当前位置:文档之家› 实验一 交叉耦合滤波器设计与仿真(材料详实)

实验一 交叉耦合滤波器设计与仿真(材料详实)

实验一 交叉耦合滤波器设计与仿真(材料详实)
实验一 交叉耦合滤波器设计与仿真(材料详实)

实验一 交叉耦合滤波器设计与仿真

一、 实验目的

1.设计一个交叉耦合滤波器

2.查看并分析该交叉耦合滤波器的S 参数

二、 实验设备

装有HFSS 13.0软件的笔记本电脑一台

三、 实验原理

具有带外有限传输零点的滤波器,常常采用谐振腔多耦合的形式实现。这种形式的特点是在谐振腔级联的基础上,非相邻腔之间可以相互耦合即“交叉耦合”,甚至可以采用源与负载也向多腔耦合,以及源与负载之间的耦合。交叉耦合带通滤波器的等效电路如下图所示。在等效电路模型中,e1表示激励电压源,R1、R2分别为电源内阻和负载电阻,ik (k=1,2,3,…,N )表示各谐振腔的回路电流,Mij 表示第i 个谐振腔与第k 个谐振腔之间的互耦合系数(i,j=1,2,…,N ,且i ≠j)。在这里取ω0=1,即各谐振回路的电感L 和电容C 均取单位值。Mkk (k=1,2,3,…,N )表示各谐振腔的自耦合系数。 n 腔交叉耦合带通滤波器等效电路如下图所示:

...1F

1/2H

1/2H

1/2H 1/2H

1/2H 1/2H

1H

1F

1F

1F

...i

1

i

2

i

k

i N i

N

M

N

,1M

k

1M

kN

M

N 1

,2-M

12

M

k

2M

N k 1

,-M

N

N ,1-e 1

R 1

R

2

1F

1H

这个电路的回路方程可以写为

??

?

???

?

??

?

????????????????????????

?

??

???++=????????????????????---------N N N

N N

N

N

N N N N N n N N N N N i i i i i R s jM jM jM jM jM s jM jM jM jM jM s jM jM jM jM jM s jM

jM jM jM jM s R e 13212,1321,11,31,21,131

,3231321,22312

11,11312110000M Λ

ΛM M ΛM M M ΛΛΛM

或者写成矩阵方程的形式:I R M sU ZI E

)(0++==j

其中,?

?? ?

?

-=+

=

ωωωω11j j j s 一般来讲,频率都归一成1,即ω≈ω0=1,则

ij

ij ij M j M j jM 0ωω≈≈

其中E 为电压矩阵,I 为电流矩阵,Z 为阻抗矩阵,

R

M U Z ++=00j s

U0是N ×N 阶单位矩阵。M 是耦合矩阵,它是一个N ×N 阶方阵,形式如下:

???

???

????

????

?

??

???=--------00000,1321,11,31,21,131

,32313

21,2231211,11312N

N N

N

N

N N N N N N N N N N N M M M M M M M M M M M M M M M M

M M M M Λ

ΛM M ΛM M M ΛΛΛM

其中对角线上的元素代表每一个谐振腔回路的自耦合,表示每一个谐振腔的谐振频率

fi 与中心频率f0之间的偏差。(在同步调谐滤波器中,认为它们的值都取零)。R 矩阵是N ×N 阶方阵,除R(1,1)=R1,R (N,N)=R2为非零量以外,其它元素值都等于零。那么,这个电路的传输函数可以写为

()()()Z Z D D R R e R i s S N N 1211221 cof 22==

其中,D(cofZ1N)表示Z 矩阵第一行、第N 列元素的代数余子式,D(Z)表示Z 矩阵的行列

式。相应地,通带增益频响特性为

()()()

2

12

12

1

2

cof 44Z Z D D R R e R

i s G N N ==

取 n =3,可得 3×3 阶耦合矩阵M :

3阶椭圆函数滤波器的低通增益函数修正为:

其中

实验二 源-负载耦合的交叉耦合滤波器设计与仿真

实验二源-负载耦合的交叉耦合滤波器设计与仿真 一、实验目的 1.设计一个源-负载耦合的交叉耦合滤波器 2.查看并分析该源-负载耦合的交叉耦合滤波器的S 参数 二、实验设备 装有HFSS 13.0软件的笔记本电脑一台 三、实验原理 交叉耦合滤波器在非相邻谐振腔之间引入了交叉耦合,以得到有限频率传输零点,从而提高了滤波器的选择特性。一般来讲,一个N 腔交叉耦合滤波器最多能实现N-2个传输零点。对于给定的一种含有N 个谐振器的滤波器,如果在源与负载之间也引入耦合,则可实现N 个传输零点。源-负载耦合的交叉耦合滤波器等效电路模型如图所示。 e R 2 在上图所示的等效电路模型中,ij M 表示各个谐振腔之间的耦合系数,Si M 、L i M 分别表示源、负载与第i 个腔之间的耦合系数。SL M 则表示源与负载之间的耦合系数。整个电路由N 个谐振腔构成,各个谐振腔之间是电感耦合。对于窄带滤波器,做如下规一化: 110=?=ωω, 这里0ω为中心频率,ω?为相对带宽。 回路矩阵方程为: R)I M (sU I Z E 0++=?=j 其中,0U 是将(N+2)×(N+2)阶单位矩阵中第一个元素和最后一个元素令为0,其它元素都保持不变所得的矩阵。M 是耦合矩阵,是一个(N+2)×(N+2)阶方阵,其中对角线上的元素代表每一个谐振腔的自耦合,它表示每一个谐振腔的谐振频率i f 与滤波器的中心频率 o f 之间的偏差。(在同步调谐滤波器中,我们认为每个谐振腔的自耦合系数的值都取零)。 矩阵中非对角线上的元素表示各个谐振腔之间的耦合系数。 R 矩阵是(N+2)×(N+2)阶方阵,除21)2,2(,)1,1(R N N R =++=R R 非零以外,其它

低通滤波器实验报告

(科信学院) 信息与电气工程学院 电子电路仿真及设计CDIO三级项目 设计说明书 (2012/2013学年第二学期) 题目: ____低通滤波器设计____ _____ _____ _ 专业班级:通信工程 学生姓名: 学号: 指导教师: 设计周数:2周 2013年7月5日 题目: ____低通滤波器设计____ _____ _____ _ (1)

