当前位置:文档之家› 射频滤波器的设计与仿真大学学位论文

射频滤波器的设计与仿真大学学位论文

射频滤波器的设计与仿真大学学位论文
射频滤波器的设计与仿真大学学位论文

射频滤波器的设计与仿真

摘要

射频滤波器,主要用于电子设备、频率高工作更大的衰减高频电子设备产生的干扰信号。射频滤波器是最基本射频设备。能够由微带线组成,也能够由电阻,电容等组成。

由实践可知,很多射频系统中的元件不存在准确频率选择性,因此往往需要添加滤波器,用来极其准确地完成设定的选择特性,所以对射频滤波器的设计有重要的意义。在射频有源电路的各级之间都可以借助滤波器对射频信号进行隔离、选择或是重新组合。

在设计模拟电路时,需要对高频信号在特定频率或频段内的频率分量做放大或衰减处理。这是十分重要的任务,因此本文将重点研究如何设计和实现这个任务的射频电路——射频滤波器。

关键词:射频,微波滤波器,微带线,workbench ,Advanced Design System;

The design and simulation of radio frequency filters

ABSTRACT

Rf filter, mainly used in electronic devices, high frequency work greater interference signal attenuation of high frequency electronic device. Rf filter is the most basic radio frequency devices. Can consist of microstrip line, also can by resistance, capacitance, etc.

The practice shows that a lot of rf components do not exist in the system accurate frequency selective, so often need to add the filter, used extremely accurately complete set of selected features, so the design of rf filter has an important significance. Between active rf circuit at all levels can use filter to segregate, choice or rearrange the rf signal.

In analog circuit design, the need for high frequency signal at a particular frequency or frequency component in the spectrum for amplification or decay process. It is very important task, so this article will focus on how to design and implement the task of rf circuit, rf filter. Keywords: R f, Microwave filter, Microstrip line, The workbench; ADS;

目录

第一章绪论 (1)

1.1 课题研究的背景及意义 (1)

1.2 国内外滤波器的研究现状及发展趋势 (2)

1.2.1 国内外滤波器的发展现状 (2)

1.3 论文组织 (3)

第二章射频滤波器 (4)

2.1 滤波器的分类 (4)

2.2 滤波器的主要参数 (4)

2.3 滤波器的综合设计和分析方法 (6)

2.3.1 综合设计方法 (6)

2.3.2 分析方法 (7)

2.4 常见的射频滤波器 (7)

第三章 worhbench设计与仿真 (9)

3.1 workbench软件介绍 (9)

3.2 模拟带通滤波器设计 (9)

3.2.1 设计目的 (9)

3.2.2 设计要求 (9)

3.3滤波器的设计原理及组件选择 (9)

3.3.1 滤波器介绍 (9)

3.3.2 有源滤波器的设计 (10)

3.3.3 滤波器类型的选择分析 (10)

3.3.4 741运算放大器 (12)

3.4.workbench电路仿真设计 (13)

3.4.1 仿真电路图: (13)

第四章微带滤波器的设计与仿真 (16)

4.1微带线 (16)

4.1.1 微带线传输的主模 (16)

4.1.2 微带线的特性参量 (16)

4.2耦合微带线 (16)

4.3微波谐振器 (18)

4.3.1 微波谐振器的基本参量 (18)

4.3.2 谐振腔的等效电路 (20)

4.4基本阻抗匹配理论 (20)

4.4.1匹配电路的概念和意义 (20)

4.4.2射频电路匹配网络 (21)

4.5 微带滤波器的设计与仿真 (21)

4.5.1 微带滤波器的基本原理 (21)

4.5.2 微带耦合滤波器的设计 (22)

4.5.3 电路参数设置 (22)

4.5.4 原理图仿真 (23)

4.5.5 滤波器电路的优化 (25)

4.6 本章小结 (28)

参考文献: (29)

第一章绪论

1. 1课题研究的背景及意义

根据电气和电子工程师协会对于频谱划分的方式,通常把频30MHz,--4GHz 的频段范围称为射频,另外处于300MHz~300GHz的频段范围。叫做微波。低频率比微波叫做窄频带,主要包含长、中、短等波、无线电频率(rf)在最广泛意义的是指300千赫~ 300GHZ频段范围内的电磁波,射频和微波频段。

过往的若干年期间,射频和微波在系统中的应用呈上升形式,其中原因主要由以下几个方面:

高频带带来了宽带的效应;

小体积的系统受益于相对小尺寸的器件;

有更多可利用而且不拥挤的频谱;

短波长促进了雷达系统的高分频率;

比较宽敞的信号之间,它们之间的干扰也小;

运行速度较高;

电子设备工作的快速发展,越来越多的高频电磁干扰频率、频率干扰一般会达到几百兆赫,甚至上GHz。由于电压或电流的频率越高,辐射会更有可能,它是高频干扰信号辐射干扰问题日益严重。因此,需要一个辐射衰减的高频信号有较大的filter。

由于卫星、移动和无线技术的不断发展,微波滤波器已变成射频微波领域的一个极其关键的部分。军事电子设备和国内电子设备都需要不同的形式,射频微波滤波器的功能多样性。因为每个滤波器普遍都存在自身的长处和不足,并依据实际使用和相对的技术指标对所需求的滤波器选择是必要的。

1.2国内外滤波器的研究现状及发展趋势

1.2.1国内外滤波器的发展现状

国内外发展状况:

国外:

在二十世纪初,美德的专家发明了LC滤波器,紧接着诞生了首个多回路复用系统;在1950年,日渐完善了无源滤波器的发展,在60年代,滤波器正是随着计算机技术、集成技术和材料工业的发展而迈向了相比之前更高水平,在向功率损耗低、高精度,小体格,多重功用,稳定,可靠性强以及便宜的价格的趋向发展;1978年,单片RC有源滤波器;随后几年,致力于钻研各种新式的滤波器,不遗余力提高性能和扩张使用范围;90年代,着重从事各种滤波器和各种产品的开发和应用。

国内:

大规模应用滤波器是从50年代后期开始的,当它比较多的使用是过滤以及提交是过滤的必经之路。经50多年的发展,开发和不断研究,过滤技术已纳入国际发展速度,但因为缺乏专业开发技术、集成过程以及材料产业发展缓慢,导致众多新类型的滤波器器的开发使用相比于国际发展仍然有一定差距。

在我们国家,大约1978名教师和研究生开始工作,是真正的自1980年以来,人们的注意。清华大学在1983年被制成一块现金流量表,成都大学工程和工厂,现金流量表还发展成一段。目前主要是要使用现金流量表应用和MOS工艺技术难题,由于使用者不理解,导致目前国内相关方面的应用不是很常见。

我国目前的滤波器类型和频率能够供大部分设备使用。总体来说,目前有源过滤器的技术比不上无源,因此尚未在国内大规模生产以及使用。可以从以下比例生产使用程序在各种滤波器:LC滤波器的应用(50%);晶体滤波器(20%);机械过滤器(15%);陶瓷滤波器谐波表面1%;其余的各种过滤器占13%。根据这些应用程序的使用情况显示,要使电子产品等产业在国内形成大规模的集成,其中滤波器的集成从始自终是一个关键任务。

1.3 论文组织

论文分为四个章节,从第一章开始依次为:

第一章,讲述射频滤波器的背景、研究意义以及滤波器的国内外发展状况

第二章,阐述相关滤波器的类别、主要参数、分析方法等,以及常见的几种射频滤波器。

第三章,简单介绍了软件workbench以及模拟带通滤波器的设计原理,算法及仿真图表与分析。

第四章,微带线理论知识、基本参量,微波谐振器等。ADS软件仿真及其优化。

第二章 射频滤波器

2.1滤波器的分类

存在许多类型的射频滤波器,可以从相关角度进行类别划分。总体来说,重要的划分有下面几个:

(1)按信号通过的频段可以分为:低通、高通、带通以及带阻滤波器,在理想状态下,各自的频率响应图下示:

(2)按照不同传递函数的逼近可以分为:巴特沃斯滤波器、切比雪夫滤波器和椭圆函数滤波器。这几种原型滤波器的衰减响应如图。

(3)按照原型可以分为:分布参数原型滤波器和集总参数原型滤波器。

(4)按照实现方式可以分为:无源、有源、晶体和声面表波滤波器。

2.2 滤波器的主要参数

1.中心频率:

以滤波器通频带的频率f0 f0 =(f1和f2)/ 2,f1,f2带通或带阻filter 左和右相对衰落频率点1 dB 或3 dB 。窄带filter 通常集中在插入损耗的最小点作为中心频率。

2.通带宽度(或带宽)

是指对应于三分贝衰减的频率差,表达式是:

dB 3BW =dB 3u f -3dB 1f

3.插入损耗

频谱宽度需要由BWxdB =(f2 - f1)。F1,f2的中心。频率f0以插入损耗为准,

下跌X(分贝)频率所对应于左边频点和右边频点。由于filter 原始信号在电路的引入,处于中心或截止频率的衰减损失特性,比如要求所有带内插入损耗应强调。

4.纹波

可以用响应幅度最大小值之间的差来表示衡量通带内信号响应的平坦度情况。单位用dB 或奈贝表示。

5.回波损耗(或反射损耗)

端口信号的输入功率和反射功率之比的分贝数(dB),为20 log10 |ρ|,其中ρ是电压反射系数。当端口把输入功率整个吸收时所有回波损耗是无限的

6.群时延

波产生的传输延迟,它的值是在一定频率相位(相移)的变化率频率、一阶导数的频率的阶段。假设在一个频率范围内,相位特性曲线是一条直线,然后群延迟是一个常数,则肯定不能生成失真的信号包络。

在滤波器的这些参数里、插入损耗和回波损耗,是一个微波网络矩阵(S)和散射矩阵的值,因此能够考虑把滤波器作为二端口网络来分析。

散射矩阵(S)着重反映了端口事件中,入射电压波和反射电压波之间的联系,所以能够直接使用矢量分析仪进行测量,还能够利用网络分析计算。一旦你知道网络的S 参数,然后就能够把它转换为其他矩阵参数(如阻抗矩阵以及导纳矩阵等等)。因此,微波网络的S 参数是非常重要关键的一个参量。微波可以被认为是一个二端口网络,所以利用功率分析的关系,可如图(2.2.1)所示:

图(2.2.1)

图中, in P 是入射功率, R P 是反射功率, A P 是通过滤波器的功率, L P 是负载功率。根据能量守恒关系:

in P =R P +A P

经过滤波器的功率A P ,负载会吸收掉一部分的功率,即负载功率L P ,因此可以得到:

L P ≤A P

如果滤波器无损耗,则L P =A P ;如果输入端又无反射, R P =0,则L P =in P 。11s 和21s 用分贝(dB )表示如下: B P P IL L d lg 10in ??? ?

?-= B P P RL d lg 10in R ???

? ??-= 再由电压的关系分析,假设+n V (n=1,2)表示入射到 n 端口的电压波振幅,-n V (n=1,2)表示经过 n 端口反射的电压波振幅。则通过入射的电压波和反射电压波的关系就可得出散射矩阵或【S 】矩阵:

ii S 表示当所有端口接匹配负载时从i 端口看去的反射系数; ij S 则为当所有端口连接匹配负载时从 端口j 到端口i 的传输系数。

假设端口2 接匹配负载,则inc P 和L P 分别表示端口1 和端口2 的功率,与端口电压成平方关系,插入损耗IL 是21S 的分贝表示形式。反射系数 就是11S ,回波损耗也就是11S 的dB 表示形式。

2.3 滤波器的综合设计和分析方法

2.3.1 综合设计方法

滤波器的综合设计方式有插入损耗法和镜像参量法两种 。

插入损耗的方法是使用一个系统的集成实现频率响应方法,所以它可以控制

在通带和阻带相位和振幅特征,设计一个完整的滤波器频率响应。起始的归一化频率和阻抗低通滤波器原型,通过转换,将其转换为所需的滤波器,而且还简化了设计程度。

镜参数方法是一种ABCD参数基于两端口网络分析方法的过滤输入/输入。主要是通过比较容易的级联两个滤波器,从而达到需要的衰减特性和截止频率,但是它不提供全部工作频率范围内的频率响应的具体属性。其中,插入损耗法便是最常见的现代滤波器设计的方式。

综合方法如图(2.2.2)所示:

图(2.2.2)

2.3.2 分析方法

滤波器常用分析方法有:微波网络理论、微带线理论、腔体理论、有限元法(FEM)、矩量法(MoM)以及时域有限差分法。其中微波网络理论、传输线理论和腔体理论属于传统的分析方法,而后面三种则属于数值分析方法。

2.4 常见的射频滤波器

现在常见射频滤波器为下面的几个:

1.体波及声表面波滤波器

特点是插入损耗低、带外抑制较高、频率响应平坦、体积小、承受功率高、整合兼容性高,另外品质因数高,温度特性优良,因此应用比较广泛,但是主要适合窄带应用。

2.波导滤波器

最早出现,具有低插入损耗、高功率容量、结构简单、良好的频率选择性等特点,在射频频段体积较大,成本较高。

3.介质滤波器

具有低损耗、高介电常数、频率温度系数和热膨胀系数小、可承受高功率等特点,但是由于工艺水平较低和加工成本过高,应用并不是很普遍。主要包括陶瓷、晶体等滤波器。

4.同轴线滤波器

通带插入损耗低、结构紧凑,但当工作频率变高时,尤其是超过10GHz 时,其加工误差带来的的影响是不容忽视的。

5.微带滤波器

具有结构简单,体积小,容易和电路集成,容易加工和低成本等。它主要是通过采用不同的介质衬底,形成输电线路,使其适用的频率范围宽。正是由于这些特点,它是常见的无线电频率滤波器。

2.5 本章小结

本章主要写了滤波器的分类、重要参数、设计方式,以及几种常见射频滤波器。

分析滤波器的插入损耗和回波损耗两个参数,优化设计滤波器仿真提供了一部分理论基础。

第三章 worhbench设计与仿真

3.1 workbench软件介绍

Electronic Workbench是一种电子电路仿真的软件,能够演示各种电路工作状态,模拟各种各样电路以及缩放其显示出来的波形。目前Electronic Workbench 已经是一种经典灵巧,比较好用而且能够准确描述电路波形的模拟数字电路仿真软件。

Electronic Workbench包括:函数发生器,示波器、数字万用表、光谱仪、…首先设计好电路,连接好电路和仪器,设定好所有仪器的参数设置,调整电源电压,开关电源。它能够演示各种电路工作的状态,能够模拟各种电子电路,能够放大显示的波形,能够仿真数字电路,模拟电路和数字电路(线性)与模拟(线性)电路的工作点,例如波形、频率、周期、有效值,等等。。

3.2 模拟带通滤波器设计

3.2.1设计目的

1.了解有源滤波器和无源滤波器的设计方式以及内容过程。

2娴熟的掌握仿真软件(工作台或电路仿真)电路设计以及运行仿真结果。 3设计电路仿真和微波组件来构建相应的电路。

4结合目前已有的仪器和仪表对系统调试。

5.掌握理论联系实践的方法。

3.2.2 设计要求

设计一个低通滤波器,是有源二阶,并且最高截止频率为2KHz,通带电压放大倍数为2,当频率为10KHz时,幅度衰减量高于30分贝。

3.3滤波器的设计原理及组件选择

3.3.1滤波器介绍

滤波器是一种用于使不同的频率信号进行分离的组件。滤波器的关键作用是为了抑制不需要的信号,让其无法通过滤波器,只让需要的信号通过。事实上许多微波组件都有特定的频率特性,可以使用滤波器的理论进行分析。源于集中参数

