当前位置:文档之家› 影响汽车加速行驶车外噪声检测的因素

影响汽车加速行驶车外噪声检测的因素

影响汽车加速行驶车外噪声检测的因素
影响汽车加速行驶车外噪声检测的因素

汽车车内声场分析及降噪方法研究发展

目录 1 引言 (1) 2 汽车噪声种类 (1) 3 车内噪声的主要来源 (2) 3.1 发动机噪声 (2) 3.2 底盘噪声 (2) 3.3 车身噪声和车内附属设备噪声 (2) 4 传统的车内噪声控制技术 (3) 4.1 消除或减弱噪声源的噪声辐射 (3) 4.2 隔绝传播途径 (3) 4.3 用吸声处理降低车室混响声 (3) 5 车内噪声主动控制技术 (4) 5.1 有源噪声控制技术 (4) 5.2 结构声的有源振动控制 (4) 6 车内噪声控制技术研究的发展趋势 (4) 7 结语及展望 (5) 参考文献: (6)

汽车车内声场分析及降噪方法研究发展 1引言 控制车内噪声一直是车辆设计、制造工程师的努力方向。汽车内部噪声不但增加驾驶乘人员的疲劳,而且影响车辆的行驶安全。车内噪声水平的高低在很大程度上反映了车辆制造厂家的设计和工艺水平。近年来,车内噪声已经成为无额定车辆品质的重要因素,车内低噪声设计已经成为产品开发中的重要任务之一。车内噪声级与乘坐室振动级别一样,已经成为判断汽车舒适性的主要指标。车内噪声主要取决于乘坐室的减振隔音性能,重量轻的承载式车身结构和类似的减轻车身重量的措施被认为可能增大车内噪声,尤其是低频噪声。实车测试表明,这种低频噪声主要集中在20~30HZ。车身壁板的振动和噪声有紧密关系,且乘坐室空腔的共振会放大噪声。这个问题的解决方法是在车辆设计阶段,利用现代振动力学与声学分析方法,预测车内噪声特性,实现优化设计;并通过实车测试,改进设计及工艺,最后使得车内噪声处于最优水平,最大极限地改善乘坐的舒适性,减轻人员的疲劳[1]。 2汽车噪声种类 汽车是有多种声源的机器, 运行中会有多种噪声,可分为: 车外噪声和车内噪声。车内噪声是指行驶的汽车乘坐室或驾驶室内存在的噪声, 其主要噪声源有: 发动机噪声、进气噪声、排气噪声、冷却风扇噪声、底盘噪声等。车内噪声按传播途径分为: 空气声和固体声[2][3][4]。 空气声(Air Borne Sound) 是从动力系统表面发出的辐射声, 它在空气中传播并对车身加振而形成。空气声会在传播过程中衰减, 材料对声能的衰减也使其大大衰减。固体声(Solid Borne Sound)是机械振动沿固体构件传播中产生的噪声, 它产生于发动机、变速箱、后桥、轮胎等, 并能通过底盘车架传播。由于固体构件一般由均质、密实的弹性材料组成, 对声波的吸收作用很小, 并能约束声波使它在有限空间内传播; 因此结构声往往可以传播很远距离。固体声通过构件表面的振动也会辐射出“再生”的空气声, 它与原始空气声相比较,结构声形成的再生噪声往往更难解决。空气声和结构声是可以相互转化的。空气声的振动能够迫使构件产生振动成为结构声; 结构声辐射出声音时, 也就成为空气声。减少空气声的传播, 要从减少或阻止空气的振动入手, 可以采取吸声或隔音措施; 减少结构声的传递,则须采取隔振或阻尼措施。

汽车发动机振动噪声测试实用标准系统

附件1 汽车发动机振动噪声测试系统 1用途及基本要求: 该设备主要用于教学和科研中的振动和噪声测量,要求能够测量试验对象的振动噪声特性(频率、阶次、声强等),能对试验数据进行综合分析。该产品的生产厂应具有多年振动噪声行业从业经验,有较高的知名度和影响力。系统软件和硬件应该为成熟的模块化设计,同时具有很强的扩展能力,能保证将来软件和硬件同时升级。 2设备技术要求及参数 2.1设备系统配置 2.1.1数据采集系统一套; 2.1.2数据测试分析软件一套; 2.1.3传声器 2个; 2.1.4加速度计 2个; 2.1.5声强探头 1套; 2.1.6声级校准器 1个; 2.1.7笔记本电脑一台 2.2数据采集、控制系统技术要求 2.2.1主机箱一个;供电采用9~36V直流和 200~240V交流; 2.2.2便携式采集前端,适用于实验室及现场环境; 2.2.3整机消耗功率<150W; 2.2.4工作环境温度:-10?C ~50?C; 2.2.5中文或英文WindowsXP下运行,操作主机采用笔记本电脑; 2.2.6输入通道数:4个以上,其中2个200V极化电压输入通道、不少一个转速输入通道; 2.2.7输入通道拥有Dyn-X技术,动态围160dB; 2.2.8每通道最高采样频率:≥65.5kHz,最大分析带宽:≥25.6kHz; 2.2.9系统留有扩充板插槽,根据需要可以进一步扩充;数据采集前端可同时连接多种形式传感器,包括加速度计、转速探头、传声器、声强探头等; 2.2.10系统具有堆叠和分拆能力,多个小系统可组成多通道大系统进行测量。大系统可分拆成多个小系统独立运行; 2.2.11采集前端的数据传输具备二种方式之一:①通过10/100M自适应以太网传输至PC; ②通过无线通讯以太网技术传输至PC,通信距离在100米以上。使测量过程更为灵活方便,方便硬件通道和计算机系统扩展升级;

