的工作原理:是由磁铁构成的磁间隙内的音圈在电流流动时,产生上下方向的推动力使振动体(振动膜)振动,从而振动空气,使声音传播出去,完成了电-声转换。喇叭实际上是一个电声换能器。

对手机来说,Speaker是为实现播放来电铃声﹑音乐等的一个元件。手机Speaker 音压频率使用范围在500Hz~10KHz。

3.1.2 手机用Speaker主要技术参数及要求

a>. 功率Power。功率分为额定功率Rated Power和最大功率Max Power。

额定功率是指在额定频率范围内馈给喇叭以规定的模拟信号(白噪声), 96小时后,而不产生热和机械损坏的相应功率。

最大功率是指在额定频率范围内馈给喇叭以规定的模拟信号(白噪声), 1分钟后,而不产生热和机械损坏的相应功率。

注:手机用喇叭一般要求的功率:额定功率≥,最大功率≥1W。

b>. 额定阻抗Rated Impedance。

喇叭的额定阻抗是一个纯电阻的阻值,它是被测扬声器单元在谐振频率后第一个阻抗最小值,它反映在扬声器阻抗曲线上是谐振峰后曲线平坦部分的最小阻值。

注:手机用喇叭的额定阻抗一般为8Ω。

c>. 。

在喇叭的有效频率范围内,馈给喇叭以相当于在额定阻抗上消耗一定电功率的噪声电压时,在以参考轴上离参考点一定距离处所产生的声压。

注:手机用喇叭的灵敏度一般要求≥87dB0.1m。

d>. 。

它是指各种失真的总和。主要包括:谐波失真、互调失真、瞬态失真。

注:手机用喇叭的总谐波失真在额定功率1KHz时应小于5%。

e>. 共振频率Resonance Frequency (fo)

由阻抗曲线可见,在低频某一频率其阻抗值最大,此时的频率称之为扬声器的共振频率,记为fo,即在阻抗曲线上扬声器阻抗模值随频率上升的第一个主峰对应的频率。

注:手机用喇叭的共振频率一般在800Hz左右。

手机用扬声器(Speaker)的评价原则

Speaker的品质特性对手机铃声优劣起着决定性作用。在同一个声腔、同样的音源情况下,不同性能的Speaker在音质、音量上会有较大的差异。因此选择一个合适的Speaker 可较大程度地改善手机的音质。

Speaker的性能一般可以从频响曲线、失真度和寿命三个方面进行评价。频响曲线反映了Speaker在整个频域内的响应特性,是最重要的评价标准。失真度曲线反映了在某一功率下,Speaker在不同频率点输出信号的失真程度,它是次重要指标,一般情况下,当失真度小于10%时,都认为在可接受的范围内。寿命反映了Speaker的有效工作时间。

由于频响曲线是图形,包含信息很多,为了便于比较,主要从四个方面进行评价:SPL值、低频谐振点f0、平坦度和f0处响度值。SPL值一般是在1K~4KHz之间取多个频点的声压值进行平均,反映了在同等输入功率的情况下,Speaker输出声音强度的大小,它是频响曲线最重要的指标。低频谐振点f0反映了

Speaker的低频特性,是频响曲线次重要的指标。平坦度反映了Speaker还原音乐的保真能力,作为参考指标。f0处响度值反映了低音的性能,作为参考指标。

听感评价是一种主观行为,一般只作为辅助性评价。在客观数据评定难以取舍或没有相关测试条件时,应组织相关人员或音频工程师进行主观试听评价。

立体声手机喇叭的选择 a>. 二个(或多个)喇叭的电声性能应保持一致。

否则会发生因二个(或多个)扬声器相位特性和声压频率特性不同而产生的声像移位和干扰。

b>. 二个喇叭不能靠得太近,否则声场会变小,左右声道声音容易产生干扰。

c>. 音腔设计时,注意两个后音腔不能导通,要相互隔开且密封设计。

手机用扬声器(Speaker)的选型推荐

详见标准部品库(制定中)。

4. 手机Speaker 音腔性能设计

手机音腔对于铃声音质的优劣影响很大。同一个音源、同一个Speaker 在不同声腔中播放效果的音色可能相差较大,有些比较悦耳,有些则比较单调。合理的声腔设计可以使铃声更加悦耳。

为了提高手机音效品质,提升声腔设计水平是结构工程师的本职工作。所以本设计规范主要讲述音腔结构设计,其他影响音效的主要因素Speaker 选型﹑音频电路设计及MIDI 音乐选型需硬件部﹑软件部﹑音频小组等各部门的大力配合,共同把手机的音效水平提升到新的高度。

音腔结构简介

手机的声腔设计主要包括后声腔、前声腔、出声孔、密闭性、防尘网五个方面,如下图:

下面,就分别从以上五个部分详细介绍手机音腔设计必须或尽量遵循的准则。

后声腔对铃声的影响及推荐值 后声腔主要影响铃声的低频部分,对高频部分影响则较小。铃声的低频部分对音质影响很大,低

频波峰越靠左,低音就越突出,主观上会觉得铃声比较悦耳。

后声Speaker 前声腔 防尘

出声孔

图1 声腔结构示意

一般情况下,随着后声腔容积不断增大,其频响曲线的低频波峰会不断向左移动,使低频特性能够得到改善。但是两者之间关系是非线性的,当后声腔容积大于一定值时,它对低频的改善程度会急剧下降,如图2示。

图2

声腔中的

一般情况下,后声腔的形状变化对频响曲线影响不大。但是如果后声腔中某一部分又

图2 后声腔容积对低频性能影

扁、又细、又长,那么该部分可能会在某个频率段产生驻波,使音质急剧变差,因此,在声腔设计中,必须避免出现这种异常空间情况,尽量设计形状规则的音腔。

对于不同直径的Speake r,声腔设计要求不太一样,同一直径则差异不太大。根据不同直径Speake r的低频谐振点f0与后声腔容积的关系测试数据,具体推荐值如下:

φ13mm Speake r:它的低频谐振点f0一般在800Hz~1200Hz之间。

当后声腔为0.5cm3时,其低频谐振点f0大约衰减600Hz~650Hz。当后声腔为0.8cm3时,f0大约衰减400Hz~450Hz。当后声腔为1cm3时,f0大约衰减300Hz~350Hz。当后声腔为1.4cm3时,f0大约衰减250Hz~300Hz。当后声腔为3.5cm3时,f0大约衰减100Hz~150Hz。因此对于φ13mm SPEAKER,当它低频性能较好(如f0在800Hz左右)时,后声腔要求可适当放宽,但有效容积也应大于0.8cm3。当低频性能较差时(f0>1000Hz),其后声腔有效容积应大于1cm3。后声腔推荐值为1.4cm3以上,当后声腔大于3.5cm3时,其容积变化对低频性能影响会比较小。

当然,对φ13mm Speake r,由于单体偏小,各厂商的产品品质也参差不齐,听感与更大的Speake r

相比会有一定差异,一般情况下不推荐使用。

φ15mm Speake r:它的低频谐振点f0一般在750~1000Hz之间。

当后声腔为0.5cm3时,低频谐振点f0大约衰减850Hz~1000Hz。当后声腔为1cm3时,f0大约衰减600Hz~750Hz。当后声腔为1.6cm3时,f0大约衰减400Hz~550Hz。当后声腔为3.5cm3时,f0大约衰减200Hz~250Hz。因此对于φ15mm SPEAKER,后声腔有效容积应大于1.6cm3。当后声腔大于3.5cm3时,其容积变化对低频性能影响会比较小。

13×18mm Speake r:它的低频谐振点f0一般在780~1000Hz之间。

当后声腔为0.5cm3时,低频谐振点f0大约衰减850Hz~1000Hz。当后声腔为1cm3时,f0大约衰减600Hz~750Hz。当后声腔为1.6cm3时,f0大约衰减400Hz~550Hz。当后声腔为3.5cm3时,f0大约衰减200Hz~250Hz。因此对于13X18mm SPEAKER,后声腔有效容积应大于1.6cm3。当后声腔大于3.5cm3时,其容积变化对低频性能影响会比较小。

13×18mm Speake r在性能上和φ13mm Speake r有些类似,一般也不推荐使用。

φ16mm Speake r:它的低频谐振点f0一般在750~1100Hz之间。

当后声腔为0.5cm3时,低频谐振点f0大约衰减850Hz~1000Hz。当后声腔为0.9cm3时,f0大约衰减600Hz~700Hz。当后声腔为1.5cm3时,f0大约衰减400Hz~550Hz。当后声腔为2cm3时,f0大约衰减300Hz~350Hz。当后声腔为4cm3时,f0大约衰减150Hz~200Hz。因此对于φ16mm Speake r,后声腔有效容积应大于1.5cm3。后声腔推荐值为2cm3,当后声腔大于4cm3时,其容积变化对低频性能影响会比较小。