第一章、电源的设计 (2) 1.1实验原理: (2) 1.1.1设计原理连接图: (2) 1. 2电路图 (5) 第二章、振荡器的设计 (7) 2.1 实验原理 (7) 2.1.1 (7) 2.1.2定性分析 (7) 2.1.3定量分析 (8) 2.2电路参数确定 (10) 2.2.1确定R、C值 (10) 2.2.2 电路图 (10) 第三章、低通滤波器的设计 (12) 3.1芯片介绍 (12) 3.2巴特沃斯滤波器简介 (13) 3.2.1滤波器简介 (13) 3.2.2巴特沃斯滤波器的产生 (13) 3.2.3常用滤波器的性能指标 (14) 3.2.4实际滤波器的频率特性 (15) 3.3设计方案 (17) 3.3.1系统方案框图 (17) 3.3.2元件参数选择 (18) 3.4结果分析 (20) 3.5误差分析 (23) 第四章、课设总结 (24) 第一章、电源的设计 1.1实验原理: 1.1.1设计原理连接图:

整体电路由以下四部分构成: 电源变压器:将交流电网电压U1变为合适的交流电压U2。 整流电路:将交流电压U2变为脉动的直流电压U3。 滤波电路:将脉动直流电压U3转变为平滑的直流电压U4。 稳压电路:当电网电压波动及负载变化时,保持输出电压Uo的稳定。 1)变压器变压 220V交流电端子连一个降压变压器,把220V家用电压值降到9V左右。 2)整流电路 桥式整流电路巧妙的利用了二极管的单向导电性,将四个二极管分为两组,根据变压器次级电压的极性分别导通。见变压器次级电压的正极性端与负载电阻的上端相连,负极性端与负载的电阻的下端相连,使负载上始终可以得到一个单方向的脉动电压。单项桥式整流电路,具有输出电压高,变压器利用率高,脉动系数小。

实验一交叉耦合滤波器设计与仿真

实验一交叉耦合滤波器设计与仿真 、实验目的 1?设计一个交叉耦合滤波器 2?查看并分析该交叉耦合滤波器的S参数 、实验设备 装有HFSS 13.0软件的笔记本电脑一台 三、实验原理 具有带外有限传输零点的滤波器,常常采用谐振腔多耦合的形式实现。这种形式的特点 是在谐振腔级联的基础上,非相邻腔之间可以相互耦合即“交叉耦合”,甚至可以采用源与 负载也向多腔耦合,以及源与负载之间的耦合。交叉耦合带通滤波器的等效电路如下图所示。在等效电路模型中,el表示激励电压源,R1、R2分别为电源内阻和负载电阻,ik(k=1,2,3,, ,N) 表示各谐振腔的回路电流,Mj表示第i个谐振腔与第k个谐振腔之间的互耦合系数 (i,j=1,2, , ,N,且片j)。在这里取3 0=1,即各谐振回路的电感L和电容C均取单位值。Mkk (k=1,2,3,, ,N )表示各谐振腔的自耦合系数。 n腔交叉耦合带通滤波器等效电路如下图所示: l i 1H 丄F J 1F L丨「IVI N4r 1F y1 ---- 广、'、、L f A 1 1M1k t 1M kN *'i M2N人 M 1,N _ej■'s jM 12jM 13 0jM12s jM23 0=jM13a jM23s9 0jM1,N 一jM2,N U jM3,N — ■0 一1 1jM 1 N jM 2 N jM 3N jM 1, N J jM 1 N jM 2,N -1 jM 2 N jM 3,N -4jM 3n jM N —, N i N -1 jM N -1, N s R2 JL|N M R i e i k,N 1 1/2H 'N1/2H 1H 1/2H i21/2H ■■-R2 这个电路的回路方程可以写为 〕「h 1 I i2 i3

低通滤波器设计实验报告

低通滤波器设计实验报 告 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

低通滤波器设计 一、设计目的 1、学习对二阶有源RC 滤波器电路的设计与分析; 2、练习使用软件ORCAD (PISPICE )绘制滤波电路; 3、掌握在ORCAD (PISPICE )中仿真观察滤波电路的幅频特性与相频特性曲线 。 二、设计指标 1、设计低通滤波器截止频率为W=2*10^5rad/s; 2、品质因数Q=1/2; 三、设计步骤 1、考虑到原件分散性对整个电路灵敏度的影响,我们选择 R1=R2=R,C1=C2=C ,来减少原件分散性带来的问题; 2、考虑到电容种类比较少,我们先选择电容的值,选择电容 C=1nF; 3、由给定的Wp 值,求出R 12121C C R R Wp ==RC 1=2*10^5 解得:R=5K? 4、根据给定的Q ,求解K Q=2121C C R R /K)RC -(1+r2)C1+(R1= K -31 解得:K=3-Q 1= 5、根据求出K 值,确定Ra 与Rb 的值

Ra=2 K=1+ Rb Ra=Rb 这里取 Ra=Rb=10K?; 四、电路仿真 1、电路仿真图: 2、低通滤波器幅频特性曲线 3、低通滤波器相频特性曲线 注:改变电容的值:当C1=C2=C=10nF时 低通滤波器幅频特性曲线 低通滤波器相频特性曲线 五、参数分析 1、从幅频特性图看出:该低通滤波器的截止频率大约33KHz, 而我们指标要求设计截止频率 f= Wp/2?= 存在明显误差; 2、从幅频特性曲线看出,在截至频率附近出现凸起情况,这是二阶滤波器所特有的特性; 3、从相频特性曲线看出,该低通滤波器的相频特性相比比较好。 4、改变电容电阻的值,发现幅频特性曲线稍有不同,因此,我们在设计高精度低误差的滤波器时一定要注意原件参数的选择。 六、设计心得:

交叉耦合带通滤波器

交叉耦合带通滤波器集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

大学 课程设计任务书 注:1.课程设计完成后,学生提交的归档文件应按照:封面—任务书—说明书—图纸的顺序进行装订上交(大张图纸不必装订) 2.可根据实际内容需要续表,但应保持原格式不变。

指导教师签名:日期:

9 0 2 3 4 5 5 7

前言 微波滤波器是微波系统中重要元件之一,它用来分离或者组合各种不同频率信号的重要元件。在微波中继通信、卫信通信、雷达技术、电子对抗及微波测量中,具有广泛的应用。? 众所周知,滤波器的设计在低频电路中是用集总参数元件(电感L 和电容C)构成的谐振回路来实现。但当频率高达300Mhz以上时,低频下的集总参数的LC谐振回路已不再适用了。这一方面由于当回路的线性尺寸和电磁波的波长可以比拟时,辐射相当显着,谐振回路的品质因数大大下降,因而必须采用分布参数的微波滤波器。?任何一个微波系统都是由各种各样的微波器件、有源电路和传输线等组成的。微波元件种类很多。按传输线类型可分为波导式、同轴式和微带式等;按功能可分为连接元件、终端元件、匹配元件、衰减元件、相移元件、分路元件、波型变换元件、滤波元件等;按变换性质可分为互易元件、非互易元件和非线性元件等。 本文正是根据微波滤波器的特性设计一种微带交叉耦合带通滤波器,要求其小型化、频段规则性高、边缘陡峭,可用于小型化天线系统。 摘要: 交叉耦合滤波器具有高选择性、低插入损耗、宽阻带、高的带外截止特性等,已被广泛应用于现代微波通信系统中,本文拟采用高品质谐振腔交叉耦合的形式实现该带通滤波器,结构简单紧凑,通带陡度较

巴特沃斯滤波器的设计与仿真

信号与系统课程设计 题目巴特沃斯滤波器的设计与仿真 学院英才实验学院 学号2015180201019 学生姓名洪 健 指导教师王玲芳

巴特沃斯滤波器的设计与仿真 英才一班 洪健 2015180201019 摘 要:工程实践中,为了得到较纯净的真实信号,常采用滤波器对真实信号进行处理。本文对巴特沃斯模拟滤波器的幅频特性、设计方法及设计步骤进行了研究,并利用Matlab 程序和Multisim 软件,设计了巴特沃斯模拟滤波器,并分析了巴特沃斯模拟滤波器的幅频特性。利用 Matlab 程序绘制了巴特沃斯模拟滤波器的幅频特性曲线,并利用Matlab 实现了模拟滤波器原型到模拟低通、高通、带通、带阻滤波器的转换。通过Multisim 软件,在电路中设计出巴特沃斯滤波器。由模拟滤波器原型设计模拟高通滤波器的实例说明了滤波器频率转换效果。同时通过电路对巴特沃斯滤波器进行实现,说明了其在工程实践中的应用价值。 关键词:巴特沃斯滤波器 幅频特性 Matlab Multisim 引言 滤波器是一种允许某一特定频带内的信号通过,而衰减此频带以外的一切信号的电路,处理模拟信号的滤波器称为模拟滤波器。滤波器在如今的电信设备和各类控制系统里应用范围最广,技术最为复杂,滤波器的好坏直接决定着产品的优劣。滤波器主要分成经典滤波器和数字滤波器两类。从滤波特性上来看,经典滤波器大致分为低通、高通、带通和带阻等。 模拟滤波器可以分为无源和有源滤波器。 无源滤波器:这种电路主要有无源元件R、L 和C 组成。有源滤波器:集成运放和R、C 组成,具有不用电感、体积小、重量轻等优点。集成运放的开环电压增益和输入阻抗均很高,输出电阻小,构成有源滤波电路后还具有一定的电压放大和缓冲作用。但集成运放带宽有限,所以目前的有源滤波电路的工作频率难以做得很高。 MATLAB 是美国MathWorks 公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB 和Simulink 两大部分。 Multisim10 是美国NI 公司推出的EDA 软件的一种,它是早期EWB5.0、Multisim2001、Multisim7、Multisim8、Multisim9等版本的升级换代产品,是一个完全的电路设计和仿真的工具软件。该软件基于PC 平台,采用图形操作界面虚拟仿真了一个如同真实的电子电路实验平台,它几乎可以完成实验室进行的所有的电子电路实验,已被广泛应用于电子电路的分析,设计和仿真等工作中,是目前世界上最为流行的EDA 软件之一。 本文主要对低通模拟滤波器做主要研究,首先利用MATLAB 软件对巴特沃斯滤波器幅频特性曲线进行研究,并计算相应电路参数,最后利用Multisim 软件实现有源巴特沃斯滤波器。 正文 1巴特沃斯低通滤波器 巴特沃斯(Butterworth)滤波器的幅频特性如该幅频特性的特点如下: ① 最大平坦性。可以证明,在ω=0处,有最大值|H(0)|=1,幅频特性的前2n-1阶导数均为零。这表示它在ω=0点附近是很平坦的。 ② 幅频特性是单调下降的,相 频 特 性 也 是 单 调 下降的。因此, 巴特沃斯滤波器对有用信号产生的幅值畸变和相位畸变都很小。 ③ 无论阶数n是什么数,都会通过C = ,并且此时|()|H j ,而且n 越大,其幅频响应就越逼近理想情况。

实验一 交叉耦合滤波器设计与仿真(材料详实)

实验一 交叉耦合滤波器设计与仿真 一、 实验目的 1.设计一个交叉耦合滤波器 2.查看并分析该交叉耦合滤波器的S 参数 二、 实验设备 装有HFSS 13.0软件的笔记本电脑一台 三、 实验原理 具有带外有限传输零点的滤波器,常常采用谐振腔多耦合的形式实现。这种形式的特点是在谐振腔级联的基础上,非相邻腔之间可以相互耦合即“交叉耦合”,甚至可以采用源与负载也向多腔耦合,以及源与负载之间的耦合。交叉耦合带通滤波器的等效电路如下图所示。在等效电路模型中,e1表示激励电压源,R1、R2分别为电源内阻和负载电阻,ik (k=1,2,3,…,N )表示各谐振腔的回路电流,Mij 表示第i 个谐振腔与第k 个谐振腔之间的互耦合系数(i,j=1,2,…,N ,且i ≠j)。在这里取ω0=1,即各谐振回路的电感L 和电容C 均取单位值。Mkk (k=1,2,3,…,N )表示各谐振腔的自耦合系数。 n 腔交叉耦合带通滤波器等效电路如下图所示: ...1F 1/2H 1/2H 1/2H 1/2H 1/2H 1/2H 1H 1F 1F 1F ...i 1 i 2 i k i N i N M N ,1M k 1M kN M N 1 ,2-M 12 M k 2M N k 1 ,-M N N ,1-e 1 R 1 R 2 1F 1H 这个电路的回路方程可以写为 ?? ? ??? ? ?? ? ???????????????????????? ? ?? ???++=????????????????????---------N N N N N N N N N N N N n N N N N N i i i i i R s jM jM jM jM jM s jM jM jM jM jM s jM jM jM jM jM s jM jM jM jM jM s R e 13212,1321,11,31,21,131 ,3231321,22312 11,11312110000M Λ ΛM M ΛM M M ΛΛΛM 或者写成矩阵方程的形式:I R M sU ZI E )(0++==j