车内噪音的来源及解决方法

在汽车音响改装行业浸淫多年,改装过不少车型,因为音响改装涉及到车辆吸音降噪的处理,对此也有些心得,现在整理一下,和大家分享。 首先我们来分析一下车内的噪音的来源,车内噪音主要有下面几种: 1.发动机噪音 发动机噪音包括发动机缸体发出的机械声,还包括进气系统噪音,即高速气体经空气滤清器、进气管、气门进入气缸,在流动过程中,会产生一种很强的气动噪音。由于汽车公司在车辆设计时由于成本的问题,部分零件不会采用最好的材料,如该车引擎盖没有使用吸音材料,防火墙没有贴隔音材料造成了发动机的声音通过仪表台下方、底盘传入到车内。 2.轮胎噪音 一般的胎噪主要由三部分组成:一是轮胎花纹间隙的空气流动和轮胎四周空气扰动构成的空气噪音;二是胎体和花纹部分震动引起的轮胎震动噪音;三是路面不平造成的路面噪音。胎噪是不可避免的,即使是换用所谓的低胎噪轮胎也没有什么效果,关键还是看车辆本身的吸音隔音效果,现在市售30万以下的新车防火墙基本是不做吸音隔音的,造成了发动机声音和轮胎噪音通过仪表台下方、底盘叶子板处传入到车内。 3.空气噪音 一是风噪,就是由车身周围气流分离导致压力变化而产生的噪音;二是风漏,或叫吸出音,是由驾驶室及车身缝隙吸气而与车身周围气流相互作用而产生的噪音;三是其他噪音,包括空腔共鸣等,例如很多车尾箱内的备胎空腔,很容易与排气系统形成共鸣,而汽车的四个门是离车内最近的结构,如果密封做的不好,风噪和凤漏就会很明显。 4.车身结构噪音 主要是受两个方面因素影响,一是车身结构的震动传递方式,二是车身上的金属构件由于在里外作用下产生震动而产生噪音。例如车门和尾箱两侧的钢板,很容易因为车辆震动而产生噪音,车门噪音传导及车身密封性不足,车门是由钣金件和门饰板组成。市场上售价在30万以下的新车,大部分车门部分都没有做隔音处理,因此在关门的时候可以感觉到明显的金属声音,车辆高速行驶时金属声会更明显。下面,我们将以马自达5为例,讲解一下如何进行静音降噪的处理。 刚提回来还没上牌的新车,车主说低速行驶时没多大问题,当时速达到80-100km后整车车身振动大、低频共鸣噪音大,要求处理高速行驶时产生的各种噪声。噪音描述符合绝大部分中小型车的噪音特性。在弄清楚噪音产生的原因后跟车主详细解释各部位振动所产生噪音的原理和解决方法,车主明白认可后开始动工做降噪工程。详细了解该车的各种噪音情况,分析噪音产生的原因,向车主解释该车噪音产生的部位、原理和处理方法以及施工后能达到的效果,让顾客明白放心消费。

GB 1495-2002汽车加速行驶车外噪声限值及测量方法.doc

个人护理品用的有机硅 章基凯 上海高分子材料研究开发中心 1前言 随着日化工业的发展和人民消费水平日益提高,对个人护理产品提出更广泛的要求。由于工业发展,空气污染程度增加,洗涤剂、增白剂、农药、化肥等化工产品的广泛使用,使人的皮肤接触越来越多的化学物质。因此,要求个人护理品不仅能修饰脸部、头发和手部,而且要求能够保护皮肤健康。 有机硅(特别是硅油)以优异的综合性能和生理隋性,十多年来已进入销售额大产品升级换代快的个人护理品行业。它具有与皮肤相容性和与基材的配位性、疏水透气性好、耐化学介质侵蚀、润而不腻等独特性能,它作为个人护理品的组份,在改进个人护理品、提高使用性能和开发新品种方面必将起到举足轻重的作用。 2有机硅的特性和毒性 2.1结构特征 有机硅具有以下的结构特征: (1)结合能量大的SiOSi主链(Si-O,106Kcal/mol); (2)分子间相对弱的亲和力(硅油20~25达因/厘米); (3)形成螺旋分子能力大。 2.2有机硅生理毒性 以硅油为例,具有对称分子结构,无极性基团,整个分子呈隋性分子。根据国外资料报导和北京首都医院、中国医学卫生研究院和原上海第一医学院等单位所进行毒性试验,证实硅油无毒,具有生理隋性,在个人护理品行业使用是绝对安全的。 (1)皮肤相容性-赖皮症试验 硅油的皮肤相容性可通过实验动物皮肤上没有上皮增厚作用而得到证明。所谓“赖皮症试验”即在皮肤的表面分别给以石蜡、凡士林和硅油,10天后观察到涂有石蜡、凡士林的皮肤上皮的所谓赖细胞层显著地促成播散,而涂以硅油的皮肤则无此现象。这就说明硅油对于皮肤的惰性甚至胜过化妆品中常用的石蜡、凡士林等材料。