φ18mm SPEAKER:它的低频谐振点f0一般在700~900Hz之间。

当后声腔为0.5cm3时,低频谐振点f0大约衰减700Hz~950Hz。当后声腔为0.9cm3时,f0大约衰减500Hz~700Hz。当后声腔为0.9cm3时,f0大约衰减500Hz~700Hz。当后声腔为1.5cm3时,f0大约衰减400Hz~550Hz。当后声腔为2.1cm3时,f0大约衰减250Hz~

400Hz。当后声腔为4.3cm3时,f0大约衰减120Hz~160Hz。因此对于φ18mm Speake r,后声腔有效容积应大于2cm3。当后声腔大于4cm3时,其容积变化对低频性能影响会比较小。

综上所述,可得下表:

注:

a>. 后音腔设计时,必须保证Speake r后出声孔出气畅通,即Speake r后出声孔距离最近的挡板距离应大于后出声孔径的倍。

b>. 若采用壳体长出胶位密封设计后音腔,则需采用T0.5mm厚泡棉(单面带胶)为密封材料,壳体胶位厚度设计为0.6mm以上,距离PCB间隙为0.35mm,以封闭音腔。此时泡棉起到双重作用:即密封及缓冲。

c>. 后音腔容积尽量大些,一般推荐3cm3以上,但在手机实际设计中难以达到这个要求,则以上述推荐容积设计。

d>. 后音腔如果太小,比如小于或1 cm3,。,则不可设计密封音腔。

前声腔对声音的影响

前声腔对低频段影响不大,主要影响手机铃声的高频部分。随着前声腔容积的增大,高

由于手机

图3 前声腔容积对高频性能的

窄,导致音色比较单调,音质较差。所以前声腔太大或太小对声音都会产生不利的影响。同时,由于出声孔面积对高频也有较大的影响,因此设计前声腔时,需考虑出声孔的面积,一般情况下,前声腔越大,则出声孔面积也应该越大。

当前声腔过小时,还会造成一个问题,即出声孔的位置对高频的影响程度急剧增加,可能会给手机的出声孔外观位置设计造成一定的困难。

综上所述,结合手机设计的实际情况,前声腔设计时,一般希望前声腔的垫片压缩后的厚度在~1mm之间。由于它与出声孔面积有一定的相关性,因此具体推荐值在下一节给出。

出声孔对声音的影响及推荐值

出声孔的面积对声音影响很大,而且开孔的位置、分布是否均匀对声音也有一定的影响,其程度与前音腔容积有很大关系。一般情况下,前音腔越大,开孔的位置、分布对声音的影响程度就越小。

出声孔的面积对频响曲线的各个频段都有影响,在不同条件下,对不同频段的影响程度各不相同。当出声孔面积小于一定值时,整个频响曲线的SPL值会急剧下降,即铃声的声强损失很大,这在手机设计中是必须禁止的。当出声孔面积大于一定阈值时,随着面积增大,高频波峰、低频波峰都会向右移动,但高频变化的程度远比低频大,低频变化很小,即出声孔面积的变化主要影响频响曲线的高频性能,对低频性能影响不大。

出声孔面积与高频谐振点的变化呈非线性关系,且与前声腔大小有一定的联系,如图4示。

注:13X18mm椭圆形Speake r前声腔和出声孔面积可以参考φ15mm Speake r的参数。

上表中最小值表示当出声孔面积小于该值时,整个频响曲线会受到较大影响,音量会极大衰减。有效范围表示出声孔面积在此范围之内,一般能满足基本要求。需要强调是:如果出声孔在前声腔投影范围内,分布比较均匀,且过中心,那么可以取较小值,否则应取偏大一些的值。建议在一般情况下,不要取有效范围的极限值。

在实际设计中,如果高频声音出现问题,可以通过实际测量结果,修正出声孔面积进行改善。注意:出声孔面积减小并不意味着声强降低,相反在很多情况下,反而可以提高声强。

当然,为节省时间,在实际设计中,在一般情况下,也可以以下基本设计原则计算确定出声孔的面积:

a. 出音孔的面积大约占Speake r面积10% ~ 20% 比较合适。

b. Φ以上及Φ以下的出音孔尽可能避免。建议设计孔径Φ~Φ1.5mm之间。

因为Φ以上打出音孔时很容易进入异物,还有因尖锐的物体SPEAKER的振动膜会有损伤的风

险;而Φ以下孔在模具的实现及后续注塑时容易产生异常,使音效偏离设计值。

c. 出音孔的最小面积大约是%。一般情况下不要取这个极限值。

后声腔密闭性对声音的影响

后声腔是否有效的密闭对声音的低频部分影响很大,当后声腔出现泄漏时,低频会出现衰减,对音质造成损害,它的影响程度与泄漏面积、位置都有一定的关系。

一般情况下,泄漏面积越大,低频衰减越厉害。泄漏面积与低频谐振点的衰减成近似线性的关系,如图5。

图5

振点之差。

图6。

Ω以下,对

图6 后声腔容积变化时,泄漏与非泄漏对低频影响声音的影响很小,所以一般采用SPEAKER厂家提供的防尘网差异不会非常大。因此从防尘

和声阻两个方面综合考虑,建议采用300#左右的防尘网。

我们以往采用的不织布防尘网存在一个问题,由于不织布的不同区域密度不一样,因

此不同区域声阻也不一样,可能会造成同一批防尘网的声阻一致性较差。但不织布的成

本比网格布低,因此建议设计中综合考虑性能和成本,一般情况下,尽可能不要采用不

织布作为防尘网。

5. 手机Speaker音腔结构设计需注意的重要事项

a>. Speake r出声孔及声腔内部设计要圆滑过渡,尽量避免尖角﹑锐角,否则容易产生

异响。

b>. Speake r定位筋(Rib)仅对Speaker起到定位作用。

Rib厚度设计为0.6mm,与Speake r单边间隙设计为, 顶部有导向斜角~,便于装

配。

RIB的高度可以以低于Speaker接线端的高度0.5mm为基准,一般不宜高出

Speaker周边,否则

RIB会阻碍后音腔空气流通,话音特性会严重下降。

c>. 对外壳为塑胶的Speake r,背面轭(即金属磁罩)受力过大容易脱落。在结构设计

时,Speake r底

部塑胶定位骨或垫圈类应设计超出轭单边1.0mm,以使受力分散到Speaker塑胶壳

上,避免轭受力

过大被压塌陷。

d>. Speake r前面与壳体间必须有防尘网。

Speake r前方不织布是否是属薄且稀疏材质让声音不致被闷住,建议用网格布,不要用不织布。

e>. Speake r前音腔泡棉需双面带胶,固定在壳体上,保证前后音腔的密闭性。因

Speake r前后音腔

振幅相等相位相反,因此不能互通,必须将前后音腔隔离开。否则两者相位叠加,声音会变很小。

f>. 需考虑ESD问题。Speake r与外界连通,ESD很容易打进去,因此speaker周围的

卡座﹑电源﹑

连接器等相关元件也要同步考虑好接地。

g>. 对焊线式Speake r,引线要方便焊接,塑胶位需做导线槽,避免走线混乱及塑胶压

线的情况,引线端头剥线长度1.5mm。

h>. 对弹片式Speake r,PCB焊盘与接触片X/Y方向必须居中(接触片必须设计成原始

和压缩两种状态),且要求单边大于接触片以上。

i>. 若手机空间允许,则Speake r可尽量自带音腔,由Speake r供应商直接整体供货。

j>. 如果后音腔不能做到密封,则后音腔容积尽量大些,且泄漏孔需远离Speake r,这样会减少后

音腔密闭性不好所带来的负面影响。

k>. 圆形喇叭用于手机中时,最好采用圆形出音孔。否则,会因为振动体与出音孔的形状差异,引起频率特性变化,使声音变得尖锐。

l>. 翻盖手机使用一个Speaker/Receiver二合一单面发声完成放音和受话功能时,应使上、下盖保

持一定的间隙(最少>0.4mm)或者开设导音槽。

6. 手机用Receiver简介﹑选择原则及其结构设计

Receiver简介

Receiver工作原理和Speaker一样,也是一个电声换能器。

Receiver是在手机上为实现声音通话而使用的一个元件。

手机Receiver音压频率使用范围在300Hz~,功率~。Speaker是在离耳朵任意的距离和方向都能听到声音,相反Receiver是紧贴在耳朵为了传达通信的声音通话或是短信声音的SPEAKER的一种。

Receiver和Speaker相比,不需要高的功率,所以一般在结构设计上不会收到很多制约。

Receiver的选择注意事项

Receiver的选择不象Speaker那样严格,一般选用大量生产批量验证过的产品,圆形或方形均可,主要根据结构空间确定。但尽量不要去选用刚开发出来的偏小﹑偏薄或异型的产品,因为这样会影响听筒的音量及受话效果。