滤波器实验

实验三滤波器实验 一,实验目的 1,通过实验了解滤波器的工作原理。 2,通过实验学习有源滤波器的特点。 3,学习滤波器在工程技术中的应用。 二,实验仪器及器材 1,通用线路接插板 2,电容、电阻、电位器、运算放大器等电子元器件 3,晶体管毫伏表 4,低频信号发生器 5,直流稳压电源 三,实验步骤及实验结果 1,计算上截止频率为440Hz的RC低通滤波器的R、C数值。 实验电路如上图,其中电容,根据上截止频率点处 解得:。 2,将选好的元件在线路插板上按上图接插成低通滤波器,测出其幅频特性。 采用两种方法测量,一种是通过示波器测量不同频率的响应幅值,从而得到幅频特性曲线。另一种是直接测量幅频特性伯德图。 实验中直接测得幅频特性曲线:

手动调整输入信号频率,测得输出放大倍率如下 通过示波器测量频率为0~2k时的幅值响应数据如下: 得到的幅频特性曲线如下: 可以看出通过测量各频率放大倍率绘制的幅频曲线图和实验中仪器绘制的波特图基本一致,截止频率440Hz左右。 3,在此低通滤波器的输出端并联一个1kΩ的负载电阻,再测其幅频特性,并与无负

载情况下的幅频特性相比较。 分析可得上截止频率满足: 实验中36kΩ,,代入上式求得: 实验测出幅频特性曲线如下: 分析数据: Freq (Hz) Gain (dB) Phase (deg) 100.000 -30.235 -0.438 14677.993 -33.457 -51.451 17782.794 -34.382 -57.910 从初始下降-3dB即为截止频率,可看出与理论计算基本相符。 比较两种情况可看出: 原本的截止频率为440Hz处于低频段,并联负载后截止频率变为16.4kHz处于高频段,无法起到低通滤波器的作用。 另外原本的静态放大倍率为1(0dB),在接负载后静态放大倍率降为,即实际输出电压很小,影响滤波器性能。 4,接成如下图所示的有源滤波低通滤波器,测出其幅频特性。

实验四电源滤波器插入损耗仿真

电磁场与电磁兼容 实验报告 学号: 姓名:院系:专业:教师: 5月28日

实验四电源滤波器插入损耗仿真实验 一、实验目的 通过对电源滤波器基本电路的仿真实验,掌握电源滤波器构成以及各器件的功能和作用,理解滤波器EMI 防护原理。 二、实验原理和内容 实验原理图: 图1 电源滤波器电路图 电源滤波器是一种多级差模和共模低通滤波器级联的应用实例,它可同时滤去差模和共模两种模式的高频噪声。 图1 所示为电源滤波器的原理图。L1 和L2是差模电感扼流圈,电感量一般选取几十至几百毫亨,C1是差模滤波电容,一般选取0.047~0.22uF,L3和L4是共模扼流圈,电感量约为几毫亨,绕在同一个铁氧体环上,C2 和C3 是共模滤波电容,电容量一般选取几纳法。 插入损耗计算公式: 图 2 共模扼流 圈

实验内容: 使用EWB 或Multisim 等电路仿真软件,对电源滤波器进行仿真,通过改变器件参数、输入阻抗、输出阻抗等条件,观察插入损耗的变化,并对实验结果进行分析。 三、实验步骤 1、设计电源滤波器电路 根据图1 的电路图,在仿真软件中建立仿真模型电路 如下图2、图3 分别为共模、差模插入阻抗测试电路。 图2 共模插入阻抗测试电路 图3 共模插入阻抗测试电路

2、仿真滤波器的频率响应 针对共模电路和差模电路分别进行仿真,分析不同频率下的输出信号。 1)控制输入频率分别等于1kHz,10kHz, 20kHz, 100kHz,观察示波器的输出波形。 2)改变L1 L2的参数、C2 C3的参数,观察频率响应曲线的变化。 3、仿真计算滤波器共模插入损耗 4、仿真计算滤波器差模插入损耗 四、实验数据和结果分析 1、共模电路仿真结果 1)函数发生器参数设置截图 通过改变函数发生器的频率参数来调节频率。 选用变压器代替共模扼流圈,但是选用的变压器并不是理想变压器,因此更改其中一些参数如下:

交叉耦合带通滤波器

大学 课程设计任务书 序进行装订上交(大张图纸不必装订) 2.可根据实际内容需要续表,但应保持原格式不变。 指导教师签名:日期:

前言 (1) 一、背景知识 (2) 1、滤波器的发展 (2) 2、微波滤波器的应用 (2) 3、交叉耦合滤波器提出与发展 (3) 二、交叉耦合带通滤波器设计原理 (4) 1、交叉耦合滤波器的设计思路 (4) 2、新型耦合开环结构 (5) 3、交叉耦合滤波器的设计 (6) 三、仿真步骤 (9) 1、建立新工程 (9) 2、设置求解类型 (9) 3. 设置模型单位 (10) 4、建立滤波器模型 (10) 5、创建端口 (19) 6、创建Air (20) 7、设置边界条件 (20) 8、为该问题设置求解频率及扫频范围 (22) 9、优化仿真 (23) 10、保存工程 (24) 11、后处理操作 (25) 四、设计总结 (25) 参考文献 (27)