汽车空调系统噪声与车内噪声研究与解决

汽车空调系统拍频现象 引起的车内噪声研究与解决 朱卫兵(1),李宏庚(2) 上汽通用五菱汽车股份有限公司 【摘要】 汽车室内噪声是汽车NVH的主要内容。引起车内噪声的因素很多,主要有发动机噪声、进排气噪声、传动系噪声以及高速行驶时的风噪声等等;汽车空调系统在工作时也会产生非常明显的车内噪 声,而且其产生的噪声相对容易被乘员辨识。空调系统压缩机、蒸发器、鼓风机及管路系统有轻微噪声是 正常的,但是如果噪声过大或存在异响,就说明空调系统有故障,需要及时处理。本文针对国内某款微型 面包车在开发过程中出现空调系统拍频异响问题,采用分别运转法、频谱分析法等将存在的异响问题解决,从而降低汽车车内噪声,同时也为汽车工程技术人员NVH开发提供借鉴。 【关键词】:汽车NVH,速比,压缩机,发电机,拍频 The Analysis and Solution on the Automobile Interior Noise Caused by Air Conditioning Beat-frequency ZHU Weibing(1),LI Honggeng(2) SAIC-GM-Wuling Automobile Co,.Ltd Abstract: The interior noise is one of key performances of vehicle NVH. There are many factors for vehicle interior noise, include engine noise, intake noise, exhaust noise, transmission noise and wind noise on high speed. The vehicle air condition will bring visible interior noise while it working. And it’s easy to distinguish it on relatively. In air condition system, it’s normal for a little noise in compressor, evaporator, fan and pipeline. But if it exist too big noise, there may be exist some problems in air condition system. This passage explains how to resolve the problem according to the air condition noise with the method of separate working and frequency analysis. At the same time it’s a reference to the carmaker’s vehicle NVH develop. Key words:Vehicle NVH, Speed ratio, Compressor, Dynamotor, Beat-frequency 1 前言 汽车空调系统在工作时也会产生非常明显的车内噪声,而且其产生的噪声相对容易被乘员辨识。空调系统压缩机、蒸发器、鼓风机及管路系统有轻微噪声是正常的,但是如果噪声过大或存在异响,就说明空调系统有故障,需要及时治理。 本文针对国内某款微车在开发过程中,由于空调系统拍频现象导致的车内噪声过大问题,采用分别运转法、频谱分析法等方法来确定汽车产生拍频现象的源头,并运用适当的方法来解决此问题,同时也为汽车工程技术人员NVH开发提供借鉴。 2空调系统噪声分析

车内噪声主动控制的研究

https://www.doczj.com/doc/bf10810107.html, 车内噪声主动控制技术的研究 徐云峰靳晓雄 (同济大学汽车学院上海 201804) fly10007@https://www.doczj.com/doc/bf10810107.html, 摘要:基于国内对汽车车内噪声控制标准的提升,运用目前国内外对噪声主动控制方面的研究成果,结合汽车本身的特点,本文阐述了利用压电陶瓷对车内噪声进行主动控制的研究。并根据车内声学模态对压电陶瓷优化配置方法和基于神经网络的控制策略进行探讨,通过对桑塔纳2000型轿车试验证实了这种主动控制方法的有效性。 关键词:车内噪声,压电陶瓷,主动控制,控制策略 1.前言: 随着国内外汽车技术的发展,车内噪声的控制标准越来越严格,它对汽车噪声控制技术提出了更高的要求。众所周知,传统的噪声被动控制技术较好的解决了车内高频段噪声,而对低频段噪声控制效果不佳。对此我们研究了一种新的噪声控制技术,即基于神经网络的基础上,利用传感器/作动器来进行车内噪声的主动控制。试验研究表明,这种控制技术有效的降低了汽车车内噪声。并且随着信号处理、电子技术的飞速发展和现代控制理论及测试技术的进步,这种噪声主动控制方法有着广泛的应用前景。 2.压电传感器与作动器的配置研究 在压电传感/作动器的配置方面,主要是基于给定的压电传感器与作动器,要求最佳的数据采集与动作位置。先前的研究表明,在振动能量最大点布置传感器,在振动能量最小点布置作动器。以桑塔纳2000型轿车为例分析计算,使用ANSYS软件进行轿车结构振动的声学贡献模拟分析,在要研究的20HZ、25HZ、50HZ频率内,顶棚后部被认为正贡献区域并且其声学贡献较大,所以我们以顶棚作为对象进行振动噪声的控制。然后运用ANSYS软件对轿车顶棚进行模态分析,以掌握其振动特性,并确定待控振动模态。模态分析的部分计算结果如表1所示。 表1 轿车顶棚有限元模态分析结果 阶数(m,n)固有频率(Hz) 1 1,1 26.845 2 2,1 54.214 3 1,2 98.324 4 3,1 142.35 将轿车顶棚简化为四边简支的矩形薄板结构【1】,运用下面的声学辐射效率公式(1)对轿车顶