如果是因结构需要选择异型的,则导音套的设计就相当关键了。

手机Receiver音腔结构设计需注意的重要事项

a>. Receiver出声孔及音腔内部要过渡圆滑, 避免尖角﹑锐角,以免影响听筒音质。

b>. Receiver定位筋(Rib)仅对Receiver起到定位作用。Rib厚度设计为0.6mm,与

Receiver单边间隙设计为, 顶部有导向斜角~,便于装配。

c>. 对外壳为塑胶的Receiver,背面轭(即金属磁罩)受力过大容易脱落。在结构设计

时,Speake r底

部塑胶定位骨或垫圈类应设计超出轭单边1.0mm,以使受力分散到Receiver塑胶壳

上,避免轭受

力过大被压塌陷。

d>. Receiver前面与壳体间必须有防尘网。

不织布的材质选择原则同Speaker防尘网材质。

e>. Receiver前音腔泡棉需双面带胶,固定在壳体上,保证音腔的密闭性。否则会使

听筒声音变得很小。

f>. 需考虑ESD问题。Receiver与外界连通,ESD很容易打进去,因此Receiver周围

的连接器等相关元件也要同步考虑好接地。

g>. 对焊线式Receiver,引线要方便焊接,塑胶位需做导线槽,避免走线混乱及塑胶

压线的情况,引线端头剥线长度1.5mm。

h>. 对弹片式Receiver, PCB焊盘与接触片X/Y方向必须居中(接触片必须设计成原

始和压缩两种状态),且要求单边大于接触片以上。

l>. 弹片式Receiver可能会顶起A壳,导致A壳变形,使LCM进灰尘,因此弹片不能太硬,且设计压缩尺寸合理。

m>. 出声孔的总面积大约占Receiver总面积的 % ~ % 比较合适。

长条形出声孔推荐孔宽≥0.6mm,φ1.5mm≤圆孔孔径≥φ1.0mm。

n>. Receiver前音腔高度=~1.0mm(环形凸筋+泡棉总高度)。

o>. 对于异型结构Receiver,导音套的设计需平滑过渡,采用软材料如硅胶,保证声道的密闭性及畅通性。

7. Speaker/Receiver二合一一体声腔及其结构设计

Speaker/Receiver一体单面发声声腔及其结构设计

一体单面发声的Speaker/Receiver,其声腔设计、结构设计及其注意事项等同单体Speaker。

Speaker/Receiver一体双面发声声腔及其结构设计

一体双面发声的Speaker/Receiver,其声腔设计的原理和单体Speaker是一样的,但要特别注意的是,因为是双面发声,很容易疏忽Speaker端的后音腔的导通问题。若Speaker端后出声孔被堵,导致声音发不出来,再好的后音腔设计都没有任何作用。

因Speaker后出气孔在Receiver端,故Receiver端的定位圈不能密封,否则使Speaker后出气孔与后声腔隔离而发不出声音。

Speaker和Receiver的Rib不能互相连接。因为Rib会完全包裹Speaker,这时在Speaker Receiver的后面完全没有空气流通,音响特性会严重的丧失。即使在Rib的旁边打Hole,也是会因空气的流通少,结果还是一样的。

因一体双面发声的Speaker/Receiver在实际中使用不多,设计经验也有所欠缺,故在实际使用中遇到时再另行研究解决,或后续再将此设计规范补充、完善。

8. 手机用MIC结构设计

MIC简介

MIC就是麦克风,是将声音信号转换为电信号的一个元件,即完成声-电转换。与Receiver相反,MIC实际上是一个声电换能器。

相比Speaker及Receiver,MIC结构设计受到的制约更少,结构设计变得相对容易。

手机MIC结构设计需注意的重要事项

a>. MIC出声孔及内部音腔要过渡圆滑, 避免尖角、锐角。

b>. MIC与壳体间必须采用MIC套(硅胶套,65度), 防止MIC和Speaker在壳体内形成腔

体回路,通话时对方易听到回音及产生啸叫。

允许用Keypad上面自带的Rubber来固定MIC。

c>. 硅胶套与MIC腔体Rib的设计配合单边间隙为0.

MIC后面需固定紧密,MIC不能松动或弹出腔体。

d>. MIC出声孔面积≥1.0mm2, ,圆孔≥φ1.0mm.

e>. 对于翻盖手机,合上手机后,音孔不能与receiver重合,否则极易在合盖时产生明显啸叫。

设计时需错开距离10mm以上,或者,最彻底的解决方法,就是MIC声孔朝下设计。

f>. 需考虑ESD问题。MIC与外界连通,ESD很容易打进去,因此MIC周围的

卡座,连接器等关键器件也要同步考虑好接地。

g>. 对焊线式MIC,引线要方便焊接,塑胶位需做导线槽,避免走线混乱及塑胶压线

的情况,引线端头剥线长度1.5mm。

h>. 对于焊针式的MIC,为了防呆,它的两个焊针一般都设计成偏心的,那么PCB上

要注意增加设计Mark区域,以防止焊反。

i>. 对FPC方式的MIC,FPC与PCB应设计焊接定位孔,采用夹具定位焊接。否则

焊接的时候很难定位,与壳体配合也容易出问题,导致机械测试失败。

l>. 对接触式的MIC,垂直压缩设计很重要,需根据厂商推荐的尺寸规格进行设计。压缩不到位容易产生接触不良,压缩太紧会影响PCB导电铜箔寿命。

后记:

以上音腔设计的资料是通过大量经验总结及测试得来的,综合参考了多种渠道的音频资料,请教了相关资深手机音频专家,在此一并致谢。

但是由于声音具有一定的特殊性,因此,建议设计师采取理论结合实践的方法,多通过手板等实际测试,以对一些设计细节进行调整、优化。

由于经验所限,欢迎大家对此规范提出改善意见,我们将不断补充、完善!

手机结构设计指南

Techfaith 技术资料 手机 结构设计指南 (Design Guide Line) --- Revision T3 --- 序言 手机的结构设计都是有规律可循的,本设计指南的撰写,旨在总结和归纳以往我们在手机设计方面的经验,重点阐述本公司对于机械结构设计的要求,避免不同的工程师在设计时,重复出现以往的错误。使设计过程更加规范化、标准化,利于进一步提高产品质量,设计出客户完全满意的产品。 本文的撰写,旨在抛砖引玉,我们将不断地总结设计经验,完善本设计指南,使我们的结构设计做得更好。 本文的内容不涉及从事手机结构设计所需的必不可少的基本技能,如PRO/E、英语水平、模具制造等等。 2004年 9月

一. 手机的一般形式 目前市面上的手机五花八门,每年新上市的手机达上千款,造型各异,功能各有千秋。但从结构类型上来看,主要有如下五种: 1.直板式 Candy bar 2.折叠式 Clamshell 3.滑盖式 Slide 4.折叠旋转式 Clamshell & Rotary 5.直板旋转式 Candy bar & Rotary 本设计指南将侧重于前四种比较常见的类型。一般手机结构主要包含几个功能模块:外壳组件(Housing),电路板(PCBA),显示模块(LCD),天线(Antenna),键盘(keypad),电池(Battery)。但随着手机的具体功能和造型不同,这些模块又会有所不同,下面以几种常见手机为例来简单介绍一下手机上的结构部件。 图1-1是一款直板式手机的结构爆炸图。 图1-1 对于直板型手机,主要结构部件有: ?显示屏镜片LCD LENS ?前壳Front housing ?显示屏支撑架LCD Frame ?键盘和侧键Keypad/Side key ?按键弹性片Metal dome ?键盘支架Keypad frame ?后壳Rear housing ?电池Battery package ?电池盖Battery cover ?螺丝/螺帽screw/nut ?电池盖按钮Button

手机音腔部品选型及音腔结构设计指导及规范

手机音腔部品选型及音腔结构设计指导及规范 The manuscript was revised on the evening of 2021

手机音腔部品选型及音腔结构设计指导及规范 1. 声音的主观评价 声音的评价分为主观和客观两个方面,客观评价主要依赖于频响曲线﹑SPL值等声学物理参数,主观则因人而异。一般来说,高频是色彩,高中频是亮度,中低频是力度,低频是基础。音质评价术语和其声学特性的关系如下表示: 从人耳的听觉特性来讲,低频是基础音,如果低频音的声压值太低,会显得音色单纯,缺乏力度,这部分对听觉的影响很大。对于中频段而言,由于频带较宽,又是人耳听觉最灵敏的区域,适当提升,有利于增强放音的临场感,有利于提高清晰度和层次感。而高于 8KHz略有提升,可使高频段的音色显得生动活泼些。一般情况下,手机发声音质的好坏可以用其频响曲线来判定,好的频响曲线会使人感觉良好。 声音失真对听觉会产生一定的影响,其程度取决于失真的大小。对于输入的一个单一频率的正弦电信号,输出声信号中谐波分量的总和与基波分量的比值称为总谐波失真(THD),其对听觉的影响程度如下: THD<1%时,不论什么节目信号都可以认为是满意的; THD>3%时,人耳已可感知; THD>5%时,会有轻微的噪声感;