滤波器理论相对健全,因此,虽然微波滤波器在很多方面都有自己的特点,但是在一定的频率范围内,分析微波滤波器的特点,可以使用相应的集总等效电路进行了分析。因此,对于很大部分的微波滤波器,能够采用集总参数滤波器的设计原则以及处理方式,再根据得到的分析结果,在具体的微波结构形式中充分显现。

现在用单端口,双端口网络的理论知识进行微波滤波器的设计,开发。由于在设计模拟电路时,需要对高频信号在特定的频率或频段内的频率分量做放大或衰减的处理,因此必须研究如何实现模拟信号的滤波。

3.3.2 有源滤波器的设计

有源滤波器的设计,它是依据给定指标的要求,确定滤波器的阶数n,选择相应具体的电路形式,计算电路中每个元素的具体数值,对电路进行安装以及调试,使滤波器满足设计指标的要求,具体内容下示:

(1)确定滤波器的阶数,主要是由阻带衰减速率要求来作为确定依据。

(2)选择具体的电路形式。

(3)建立一个系数方程,利用电路的传递函数以及归一化分母多项式滤波器的传递函数。

(4)对方程组进行求解,求出电路中各个元件的数值。

(5)对电路进行安装以及调试,确保电路性能达到要求的指标。

3.3.3滤波器类型的选择分析

我们选择巴特沃斯滤波器电路。因为这种滤波器的衰减曲线不存在波纹,其特点是通频带内的频率响应曲线呈最大限度平坦,起伏微乎其微,却在阻频带逐渐降低,直至变成零。由于要求30 分贝/八度,选取二阶有源低通滤波器电路,其中n = 2。

有源二阶low pass filter的电路如图(3.3.1)所示,压控电压源二阶滤波电路的特点是:运算放大器是同相连接的方式,使滤波器为高输入阻抗、输出阻抗很低,滤波器等效为电压源,它的优势是电路性能稳定,增益只需要简单的调整。

图(3.3.1)

在集成运算放大器输出之间的集成运放同相输入之中接入一个负面的反馈,处于不同的频段,其反馈的极性也是不一样的,当信号频率f > > fc 截止频率(fc),每级RC 电路的移相- 90度,两个级别的RC 电路的相移- 180度,电路的输出电压和输入电压反相,所以通过电容C 引到集成运算放大器同相位的端口的反馈是负面的反馈,反馈信号会减弱输入信号的作用,减少电压放大倍数,所以反馈将使二阶有源低通滤波器快速衰减振幅高频率端的频率特征,只让低频信号通过。巴特沃斯低通滤波器的性能·参数公式是:

公式中uo A 是通带内的电压放大倍数,Q 是品质因子,c 是截止角频率,。

射频低通滤波器设计示例

射频电路设计示例 设计任务: 用两种方法设计一个输入、输出为50Ω的低通滤波器,滤波器参数为: (1) 截止频率为3Ghz (2) 在通带内,衰减小于3dB (3) 在通带外,当归一化频率为2时,损耗不小于50dB (4) 相速为光速的60% 设计要求: (1)画出滤波器的电路图。 (2)用微带线实现上述的功能,并画出微带线的结构尺寸。 (3)画出0--3.5Ghz 的衰减曲线。 (4)给出设计的源代码本,利用具体软件(如Matlab, MW- office, ADS 、HFSS 、IE3D 等)操作方法及步骤。 方法一: 切比雪夫滤波器设计: Step1: 画出滤波器的电路图。由课本(p151)知滤波器阶数应为N=5。归一化参数为:g g 514817.3==,g g 427618.0==,5381.43=g 集中参数为:4817 .35 1 == C C ,5381 .43 =C ,2296 .14 2 == L L 图1 归一化5阶低通滤波器电路原理图 Step2:将集中参数变换成分布参数(Richards 变换:电感用短路线代,电容用开路线代): g Y Y 1 51 = =,g Z Z 2 4 2 = = ,g Y 3 3 = 。

图2 (O.C =开路线,S.C=短路线) Step3:将串联线段变为并联线段—Kuroda 规则(P162表5.6)。首先在滤波器的输入、输出端口引入两个单位元件。 因为单位元件与信号源及负载的阻抗都是匹配的,所以到入它们并不 影响滤波器的特性。对第一个并联的短线和最后一个并联短线应用Kuroda 规则-1后得: 2872.12872.014817 .3112 1 =+=+ == N N , 2231.02872.14817.31 ' ' 2 1 =?= = Z Z UE UE 7769.02872 .1151=== ' ' Z Z S S

简单低通滤波器设计及matlab仿真

东北大学 研究生考试试卷 考试科目: 课程编号: 阅卷人: 考试日期: 姓名:xl 学号: 注意事项 1.考前研究生将上述项目填写清楚. 2.字迹要清楚,保持卷面清洁. 3.交卷时请将本试卷和题签一起上交. 4.课程考试后二周内授课教师完成评卷工作,公共课成绩单与试卷交研究生院培养办公室, 专业课成绩单与试卷交各学院,各学院把成绩单交研究生院培养办公室. 东北大学研究生院培养办公室

数字滤波器设计 技术指标: 通带最大衰减: =3dB , 通带边界频率: =100Hz 阻带最小衰减: =20dB 阻带边界频率: =200Hz 采样频率:Fs=200Hz 目标: 1、根据性能指标设计一个巴特沃斯低通模拟滤波器。 2、通过双线性变换将该模拟滤波器转变为数字滤波器。 原理: 一、模拟滤波器设计 每一个滤波器的频率范围将直接取决于应用目的,因此必然是千差万别。为了使设计规范化,需要将滤波器的频率参数作归一化处理。设所给的实际频 率为Ω(或f ),归一化后的频率为λ,对低通模拟滤波器令λ=p ΩΩ/,则1 =p λ, p s s ΩΩ=/λ。令归一化复数变量为p ,λj p =,则p p s j j p Ω=ΩΩ==//λ。所以巴 特沃思模拟低通滤波器的设计可按以下三个步骤来进行。 (1)将实际频率Ω规一化 (2)求Ωc 和N 11010/2-=P C α s p s N λααlg 1 10 110lg 10 /10/--= 这样Ωc 和N 可求。 p x fp s x s f

根据滤波器设计要求=3dB ,则C =1,这样巴特沃思滤波器的设计就只剩一个参数N ,这时 N p N j G 222 )/(11 11)(ΩΩ+= += λλ (3)确定)(s G 因为λj p =,根据上面公式有 N N N p j p p G p G 22)1(11 )/(11)()(-+= += - 由 0)1(12=-+N N p 解得 )221 2exp(πN N k j p k -+=,k =1,2, (2) 这样可得 1 )21 2cos(21 ) )((1 )(21+-+-= --= -+πN N k p p p p p p p G k N k k 求得)(p G 后,用p s Ω/代替变量p ,即得实际需要得)(s G 。 二、双线性变换法 双线性变换法是将s 平面压缩变换到某一中介1s 平面的一条横带里,再通过标准变换关系)*1exp(T s z =将此带变换到整个z 平面上去,这样就使s 平面与z 平面之间建立一一对应的单值关系,消除了多值变换性。 为了将s 平面的Ωj 轴压缩到1s 平面的1Ωj 轴上的pi -到pi 一段上,可以通过以下的正切变换来实现: )21 tan(21T T Ω= Ω 这样当1Ω由T pi -经0变化到T pi 时,Ω由∞-经过0变化到∞+,也映射到了整个Ωj 轴。将这个关系延拓到整个s 平面和1s 平面,则可以得到