多工况加速行驶车外噪声测量评价方法

V ol 35No.4 Aug.2015 噪 声与振动控制NOISE AND VIBRATION CONTROL 第35卷第4期2015年8月 文章编号:1006-1355(2015)04-0183-06 多工况加速行驶车外噪声测量评价方法 谢东明,张振鼎,郭 勇 (中国汽车技术研究中心,天津300300) 摘要:欧洲经济委员会正在起草修订的新噪声法规ECE R5103系列,要求对M1、N1类汽车进行多工况下的加速行驶车外噪声测量。阐述其测量方法产生的背景、发展过程及适用范围;结合验证试验解析多工况加速行驶车外噪声测量的试验流程,以及相应的三种评价方式。为汽车企业、大学及科研机构研究多工况下的加速行驶车外噪声测量与控制提供技术参考。 关键词:声学;多工况加速行驶车外噪声;测量方法;试验流程;评价方式中图分类号:O422.6 文献标识码:A DOI 编码:10.3969/j.issn.1006-1335.2015.04.040 Summary of Measurement and Evaluation Methods for Additional Sound Emission Provisions XIE Dong-ming ,ZHANG Zhen-ding ,GUO Yong (China Automotive Technology and Research Center,Tianjin 300300,China ) Abstract :In the draft of UN ECE R5103series,the M1and N1categories of vehicles are required to carry out the measurement of the Additional Sound Emission Provisions (ASEP).In this paper,the background knowledge,developing process and scope of the measurement method were introduced.According to the proof tests,the test procedure and three evaluation methods were analyzed.This summary provides a technical reference for the automobile companies,universities and research organizations for the purpose of measuring and controlling the Additional Sound Emission. Key words :acoustics ;ASEP ;measurement method ;test process ;evaluation method 现行欧盟噪声法规ECE R5102系列以及即将实施的ECE R5103系列在汽车加速行驶车外噪声认证试验过程中,均只对汽车特定工况(特定发动机转速、车速)条件下的噪声进行测量[1],而随着发动机及变速箱电控技术的发展,汽车生产厂商可能为了单纯满足特定工况下的噪声认证试验,而将车辆动力系统调整到非正常的状态或模式[2]。为了防止汽车生产厂商专门针对认证试验特定工况对汽车进行特殊调整,更加准确、全面控制M1、N1类汽车在各个档位,不同发动机转速、车速、不同加速度条件下的噪声,产生了一种新的方法—多工况加速行驶车外噪声测量方法。 对车速20km/h ~80km/h 范围内,发动机怠速 收稿日期:2014-12-25基金项目:环境保护部项目《汽车加速行驶外噪声限值及测 量方法(修订GB 1495-2002)》,项目统一编号464 作者简介:谢东明(1985-),男,四川大竹县人,目前从事整 车道路试验和道路试验标准工作。E-mail:xdongming@https://www.doczj.com/doc/bf10810107.html, ~90%额定转速范围内,多档位多工况条件下的加 速行驶车外噪声值进行测量。并采用噪声与发动机转速对应关系,噪声与车速、加速度对应关系两套理论,三种方法评价汽车在各车速、转速、加速度条件下的噪声水平,防止汽车使用过程中异常噪声的发出,严格控制汽车正常使用过程中多种工况条件下的噪声水平。 1ASEP 测量方法产生背景 现行的加速行驶车外噪声欧盟法规ECE R5102系列及对应的国标GB 1495-2002标准已实施多年[3],对于M1、N1类汽车,均采用2、3档全油门加速行驶的极端工况噪声(方法A )进行噪声试验结果评价。 极端工况噪声(方法A )与城市实际行驶工况存在较大差异,并直接导致噪声限值的降低与城市声学环境改善无法同步,1992年开始这一问题开始逐渐引起关注。1996—2000年,德国汽车技术研究机构TUV FIGE ,美国联邦环境保护局EPA 等机构采集了欧洲、亚洲、美国等地的汽车城市工况,并从

汽车车内噪声控制方法研究

汽车维修工高级技师论文 汽车车内噪声控制方法研究 姓名:付建伟 日期:2011年8月19日

论文题目:汽车车内噪声控制方法研究 摘要:汽车车内噪声指行驶汽车车厢内存在的各种噪声。车内噪声极易使乘车人员感到疲劳,对汽车的舒适性有着重要影响。本文从系统的观点出发,在分析了国内外汽车 产品的噪声控制技术水平现状以及噪声研究和控制技术方法的基础上,开展了比较 系统的车内噪声控制研究,识别了主要的噪声源和噪声辐射部位,同时,通过本项 目的研究,摸索出了一些行之有效的汽车噪声研究和控制的方法和措施。 关键词:汽车,车内噪声,声源识别,噪声控制,试验研究。 论文内容: 交通噪声是目前城市环境中最主要的噪声源,汽车噪声约占整个交通噪声的75%,是影响其性能和质量的重要指标之一,根据汽车对环境的影响,汽车噪声一般分为车外噪声和车内噪声。车外噪声在很大程度上对外部环境产生生态影响,而车内噪声对乘客舒适性产生影响。 一、国内外汽车噪声状况及控制技术 国外一般对车外噪声有严格的限制标准,至于对车内噪声尚没有严格的标准。在欧洲、美国、日本一些发达国家,汽车加速行驶时主噪声源并不是来自发动机,而是来自胎噪。发达国家对汽车发动机、消声器、变速箱、冷却系等主要噪声源已有深入研究,并且有成熟的理论计算和产品开发设计程序。目前,国外汽车噪声研究和控制的重点已经转向结构振动噪声、轮胎噪声及发动机隔声罩的研究方面,控制技术已普遍达到实用阶段。 国内对车外加速噪声的限制标准制定相对缓慢,自1979年制定了GB1495-79《机动车辆允许噪声》以来一直未做修订,直到2002年才颁布新标准GB1495-2002《汽车加速行驶车外噪声限值及测量方法》,国内对车内噪声没有严格的限制,只对某些星级汽车设置了噪声限值,在国内,发动机噪声仍占汽车噪声的三分之一以上,发动机的减振、降噪成为汽车噪声控制的关键。 对于汽车噪声的控制,不同阶段针对不同噪声源采取的控制措施是不同的。国内汽车的噪声控制技术每个时期都有其侧重点(见表1) 表1不同阶段重点集中发展的控制技术

GB1496—79机动车辆噪声测量方法

中华人民共和国国家标准 GB 1496—79 机动车辆噪声测量方法 本标准适用于各类型汽车、摩托车、轮式拖拉机等机动车辆的车外、车 内噪声的测量。 一、测量仪器 1.使用精密声级计或普通声级计和发动机转速表。 2.声级计误差应不超过±2dB(A)。 3.在测量前后,仪器应按规定进行校准。 二、车外噪声测量 (一)测量条件 4.测量场地应平坦而空旷,在测试中心以25m为半径的范围内,不应有大的反射物,如建筑物、围墙等。 5.测试场地跑道应有20m以上的平直、干燥的沥青路面或混凝土路面。路面坡度不超过0.5%。 6.本底噪声(包括风噪声)应比所测车辆噪声至少低10 dB(A)。并保 证测量不被偶然的其他声源所干扰。 注:本底噪声系指测量对象噪声不存在时,周围环境的噪声。 7.为避免风噪声干扰,可采用防风罩,但应注意防风罩对声级计灵敏度的影响。 8.声级计附近除测量者外,不应有其他人员,如不可缺少时,则必须在测量者背后。 9.被测车辆不载重。测量时发动机应处于正常使用温度,车辆带有其他辅助设备亦是噪声源,测量时是否开动,应按正常使用情况而定。