THD>10%时,噪声已基本不可忍受。 对于手机而言,由于受到外形和Speaker尺寸的限制,不可能将它与音响相比,因此手机铃声主要关注声音大小、是否有杂音、是否有良好的中低音效果。 2. 手机铃声的影响因素 铃声的优劣主要取决于铃声的大小、所表现出的频带宽度(特别是低频效果)和其失真度大小。对手机而言,Speaker、手机声腔、音频电路和MIDI选曲是四个关键因素,它们本身的特性和相互间的配合决定了铃声的音质。 Speaker单体的品质对于铃声的各个方面影响都很大。其灵敏度对于声音的大小,其低频性能对于铃声的低音效果,其失真度大小对于铃声是否有杂音都是极为关键的。 手机声腔则可以在一定程度上调整Speaker的输出频响曲线,通过声腔参数的调整改变铃声的高、低音效果,其中后声腔容积大小主要影响低音效果,前声腔和出声孔面积主要影响高音效果。 音频电路输出信号的失真度和电压对于铃声的影响主要在于是否会出现杂音。例如,当输出信号的失真度超过10%时,铃声就会出现比较明显的杂音。此外,输出电压则必须与Speaker相匹配,否则,输出电压过大,导致Speaker在某一频段出现较大失真,同样会产生杂音。 MIDI选曲对铃声的音质也有一定的影响,表现在当铃声的主要频谱与声腔和Speaker的不相匹配时,会导致MIDI音乐出现较大的变音,影响听感。 总之,铃声音质的改善需要以上四个方面共同配合与提高,才能取得比较好的效果。 3. Speake r的选型原则 扬声器(Speaker)简介 3.1.1 Speaker工作原理 扬声器又名喇叭。喇叭的工作原理:是由磁铁构成的磁间隙内的音圈在电流流动时,产生上下方向的推动力使振动体(振动膜)振动,从而振动空气,使声音传播出去,完成了电-声转换。喇叭实际上是一个电声换能器。 对手机来说,Speaker是为实现播放来电铃声﹑音乐等的一个元件。手机Speaker 音压频率使用范围在500Hz~10KHz。 3.1.2 手机用Speaker主要技术参数及要求 a>. 功率Power。功率分为额定功率Rated Power和最大功率Max Power。

手机外壳结构设计指引

结构设计注意事项 z PCBA-LAYOUT及ID评审是否OK z标准件/共用件 z内部空间、强度校核: z根据PCBA进行高度,宽度(比较PCBA单边增加2.5~~3.0,或按键/扣位处避空)与长度分析。 z装配方式,定位与固定; z材料,表面工艺,加工方式, z成本,周期,采购便利性; 塑料壳体设计 1.材料的选取 ABS:高流动性,便宜,适用于对强度要求不太高的部件(不直接受到冲击,不承受可靠性测试中结构耐久性测试的部件),如手机内部的支撑架(Keypad frame,LCD frame)等。 还有就是普遍用在要电镀的部件上(如按钮,侧键,导航键,电镀装饰件等)。目前常用奇 美PA-727,PA757等。 PC+ABS:流动性好,强度不错,价格适中。适用于绝大多数的手机外壳,只要结构设计比较优化,强度是有保障的。较常用GE CYCOLOY C1200HF。 PC:高强度,贵,流动性不好。适用于对强度要求较高的外壳(如翻盖手机中与转轴配合的两个壳体,不带标准滑轨模块的滑盖机中有滑轨和滑道的两个壳体等,目前指定必须用 PC材料)。较常用GE LEXAN EXL1414和Samsung HF1023IM。 在对强度没有完全把握的情况下,模具评审Tooling Review时应该明确告诉模具供应商,可能会先用PC+ABS生产T1的产品,但不排除当强度不够时后续会改用PC料的可能性。 这样模具供应商会在模具的设计上考虑好收缩率及特殊部位的拔模角。 上、下壳断差的设计:即面刮(面壳大于底壳)或底刮(底壳大于面壳)。可接受的面刮 <0.15mm,可接受底刮<0.1mm,尽量使产品的面壳大于底壳。一般来说,面壳因有较多的 按键孔,成型缩水较大,所以缩水率选择较大,一般选0.5%。底壳成型缩水较小,所以缩 水率选择较小,一般选0.4%,即面壳缩水率一般比底壳大0.1%。即便是两件壳体选用相 同的材料,也要提醒模具供应商在做模时,后壳取较小的收缩率。

一款完整手机机构设计过程

目录 一,主板方案的确定 二,设计指引的制作 三,手机外形的确定 四,结构建模 1.资料的收集 2.构思拆件 3.外观面的绘制 4.初步拆件 5.建模资料的输出 五,外观手板的制作和外观调整六,结构设计 1.止口线的制作 2.螺丝柱的结构 3.主扣的布局 4.上壳装饰五金片的固定结构 5.屏的固定结构 6.听筒的固定结构 7.前摄像头的固定结构 8.省电模式镜片的固定结构 9.MIC的固定结构 10.主按键的结构设计 11.侧按键的结构设计 https://www.doczj.com/doc/1915532878.html,B胶塞的结构设计 13.螺丝孔胶塞的结构设计 14.喇叭的固定结构 15.下壳摄像头的固定结构 16.下壳装饰件的结构设计 17.电池箱的结构设计 18.马达的结构设计 19.手写笔的结构设计 20.电池盖的结构设计 21.穿绳孔的结构设计 七.报价图的资料整理 八,结构设计优化 九,结构评审 十,结构手板的验证 十一,模具检讨 十二,投模期间的项目跟进 十三,试模及改模 十四,试产

一,主板方案的确定 在手机设计公司,通常分为市场部(以下简称MKT),外形设计部(以下简称ID),结构设计部(以下简称MD)。一个手机项目的是从客户指定的一块主板开始的,客户根据市场的需求选择合适的主板,从方案公司哪里拿到主板的3D图,再找设计公司设计某种风格的外形和结构。也有客户直接找到设计公司要求设计全新设计主板的,这就需要手机结构工程师与方案公司合作根据客户的要求做新主板的堆叠,然后再做后续工作,这里不做主要介绍。当设计公司的MKT和客户签下协议,拿到客户给的主板的3D图,项目正式启动,MD的工作就开始了。 二,设计指引的制作 拿到主板的3D图,ID并不能直接调用,还要MD把主板的3D图转成六视图,并且计算出整机的基本尺寸,这是MD的基本功,我把它作为了公司招人面试的考题,有没有独立做过手机一考就知道了,如果答得不对即使简历说得再经验丰富也没用,其实答案很简单,以带触摸屏的手机为例,例如主板长度99,整机的长度尺寸就是在主板的两端各加上2.5,整机长度可做到99+2.5+2.5=104,例如主板宽度37.6,整机的宽度尺寸就是在主板的两侧各加上2.5,整机宽度可做到37.6+2. 5+2.5=42.6,例如主板厚度13.3,整机的厚度尺寸就是在主板的上面加上1.2(包含0. 9的上壳厚度和0.3的泡棉厚度),在主板的下面加上1.1(包含1.0的电池盖厚度和0.1的电池装配间隙),整机厚度可做到13.3+1.2+1.1=15.6,答案并不唯一,只要能说明计算的方法就行 还要特别指出ID设计外形时需要注意的问题,这才是一份完整的设计指引。

一款完整的手机结构设计过程

手机结构设计 一,主板方案的确定 二,设计指引的制作 三,手机外形的确定 四,结构建模 1.资料的收集 2.构思拆件 3.外观面的绘制 4.初步拆件 5.建模资料的输出 五,外观手板的制作和外观调整 六,结构设计 1.止口线的制作 2.螺丝柱的结构 3.主扣的布局 4.上壳装饰五金片的固定结构 5.屏的固定结构 6.听筒的固定结构 7.前摄像头的固定结构 8.省电模式镜片的固定结构 9.MIC的固定结构 10.主按键的结构设计 11.侧按键的结构设计 https://www.doczj.com/doc/1915532878.html,B胶塞的结构设计 13.螺丝孔胶塞的结构设计 14.喇叭的固定结构 15.下壳摄像头的固定结构 16.下壳装饰件的结构设计 17.电池箱的结构设计 18.马达的结构设计 19.手写笔的结构设计 20.电池盖的结构设计 21.穿绳孔的结构设计 七.报价图的资料整理 八,结构设计优化 九,结构评审 十,结构手板的验证 十一,模具检讨 十二,投模期间的项目跟进 十三,试模及改模 十四,试产