有源带通滤波器设计报告

有源带通滤波器设计报告 学生姓名崔新科 同组者王霞吴红娟 指导老师王全州

摘要 该设计利用模拟电路的相关知识,设定上线和下限频率,采用开环增益80dB 以上的集成运算放大器,设计符合要求的带通滤波器。再利用Multisim 仿真出滤波电路的波形和测量幅频特性。通过仿真和成品调试表明设计的有源滤波器可以基本达到所要求的指标。其主要设计内容: 1.确定有源滤波器的上、下限频率; 2.设计符合条件的有源带通滤波器;- 3.测量设计的有源滤波器的幅频特性; 4.制作与调试; 5. 总结遇到的问题和解决的方法。 关键词:四阶电路有源带通滤波器极点频率 The use of analog circuit design knowledge, on-line and set the lower limit frequency, the use of open-loop gain of 80dB or more integrated operational amplifier designed to meet the requirements of the bandpass filter. Re-use Multisim circuit simulation waveform and filter out the measurement of amplitude-frequency characteristics. Finished debugging the simulation and design of active filters that can basically meet the required targets. The main design elements: 1. Determine the active filter, the lower limit frequency; 2. Designed to meet the requirements of the active band-pass filter; - 3. Designed to measure the amplitude-frequency characteristics of active filters; 4. Production and commissioning; 5 summarizes the problems and solutions. Keywords: fourth-order active band-pass filter circuit pole frequency

射频接收系统的设计与仿真

1 前言 (2) 2 工程概况 (2) 3 正文 (2) 3.1零中频接收系统结构性能和特点 (3) 3.2基于ADS2009对零中频接收系统设计与仿真 (3) 3.3超外差接收系统结构性能和特点 (12) 3.4基于ADS2009对超外差接收系统设计与仿真 (13) 4 有关说明 (16) 5 心得体会 (18) 6 致谢 (18) 7 参考文献 (19)

射频是一种频谱介于75kHz-3000GHz之间的电波,当频谱范围介于20Hz-20kHz之间时,这种低频信号难以直接用天线发射,而是要利用无线电技术先经过转换,调制达到一定的高频范围,才可以借助无线电电波传播。射频技术实质是一种借助电磁波来传播信号的无线电技术。 无线电技术应用最早从18世纪下半段开始,随着应用领域的扩大,世界已经对频谱进行了多次分段波传播。当前,被广泛采用的频谱分段方式是由电气和电子工程师学会所规定的。随着科学技术的不断发展,射频所含频率也不断提高。到目前为止,经过两个多世纪的发展,射频技术也已经在众多领域的到应用。特别是高频电路的应用。其中在通信领域,射频识别是进步最快的重要方面。 工程概况 近年来随着无线通信技术的飞速发展,无线通信系统产品越来越普及,成为当今人类信息社会发展的重要组成部分。射频接收机位于无线通信系统的最前端,其结构和性能直接影响着整个通信系统。优化设计结构和选择合适的制造工艺,以提高系统的性能价格比,是射频工程师追求的方向。由于零中频接收机具有体积小、成本低和易于单片集成的特点,已成为射频接收机中极具竞争力的一种结构,在无线通信领域中受到广泛的关注。本文在介绍超外差结构和零中频结构性能和特点的基础上,对超外差结构和零中频结构进行设计与仿真。 正文 下面设计一个接收机系统,使用行为级的功能模块实现收信机的系统级仿真。

实验一 交叉耦合滤波器设计与仿真(材料详实)

实验一 交叉耦合滤波器设计与仿真 一、 实验目的 1.设计一个交叉耦合滤波器 2.查看并分析该交叉耦合滤波器的S 参数 二、 实验设备 装有HFSS 13.0软件的笔记本电脑一台 三、 实验原理 具有带外有限传输零点的滤波器,常常采用谐振腔多耦合的形式实现。这种形式的特点是在谐振腔级联的基础上,非相邻腔之间可以相互耦合即“交叉耦合”,甚至可以采用源与负载也向多腔耦合,以及源与负载之间的耦合。交叉耦合带通滤波器的等效电路如下图所示。在等效电路模型中,e1表示激励电压源,R1、R2分别为电源内阻和负载电阻,ik (k=1,2,3,…,N )表示各谐振腔的回路电流,Mij 表示第i 个谐振腔与第k 个谐振腔之间的互耦合系数(i,j=1,2,…,N ,且i ≠j)。在这里取ω0=1,即各谐振回路的电感L 和电容C 均取单位值。Mkk (k=1,2,3,…,N )表示各谐振腔的自耦合系数。 n 腔交叉耦合带通滤波器等效电路如下图所示: ...1F 1/2H 1/2H 1/2H 1/2H 1/2H 1/2H 1H 1F 1F 1F ...i 1 i 2 i k i N i N M N ,1M k 1M kN M N 1 ,2-M 12 M k 2M N k 1 ,-M N N ,1-e 1 R 1 R 2 1F 1H 这个电路的回路方程可以写为 ?? ? ??? ? ?? ? ???????????????????????? ? ?? ???++=????????????????????---------N N N N N N N N N N N N n N N N N N i i i i i R s jM jM jM jM jM s jM jM jM jM jM s jM jM jM jM jM s jM jM jM jM jM s R e 13212,1321,11,31,21,131 ,3231321,22312 11,11312110000M Λ ΛM M ΛM M M ΛΛΛM 或者写成矩阵方程的形式:I R M sU ZI E )(0++==j

FIR数字滤波器设计与使用

实验报告 课程名称:数字信号处理指导老师:刘英成绩:_________________实验名称: FIR数字滤波器设计与使用同组学生姓名:__________ 一、实验目的和要求 设计和应用FIR低通滤波器。掌握FIR数字滤波器的窗函数设计法,了解设计参数(窗型、窗长)的影响。 二、实验内容和步骤 编写MATLAB程序,完成以下工作。 2-1 设计两个FIR低通滤波器,截止频率 C =0.5。 (1)用矩形窗,窗长N=41。得出第一个滤波器的单位抽样响应序列h 1(n)。记下h 1 (n) 的各个抽样值,显示h 1 (n)的图形(用stem(.))。求出该滤波器的频率响应(的N 个抽样)H 1(k),显示|H 1 (k)|的图形(用plot(.))。 (2)用汉明窗,窗长N=41。得出第二个滤波器的单位抽样响应序列h 2(n)。记下h 2 (n) 的各个抽样值,显示h 2(n)的图形。求出滤波器的频率响应H 2 (k),显示|H 2 (k)|的 图形。 (3)由图形,比较h 1(n)与h 2 (n)的差异,|H 1 (k)|与|H 2 (k)|的差异。 2-2 产生长度为200点、均值为零的随机信号序列x(n)(用rand(1,200)0.5)。显示x(n)。 求出并显示其幅度谱|X(k)|,观察特征。 2-3 滤波 (1)将x(n)作为输入,经过第一个滤波器后的输出序列记为y 1(n),其幅度谱记为|Y 1 (k)|。 显示|X(k)|与|Y 1 (k)|,讨论滤波前后信号的频谱特征。 (2)将x(n)作为输入,经过第二个滤波器后的输出序列记为y 2(n),其幅度谱记为|Y 2 (k)|。 比较|Y 1(k)|与|Y 2 (k)|的图形,讨论不同的窗函数设计出的滤波器的滤波效果。 2-4 设计第三个FIR低通滤波器,截止频率 C =0.5。用矩形窗,窗长N=127。用它对x(n)进行滤波。显示输出信号y