(二)测量场地及测点位置 10.测量场地示意图见图1。 11.测试话筒位于20m跑道中心点0两侧,各距中线7.5m,距地面高度1.2m,用三角架固定,话筒平行于路面,其轴线垂直于车辆行驶方向。 (三)加速行驶车外噪声测量方法 12.车辆须按下列规定条件稳定地到达始端线: 行驶档位:前进档位为4档以上的车辆用第3档,前进档位为4档或4档以下的用第2档。 发动机转速为发动机标定转速的四分之三。如果此时车速超过了50km/h,那 么车辆应以50km/h的车速稳定地到达始端线。 拖拉机以最高档位、最高车速的四分之三稳定地到达始端线。 对于自动换档车辆,使用在试验区间加速最快的档位; 辅助变速装置不应使用。 在无转速表时,可以控制车速进入测量区:以所定档位相当于四分之三标定 转速的车速稳定地到达始端线。 13.从车辆前端到达始端线开始,立即将油门踏板踏到底或节流阀全开,直 线加速行驶,当车辆后端到达终端线时,立即停止加速。车辆后端不包括拖车以

汽车车内声场分析及降噪方法研究现状

汽车车内声场分析及降噪方法研究现状 摘要:本文首先对车内噪声的来源进行分析,然后建立了车室空腔声场的声学有限元模型,利用结构及声场动态分析技术,对车身结构的动态特性、车室空腔声场的声学特征进行了研究。在此基础上,分析了声固耦合系统在外界激励下的声学响应。阐述了车内被动噪声控制在低频噪声上的原理与应用。及决定主动噪声控制效果的决定因素及在车内噪声控制中应用的发展过程, 并指出当前研究中需解决的问题和今后的研究方向。 关键词:车内噪声;控制;车室空腔;主动降噪 Abstract:This article first interior noise sources were analyzed, and then the establishment of a finite element model of the vehicle compartment acoustic sound field in the cavity, the use of the structure and dynamic sound field analysis of the dynamic characteristics of the body structure, the acoustic characteristics of the vehicle compartment cavities were sound field the study. On this basis, the analysis of the acoustic excitation solid coupling system in the outside world under the acoustic response. It describes the principle and application of passive noise control car on the low-frequency noise. And determine the effect of active noise control determinants and development process in the car noise control applications, and pointed out that current research problems to be resolved and future research directions. Keywords: interior noise; control; the passenger compartment of the cavity; Active Noise Reduction 0 引言 汽车车内噪声不但增加驾驶员和乘客 的疲劳,而且影响汽车的行驶安全。因此,车内噪声特性已成为汽车乘坐舒适性的评价 指标之一,日益受到人们的重视。车内噪声 主要由发动机、传动系、轮胎、液压系统及结构振动引起。而这些噪声有直接或间接地传到车身结构,在车室内形成声场。车内的噪声水平是体现其舒适性的一项重要指标。为了提高车辆的舒适性, 世界各大汽车公 司都对车内噪声水平制定了严格的控制标准, 将车内噪声的控制作为重要的研究方向。特别是轿车, 车内噪声状况更是衡量轿车档次的标准之一。如何改善车辆内部乘员室声学环境, 降低车内噪声水平,提高车辆 乘坐舒适性已成为研究的热点。 1 车内噪声来源 一切向周围辐射噪声的振动物体都被 称为噪声源。噪声源的类型较多, 有固体的, 即机械性噪声;还有流体的, 即空气、水、 油的动力性噪声; 行驶汽车的噪声包括发 动机、汽车动力总成所产生的噪声, 车身因发动机、道路和空气流的作用而振动所产生的噪声以及附件噪声等。车内噪声产生机理如图1所示[1]。从声源来看,车内噪声的来源主要有: 发动机噪声、进排气噪声、冷却风扇噪声等。车外噪声向车内传播的具体途径主要有两个: 一是通过车身壁板及门窗上所有的孔、缝直接传入车内;二是车外噪声声波作用于车身壁板,激发壁板振动,并向车内辐射噪声。从振动源来看,主要有两个方面: 发动机、底盘工作时产生的振动和路面激励产生的振动。后者频率较低,对激发噪声影响较小。车身壁板主要由金属板和玻璃构成,这些材料都具有很强的声反射性能。在车室门窗均关闭的条件下,上述传入车内的空气声和壁板振动辐射的固体声,都会在密闭空间内多次反射,相互叠加成为车内噪声。 图1 车内噪声产生机理