十五、量产 一,主板方案的确定 在手机设计公司,通常分为市场部(以下简称MKT),外形设计部(以下简称ID),结构设计部(以下简称MD)。一个手机项目是从客户指定的一块主板开始的,客户根据市场的需求选择合适的主板,从方案公司哪里拿到主板的3 D图,再找设计公司设计某种风格的外形和结构。也有客户直接找到设计公司要求设计全新设计主板的,这就需要手机结构工程师与方案公司合作根据客户的要求做新主板的堆叠,然后再做后续工作,这里不做主要介绍。当设计公司的MK T和客户签下协议,拿到客户给的主板的3D图,项目正式启动,MD的工作就开始了。 二,设计指引的制作 拿到主板的3D图,ID并不能直接调用,还要MD把主板的3D图转成六视图,并且计算出整机的基本尺寸,这是MD的 基本功,我把它作为了公司招人面试的考题,有没有独立做过手机一考就知道了,如果答得不对即使简历说得再经验丰富也没用,其实答案很简单,以带触摸屏 的手机为例,例如主板长度99,整机的长度尺寸就是在主板的两端各加上2.5,整机长度可做到99+2.5+2.5=104,例如主板宽度37.6,整机的宽度尺寸就是在主板的两侧各加上2.5,整机宽度可做到37.6+2.5+2.5=42.6,例如主板厚度13.3,整机的厚度尺寸就是在主板的上面加上1.2(包含0.9的上壳厚度和0.3的泡棉厚度),在主板的下面加上1.1(包含1.0的电池盖厚度和0.1的电池装配间隙),整机厚度可做到13. 3+1.2+1.1=15.6,答案并不唯一,只要能说明计算的方法就行 还要特别指出ID设计外形时需要注意的问题,这才是一份完整的设计指引。

手机音腔设计规范

电声部品选型及音腔结构设计 1. 声音的主观评价 声音的评价分为主观和客观两个方面,客观评价要紧依靠于频响曲线﹑SPL值等声学物理参数,主观则因人而异。一般来讲,高频是色彩,高中频是亮度,中低频是力度,低频是基础。音质评价术语和其声学特性的关系如下表示:

从人耳的听觉特性来讲,低频是基础音,假如低频音的声压值太低,会显得音色单纯,缺乏力度,这部分对听觉的阻碍专门大。关于中频段而言,由于频带较宽,又是人耳听觉最灵敏的区域,适当提升,有利于增强放音的临场感,有利于提高清晰度和层次感。而高于8KHz略有提升,可使高频段的音色显得生动爽朗些。一般情况下,手机发声音质的好坏能够用其频响曲线来判定,好的频响曲线会使人感受良好。 声音失真对听觉会产生一定的阻碍,其程度取决于失确实大小。关于输入的一个单一频率的正弦电信号,输出声信号中谐波重量的总和与基波重量的比值称为总谐波失真(THD),其对听觉的阻碍程度如下:THD<1%时,不论什么节目信号都能够认为是中意的; THD>3%时,人耳已可感知; THD>5%时,会有轻微的噪声感; THD>10%时,噪声已差不多不可忍受。 关于手机而言,由于受到外形和Speaker尺寸的限制,不可能将它与音响相比,因此手机铃声要紧关注声音大小、是否有杂音、是否有良好的中低音效果。

2. 手机铃声的阻碍因素 铃声的优劣要紧取决于铃声的大小、所表现出的频带宽度(特不是低频效果)和其失真度大小。对手机而言,Speaker、手机声腔、音频电路和MIDI选曲是四个关键因素,它们本身的特性和相互间的配合决定了铃声的音质。 Speaker单体的品质关于铃声的各个方面阻碍都专门大。其灵敏度关于声音的大小,其低频性能关于铃声的低音效果,其失真度大小关于铃声是否有杂音差不多上极为关键的。 手机声腔则能够在一定程度上调整Speaker的输出频响曲线,通过声腔参数的调整改变铃声的高、低音效果,其中后声腔容积大小要紧阻碍低音效果,前声腔和出声孔面积要紧阻碍高音效果。 音频电路输出信号的失真度和电压关于铃声的阻碍要紧在因此否会出现杂音。例如,当输出信号的失真度超过10%时,铃声就会出现比较明显的杂音。此外,输出电压则必须与Speaker相匹配,否则,输出电压过大,导致Speaker在某一频段出现较大失真,同样会产生杂音。 MIDI选曲对铃声的音质也有一定的阻碍,表现在当铃声的要紧频谱与声腔和Speaker的不相匹配时,会导致MIDI音乐出现较大的变音,阻碍听感。 总之,铃声音质的改善需要以上四个方面共同配合与提高,才能取得比较好的效果。

手机结构评审注意事项

手机结构评审注意事项 1>.所有零件的外观面须有3°以上的拔模 2>.所有骨位厚度不能超过壁厚的60%,螺丝boss 建议做火山口的结 构,以防缩水 3>.TP AA 区大于LCD AA 区单边0.5 4>.壳体开口大于TP AA 区单边0.5 5>.整机的外观只允许顺段差,不能出现逆差 6>.零件避免有厚度0.5 以下的较大面积的区域 7>.有空间时,螺丝柱一般做3~4 个加强筋,加强强度,防止打爆裂 8>.电池仓四周需拔模1.5 度以上 9>.电池盖胶厚小于0.8mm 时背面需要加加强筋 10>.小装饰件热熔时,热熔柱与热熔孔需有3 个精确的定位,即单边 间隙0.05mm,便于热熔前不掉落 11>.产品热熔时胶厚需要0.9MM 以上,否则背面压花 12>热熔柱直径需要大于¢0.6mm,¢0.8mm 以上的热熔柱容易缩水, 建议做成中空状 13>.热熔柱和孔位间隙预留0.05~0.1MM 的间隙 14>.热熔孔周边2.0MM 范围以内最好不要有骨位 15>.热熔柱尽量靠近边角落和转角位置,需做溢胶槽 16>.装饰件喷涂时建议大水口,保证带水口喷涂时不容易掉落 17>.壳体的入水点不能靠近外观面,方便加点 18>.设计入水点时考虑表面气纹、夹线需在喷涂能遮盖范围内 19>.水口位不能太靠近螺母柱 20>.需要丝印的位置需要和骨位预留4.5mm 以上的位置 22>.采用均匀壁厚设计,利于注塑以保证高质量的外表面,若一定要 局部减胶,深度应小于该处壁厚的1/3 并辅以圆角过渡,以免出现 烘痕,影响表面质量 23>.LCD 框的胶位宽度不能小于0.8mm 24>.双面胶最小宽度≥1.0(LENS 位置最小1.2) 25>.Foam 最小宽度≥1.0mm PIFA 天线下面连接器等需要压,采用 EVA 白色材质,不可以采用黑色foam(里面含有炭粉,吸波) 26>.凡是形状对称,而装配时有方向要求的结构件,必须加防呆措施 27>. LENS 保护膜必须是静电保护模,要设计手柄,手柄不露出手机 外形,不能遮蔽出音孔 28>.电池连接器在整机未装电池的状态下可以用探针接触(不能被求housing 盖住) 29>.所有塞子要设计拆卸口(≥R0.5 半圆形) 30>.所有塞子(特别是IO 塞)不能有0.4 厚度的薄胶位 31>.电芯与电池壳体厚度方向单边留间隙0.2 32>.RF 塞和螺丝塞底部设计环形过盈单边0.1 ,较深需设计排气槽 33>.止口宽0.65mm,高度≥0.8mm(保证止口配合面足够,挡住ESD) 34>.转轴过10 万次的要求,根部加圆角≥R0.3(左右凸肩根部) 35>.Flip rear 与Housing front 之间的间隙建议留到0.4mm 以上 36>.翻盖底(大LENS)与主机面(键帽上表面)间隙≥0.4 37>.壳体装配转轴的孔周圈壁厚≥1.0 非转轴孔周圈壁厚≥1.2 38>主机、翻盖转轴孔开口处必须设计导向斜角≥C0.2 39>.壳体非转轴孔与另壳体凸圈圆周配合间隙设计单边0.05,不能喷 漆,深度方向间隙≥0.2

手机结构设计指南

手机结构设计指南 (Design Guide Line) Revision T3 序言 手机的结构设计都是有规律可循的,本设计指南的撰写,旨在总结和归纳以往我们在手机设计方面的经验,重点阐述本公司对于机械结构设计的要求,避免不同的工程师在设计时,重复出现以往的错误。使设计过程更加规范化、标准化,利于进一步提高产品质量,设计出客户完全满意的产品。 本文的撰写,旨在抛砖引玉,我们将不断地总结设计经验,完善本设计指南,使我们的结构设计做得更好。本文的内容不涉及从事手机结构设计所需的必不可少的基本技能,如PRO/E、英语水平、模具制造等等。 烟波浪子整理制作 2005-12-31 无维网免 费技 术资 料 h t t p ://w w w.5 d c a d .c n