前言 微波滤波器是微波系统中重要元件之一,它用来分离或者组合各种不同频率信号的重要元件。在微波中继通信、卫信通信、雷达技术、电子对抗及微波测量中,具有广泛的应用。? 众所周知,滤波器的设计在低频电路中是用集总参数元件(电感L和电容C)构成的谐振回路来实现。但当频率高达300Mhz以上时,低频下的集总参数的LC谐振回路已不再适用了。这一方面由于当回路的线性尺寸和电磁波的波长可以比拟时,辐射相当显着,谐振回路的品质因数大大下降,因而必须采用分布参数的微波滤波器。?任何一个微波系统都是由各种各样的微波器件、有源电路和传输线等组成的。微波元件种类很多。按传输线类型可分为波导式、同轴式和微带式等;按功能可分为连接元件、终端元件、匹配元件、衰减元件、相移元件、分路元件、波型变换元件、滤波元件等;按变换性质可分为互易元件、非互易元件和非线性元件等。 本文正是根据微波滤波器的特性设计一种微带交叉耦合带通滤波器,要求其小型化、频段规则性高、边缘陡峭,可用于小型化天线系统。 摘要: 交叉耦合滤波器具有高选择性、低插入损耗、宽阻带、高的带外截止特性等,已被广泛应用于现代微波通信系统中,本文拟采用高品质谐振腔交叉耦合的形式实现该带通滤波器,结构简单紧凑,通带陡度较高,适合小型化设计,性能较高的天线或雷达双工器等电路使用。 关键词: 交叉耦合滤波器、微带线、设计、HFSS 一、背景知识 1、滤波器的发展 凡是有能力进行信号处理的装置都可以称为滤波器。在近代电信设备和各

数字信号处理-低通滤波器设计实验

实验报告 课程名称:数字信号处理 实验名称:低通滤波器设计实验 院(系): 专业班级: 姓名: 学号: 指导教师: 一、实验目的: 掌握IIR数字低通滤波器的设计方法。 二、实验原理: 2.1设计巴特沃斯IIR滤波器 在MATLAB下,设计巴特沃斯IIR滤波器可使用butter 函数。 Butter函数可设计低通、高通、带通和带阻的数字和模拟IIR滤波器,其特性为使通带内的幅度响应最大限度地平坦,但同时损失截止频率处的下降斜度。在期望通带平滑的情况下,可使用butter函数。butter函数的用法为:

[b,a]=butter(n,Wn)其中n代表滤波器阶数,W n代表滤波器的截止频率,这两个参数可使用buttord函数来确定。buttord函数可在给定滤波器性能的情况下,求出巴特沃斯滤波器的最小阶数n,同时给出对应的截止频率Wn。buttord函数的用法为:[n,Wn]= buttord(Wp,Ws,Rp,Rs)其中Wp和Ws分别是通带和阻带的拐角频率(截止频率),其取值范围为0至1之间。当其值为1时代表采样频率的一半。Rp和Rs分别是通带和阻带区的波纹系数。 2.2契比雪夫I型IIR滤波器。 在MATLAB下可使用cheby1函数设计出契比雪夫I 型IIR滤波器。 cheby1函数可设计低通、高通、带通和带阻契比雪夫I 型滤IIR波器,其通带内为等波纹,阻带内为单调。契比雪夫I型的下降斜度比II型大,但其代价是通带内波纹较大。cheby1函数的用法为:[b,a]=cheby1(n,Rp,Wn,/ftype/)在使用cheby1函数设计IIR滤波器之前,可使用cheblord 函数求出滤波器阶数n和截止频率Wn。cheblord函数可在给定滤波器性能的情况下,选择契比雪夫I型滤波器的最小阶和截止频率Wn。cheblord函数的用法为: [n,Wn]=cheblord(Wp,Ws,Rp,Rs)其中Wp和Ws分别是通带和阻带的拐角频率(截止频率),其取值范围为0至1之间。当其值为1时代表采样频率的一半。Rp和Rs分别是通带和阻带区的波纹系数。 三、实验要求: 利用Matlab设计一个数字低通滤波器,指标要求如下:

实验一-交叉耦合滤波器设计与仿真

实验一交叉耦合滤波器设计与仿真 一、实验目的 1.设计一个交叉耦合滤波器 2.查看并分析该交叉耦合滤波器的S参数 二、实验设备 装有HFSS 13.0软件的笔记本电脑一台 三、实验原理 具有带外有限传输零点的滤波器,常常采用谐振腔多耦合的形式实现。这种形式的特点是在谐振腔级联的基础上,非相邻腔之间可以相互耦合即“交叉耦合”,甚至可以采用源与负载也向多腔耦合,以及源与负载之间的耦合。交叉耦合带通滤波器的等效电路如下图所示。在等效电路模型中,e1表示激励电压源,R1、R2分别为电源内阻和负载电阻,ik (k=1,2,3,…,N)表示各谐振腔的回路电流,Mij表示第i个谐振腔与第k个谐振腔之间的互耦合系数(i,j=1,2,…,N,且i≠j)。在这里取ω0=1,即各谐振回路的电感L和电容C均取单位值。Mkk(k=1,2,3,…,N)表示各谐振腔的自耦合系数。 n 腔交叉耦合带通滤波器等效电路如下图所示:

e R 2 这个电路的回路方程可以写为 ?? ? ??? ? ??? ? ??????????????????????? ? ?? ???++=????????????????????---------N N N N N N N N N N N N n N N N N N i i i i i R s jM jM jM jM jM s jM jM jM jM jM s jM jM jM jM jM s jM jM jM jM jM s R e 13212,1321,11,31,21,131 ,3231321,22312 11,11312110000M Λ ΛM M ΛM M M ΛΛΛM 或者写成矩阵方程的形式:I R M sU ZI E )(0++==j 其中,??? ? ? -=+ =ωωωω11j j j s 一般来讲,频率都归一成1,即ω≈ω0=1,则 ij ij ij M j M j jM 0ωω≈≈ 其中E 为电压矩阵,I 为电流矩阵,Z 为阻抗矩阵, R M U Z ++=00j s U0是N ×N 阶单位矩阵。M 是耦合矩阵,它是一个N ×N 阶方阵,形式如下:

绝对经典的低通滤波器设计报告

经典 无源低通滤波器的设计

团队:梦知队 团结奋进,求知创新,追求卓越,放飞梦想 队员: 日期:2010.12.10 目录 第一章一阶无源RC低通滤波电路的构建 (3) 1.1理论分析 (3) 1.2电路组成 (4) 1.3一阶无源RC低通滤波电路性能测试 (5) 1.3.1正弦信号源仿真与实测 (5) 1.3.2三角信号源仿真与实测 (10) 1.3.3方波信号源仿真与实测 (15) 第二章二阶无源LC低通滤波电路的构建 (21) 2.1理论分析 (21) 2.2电路组成 (22) 2.3二阶无源LC带通滤波电路性能测试 (23) 2.3.1正弦信号源仿真与实测 (23) 2.3.2三角信号源仿真与实测 (28)