机动车辆车外允许噪声标准

机动车辆车外允许噪声标准 姓名: 学号: 指导老师:卢海峰专业班级:车辆2班 重庆大学车辆工程 二O一三年十月

机动车辆车外允许噪声标准 (重庆大学) 我国现行的车外噪声标准是由国家环境保护总局和国家质量监督检验检疫总局于2002年1月4日共同发布的,并于2002年10月1日开始实施。该标准的全称为《汽车加速行驶车外噪声限值及测量方法》,标准编号为:GB 1495-2002。 试用范围 该标准规定了M和N1类汽车的加速行驶车外噪声的限值,并且给出了测量方法具体内容: GB 1495—2002 汽车加速行驶车外噪声限值dB(A) 汽车分类 噪声限值dB(A) 第一阶段第二阶段 2002.10.1~2004.12.3 0期间生产的汽车 2005.1.1以后生产 的汽车 M1 77 74 M2(GVM≤3.5t), 或N1(GVM≤3.5t): GVM≤2t 2t5t): P<150kW P≥150kW 82 85 80 83 N2(3.5t12t): P<75kW 75kW≤P≤150kW P≥150kW 83 86 88 81 83 84 说明: a)M1、M2(GVM≤3.5t)和N1类汽车装用直喷式柴油机,其限值增加1dB b)对于越野汽车,其GVM)>2t时: 如果P<150kW,其限值增加1 dB(A); 如果P≥150kW,其限值增加2 dB(A)。 c)M1类汽车,若其变速器前进档多于四个,P>140kW,P/GVM之比大于75kW/t,并且用第三档测 试时其尾端出线的速度大于61km/h,则其限值增加1dB(A)。 该标准只给出了各类车辆加速行驶时的噪声限值,并未给出匀速行驶时的噪声限值和车内噪声限值。只限制加速度的噪声限值,是因为汽车在市区里是要频繁的加减速的,这种噪声在市区里对人的不良影响尤为显著。限制了加减速时的车外噪声就能把其对人的干扰限制住。但随着人们对生活品质的进一步要求,汽车的噪声限制肯定是越来越严格的,今后匀速行驶时的噪声限值预计也将加到汽车噪声的法规中。这应该是该法规进一步发展的方向。 GB 1495-2002是我国关于车外噪声限值的第三部国家标准。在此之前,

汽车空调噪音的处理方法

汽车空调噪音的处理方法 当前,汽车行业蓬勃发展,汽车市场蒸蒸日上,尤其是轿车也进入了寻常百姓家。因此,人们对汽车的动力性、舒适性等要求越来越高。其中,车内噪声高低是人们选车的一个重要评价点,若车内的噪声高则容易引起驾驶者和乘员的不适,因此,如何控制车内噪声是设计者需解决的重要问题。在汽车噪声源中,汽车空调压缩机是容易引起噪声的部件之一,这样,解决压缩机引起的车内噪声问题是非常必要的,这也是提升整车品质的重要一环。 2压缩机噪声产生的原因分析 压缩机噪声直接来源于吸、排气阀的机械撞击和气流脉动。在压缩机起动的瞬间,假如发动机、空调系统和防火墙消音垫等设计、安装不合理,就会把噪声传递到乘员舱内,从而使驾驶者和乘员感到噪声明显,引起不舒适的感觉。目前,汽车空调压缩机引起车内噪声的有以下几种原因。 1)发动机支撑或悬置设计不合理。在汽车设计中,发动机的支撑或悬置点设计不合理,当发动机运转后,由于压缩机是固定在发动机上,压缩机起动时,发动机的震动会导致压缩机产生共振,从而使压缩机噪声增大,人们明显就感到有噪声。 2)空调系统没有减震降噪措施。在汽车空调系统内,压缩机、冷凝器和蒸发器等是通过空调管路连接起来。假如空调系统没有减震降噪措施,那么,当压缩机起动后,压缩机的震动引起的噪声就会通

过空调管路传递到蒸发器,从而使车内的驾驶者和乘员就感到噪声加强,有不舒适的感觉。 3)防火墙的消音垫设计或安装不合理。汽车的发动机舱是产生汽车噪声的主要地方,其中防火墙的消音垫就是起到阻断或消减发动机舱内噪声的作用。如果防火墙的消音垫设计不合理或安装不到位,同样也会使发动机舱的噪声,例如压缩机的震动声音传递到乘员舱内。 以上是压缩机引起车内噪声的几种情况分析,不管是何种情况,压缩机噪声引起的不适问题必须解决。 3降低或消除压缩机噪声的措施及测试 通过以上三种压缩机引起车内噪声的原因分析,认为通常情况下,发动机、防火墙消音垫设计和安装一般都合理,传递压缩机噪声的可能性较低,因此,本文针对第二种原因,即空调系统减震降噪设计不合理来提出改进措施,并进行相关的测试,以验证措施的有效性。 一般情况下,压缩机起动后,由于压缩机工作,压缩机的转速比发动机的转速高,故一般要产生一定的震动,假如各方面设计及安装合理,则驾驶者和乘客所感受的压缩机噪声不应该明显,不会产生不适的感觉,因此认为,压缩机开启前后的噪声差值在3分贝左右是合理的。如果噪声差值超过这一数值,则会造成驾驶者和乘员的不适。 根据3分贝的噪声差值,对空调管路进行了下面的改进措施和测试。 3.1蒸发器或空调单元接口贴泡绵

汽车噪声来源

汽车噪音的来源 汽车是一个高速运动的复杂组合式噪声源。汽车发动机和传动系工作时产生的震动、高速行驶中汽车轮胎在地面上的滚动、车身与空气的作用,是产生汽车噪音的根本原因。 根据汽车噪音对环境的影响,可将汽车噪音分为车外噪音和车内噪音,车外噪音是指汽车各部分噪音辐射到车外空间的那部分噪音。主要包括发动机噪音、排气噪音、轮胎噪音、制动噪音和传动系噪音等。车内噪音是指车厢外的汽车各部分噪音通过各种途径传入车内的那部分噪音以及汽车各部分震动传递路径激发车身各部件的结构震动向车厢内辐射的噪音,这些噪音声波在车内空间声学特性的制约下,生成较为复杂的混响声场,从而形成车内噪音。平静汽车隔音的研发人员通过实验发现抑制车辆内部噪音,改善混响声场最有效的方式就是选择性能优异的隔音材料并利用异型吸音槽来缓冲并吸收汽车噪音,从而在止震和隔音的基础上达到最佳的吸音降噪效果。 平静隔音把汽车噪音来源简要分为以下几种:发动机噪音、排气系统噪音、风扇噪音、传动系统噪音、轮胎噪音、制动噪音、气动噪音、车身结构噪音等等,由于车辆噪音的复杂性,以上噪音源并非仅是并列关系,而从平静隔音实际研发的角度看,汽车噪音源还可以在目前的基础上做更进一步的分析。 发动机噪音