射频电路设计与仿真思路分析

射频电路设计与仿真思路分析 发表时间:2020-03-25T06:34:04.616Z 来源:《防护工程》2019年21期作者:曾鸣 [导读] ADS电子设计自动化主要有频域电路仿真、时域电路仿真、三维电磁仿真、通信系统仿真以及数字信号处理仿真设计等. 南宁富桂精密工业有限公司广西南宁 530000 摘要:当前通信技术不断发展,通信设备使用的频率也逐渐提高,射频以及微波电路等被广泛的使用在通信等系统中,高频电路设计在工业领域得到了广泛的关注和重视。新型的半导体器件使高速数字系统和高频模拟系统不断扩张。本文就射频电路设计与仿真进行分析和研究。 关键词:射频电路设计;仿真;思路分析 ADS是当前世界上比较流行的一种微波射频电路、通信系统、RFIC 设计软件,是由美国 Agilent 公司推出的,是微波电路与通信系统的一种仿真软件。这种软件具有丰富的仿真手段,能够实现时域和频域、数字和模拟、线性和非线性等多种仿真功能,科学对设计结果进行分析,促进电路设计频率的提升,是一种比较优秀的微波射频电路,也是当前射频工程人员必备的一种软件。 1 射频电路与ADC分析 1.1 射频电路 射频电路就是一种具有超高频率的无线电波,工作频率比较高的线路,人们一般称作“高频电路”、“微波电路”等。在工程上,一般指的是工作频段的波长为10m-1mm之间的电路,或者是频率为30MHz-300MHz的电路。 当频率不断升高达到射频频段时,一般使用欧姆定律、电压电流或者是基尔霍夫定律对DC和低频电路进行分析,但是已经不够精确。还需要注重分布参数的影响。如果使用电磁场理论方法,虽然能够对全波、分布参数等影响进行分析,但是很难接触到VCO、混频器或者是高频放大器等实用内容。因此射频电路的设计已经成为当前信息技术发展的重要技术。 1.2 ADS ADS电子设计自动化主要有频域电路仿真、时域电路仿真、三维电磁仿真、通信系统仿真以及数字信号处理仿真设计等,被应用通信以及航天中,是当前研究最多的射频电路仿真软件。 2 ADS电子设计自动化的仿真设计方法 ADS软件能够使电路设计者进行模拟、射频微波等电路和通信系统设计,仿真方法主要有时域仿真、频域仿真、系统以及电磁仿真等。 2.1 高频SPICE分析和卷积分析 高频SPICE分析能够对线性以及非线性电路的瞬态效应进行分析,在SPICE仿真器中,对于不能直接使用频域分析模型,比如说微带线带状线等,就可以使用高频SPICE仿真器,仿真过程中,如果高于高频SPICE仿真器,频域分析模型会被拉式变换,然后进入到瞬态分析,并不需要使用者转化。这种高频SPICE不仅能够对低频电路进行瞬态分析,还能够对高频电路的瞬态响应进行分析。此外,还能够进行瞬态噪声的分析,对电路的瞬态噪声进行仿真。卷积分析法是以 SPICE 高频仿真器为基础的一种高级的时域分析的方法,通过卷积分析法能够更加科学的使用时域分析法对频率元件的进行分析。 2.2 线性分析方法 线性分析是一种频域电路仿真分析法,可以对线性、非线性的射频微波电路进行分析,进行线性分析时,软件先对电路中的元件计算需要的线性参数,如电路阻抗、稳定系数、反射系数、噪声以及S、Z、Y参数等,进而对电路进行分析和仿真。 2.3 谐波平衡分析 这种分析方法是对频域、稳定性好,大型号的电路进行分析的仿真方法,能够对多频输入信号的非线性电路进行分析,明确非线性电路的响应,比如谐波失真、噪声等。相比于时域的SPICE 仿真分析反复,这种谐波平衡分析在分析非线性电路时能够提供更加有效并且快速的方法。 SPICE瞬态响应分析、线性S参数分析在分析多频输入信号非线性电路仿真中还存在着一定的不足,而谐波平衡分析方法的出现很好的弥补了这一不足,在当前的高频通信系统中,有很多混频电路结构,谐波平衡分析方法的使用次数也就逐渐增加,重要性也日渐凸显。并

微带低通滤波器的设计与仿真

微带低通滤波器的设计与仿真 分类: 电路设计 嘿嘿,学完微波技术与天线,老师要求我们设计一个微带元器件,可以代替实验室里的元器件,小弟不才,只设计了一个低通滤波 器。现把它放到网上,以供大家参考。 带低通滤波器的设计 一、题目 第三题:低通滤波器的设计 f < 800MHz ;通带插入损耗 ;带外 100MHz 损耗 ;特性阻抗 Z0=50 Ohm 。 二、设计过程 1、参数确定:设计一个微带低通滤波器,其技术参数为 f < 800MHz ;通带插入损耗;带外100MHz 损耗;特性阻抗Z0=50 Ohm 。 介质材料:介电常数 £r = 2.65,板厚 1mm 。 2、设计方法:用高、底阻抗线实现滤波器的设计,高阻抗线可以等效为串联电感,低阻抗线可以等效为并联电容,计算各阻抗线的 宽度及长度,确保各段长度均小于 X /8(入为带内波长)。 3、设计过程: (1)确定原型滤波器:选择切比雪夫滤波器, ?s = fs/fc = 1.82 , ?s -1 = 0.82及Lr = 0.2dB , Ls >= 30,查表得N=5,原型滤波器的归 一化元件参数值如下: g1 = g5 = 1 .3394, g2 = g4 = 1.3370,g3 = 2.1660,gL= 1 .0000。 该滤波器的电路图如图 1 所示: O H 技术参数: 仿真软件: HFSS 、 ADS 或 IE3D 介质材料: 介电常数 £ r = 2.65板厚1mm

(2)计算各元件的真实值:终端特性阻抗为Z0=50?,则有 C1 = C5 =g1/(2*pi*f0*Z0) = 1.3394/(2*3.1416*8*10^8*50) = 5.3293pF , C3 = g3/(2*pi*f0*Z0) = 2.1660/(2*3.1416*8*10^8*50)= 8.6182pF , L2 = L4 = Z0*g2/(2* pi*f0) = 50*1.3370/(2*3.1416*8*10^8) = 13.2994nH。 (3)计算微带低通滤波器的实际尺寸: 设低阻抗(电容)为Z0I = 15?。 经过计算可得W/d = 12.3656, £ e = 2.443,贝U 微带宽度W1 = W3 = W5 = W = 1.000*12.3656 = 12.3656mm , 各段长度I1 = I5 = Z0I*V pl *C1 = 15* 3*10A11/sqrt(2.4437)*5.3293*10A-12 =15.3412mm, I3 = Z0I*V pl*C3 = 15* 3*10A11/sqrt(2.4437)*8.6182*10A-12 =24.8088mm, 可知各段均小于入/8符合要求。 设高阻抗(电感)为Z0h = 95? 。 经过计算可得W/d =0.85,£ e = 2.0402则 微带宽度W2 = W4 = W =1.0000*0.85 =0.85mm , 各段长度l2 = l4 = Vph*L2/Z0h = 29.4031mm , 带内波长入=Vpl/f = 3*10^11/(sqrt(2.0402)*8*10^8) = 262.5396mm,入/8 = 32.8175mm 可知各段均小于入/8符合要求。

射频滤波器如何正确选取 看完全懂了

射频滤波器如何正确选取,看完全懂了 随着移动设备功能越来越强大,支持的网络频段越来越多,射频前端模块成了移动设备中不可缺少的一部分。举例来说,一款较新的手机至少需要支持2G,3G,4G以及WiFi,GPS等网络制式,而每一个制式都需要自己的射频前端模块。射频前端模块一般包括天线开关,多路器,滤波器,功率放大器与低噪声放大器等等。这些器件目前仍无法用集成度最高的CMOS工艺制造,而必须使用特殊工艺以保证性能。 根据Mobile Expert LLC的研究报告,2016年在智能手机增长萎靡(9%)的情况下,射频前端模块的增长率仍达到了17%。而在射频前端模块中,未来发展最快的,也最关键的模块就是射频滤波器模块。 滤波器到底有多重要 随着无线通讯应用的发展,人们对于数据传输速度的要求也越来越高。在2G时代,只有一小部分人会使用手机上网下载铃声或浏览wap版网页,需要的数据率大约在1KB/s。在3G时代,随着智能手机的普及,使用运营商网络上