一. 手机的一般形式 目前市面上的手机五花八门,每年新上市的手机达上千款,造型各异,功能各有千秋。但从结构类型上来看,主要有如下五种: 1. 直板式 Candy bar 2. 折叠式 Clamshell 3. 滑盖式 Slide 4. 折叠旋转式 Clamshell & Rotary 5. 直板旋转式 Candy bar & Rotary 本设计指南将侧重于前四种比较常见的类型。一般手机结构主要包含几个功能模块:外壳组件(Housing),电路板(PCBA),显示模块(LCD),天线(Antenna),键盘(keypad),电池(Battery)。但随着手机的具体功能和造型不同,这些模块又会有所不同,下面以几种常见手机为例来简单介绍一下手机上的结构部件。 图1-1是一款直板式手机的结构爆炸图。 图1-1 对于直板型手机,主要结构部件有: 显示屏镜片 LCD LENS 前壳 Front housing 显示屏支撑架 LCD Frame 键盘和侧键 Keypad/Side key 按键弹性片 Metal dome 键盘支架 Keypad frame 后壳 Rear housing 电池 Battery package 电池盖 Battery cover 螺丝/螺帽 screw/nut 电池盖按钮 Button 缓冲垫 Cushion 双面胶 Double Adhesive Tape/sticker 以及所有对外插头的橡胶堵头 Rubber cover 等 如果有照相机,还会有照相机镜片Camera lens 和闪光灯Flash LED 镜片 无维网免费技术资料 h t t p ://w w w .5d c a d .c n

手机设计高级结构工程师结构心得

龙旗手机高级结构工程师结构心得 手机结构设计中主板stacking的堆叠我没怎么做过,所以我就不献丑了,我只谈谈整机结构设计吧,我个人把手机结构设计分为以下几个部分: 一、Stacking的理解: 结构工程师要准确理解一个stacking的含义,拿到一个新stacking,必须理解此stacking作结构哪里固定主板、哪里设计卡扣,按键的空间,ESD接地的防护等等,这些我们都要有个清楚的轮廓。当然好的堆叠工程师他一定是个好的整机结构工程师,但一个好的整机结构工程师去堆叠的话往往会顾此失彼。所以我们在评审stacking时整机结构工程师多从结构设计方面提出问题来改善stacking。 二、ID的评审和沟通: 结构工程师拿到ID包装好的ID3D图档前,首先要拿到ID的平面工艺图,分析各零件及拆件后的工艺可行性,或者用怎样的工艺才能达到ID的效果,这当中要跟ID沟通。 有的我们可以达到ID效果,但可能结构风险性很大,所以不要一味迁就ID,要知道一个产品质量的好坏最后来追究的是你结构工程师的责任,没人去说ID的不是的,所以是结构决定ID,而不是ID来左右我们结构,当然我们要尽量保存ID的意愿。然后、才是检查各部分作结构空间是否足够,这点我就不多讲了,这里我是要对ID工程师建模提出几个建议: 1.ID工程师建模首先把stacking缺省装配到总装图中; 2.ID工程师要作骨架图档,即我们通常说的主控文件;骨架图档不管是面还是实体形式,我建议要首先由线控制它的形状及位置,这样后期调控骨架图档的位置及形状只要调控相应的线就是了; 3.ID工程师必须把装饰件及贴片的形状、位置、各壳体分模线位置、必须用线先在骨架图档中画出; 4.所有的零件图档必须第一个特征是复制骨架图档过来,然后在相应剪切而成;坚决反对在总装图中直接参考一个零件生成另一个零件。 5.ID建模的图档禁止参考STACKING中的任何东东,防止stacking更新后ID图档重生失败; 这些是我对ID建模所提出的建议,只要遵从如上几点,我们结构就可以直接在ID建模特征的后面继续了,思路也很清晰明了;且ID 如果调整外形及位置也会很容易。 三、壳体结构设计; 1.手机的常用材料: 了解手机常用材料的性能与特性,有利于我们在设计过程中合理的选用材料,目前手机常用的材料有:PC、ABS、PC+ABS、POM、PMMA、TPU、RUBBER以及最新出现的材料PC+玻纤和尼龙+玻纤等。 PC聚碳酸脂 化学和物理特性: PC是高透明度(接近PMMA),非结晶体,耐热性优异;成型收缩率小(0.5-0.7%),高度的尺寸稳定性,胶件精度高;冲击强度高居热塑料之冠,蠕变小,刚硬而有韧性;耐疲劳强度差,耐磨性不好,对缺口敏感,而应力开裂性差。 注塑工艺要点:

智能手机结构设计流程

款完整的手机结构设计过程 ,主板方案的确定 在手机设计公司,通常分为市场部(以下简称 MKT ,外形设计部(以下简称ID ),结构设计部 (以下简称MD 。一个手机项目的是从客户指定的一块主板开始的,客户根据市场的需求选择合适的 主板,从方案公司哪里拿到主板的 3D 图,再找设计公司设计某种风格的外形和结构。也有客户直接找 到设计公司要求设计全新设计主板的,这就需要手机结构工程师与方案公司合作根据客户的要求做新 主板的堆叠,然后再做后续工作,这里不做主要介绍。当设计公司的 MKT 和客户签下协议,拿到客户 给的主板的3D 图,项目正式启动,MD 的工作就开始了。 ,设计指引的制作 拿到主板的3D 图,ID 并不能直接调用,还要MD 把主板的3D 图转成六视图,并且计算出整机的基 本尺 寸,这是MD 的 基本功,我把它作为了公司招人面试的考题,有没有独立做过手机一考就知道了 ,如果答得不对即 ,其实答案很简单,以带触摸屏的手机为例,例如主板长度99,整机的长度 2.5, 整机长度可做到99+2.5+2.5=104,例如主板宽度37.6,整机的宽度 2.5, 整机宽度可做到37.6+2.5+2.5=42.6,例如主板厚度1 3.3,整机的厚 1.2(包含0.9的上壳厚度和0.3的泡棉厚度),在主板的下面加上1.1(包 含1.0的电池盖厚度和0.1的电池装配间隙),整机厚度可做到13.3+1.2+1.1=15.6,答案并不唯一,只要 能说明计算的方法就行 还要特别指出ID 设计外形时需要注意的问题,这才是一份完整的设计指引。 三,手机外形的确定 ID 拿到设计指引,先会画草图进行构思,接下来集中评选方案,确定下两三款草图,既要满足客 户要求的创意,这两三款草图之间又要在风格上有所差异,然后上机进行细化,绘制完整的整机效果 图,期间MD 要尽可能为ID 提供技术上的支持,如工艺上能否实现,结构上可否再做薄一点, ID 完成 的整机效果图经客户调整和筛选,最终确定的方案就可以开始转给 MD 故结构建模了。 四,结构建模 1. 资料的收集 MD 开始建模需要ID 提供线框,线框是ID 根据工艺图上的轮廓描出的,能够比较真实的反映ID 的设 计意图,输出的文件可以是DXF 和 IGS 格式,如果是DXF 格式,MD 要把不同视角的线框在 CAD 中按六视图 的方位摆好,以便调入PRO 中描线(直接在PRO 中旋转不同视角的线框可是个麻烦事).也有负责任的I D 在犀牛中就帮MD 把不同视角的线框按六视图的方位摆好了存成 IGS 格式文件,MD 只需要在ROE 中描 线就可以了 .有人也许会问,说来说去都是要描线,ID 提供的线框直接用来画曲面不是更省事吗 ?不是,I D 提供的线框不是参数化的,不能进行修改和编辑,限制了后续的结构调整,所以不建议MD S 接用ID 提 使简历说得再经验丰富也没用 尺寸就是在主板的两端各加上 尺寸就是在主板的两侧各加上 度尺寸就是在主板的上面加上

音腔结构设计思考与总结

音腔结构设计思考与总结 通过参观XX电机厂,就音腔与Speaker方面,与其公司技术人员交换意见,结合本公司的产品结构,现归纳如下,如有不同意见,请各位提出您宝贵的意见,进行分析讨论,以比较不同方案优缺点,最后论证及确认这些结构方式适用范围及其可行性。 一、Speaker音腔出声孔的结构设计 1、Speaker前腔设计方式及说明: 1)音腔出声孔为穿插方式的结构形式: a、红色为硅胶 b、黄色为面壳 c、青色为Speaker 公司目前采用的设计(图1) 喇叭前腔H1尺寸较小,以使前腔空间小,同时要防止喇叭振膜在振动中接触到塑胶平面,即要求留有足够的振动空间,当然,这个H1不是越大越好,它有一个相对腔体出声孔面积较佳的权益值(以前是通过试听方式作调整)。