发动机噪音中,除了发动机机体发出的机械声外,还包括进气系统噪音,改装族更换“冬菇头”以后动力增大的同时发动机噪音也增加不少,就是因为对原车进气系统做了改动的原因:高速气体经空气虑清器、进气管、气门进入气缸,在流动过程中,会产生一种很强的气动噪音。降低发动机本身产生的噪音及由发动机震动引起的其它噪音有若干办法: 1 、改造发动机燃烧过程以降低燃烧爆发的冲击; 2 、降低由此冲击产生的激后力引起的发动机各部件震动; 3 、降低由活塞上下运动、曲轴转动引起的不平衡力以及降低发动机机械震动。 发动机运转的噪音主要由挡火墙和驾驶室的前底板部位传入驾驶舱,因此,平静汽车隔音通过在 U 槽、挡火墙及底板部位粘贴带异型吸音槽的吸音棉来抑制噪音。 排气系统噪音 是发动机噪音的一部分,主要包括消声器支撑架及排气管道震动辐射出的噪音,发动机震动及排气动作引起的辐射噪音,还包括由排气口出来的排气噪音。主要降噪方法: 1 、利用消声器降低排气出口噪音,在生产消声器的环节,通过提高仿真计算方法的精度,实现在不增加排气阻力的条件下改善消声效果。 2 、在排气口对排气噪音施加与其幅值大小相等,相位相反的二次声源或震动源,可自动地消除存在的震动噪声问题,实现主动降低噪音。 为降低发动机、传动系统、排气系统表面产生的辐射噪音,不仅要降低激励力,而且要改善结构的震动特性,达到即使有激励力,也不易产生噪音的效果。如:可以通过仿真计算推测发动机缸体等部位产生的辐射噪音,用震动特性优化方法,采取在轻量化基础上达到最佳效果的措施。因此,好的隔音材料和降噪效果不应该以增加车辆自重,牺牲加速性能,增加油耗为代价 风扇噪音 散热风扇通常也称为电子扇,是引擎舱内较大的噪音源。风扇噪音属于空气动力噪音,严格的说,也是构成发动机噪音的一部分。风扇运转过程中,由散热器隔栅吸入的冷却气流,经散热器风扇叶片吸入,从发动机间隙排出,气流运动的这一过程产生了旋转噪音和涡流噪音。夏季在怠速状态下开空调,风扇的运转会明显引起较大噪音。平静隔音研究人员认为风扇的噪音与以下因素密切相关: 1、风扇的外形。风扇外形决定风扇本体的阻力系数。包括叶片数量、叶片间断间隙、叶片角度及弯曲度等。 2、散热器吸入气流的紊流度。 3、风扇叶尖处及缝隙处产生的噪音。

汽车噪声的检测实验指导书

汽车噪声的检测实验指导书 一、实验目的和实验任务 各种道路机动车辆、各种内河航运船舶、铁路机车以及飞机等发出的噪声,属于交通运输噪声,已成为现代城市环境最大的噪声污染源。噪声对人类在生理、心理和社会各方面都有影响。长期在高噪声环境下工作和生活会危害人体的健康。 声响评价指标:声压、声功率、声强、声压级。 学会声级计的使用方法;学会汽车噪声的测量方法。 二、实验仪器设备 声级计一台;实验车辆一辆;卷尺;粉笔。 三、实验内容 (一)、了解噪声试验概念、明确实验目的。 (二)、讲解实验操作方法。 (三)、对汽车车外、车内、驾驶员耳旁、喇叭 的噪声进行测量。 四、仪器部件简介 声级计是一种能够把工业噪声、生活噪声和车 辆噪声等,按人耳听觉特性近似地测定其噪声级的 仪器。噪声级是指用声级计测得的并经过听感修正 的声压级(dB)或响度级(方)。 声级计一般由传声器、前置放大器、衰减器、 放大器、计权网络、检波器、指示表头和电源等组 成。

1-传声器,2-前置放大器,3-输入衰减器,4-输入放大器,5-计权网络 6-输出衰减器,7-输出放大器,8-检波器 9-表头 五、测量条件: (一)、车外噪声测量条件 1、测量场地应平坦而空旷,在测试中心以25m为半径的范围内,不应有大的反射物,如建筑物、围墙等。 2、测试场地跑道应有2Om以上的平直、干燥的沥青路面或混凝土路面,路面坡度不超过0.5%。 3、本底噪声(包括风噪声)应比所测车辆噪声至少低10dB,并保证测量不被偶然的其他声源所干扰。本底噪声是指测量对象噪声不存在时,周围环境的噪声。 4、为避免风噪声干扰,可采用防风罩,但应注意防风罩对声级计灵敏度的影响。 5、声级计附近除测量者外,不应有其他人员,如不可缺少时,则必须在测量者背后。测量人员的身体离声级计也应尽量远些,以免影响测量的准确性。 6、被测车辆不载重。测量时发动机应处于正常使用温度。车辆带有其他辅助设备亦是噪声源,测量时是否开动,应按正常使用情况而定。 (二)、车内噪声测量条件: 1、测量跑道应有足够试验需要的长度,应是平直、干燥的沥青路面或混凝土路面。 2、测量时风速(指相对于地面)应不大于3m/s。 3、测量时车辆门窗应关闭。车内带有其他辅助设备是噪声源,测量时是否开动,应按