2.3.3方波信号源仿真与实测 (33) 第三章结论与误差分析 (39) 3.1结论 (39) 3.2误差分析 (40) 第一章一阶无源RC低通滤波电路的构建1.1理论分析 滤波器是频率选择电路,只允许输入信号中的某些频率成分通过,而阻止其他频率成分到达输出端。也就是所有的频率成分中,只是选中的部分经过滤波器到达输出端。 低通滤波器是允许输入信号中较低频率的分量通过而阻止较高频率的分量。 图1RC低通滤波器基本原理图 当输入是直流时,输出电压等于输入电压,因为Xc无限大。当输入

频率增加时,Xc减小,也导致Vout逐渐减小,直到Xc=R。此时的频率为滤波器的特征频率fc。 解出,得: 在任何频率下,应用分压公式可得输出电压大小为: 因为在=时,Xc=R,特征频率下的输出电压用分压公式可以表述为: 这些计算说明当Xc=R时,输出为输入的70.7%。按照定义,此时的频率称为特征频率。 1.2电路组成

同轴腔结构交叉耦合滤波器的设计

同轴腔结构交叉耦合滤波器的设计 摘要:现代微波通讯的迅速发展,对通道的选择性要求越来越高,不仅需要滤波器的过渡带尽可能窄,还可能需要产生非对称的频率响应,这就需要高性能的选频器件。传统滤波器如Butterworth和Chebyshev滤波器只有依靠增加滤波器的阶数才能满足要求,加工出来的滤波器重量和体积都非常大,不适合现代通讯的需求。椭圆函数滤波器虽然具有很好的选择性,但不能产生非对称的频率响应。广义Chebyshev函数滤波器能通过引入交叉耦合在有限频率处产生传输零点而不用增加滤波器阶数来提高通道的选择性,并且它的任意零点特性能产生非对称的频率响应,相当于把滤波器的阻带抑制能力都集中在所需要的一侧,从而可以用较少阶数的滤波器来实现很高的选择性,因此与传统滤波器相比,体积小、成本低且通道选择性更好,从而可以减小系统的体积和重量,满足现代通信的需求。 同轴腔滤波器通过在谐振腔之间开窗口或加探针,实现电感或电容耦合,通过改变窗口的位置、大小或者探针的粗细、长短等来控制耦合电感或电容的强弱以实现窄带滤波器;而且很容易实现谐振器之间的交叉耦合,通过控制交叉耦合的数量和强弱得以实现传输零点的位置和数目。在有电容加载的情况下,同轴腔滤波器具有小型化的优势,并且具有带宽窄、矩形系数高、功率容量高等优点,所以其应用前景非常广泛,是国内外广泛研究的热点。 总之, 同轴腔广义Chebyshev滤波器具有体积小、带宽窄、矩形系数高、功率容量高等优点, 是国内外广泛研究的热点。 本文主要论述运用广义切比雪夫滤波函数综合交叉耦合滤波器,并在HFSS中设计出了带有传输零点的四腔同轴腔滤波器。交叉耦合滤波器的综合设计从给定的滤波器参数(中心频率,带宽,带内的回波损耗,归一化端口阻抗等)开始,首先得出广义切比雪夫函数滤波器的反射系数和传输系数递推关系式,根据理论响应的表示关系式提取出描述各谐振腔耦合关系的耦合矩阵以及源与负载端的加载Q值;然后利用耦合谐振器电路理论在实际的微波电路结构中实现耦合矩阵中可实现的耦合系数和源与负载端的加载Q值。最终的仿真结果说明了这种方法的可行性和实用性。 关键词:广义Chebyshev函数交叉耦合同轴腔滤波器HFSS 耦合矩阵 Design Of Cross-coupled Coaxial Cavity Filter

自适应滤波实验报告

LMS 自适应滤波实验报告 : 学号: 日期:2015.12.2 实验容: 利用自适应滤波法研究从宽带信号中提取单频信号的方法。 设()()()()t f B t f A t s t x 212cos 2cos π?π+++=,()t s 是宽带信号,A ,B ,1f ,2f , ?任选 (1)要求提取两个单频信号; (2)设f f f ?+=12,要求提取单频信号()t f 22cos π,研究f ?的大小对提取单频信号的影响。 1. 自适应滤波器原理 自适应滤波器理论是现代信号处理技术的重要组成部分,它对复杂信号的处理具有独特的功能。自适应滤波器在信号处理中属于随机信号处理的畴。在一些信号和噪声特性无法预知或他们是随时间变化的情况下,自适应滤波器通过自适应滤波算法调整滤波器系数,使得滤波器的特性随信号和噪声的变化,以达到最优滤波的效果,解决了固定全系数的维纳滤器和卡尔曼滤波器的不足。 (1) 自适应横向滤波器 所谓自适应滤波,就是利用前一时刻已获得的滤波器参数等结果,自动调节现时刻的滤波器参数,以适应信号和噪声未知或随时间变化的统计特性,从而实现最优滤波。自适应滤波器由两个部分组成:滤波器结构和调节滤波器系数的自适应算法。自适应滤波器的特点是自动调节自身的冲激响应,达到最优滤波,此算法适用于平稳和非平稳随机信号,并且不要求知道信号和噪声的统计特性。

一个单输入的横向自适应滤波器的原理框图如图所示: 实际上这种单输入系统就是一个FIR 网络结构,其输出()n y 用滤波器单位脉冲响应表示成下式: ()()()∑-=-=1 N m m n x m w n y 这里()n w 称为滤波器单位脉冲响应,令: ()()n i n x x i w w m i i i ,1,1,1+-=-=+=用j 表示,上式可以写成 ∑==N i ij i j x w y 1 这里i w 也称为滤波器加权系数。用上面公式表示其输出,适用于自适应线性组合器,也适用于FIR 滤波器。将上式表示成矩阵形式: X W W X j T T j j y == 式中 [][ ] T Nj j j j T N x x x w w w X W ,...,,, ,...,,2121== 误差信号表示为 X W j T j j j j d y d e -=-= (2) 最小均方(LMS )算法 Widrow 等人提出的最小均方算法,是用梯度的估计值代替梯度的精确值,这种算法简单易行,因此获得了广泛的应用。