结构方式(2) 喇叭前腔之对应的塑胶做成弧面,即可以使得H1尺寸加大,但要 考虑H2尺寸,保证面壳胶厚有足够的强度。其目的是合理增加喇叭之前腔腔体的空间。此情况,喇叭网粘剂为液体最好。 注意: 1、作成弧面的情况,喇叭网若是背双面胶,那么装配就不方便,喇叭网不易装平; 2、作成弧面的情况,装配硅胶垫需为平面,以使装配牢固可靠。 2)音腔孔为碰穿方式: 3.m m 000. mm 50TC700音腔孔(图 3)

分析: 1、 结构及加工上:H=3.0mm,W=0.5mm,模具强度不够好,来料品质 不能保证; 2、 音腔孔0.50x3.0mm :尺寸太小、太深,喇叭振动过程中需要的气 流循环(空气进出音腔孔)出现不连续现象,导致削弱高音,影响音量大小。 改善方法: 1、 穿插结构方式:(如TC700S )不仅可以解除模具加工强度不良问 题,同时可以很好地控制音腔孔大小,从而改善气流循环,音量大小得以改善。 2、 也可以在TC700音腔孔(图3)上作如下的改善,详见下图(图 4) 060080.. mm —10020 ..±R W (示意图4---仅作示意) 说明:在后模开一个沉台,宽度为2.50mm 左右,尽可能圆滑过渡,音腔孔尺寸请上图所示。这样也可以改善音量效果。(当然此结构在TC700相应

结构设计评审规范

(一)ID 部分 1.外观面不能有倒拔模现象;所有外观曲面过度光顺; 2.美工线0.4~0.5*0.18(深度);外观局部突出不超过1mm; 3.主板机心装配空间检查;最小部分不超过0.6-0.8; (二)硬件确认 1.硬件版本应为最新; 2.硬件排布合理、紧凑、尽量减小整体尺寸; 3.主板须有4个螺钉锁柱位,并避免锁柱与按键冲突(一般情况下,键盘距外观面 4.2以上就不会跟螺钉干涉); 4.所需电子元气件规格书确认; 5.3D图尺寸是否与规格书吻合; 6.3D图元气件位置确认; 7.D ome排布迎合ID,中心尽量与按键中心重合,Dome采量直径:5mm/直径4mm 8.电芯容量按客户需求; 9.D OME 装配定位孔(至少3个); 10.邮票孔位置; 11.FPC 侧键部分有无留缺口; 12.声学器件与天线距离(不小于5mm); 13.确认电池为内置还是封装电池。 (三)结构部分 A.总装 1.3D图档装配关系条理清晰明了符合装配工艺(即PART LIST 的级别关系); 2.翻盖底面和主机面间隙0.3-0.5, (一般取0.4mm);翻盖支持垫高度=翻盖底面/主 机面间隙+0.05mm; 3.滑盖底面和主机面间隙0.3-0.5; 4.所有两两配合零件间隙检查; 5.整机干涉检验; 6.卡钩的让位空间是否足够; 7.对称零件防呆设计; 8.转轴与天线同侧,翻盖FPC反侧; 9.FPC模拟到位; 10.翻盖复位开关结构(一般HALL 器件+磁铁,或者压柱+RUBBER +导电胶) 11.电池前端与D件外观间隙0.1mm(锁扣端),尾部为0.05mm,并且电池翻转取 出顺畅无干扰(尾部卡钩做20-25度斜度) 12.电池锁扣与电池配合深度0.8mm,电池与D件卡扣配合深度1mm; 卡扣退位空 间1.3mm 以上; 13.D件电池仓侧壁必须给出拔模; 14.电池与锁扣配合结构必须做在电池面壳上; 15.电池背胶及膨胀空间按0.3mm高度,侧隙为0.2mm; 16.电池保护板面积20m m×6mm或28*4mm,元件高度1mm;电路板厚度0.4MM; 17.不要忘记电池标贴、产品标贴、入网标贴(12*30MM) 18.C、D件美工线尺寸0.2m m×0.2mm(宽×深),翻盖A、B件及电池与机身配合 无须美工线; 19.A、B、C、D壳基本壁厚=>1.2mm 20.EMC、ESD结构考量 21.机底防磨点及按键盲点

手机结构设计

手机结构设计标准(详细分类珍藏版) 字体: 小中大| 打印发表于: 2007-7-02 07:13 作者: wildfire 来源: SupeSite/X-Space社区门 户 一.天线的设计 1,PIFA双频天线高度≥7mm,面积≥600mm2,有效容积≥5000mm3 PIFA 2,三频天线高度≥7.5mm,面积≥700mm2,有效容积≥5500mm3 3,PIFA天线与连接器之间的压紧材料必须采用白色EVA(强度高/吸波少) 4,圆形外置天线尽量设计成螺母旋入方式非圆形外置天线尽量设计成螺丝锁方式。 5,外置天线有电镀帽时,电镀帽与天线内部外壳不要设计成通孔式,否则ESD难通过。6,内置单棍天线,电子器件离开天线X方向10(低限8),天线尽量*壳体侧壁,天线倾斜不得超过5度,PCB天线触点背面不允许有金属。 7,内置双棍天线如附图所示,效果非常不好,硬件建议最好不要采用 8,天线与SIM卡座的距离要大于30MM GUHE电工天线,周围3mm以内不允许布件,6mm以内不允许布超过2mm高的器件,古河天线正对的PCB板背面平面方向周围3mm 以内不允许有任何金属件 二.翻盖转轴处的设计: 1,尽量采用直径5.8hinge, 2,转轴头凸出转轴孔2.2,5.8X5.1端与壳体周圈间隙设计单边0.02,2D图上标识孔出模斜度为0 3,孔与hinge模具实配,为避免hinge本体金属裁切毛边与壳体干涉, 4,5.8X5.1端壳体孔头部做一级凹槽(深度0.5,周圈比孔大单边0.1), 5,4.6X4.2端与壳体周圈间隙设计单边0.02,,2D图上标识孔出模斜度为0, 6,孔与hinge模具实配,hinge尾端(最细部分)与壳体周圈间隙设计0.1 7,深度方向5.8X5.1端间隙0,4.6X4.2端设计间隙≥0.2,试模适配到装入方便,翻盖无异音,T1前完成 8,壳体装配转轴的孔周圈壁厚≥1.0 非转轴孔周圈壁厚≥1.2 9,主机、翻盖转轴孔开口处必须设计导向斜角≥C0.2 10,壳体非转轴孔与另壳体凸圈圆周配合间隙设计单边0.05,不允许喷漆, 深度方向间隙≥0.2,试模适配到装入方便,翻盖无异音,T1前完成 11,凸圈凸起高度1.5,壁厚≥0.8,内要设计加强筋(见附图) 12,非转轴孔开口处必须设计导向斜角≥C0.2,凸圈必须设计导向圆角≥R0.2 13,HINGE处翻盖与主机壳体总宽度,单边设计0.1,试模适配到喷涂后装入方便,翻盖无异

手机结构设计

第1章 绪论 1.1 手机的分类 随着国内通信业的迅猛发展,国内手机行业的竞争也日趋白热化,国内外各手机厂商纷纷推出不同样式、功能的手机。手机按照外形可以统称分为直板机和翻盖机两种(如图1-1和1-2所示),根据手机的特殊功能又可分为拍照手机、滑盖手机、旋盖手机和具有商务功能的PDA手机,由于手机种类过于繁多,这里就不再赘述。 1.2 手机的主要结构件名称 目前,由于手机的样式繁多,其结构件数量和样式也是越来越多。直板机的主要结构件名称:本体上壳、本体下壳、LCD 镜片、按键、电池等;翻盖机的主要结构件名称:翻盖顶盖、翻盖底盖、本体上壳、本体下壳、按键、侧按键、LCD镜片、标牌、电池等。在后续的章节中将详细列举结构件的中英文名称。 1.3 手机结构件的几大种类 根据手机结构件的功用和材料性质可分为以下五类: 胶壳类:例如:翻盖机的翻盖和本体,直板机的本体上下壳等; 按键类:主按键、侧按键、Metal Dome等; 标牌和镜片装饰类:金属标牌、塑料标牌和镜片等; 金属部件类:镁合金射铸件、铝合金冲压件、铰链、屏蔽盖、天线螺母、螺钉、螺母等; 胶贴类:双面胶带、导电泡棉、热反应胶带等。 1.4 手机零件命名规则 由于Pro/ENGINEER文件不支持中文名,所有零件均使用英文命名;为减少文件名长度,部分单词使用简写,如:“Microphone“简写为:“Mic”,“front”简写为“fr”,“rear”简写为“rr”,“cosmetic”简写为“cos” ;零件名单词与单词之间使用下划线“_”连接,例如:翻盖顶盖翻译为“Flip Top”,电池盖板翻译为“Battery cover”,电池壳翻译为“Battery case”等。 下面以直板机K269和翻盖机K698为例,对照表1-1、表1-2和图1-6、图1-7介绍一下手机零件的中英文名称。 表1-1 K269中英文名称对照表 序号 中文名 英文名 1 LCD镜片 LCD_Lens 2 面壳装饰板 Front_Case_Cos 3 听筒装饰物 Receiver_Cos 4 听筒装饰物双面胶 Double-Tape_for_Receiver_Cos 5 耳机皮塞 Earphone_Cap 6 侧按键 Side_Key 7 LED灯镜 L ED_Lens 8 听筒防尘垫 Receiver_Mask 9 听筒 Receiver 10 LCD衬垫 LCD_Cushion 11 LCD屏蔽盖 LCD_Shielding 12 LCD模块 LCD_Module 13 扬声器衬垫 Speaker_Cushion 14 扬声器 Speaker 15 天线衬垫 Antenna_Cushion 16 扬声器防尘垫 Speaker_Mask 17 内置天线 Internal_Antenna