网收发邮件,使用各种app等使得网络流量剧增,需要的数据率大约是50KB/s。到了4G时代的今天,直播等应用更是将手机通讯的带宽需求推向了一个新的高度,需要的数据率达到了1MB/s。 与数据率上升相对应的是频谱资源的高利用率以及通讯协议的复杂化。这两个问题是相辅相成:由于频谱资源有限,为了满足人们对数据率的需求,必须充分利用频谱,因此一部手机必须能够覆盖很宽的频带范围,这样在人群拥挤的情况下不同人的设备才能够分配到足够的频谱带宽。同时,为了满足数据率的需求,从4G开始还使用了载波聚合技术,使得一台设备可以同时利用不同的载波频谱传输数据。 另一方面,为了在有限的带宽内支持足够的数据传输率,通信协议变得越来越复杂,因此对于射频系统的各种性能也提出了严格的需求。 在射频前端模块中,射频滤波器起着至关重要的作用。它可以将带外干扰和噪声滤除以以满足射频系统和通讯协议对于信噪比的需求。如前所述,随着通信协议越来越复杂,对于通讯协议对于频带内外的需求也越来越高,这也

树形结构滤波器组设计mtlab

树形结构滤波器组设计mtlab 山东轻工业学院 课程设计任务书 学院电子信息与控制工程学院专业通信工程 姓名马淑丽班级通信09-2 学号200902041044 题目树形结构滤波器组设计主要内容、基本要求、主要参考资料等:主要内容:滤波器组在语音、图像的子带编码和压缩中都有着广泛的应用,非均匀滤波器组还构成了Mallat 多分辨分析的算法基础,在小波变换中占有重要的地位。本设计主要内容是研究树形滤波器组的原理,并设计一个树形滤波器组,实现语音信号的分解与重构。 基本要求: (1)滤波器组的基本原理;(2)树形结构滤波器组的原理及设计方法;(3)设计一个8 通道的树形结构滤波器组:均匀滤波器组和非均匀滤波器组;给出设计思路及结果;(4)用设计的滤波器组对某信号进行多通道分解,验证滤波器组的性能,对结果进行分析;(5)提交课程设计报告。主要参考资料: 1.胡广书. 现代信号处理教程,数字信号处理. 清华大学出版社. 2005.06 2.高西全. 数字信号处理. 西安电子科技大学出版社. 2009.01 3.matlab 信号处理相关书籍,多采样率信号处理的书籍、资料 4.相关网络资源完成期限:自2012 年6 月28 日至2010 年 7 月13 日 指导教师:张凯丽教研室主任:目录

主要内容摘要................................ 设计方案........................... 设计原理........................... 设计框图....................... 设计程序........................... 结果图......................... 结果图分析........................... 结论及心得........................... 参考资料 .......................... 附录代码 ............................... 内容摘要: 树形结构滤波器组设计,将信源输入信息编码频带分段,便于在有限带宽信道中传输并且提高传输速率,在信宿端将信号解码恢复原始信号。有一定的失真。语音数据的有效编码可以提高通信系统的有效性,大大减少存储设备的容量。 子带编码是一种常用语音编码技术,子带编码中的子带分解和合成是子带编码中的重要组成部分。使用树形结构滤波器组实现语音信号的子带分解和合并,常用的平行结构滤波器虽然也可以实现自带的分解,实现对高频成分的压缩,但不如树形结构灵活,树形结构QMF 可以实现多分辨率的信号分解与压缩,同时重建信号失真度很低。 设计方案 本次课程设计,分别用对称结构和非对称结构滤波器组设计,实现语音信号或别的信号3级分解8通道传输。我组用的matlab 编程实现方法。 一个语音处理系统主要包括语音信号的采集,预处理,语音信号的压缩编码,语音信号的解码,语音信号的增强,最后通过音频输出设备输出。为了能够使采集到的语音信号能够

射频电路设计理论与应用答案

射频电路设计理论与应用答案 【篇一:《射频通信电路设计》习题及解答】 书使用的射频概念所指的频率范围是多少? 解: 本书采用的射频范围是30mhz~4ghz 1.2列举一些工作在射频范围内的电子系统,根据表1-1判断其工作 波段,并估算相应射频信号的波长。 解: 广播工作在甚高频(vhf)其波长在10~1m等 1.3从成都到上海的距离约为1700km。如果要把50hz的交流电从 成都输送到上海,请问两地交流电的相位差是多少? 解: 8??f?3?1?0.6???4km 1.4射频通信系统的主要优势是什么? 解: 1.射频的频率更高,可以利用更宽的频带和更高的信息容量 2.射频电路中电容和电感的尺寸缩小,通信设备的体积进一步减小 3.射频通信可以提供更多的可用频谱,解决频率资源紧张的问题 4.通信信道的间隙增大,减小信道的相互干扰 等等 1.5 gsm和cdma都是移动通信的标准,请写出gsm和cdma的英文全称和中文含意。(提示:可以在互联网上搜索。) 解: gsm是global system for mobile communications的缩写,意 为全球移动通信系统。 cdma英文全称是code division multiple address,意为码分多址。???4???2?k?1020k??0.28333 1.6有一个c=10pf的电容器,引脚的分布电感为l=2nh。请问当频 率f为多少时,电容器 开始呈现感抗。 解: ?wl?f??1.125ghz2 既当f=1.125ghz0阻抗,f继续增大时,电容器呈现感抗。

1.7 一个l=10nf的电容器,引脚的分布电容为c=1pf。请问当频率f 为多少时,电感器开始呈现容抗。 解: 思路同上,当频率f小于1.59 ghz时,电感器呈现感抗。 1.8 1)试证明(1.2)式。2)如果导体横截面为矩形,边长分别为a和b,请给出射频电阻rrf与直流电阻rdc的关系。 解: r??l?s ???l,s对于同一个导体是一个常量 2s??a当直流时,横截面积dc 当交流时,横截面积sac?2?a? 2rdc?a??ac?a?? 661.9已知铜的电导率为?cu ?6.45?10s/m,铝的电导率为?al?4.00?10s/m,金的电导率 6为?au?4.85?10s/m。试分别计算在100mhz和1ghz的频率下,三种材料的趋肤深度。 解: 趋肤深度?定义为: 在100mhz时: cu为2 mm al 为 2.539mm au为 2.306mm 在1ghz时: cu为0.633 mm al 为 0.803mm au为 0.729mm 1.10某个元件的引脚直径为d=0.5mm,长度为l=25mm,材料为铜。请计算其直流电阻rdc和在1000mhz频率下的射频电阻rrf。解: r?s 它的射频电阻 adllrrf?rdc????22?4???? d2???d????0?r?4??10?1?????????7zdf?l?0.123???d? 1.11个电阻的标示分别为:“203”、“102”和“220r”。请问三个电阻的阻值分别是多少?(提示:可以在互联网上查找贴片元件标示的规则)解:

射频电路及高速数字电路仿真

微波系统的设计越来越复杂对电路的指标要求越来越高,电路的功能越来越多电路的尺寸要求越做越小而设计周期却越来越短传统的设计方法已经不能满足系统设计的需要。使用微波EDA 软件工具进行微波元器件与微波系统的设计已经成为微波电路设计的必然趋势。随着单片集成电路技术的不断发展GaAs 硅为基础的微波毫米波单片集成电路MIMIC 和超高速单片集成电路VHSIC 都面临着一个崭新的发展阶段,电路的设计与工艺研制日益复杂化,如何进一步提高电路性能降低成本缩短电路的研制周期已经成为电路设计的一个焦点,而E DA 技术是设计的关键EDA 技术的范畴包括电子工程设计师进行产品开发的全过程以及电子产品生产过程中期望由计算机提供的各种辅助功能。一方面EDA 技术可为系统级电路级和物理实现级三个层次上的辅助设计过程; 1.基于矩量法仿真的微波EDA 仿真软件 (1)Agilent ADS(Advanced Design System) Agilent ADS(Advanced Design System)软件是在HP EESOF系列EDA软件基础上发展完善起来的大型综合设计软件。是美国安捷伦公司开发的大型综合设计软件是为系统和电路从电路元件的仿真模式识别的提取新的仿真技术提供了高性能的仿真特性。 它允许工程师定义频率范围材料特性参数的数量和根据用户的需要自动产生关键的无源器件模式,该软件范围涵盖了小至元器件大到系统级的设计和分析,尤其是其强大的仿真设计手段可在时域或频域内实现对数字或模拟线性或非线性电路的综合仿真分析与优化并可对设计结果进行成品率分析与优化。从而大大提高了复杂电路的设计效率使之成为设计人员的有效工具。 (2)Sonnet 仿真软件 Sonnet 是一种基于矩量法的电磁仿真软件提供面向3D 平面高频电路设计系统以及在微波毫米波领域和电磁兼容/电磁干扰设计的EDA 工具。SonnetTM 应用于平面高频电磁场分析频率从1MHz 到几千GHz ,主要的应用有微带匹配网络微带电路微带滤波器带状线电路带状线滤波器过孔层的连接或接地偶合线分析PCB 板电路分析PCB 板干扰分析桥式螺线电感器平面高温超导电路。分析毫米波集成电路,MMIC设计和分析混合匹配的电路分析,H DI LTCC 转换单层或多层传输线的精确分析多层的平面的电路分析单层或多层的平面天线分析平面天线阵分析平面偶合孔的分析等。 (3)IE3D 仿真软件 IE3D 是一个基于矩量法的电磁场仿真工具。可以解决多层介质环境下的三维金属结构的电

巴特沃斯滤波器的设计与仿真

信号与系统课程设计 题目巴特沃斯滤波器的设计与仿真 学院英才实验学院 学号2015180201019 学生姓名洪 健 指导教师王玲芳

巴特沃斯滤波器的设计与仿真 英才一班 洪健 2015180201019 摘 要:工程实践中,为了得到较纯净的真实信号,常采用滤波器对真实信号进行处理。本文对巴特沃斯模拟滤波器的幅频特性、设计方法及设计步骤进行了研究,并利用Matlab 程序和Multisim 软件,设计了巴特沃斯模拟滤波器,并分析了巴特沃斯模拟滤波器的幅频特性。利用 Matlab 程序绘制了巴特沃斯模拟滤波器的幅频特性曲线,并利用Matlab 实现了模拟滤波器原型到模拟低通、高通、带通、带阻滤波器的转换。通过Multisim 软件,在电路中设计出巴特沃斯滤波器。由模拟滤波器原型设计模拟高通滤波器的实例说明了滤波器频率转换效果。同时通过电路对巴特沃斯滤波器进行实现,说明了其在工程实践中的应用价值。 关键词:巴特沃斯滤波器 幅频特性 Matlab Multisim 引言 滤波器是一种允许某一特定频带内的信号通过,而衰减此频带以外的一切信号的电路,处理模拟信号的滤波器称为模拟滤波器。滤波器在如今的电信设备和各类控制系统里应用范围最广,技术最为复杂,滤波器的好坏直接决定着产品的优劣。滤波器主要分成经典滤波器和数字滤波器两类。从滤波特性上来看,经典滤波器大致分为低通、高通、带通和带阻等。 模拟滤波器可以分为无源和有源滤波器。 无源滤波器:这种电路主要有无源元件R、L 和C 组成。有源滤波器:集成运放和R、C 组成,具有不用电感、体积小、重量轻等优点。集成运放的开环电压增益和输入阻抗均很高,输出电阻小,构成有源滤波电路后还具有一定的电压放大和缓冲作用。但集成运放带宽有限,所以目前的有源滤波电路的工作频率难以做得很高。 MATLAB 是美国MathWorks 公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB 和Simulink 两大部分。 Multisim10 是美国NI 公司推出的EDA 软件的一种,它是早期EWB5.0、Multisim2001、Multisim7、Multisim8、Multisim9等版本的升级换代产品,是一个完全的电路设计和仿真的工具软件。该软件基于PC 平台,采用图形操作界面虚拟仿真了一个如同真实的电子电路实验平台,它几乎可以完成实验室进行的所有的电子电路实验,已被广泛应用于电子电路的分析,设计和仿真等工作中,是目前世界上最为流行的EDA 软件之一。 本文主要对低通模拟滤波器做主要研究,首先利用MATLAB 软件对巴特沃斯滤波器幅频特性曲线进行研究,并计算相应电路参数,最后利用Multisim 软件实现有源巴特沃斯滤波器。 正文 1巴特沃斯低通滤波器 巴特沃斯(Butterworth)滤波器的幅频特性如该幅频特性的特点如下: ① 最大平坦性。可以证明,在ω=0处,有最大值|H(0)|=1,幅频特性的前2n-1阶导数均为零。这表示它在ω=0点附近是很平坦的。 ② 幅频特性是单调下降的,相 频 特 性 也 是 单 调 下降的。因此, 巴特沃斯滤波器对有用信号产生的幅值畸变和相位畸变都很小。 ③ 无论阶数n是什么数,都会通过C = ,并且此时|()|H j ,而且n 越大,其幅频响应就越逼近理想情况。

MTD雷达中多普勒滤波器组的设计与实现

目录 中文摘要 (1) 英文摘要 (2) 1 引言 (3) 1.1 研究背景及意义 (3) 1.2 国内外研究现状 (4) 1.3 本设计的指导思想和主要工作 (4) 2 动目标检测(MTD)雷达基本原理 (6) 2.1 多普勒效应 (6) 2.2 动目标检测(MTD)雷达的工作原理 (8) 2.2.1 动目标显示(MTI)雷达的工作原理 (8) 2.2.2 动目标检测(MTD)雷达的工作原理 (10) 3 MTD多普勒滤波器组的设计 (13) 3.1 加权DFT实现MTD滤波 (13) 3.1.1 DFT滤波器分析 (13) 3.1.2 窄带滤波器组信号处理的优点 (15) 3.2 FIR实现MTD多普勒滤波器 (16) 3.2.1 设计思路 (17) 3.2.2 MTD多普勒滤波器组的设计 (17) 3.3 MTD/MTI雷达的性能评价指标 (20) 4 MTD雷达中预处理模块设计 (23) 4.1 乒乓操作 (23) 4.1.1 乒乓操作的处理流程 (23) 4.1.2 乒乓操作的特点 (23) 4.1.3 乒乓操作的应用 (25) 4.2 MTD雷达匹配滤波器的总体结构 (26) 4.3 MTD雷达中预处理模块设计 (27) 4.3.1 多路选择器的设计 (28) 4.3.2 计数器的设计 (30) 4.3.3 MTD雷达预处理模块设计 (32) 总结 (34) 谢辞 (34) 参考文献 (35)