匹配滤波器的仿真实验报告

实验一 匹配滤波器的仿真验证 一、实验目的:利用matlab 验证匹配滤波器的特性 二、实验要求:设二进制数字基带信号s (t )=∑a n a g (t-s nT ),加性高斯白噪声的功率谱 密度为0.其中n a ∈{+1,-1},g (t )={10 s T t <<0其他(1)若接收滤波器的冲击响应函数h (t ) =g (t ),画出经过滤波器后的输出波形图:(2)若H (f )={ 10)2/(5||s T f <其他 画出经过滤波器后的输出波形图。 三、实验原理: 匹配滤波器原理:匹配滤波器是一种以输出信噪比为最佳判决准则的线性滤波器。它的冲击响应h (t )=S (t0-t );y0(t )=h (t )*s (t );在最佳判决时刻t0时输出信噪比r 最大。 四、实验源码 clear all; close all; N =100; N_sample=8; Ts=1; dt =Ts/N_sample; t=0:dt:(N*N_sample-1)*dt; gt =ones(1,N_sample); d = sign(randn(1,N)); a = sigexpand(d,N_sample); st = conv(a,gt); ht1 =gt; rt1 =conv(st,ht1); ht2 =5*sinc(5*(t-5)/Ts); rt2 =conv(st,ht2); figure(1) subplot(321) plot(t,st(1:length(t))); axis([0 20 -1.5 1.5]);ylabel('输入双极性NRZ 数字基带波形'); subplot(322) stem(t,a); axis([0 20 -1.5 1.5]);ylabel('输入数字序列'); subplot(323)

交叉耦合吸收滤波器的设计

交叉耦合吸收滤波器的设计 微波滤波器一般将电磁(EM)波从负载反射回信号源。但在有些情况下,例如要将反射波从输入中分离出来,以便保护信号源免受过高的功率。基于这个原因,已经开发出吸收滤波器以尽量减少反射。 图1表示了吸收滤波器的基本结构。这种类型的滤波器非常有用,其不仅是一个吸收滤波器,还是功率合成器或双工器。当仅有一个信号输入(端口1)时,端口2是吸收端口,而端口3是隔离端口。端口4是输出端口。当不同的输入信号作用于端口1和端口3时,该结构也可以作为一个信号合成器。最近,在微波和毫米波系统的波导应用中已经提出了基片集成波导(SIW)技术2,3。SIW由基片上的各种金属阵列组成。采用标准印制电路板(PCB)或低温共烧陶瓷(LTCC)基片来制造SIW器件。SIW技术具有一定的优势,例如高品质因数(Q)、低插入损耗、减小了体积、降低了成本,并易于与平面电路进行集成。因此,SIW 技术广泛地应用于各种不同的滤波器以及双工器的设计。 在本文中,已经研制成功一种基于SIW技术的新型交叉耦合吸收滤波器。其具有锐选择性和高Q值,并易于与平面电路进行集成。本文中研发的3-dB两步混合耦合器与先前已出版的著作不同。这一3-dB混合耦合器具有良好的功率分配性能。该吸收滤波器采用标准PCB板进行制作,并且将实测数据与仿真结果进行比较后表明二者相差很小。很明显,以空气填充波导管变换的SIW与SIW-微带波导管变换相比可以提高功率并减小插入损耗。 例如,吸收滤波器常常用于将反射EM波从输入信号端口分离出来,从而保护该端口免于信号过载。吸收滤波器的结构(图1)也可用于其他应用。图1中的两个滤波器是一致的。

实验二 源-负载耦合的交叉耦合滤波器设计与仿真上课讲义

实验二源-负载耦合的交叉耦合滤波器设 计与仿真

实验二 源-负载耦合的交叉耦合滤波器设计与仿真 一、实验目的 1.设计一个源-负载耦合的交叉耦合滤波器 2.查看并分析该源-负载耦合的交叉耦合滤波器的S 参数 二、实验设备 装有HFSS 13.0软件的笔记本电脑一台 三、实验原理 交叉耦合滤波器在非相邻谐振腔之间引入了交叉耦合,以得到有限频率传输零点,从而提高了滤波器的选择特性。一般来讲,一个N 腔交叉耦合滤波器最多能实现N-2个传输零点。对于给定的一种含有N 个谐振器的滤波器,如果在源与负载之间也引入耦合,则可实现N 个传输零点。源-负载耦合的交叉耦合滤波器等效电路模型如图所示。 e R 2 在上图所示的等效电路模型中,ij M 表示各个谐振腔之间的耦合系数,Si M 、L i M 分别表示源、负载与第i 个腔之间的耦合系数。SL M 则表示源与负载之间的耦合系数。整个电路由N 个谐振腔构成,各个谐振腔之间是电感耦合。对于窄带滤波器,做如下规一化: 110=?=ωω, 这里0ω为中心频率,ω?为相对带宽。 回路矩阵方程为: R)I M (sU I Z E 0++=?=j

其中,0U 是将(N+2)×(N+2)阶单位矩阵中第一个元素和最后一个元素令为0,其它元素都保持不变所得的矩阵。M 是耦合矩阵,是一个(N+2)×(N+2)阶方阵,其中对角线上的元素代表每一个谐振腔的自耦合,它表示每一个谐振腔的谐振频率i f 与滤波器的中心频率 o f 之间的偏差。(在同步调谐滤波器中,我们认为每个谐振腔的自耦合系数的值都取 零)。矩阵中非对角线上的元素表示各个谐振腔之间的耦合系数。 R 矩阵是(N+2)×(N+2)阶方阵,除21)2,2(,)1,1(R N N R =++=R R 非零以外,其它 元素值都等于零。 由上可得到该滤波器网络的传输函数: )() (22 )(2112Z Z 1N D cof D R R e R i s t L == 其中,)(1N Z cof D 表示Z 矩阵的第一行;第N 列元素的代数余子式;)(Z D 表示Z 矩阵的行列式。 对上式做进一步分析,可以发现:其分子多项式与分母多项式是同阶多项式。因此,必须选择分子分母同阶的函数形式作为源.负载耦合交叉耦合滤波器的逼近函数。一般情况下,我们可以通过将奇数阶椭圆函数的分子多项式舍去一个零点,或者直接选择偶数阶椭圆函数作为逼近函数。这里需要指出的是,两种逼近函数的构造方法,都必须对波纹系数做一定的修正。 将滤波器看作一个二端口网络,那么其导纳矩阵为 ()()()()()()()()()()??? ???-+??????=?? ????=??????=∑=k k k k N k k n n n n d r r r r j s K K j s y s y s y s y s y s y s y s y s y 2221121110022211211222112111001λY 这里假设源和负载阻抗相等并设为1Ω,则当N 为偶数时, ()()()()() s m s n s y s y s y d n 112222== ()()()()[]() s m s P s y s y s y d n 12121ε== 当N 为奇数时, ()()()()() s n s m s y s y s y d n 112222==