喇叭音腔设计原理

关于喇叭音腔设计的基本原理 新闻出处:21ic发布时间:2007-10-20 lldwsw发布于2007-10-20 9:39:00 关于喇叭的音腔设计,基本上我们停留在一个概念上,而没有一套完整的理论指导。我们知道的音腔设计,往往是如下的理解: 1:要有音腔,起扩音用,至于为什么要有音腔,则不明白。 2:音腔要求密封,若密封不好,则导致低音很差。 3:音腔孔不能开的太大,若开的太大,会导致音量变小。 以上三点是我们最常关心的,我们往往按要求去做,没有问过为什么。 本人试着用射频理论推导喇叭音腔设计: 对比天线与喇叭 天线喇叭 媒质真空空气 作用电能转换成电磁场能量电能转换成声音能量 主要器件天线喇叭 附属器件匹配电路音腔 原理电磁场理论震动波理论 目的获得最大的能量输出,合适的频响最大的能量输出,合适的频响 结论只有合适的天线和合适的匹配电路,才能获得最大的能量和合适的频响只有高效的喇叭和合适的音腔,才能获得最大的能量和合适的频响 通过以上,我们基本上清楚,喇叭跟天线具有类似的功能,就是起能量转换作用,其中喇叭是关键器件,它是电能到声能的根本,但是附属器件音腔决

定了它的最大输出功率和频率响应,接下来我们主要讨论音响系统是如何获得最大能量的。 先举一个例子,我们用手拍空气,对空气做功基本上等于0,假如我们拿一把特别大的扇子,扇不动,对空气做功也等于 0。" 对空气做功其实就是对空气发生,假如这个频率在我们能够听到的范围内,就是声音了。 那么通过上面的例子可以说明,用手对空气做功有一个极点,也就是说有一个最大值。我们用以下公式来看: P=F × V P为功率,对外界做功的功率,F为力的大小,V为速度。这个公式说明F 太小,或者V太小,都不可能对外做功,只有两个值乘积项决定对外的功率。 接下来我们看看喇叭是不是跟手一样,就是一个振膜加一个动力线圈,振膜决定这个扇子的面积大小,动力线圈相当于人的力。 因为喇叭的振膜是不可能变的,除非换个喇叭,在喇叭振膜,电能信号的频率一定的情况下,我们来描述这个音响系统应该如何提高输出能量: 对比P=F × V公式,我们对喇叭提出一个具体对外做功的简易公式。 因为F正比振膜面积(S),所以写成F=K × S,K为系数。 V由喇叭的动力线圈决定,动力线圈的动力由电场产生,动力线圈的阻力由两部分产生,一是空气对振膜的阻力(K×S),反对振膜震动,而是喇叭自身振膜的弹力反对振膜震动(Fz)。 对于音响系统来说K×S一般远远小于Fz。这个原因如下。看一个音响系统,动不动就是100W之类的,而声音大小也没有多少,据说一个人一年高声唱歌,产生的能量只能烧一壶水,可见声音的能量还是很少的,绝大部分的音响系统,它的能量都消耗在喇叭上,发热了。

手机结构设计知识

手机结构设计检查表?手机结构设计检查表 项目名称: 日期: 编制: 版本:V1.0 项目成员:?一.通用性项目 序号检查内容 PD要求检查结果?1外形尺寸 2电池芯尺寸?3耳机插座 4 耳机堵头耳机堵头?5I/O 插座?6 I/O堵头?7小显示屏?8触摸显示屏硬图标硬图标 9 显示屏背灯光 10 键盘工艺 11 键盘导光板 12 键盘背光灯 13内置振动 14 状态指示灯 16侧键 15 挂环? 17 红外线接口 19 机体类型 22天线 21分模工艺缝? 20 翻盖/壳体间隙? 24摄像头 23 手写笔? 25 翻盖角度 ==更多精彩,源自无维网()?一.功能性项目?1. 镜片Sub Lens 镜片的工艺 (IMD/IML/模切/注塑+硬化/电铸+模切) 镜片的厚度及最小厚度?IMD/IML/注塑镜片P/L,draft,radius??固定方式及定位方式,最小粘接宽度是否大于1.5mm? 窗口(VA&AA)位置是否正确 镜片本身及固定区域有无导致ESD问题的孔洞存在 周边的电铸或金属件如何避免ESD

小镜片周边的金属是否会对天线有影响(开盖时) 2. 转轴Hinge 转轴的直径 转轴的扭力?打开角度(SPEC)?有无预压角度(开盖预压为4-6度,建议5度 装拆有无空间问题??固定转轴的壁厚是多少,材料(推荐PCGEC1200HF或者三星HF1023IM) 转轴配合处的尺寸及公差是否按照转轴SPEC? 3. 连接FLIP(SLIDE)/BASE的FPC?1) FPC的材料,层数,总厚度 2) PIN数,PIN宽PIN距?3)最外面的线到FPC边的距离是多少(推荐0.3mm)?4) FPC内拐角处最小圆角要求大于1mm,且内拐角有0.20mm宽的布铜,防止折裂.?5) 有无屏蔽层和接地或者是刷银浆? 6) FPC的弯折高度是多少(仅限于SLIDE类型) 7) FPC与壳体的长度是否合适,有无MOCKUP验证 8) 壳体在FPC通过的地方是否有圆角?多少?推荐大于0.20mm.?9) FPC与壳体间隙最小值?(推荐值为0.5mm) 10) FPC不在转轴内的部分是否有定位及固定措施? 11) 对应的连接器的固定方式 12) FPC和连接器的焊接有无定位要求?定位孔? 13) 补强板材料,厚度 4. LCD 模组?主副LCD的尺寸是否正确及最大厚度?主副LCD的VA/AA区是否正确主副LCD视角,6点钟还是12点钟??副LCD是黑白/OLED/CSTN/TFT?相应的背光是什么??副板是用FPC还PCB? PCB/FPC的厚度及层数. LCD模组是由供应商整体提供吗??如果不是,主LCD如何与PCB/FPC连接?连接器类型及高度or HOTBAR??副LCD如何与PCB/FPC连接?连接器类型及高度or HOTBAR??FPC/PCB上有无接地?周边有无露铜 ==更多精彩,源自无维网() 有无SHIELDING屏蔽?厚度,材料,如何接地??元件的PLACEMENT图是否确定? 有无干涉? 主副LCD的定位及固定 LCD模组的定位及固定 LCD模组有无CAMERA模组,是否屏蔽? 来电3色LED的位置,顶发光还是侧发光?距离light guide的距离是否合适? 模组上SPEAKER/RECEIVER/VIBRATOR的PIN脚大小,位置是否合适,焊接后不会和壳体发生干涉? 模组PCB/FPC上是否设计考虑了其他FPC hotbar的定位孔?(两个直径1mm孔) 1. SPEAKER/RECEIVER?SPEAKER的开孔面积(6-9平方mm)/前音腔体积是多少(0.6-1.0mm高度)?有无和供应商确认过. RECEIVER的开孔面积(2平方mm左右)/前音腔体积是多少(0.2-0.4mm高度)?有无和供应商确认过. SPEAKER是否2in1?单面还是双面发声?折叠机在折叠状态下SPL(>95dB/5cm)??是否有铜网和导电漆,如何接地防ESD? 连接方式(如是导线,长度和出线位置是否正确),如果是弹片接触,工作高度? SPEAKER/RECEIVER是否被紧密压在前后音腔上??前后音腔是否密封??压缩后的泡棉高度是否和供应商确认过

相关主题
文本预览
相关文档 最新文档