车内噪声机理测量及其评价标准汇总

车内噪声机理测量及其评价标准汇总

车内噪声的产生机理、测量方法及其评价标准 汽车噪声与振动是一门非常复杂的学科,涉及很多方面。在汽车产品开发过程中,噪声与振动控制也是一门关键技术。汽车噪声与振动能够用很多方法来分类:按频率来分,能够分成低频问题、中频问题和高频问题;按专题来分能够分成摩擦噪声、风激励噪声、机械噪声等等;按源—传递途径—接受体来分,能够分成振动噪声源、传递通道和人体对噪声与振动的响应。 本文就汽车噪声与振动问题中的一个方面——车内噪声的产生机理、测量方法及其评价标准作一个简单的论述。 1车内噪声的产生机理 一般噪声与振动系统能够用源- 传递路径- 接受体模型来表示。车辆的主要噪声源有: 发动机辐射噪声、进排气噪声、冷却风扇噪声、底盘噪声、轮胎噪声、风噪声等; 主要振动源有: 发动机自身振动、排气系统振动、传动轴振动、悬架振动、路面激励等。振动的传递路径主要有: 发动机悬置、车身、悬架、排气系统悬置等; 噪声传递路径主要有: 车身孔隙、车身。接受体主要指驾驶员和乘客, 噪声和振动经过传递路径传递到人体。对于噪声与振动的控制包括对噪声源和振动源的控制、对传递路径的控制和对接受体的控制, 降噪的根本是要控制噪声源和振动源, 其次在传播路径上加以控制。车内噪声产生的机理如图 1 所示。车辆噪声源, 如轮胎- 路面噪声和发动机噪声向外辐射, 经过车身孔隙透射到乘坐室内,

车内这部分噪声被称为空气传播噪声, 其频率一般在几百赫兹到几千赫兹。车辆振动源, 如路面激励、发动机振动等直接或者间接作用到车身, 引起车身振动; 另外车辆噪声源向外辐射噪声作用到车身, 也会引起车身振动,车身的振动产生结构辐射噪声, 车内这部分噪声被称为结构噪声, 结构噪声的频率一般在几十赫兹到几百赫兹。结构噪声和空气传播噪声相互叠加形成车内噪声。 图1 1.1 发动机的噪声 发动机热力过程中的周期性及部分受力机件的往复运动构成为汽车主要的振动噪声源,主要分为三种:燃烧噪声、机械噪声和空气动力噪声。燃烧噪声声强与压力升高率的平方成正比,噪声声压级与放热率的对数成正比,燃烧噪声还与滞燃期、转速负荷等有关。机械噪声主要是活塞敲击、配气机构的摩擦、冲击、齿轮啮合、齿带啮合、皮带打滑、轴承工作、供油噪声等。机械噪声正比于发动机转速,另外结构的共振也引起噪声辐射,在发动机表面辐射噪声中,主要是发动机机体表面和油底壳辐射,其次是缸头、缸盖罩等。风扇噪声的主要影响因素是转速、叶片弦 长、型线、夹角和叶片数。进、排气噪声是由于压力脉动、气流

汽车加速行驶车外噪声测量仪器和方法

汽车加速行驶车外噪声测量 一、测量仪器 1、声学测量:DH5901手持式数据采集仪(江苏东华),MPA201传声器(北京声望),CA111声校准器(北京声望)。 2、转速测量:DH5640光电转速传感器。

二、测量方法 1、测量区和传声器的布置 1.1加速行驶测量区域按图A1确定。O点为测量区的中心,加速段长度为2×(10m±0.05m),AA′线为加速始端线,BB′线为加速终端线,CC′为行驶中心线。 1.2传声器应布置在离地面高1.2m±0.02m,距行驶中心CC′7.5m±0.05m处,其参考轴线必须水平并垂直指向行驶中心线CC′。 2、声级测量:DH5901采集仪配合MPA201传声器测出A计权后的声级。 2.1汽车噪声不存在时测量周围环境的噪声(包括风噪声),得到背景噪声。 2.2在汽车每一侧至少测量四次。 2.3测量汽车加速驶过测量区的最大声级。每一次测得的读数值应减去1dB (A)作为测量结果。 2.4如果在汽车同侧连续四次测量结果相差≤2dB(A),则认为测量结果有效。 2.5将每一档位(或接近速度)条件下每一侧的四次测量结果进行算术平均,然后取两侧平均值中较大的作为中间结果。 2.6测量前后,须用CA111声校准器对MPA201传声器进行校准。在没有再作任何调整的条件下,如果后一次校准读数相对前一次校准读数的差值超过0.5dB(A),则认为测量结果无效。校准时的读数应记录。

三、仪器指标 1、DH5901采集仪技术指标 1.1输入阻抗: 1MΩ∥40pF; 1.2输入保护: 输入信号大于±30V(直流或交流峰值),输入全保护; 1.3输入方式: GND、DC、AC、ICP适调; 1.4满度值: ±30mV、±100mV、±300mV、±1V、±3V、±10V、±30V; 1.5系统准确度: 小于0.5%(F.S)(预热半小时后测量); 1.6失真度: 不大于0.5%; 1.7模拟两次积分: 1.7.1 频率响应 a.一次积分:10Hz~10kHz b.二次积分:10Hz~1kHz 1.8模数转换器: 16位A/D转换器; 1.9采样速率: 2通道同时工作时,每通道1 2.8、25.6、51.2、128、256、512、1.28k、2.56k、5.12k、12.8k、25.6k、51.2k(Hz)分档切换; 1.10转速测量通道技术指标: 1.10.1测量通道数:1个通道; 1.10.2测量范围:300~300000转/分; 1.10.3测量精度:小于0.05%±1转; 1.11谱分析参数 1.11.1分析频宽:5Hz、10Hz、20Hz、50Hz、100Hz、200Hz、500Hz、1kHz、2kHz、5kHz、10kHz、20kHz; 1.11.2谱线数:100、200、400、800、1600、3200; 1.12电源:智能化管理的可充电锂电池组供电。 2、MPA201传声器: 2.1声场类型:自由场; 2.2频率响应:20~20kHz; 2.3输出阻抗:<50Ω;

相关主题
文本预览
相关文档 最新文档