基于DSP的数字滤波器的设计与仿真

2.1系统功能介绍 一个实际的应用系统中,总存在各种干扰。数字滤波器在语音信号处理、信号频谱估计、信号去噪、无线通信中的数字变频以及图像信号等各种信号处理中都有广泛的应用,数字滤波器也是使用最为广泛的信号处理算法之一。 在本设计中,使用MATLAB模拟产生合成信号,然后利用CCS进行滤波。设定模拟信号的采样频率为48000Hz,。设计一个FIR低通滤波器,其参数为:滤波器名称:FIR低通滤波器 采样频率:Fs=48000Hz 通带截止频率:15000Hz 阻带截止频率:16000Hz 通带最大衰减:0.1dB 阻带最少衰减:80dB 滤波器系数:由MATLAB根据前述参数求得。 2.2 总体设计方案流程图 图1 总体设计方案

主要内容和步骤 3.1 滤波器原理 对于一个FIR 滤波器系统,它的冲击响应总是又限长的,其系统函数可记为: ()()10 N n n H z h n z --==∑ 其中1N -是FIR 的滤波器的阶数,n z -为延时结,()h n 为端口信号函数。 最基本的FIR 滤波器可用下式表示: ()()()10 N k y n h k x n k -==-∑ 其中()x n k -输入采样序列,()h k 是滤波器系数,N 是滤波器的阶数()Y n 表示滤波器的输出序列,也可以用卷积来表示输出序列()y n 与()x n 、()h n 的关系,如下: ()()()y n x n h n =* 3.2 操作步骤 (1)打开FDATOOL ,根据滤波要求设置滤波器类型、通带截止频率、指定阶数、采样频率等。指定完设计参数后单击按钮Design Filter ,生成滤波器系数。 (2)把生成的滤波器系数传到目标DSP 。选择菜单Targets->Export to Code Composer Studio(tm)IDE ,打开Export to C Header File 对话框,选择C header file ,指定变量名(滤波器阶数和系数向量),输出数据类型可选浮点型或32 b ,16 b 整型等,根据自己安装选择目标板板号和处理器号,单击OK ,保存该头文件,需指定文件名(filtercoeff .h)和路径(保存在c :\ti\myprojects\fir 工程中)。 (3)修改CCS 汇编程序,删掉数据前的所有文字,在开头加上.data ,第二行加coeff .word ,在每行的前面加上.word ,比且把每行的最后的逗号去掉。 (4)编译汇编程序,如果有错误,按错误进行修改;没错误,则往下执行。 (5)加载初始化DATA 数据。运行程序,查看输入输出波形,修改相应参数进行调试

低通滤波器 实验报告

1.概述 低通滤波器LPF是滤除噪声用得最多的滤波器。由于高阶有源低通滤波器的每个滤波节皆由二阶滤波器和一阶滤波器组成。我们设计一个巴特沃兹二阶有源低通滤波器。并使用电子电路仿真软件进行性能仿真。 (2)巴特沃斯低通滤波器的幅频特性为: n c uo u A j A 211)(??? ? ??+=ωωω . . . . . . (1) 其中Auo 为通带内的电压放大倍数,ωC 为截止角频率,n 称为滤波器的阶。从(1)式中可知,当ω=0时,(1)式有最大值1;ω=ωC 时,(1)式等于0.707,即Au 衰减了 3dB ;n 取得越大,随着ω的增加,滤波器的输出电压衰减越快,滤波器的幅频特性 越接近于理想特性。 当 ω>>ωC 时, n c uo u A j A ??? ? ??≈ωωω1)( . . . . . . (2) 两边取对数,得: lg 20c uo u n A j A ωωωlg 20)(-≈ . . . . . . (3) 此时阻带衰减速率为: -20ndB/十倍频或-6ndB/倍频,该式称为计算公式。 2.工作原理图 图2-1低通滤波器原理图

2-2低通滤波器原理图 工作原理:(1)滤波器是具有频率选择作用的电路或运算处理系统。滤波处理可以利用模拟电路实现,也可以利用数字运算处理系统实现。滤波器的工作原理是当信号与噪声分布在不同频带中时,可以在频率与域中实现信号分离。在实际测量系统中,噪声与信号的频率往往有一定的重叠,如果重叠不严重,仍可利用滤波器有效地抑制噪声功率,提高测量精度。 任何复杂地滤波网络,可由若干简单地、相互隔离地一阶与二阶滤波电路级联等效构成。一阶滤波电路只能构成低通和高通滤波器,而不能构成带通和带阻。可先设计一个一阶滤波电路来熟悉电路设计思路以及器件使用要求和软件地进一步学习。 有源滤波器地设计,主要包括确定传递函数,选择电路结构,选择有源器件与计算无源元件参数四个过程。 巴特沃斯滤波器的特点是通频带内的频率响应曲线最大限度平坦,没有起伏,而在阻频带则逐渐下降为零。在振幅的对数对角频率的波特图上,从某一边界角频率开始,振幅随着角频率的增加而逐步减少,趋向负无穷大。 一阶巴特沃斯滤波器的衰减率为每倍频6分贝,每十倍频20分贝。二阶巴特沃斯滤波器的衰减率为每倍频12分贝、三阶巴特沃斯滤波器的衰减率为每倍频18分贝、如此类推。巴特沃斯滤波器的振幅对角频率单调下降,并且也是唯一的无论阶数,振幅对角频率曲线都保持同样的形状的滤

相关主题
文本预览
相关文档 最新文档