合肥工业大学理学院电子科学与技术2006届毕业论文集 摘要:在高科技战争中,探测敌方的进攻目标(如飞机、导弹、舰艇等)是一个重要问题。它实际上是一个解决在密集的杂乱回波中发现感兴趣的目标的问题,即所谓的动目标检测(MTD)。 本文对MTD雷达技术的核心(多普勒滤波器组)进行了深入的研究和设计。文章主要分为以下四个部分: 首先,本文对研究课题的背景及其意义进行了一个大概的说明。其次,对动目标检测(MTD)雷达的基本原理进行了全面而详细的介绍,如MTD的主要功能,其中,对于与MTD极其相关的动目标显示(MTI)也进行了一个简要的介绍。再次,对MTD雷达技术的核心(多普勒滤波器组)进行了设计和分析,文中应用了加权DFT和FIR这两种方法实现MTD滤波,并给出了MTD 性能评价指标。最后,对MTD滤波器输入数据的存储这一问题用预处理乒乓操作进行了设计,并对仿真结果进行了分析和说明。 关键词:动目标检测(MTD),动目标显示(MTI),滤波器,乒乓操作,设计

射频电路设计与仿真论文

射频电路设计与仿真 一:摘要 ADS是美国Agilent公司推出的微波电路和通信系统的仿真软件,是当今世界最流行的微波射频电路,通信系统,RFIC 设计软件,也是国内高校,科研院所和大型IT公司使用最多的软件之一。ADS 的强大,仿真手段丰富,可实现包括时域与频域,数字与模拟,线性与非线性,噪声等多种仿真功能,并可对设计结果进行成品率分析与优化,提高复杂电路的设计效率,是优秀的微波射频电路,系统信号链路的设计工具,是射频工程师必备的工具软件之一。 二:正文 1:ADS软件可以对电路进行模拟,完成射频,微博电路及通信系统的设计,主要包括以下几种分析和仿真方法。 1)高频SPICE分析和卷积分析,高频SPICE分析方法提供如 SPICE仿真器般的瞬态分析,可分析线性或非线性电路的 瞬时效应。 2)线性分析线性分析是频域电路仿真分析方法,可以对线性 或非线性的射频与微波电路做线性分析。 3)谐波平衡分析谐波平衡分析提供频域,稳态,大信号的 电路分析仿真方法。可以用于分析具有多频输入信号的非 线性电路得到非线性电路,得到非线性的电路响应,如噪 声,功率压缩点,谐波失真等。 4)电路包络分析电路包络分析包含时域与频域的分析方

法,使用在包含调频信号的电路或通信系统中。 5)射频系统分析射频系统分析方法给用户提供模拟评估系 统特性,其中系统的电路模型出可以使用行为级模型外, 还可以使用元件电路模型进行响应印证。 6)托勒密分析托勒密分析方法可以同时仿真包括数字信 号,模拟和高频信号的混合模拟系统。ADS分别提供了数 字元件模型及模拟高频元件模型在设计中直接使用。 7)电磁仿真分析 ADS 软件提供了3D平面电磁仿真分析功能 ---Momentum,可以用于仿真微带线,带状线,共面波导等 原件的电磁特性,天线的辐射特性,已经PCB上的寄生, 柔和效应。 2:ADS仿真器的介绍 ADS集成多种仿真软件的优点,仿真手段丰富,功能强大,很快就成为全球内业界流行的EDA设计工具。下面介绍ADS在射频,模拟电路设计中常用的仿真器及其功能。 1)直流仿真直流仿真是所有仿真的基础,它可执行电路的拖扑检查,以及直流工作点的扫描和分析。 2)交流仿真交流仿真能获取小信号传输参数,如电压增益,电流增益,线性噪声电压和电流。 3)S参数仿真微波器件在小信号工作时,被认为工作在线性状态,是一个线性网络:在大信号工作时,被认为工作 在非线性状态,是一个非线性网络。

简单二阶低通滤波器设计与仿真

二阶低通滤波器部分 1、设计任务 信号放大后,需要进行滤波,滤除干扰,温度信号是一个缓慢变化的信号,在此需要设计出一个截止频率为10Hz 左右的低通放大器。因二阶低通滤波器的频率特性比一阶低通滤波器好,故决定采用由型号为OP07的运算放大器组成的二阶低通滤波器,OP07运放特点:OP07具有非常低的输入失调电压,所以OP07在很多应用场合不需要额外的调零措施,具有低温度漂移特性。另外,需要求滤波电路的幅频特性在通带内有最大平坦度,要求品质因数Q=0.707. 2、电路元件参数计算和电路设计: 根据二阶低通滤波器的基础电路进行设计,如图3.1所示。 图3.1二阶低通滤波器的基础电路 该电路(1)、传输函数为:)()()(i o s V s V s A =2 F F )()-(31sCR sCR A A V V ++= (2)、通带增益 :F 0V A A = (3)、截止频率:RC f c π21=其中RC 1c =ω称为特征角频率 (4)品质因数:O A Q -= 31, Q 是f=fc 时放大倍数与通带内放大倍数之比 注: 时,即当 3 03 F F <>-V V A A 滤波电路才能稳定工作。 由O A Q -=31=0.707得放大倍数586.1==O VF A A 一般来说,滤波器中电容容量要小于F μ,电阻器的阻值至少要Ωk 级。 由RC f c π21==10Hz,取C=0.5F μ,计算得R ≈31.8Ωk 又因为集成运放要求两个输入端的外接电阻对称,可得:R R R A VF 2//)1(11=-

求得:Ω=k R 1.1721 电路仿真与分析: (1)采用EDA 仿真软件multisim 13.0对有源二阶低通滤波器进行仿真分析、调试,从而对电路进行优化。Multisim 仿真电路图如图3.2所示 图3.2二阶低通滤波器仿真电路图 (2)通过仿真软件中的万用表验证电路是否符合要求: 设输入电压有效值为1V 当f=1Hz 时,输出如图3.3所示。 图3.3 由图可知,在通带内有增益585.1==VF O A A ,与理论值1.586相近 当Hz f f c 10==时,输出如图3.4所示。

FIR滤波器设计实验报告

实验报告 课程名称:数字信号处理 实验项目:FIR滤波器设计 专业班级: 姓名:学号: 实验室号:实验组号: 实验时间:批阅时间: 指导教师:成绩:

实验报告 专业班级: 学号: 姓名: 一、实验目的: 1、熟悉线性相位FIR 数字低通滤波器特性。 2、熟悉用窗函数法设计FIR 数字低通滤波器的原理和方法。 3、了解各种窗函数对滤波特性的影响。 要求认真复习FIR 数字滤波器有关内容实验内容。 二、实验原理 如果所希望的滤波器理想频率响应函数为)(e H j ωd ,则其对应的单位样值响应为 ωπ = ωππ-?d e j ωn j d d e )(H 21(n)h 窗函数法设计法的基本原理是用有限长单位样值响应h(n)逼近(n)h d 。由于(n)h d 往往是无限长序列,且是非因果的,所以用窗函数(n)w 将(n)h d 截断,并进行加权处理,得 到:(n)(n)h h(n)d w ?=。h(n)就作为实际设计的FIR 滤波器单位样值响应序列,其频率函数)H(e j ω 为∑-=ω= 1 n n j -j ω h(n)e )H(e N 。式中N 为所选窗函数(n)w 的长度。 用窗函数法设计的FIR 滤波器性能取决于窗函数类型及窗口长度N 的取值。设计过程中要根据阻带衰减和过渡带宽度的要求选择合适的窗函数类型和窗口长度N 。各类窗函数所能达到的阻带最小衰减和过渡带宽度见P342表7-3。 选定窗函数类型和长度N 以后,求出单位样值响应(n)(n)h h(n)d w ?=。验算 )()()]([)(ω?ωω==j g j e H n h DTFT e H 是否满足要求,如不满足要求,则重新选定窗函 数类型和长度N ,直至满足要求。 如要求线性相位特性,h(n)还必须满足n)-1-h(N h(n)±=。根据上式中的正、负号和长度N 的奇偶性又将线性相位FIR 滤波器分成4类(见P330表7-1及下表),根据要设计的滤波器特性正确选择其中一类。例如要设计低通特性,可选择情况1、2,不能选择情况3、4。

相关主题
文本预览
相关文档 最新文档