当前位置:文档之家› 锂离子电池的长期荷电贮存性能

锂离子电池的长期荷电贮存性能

锂离子电池的长期荷电贮存性能
锂离子电池的长期荷电贮存性能

动力电池高压连接器(单芯)技术规范

目录 1 、目 的 ........................................................... . (2) 2 、适用范 围 ........................................................... (2) 3 、定 义 ........................................................... . (2) 4 、职责分 配 ........................................................... (2) 5 、流程 图 ........................................................ .. .. (2) 6 、程序内 容 ..................................................... ..... (2) 6.1 动力电池高压连接器技术参数要 求 (3) 6.1.1 高压连接器性能要 求 (4) 6.1.2 高压连接器技术参数要 求 (4) 6.2 高压连接器结构设计要 求 (5)

6.2.1 高压连接器插座中接触件与动力电池主电路连接端设计要求 (7) 6.2.2 高压连接器插座固定于箱体面设计要 求 (7) 6.2.3 高压连接器插座与插头连接触件设计要 求 (7) 6.2.4 高压连接器插件的绝缘防触摸设计要 求 (8) 6.2.5 高压连接器的保护壳体设计要 求 (8) 6.2.6 高压连接器的防呆设计要 求 (8) 6.2.7 高压连接器的防呆设计要 求 (8) 6.2.8 高压连接器的高压互锁设计要 求 (9) 6.2.9 高压连接器的温控互锁设计要 求 (9) 6.2.10 高压连接器的动力线缆设计要 求 (9) 6.2.11 高压连接器的互换性设计要 求 (9) 6.3 动力电池高压连接器检验标准要 求 (11) 6.4供应商送样承认要 求 (13) 7、相关文 件 ...........................................................

静电喷雾润滑液滴的荷电特性和摩擦磨损性能_胡志强

[研究·设计] DOI :10.3969/j.issn.1005-2895.2014.01.009 收稿日期:2013-06-29;修回日期:2013-08-19基金项目:国家自然科学基金项目(No.51375454) 专利项目:浙江工业大学,切削液气雾微量润滑装置(201320072042.7) 作者简介:胡志强(1987),男,湖北咸宁人, 硕士研究生,主要研究方向为静电喷雾润滑。E-mail :huzhiqiang1110@163.com 静电喷雾润滑液滴的荷电特性和摩擦磨损性能 胡志强,孔 魁,姚伟强,李中亚,许雪峰 (特种装备制造与先进加工技术教育部/浙江省重点实验室(浙江工业大学),浙江杭州310014) 摘 要:采用十二烷基苯磺酸钠表面活性剂对Accu-Lube LB-2000基础油进行改性处理来提高其电导率,获得了适用于 静电喷雾润滑的润滑液。通过目标网状法检测改性润滑液的荷电性能,利用四球摩擦磨损试验分析润滑液流量、时间和载荷对静电喷雾润滑摩擦磨损性能的影响。结果表明,表面活性剂溶液体积含量为5%的润滑液具有较稳定的乳化状 态,且电导率可达到6.5?10-5 S /m ,能满足静电喷雾润滑的荷电要求;与普通喷雾润滑相比, 静电喷雾润滑在不同润滑液流量与载荷下均能获得更好的减摩抗磨性能,尤其是在润滑液流量为5mL /h 和载荷为147N 下作用效果更显著。关 键 词:静电喷雾;电导率;荷质比;摩擦磨损 中图分类号:TG501 文献标志码:A 文章编号:1005-2895(2014)01-0036-06Charged and Tribological Characteristics of Cutting Fluid Droplets for Electrostatic Spraying Lubrication HU Zhiqiang ,KONG Kui ,YAO Weiqiang ,LI Zhongya ,XU Xuefeng (Key Laboratory of E&M (Zhejiang University of Technology ),Ministry of Education &Zhejiang Province , Hangzhou 310014,China )Abstract :The Accu-Lube LB-2000base oil was modified by sodium dodecyl benzene sulfonate to obtain the lubricants suited for the electrostatic spraying lubrication ,which had a higher conductivity.The charged performance of conductivity-modified lubricants was detected by the method of target meshing ,based on which the effect of cutting fluids flow ,time and load on the properties of the friction and wear were evaluated by using the four-ball friction wear testing experiment.The result showed that the lubricants had a stable emulsified state and met the charged requirements because its conductivity could reach 6.5?10-5S /m when the concentration of surfactant was at 5%,the better tribological characteristics can be obtained by electrostatic spraying lubrication compared with the normal spraying lubrication at different flows and loads ,especially getting more obvious at the flow of 5mL /h and the load of 147N.Key words :electrostatic atomization ;conductivity ;charge-to-mass ratio ;friction and wear 微量润滑(Minimal Quantity Lubrication , MQL )技术是环境友好绿色切削技术的典型代表。MQL 技术是指利用压缩空气将微量润滑剂雾化成微米级液滴,喷向切削区,对刀具与工件、切屑的接触界面进行润滑,同时润滑剂液滴和压缩空气还起到冷却切削区的 作用[1] 。静电喷雾是凭借静电力使液体微粒化的过程,在均匀、细化雾滴及提高雾滴在目标物上的沉积量、吸附性能等方面有明显效果。静电喷雾广泛应用于农药静电喷雾 [2-3] 、荷电喷雾燃烧[4-5]、静电涂油 [6-7] 等领域。结合静电喷雾和微量润滑技术提出的静电喷 雾微量润滑技术,利用静电喷雾液滴粒径小、表面张力降低、吸附性好等特点,可以提高雾化润滑液的润滑和冷却性能,并可降低工作环境空气中的颗粒物浓度。静电喷雾微量润滑是一项新技术,润滑液荷电雾化液滴的荷电特性和摩擦磨损性能是该技术的基础研究内容。 1 实验部分 1.1 实验材料及仪器 材料:Accu- Lube LB-2000中黏度纯天然基础油,第32卷第1期2014年2月轻工机械 Light Industry Machinery Vol.32No.1Feb.2014

混合动力汽车用锂离子电池的研究

作者简介: 余章华(1968-),男,湖北人,武汉大学化学与分子科学学院博士生,研究方向:电化学; 汪 莉(1978-),女,湖北人,武汉力兴电源股份有限公司工程师,研究方向:化学电源; 周运鸿(1940-),男,湖北人,武汉大学化学与分子科学学院教授,博士生导师,研究方向:电化学。?科研论文? 混合动力汽车用锂离子电池的研究 余章华1,2,汪 莉2,周运鸿1 (11武汉大学化学与分子科学学院,湖北武汉 430072; 21武汉力兴电源股份有限公司,湖北武汉 430074) 摘要:混合动力汽车电池主要特点之一是能以15C 以上的大电流放电。用扣式电池测试极片厚度、材料粒度和导电剂含量对电池放电倍率的影响;运用优化的实验参数,做成8Ah 动力电池,并测试电池性能;对8Ah 电池的功率特性进行了讨论。关键词:锂离子电池; 混合动力汽车; 高倍率 中图分类号:TM91219 文献标识码:A 文章编号:1001-1579(2005)04-0248-02 Study on Li 2ion battery for HEV YU Zhang 2hua 1,2,WAN G Li 2,ZHOU Yun 2hong 1 (11College of Chemist ry and Molecular Sciences ,W uhan U niversity ,W uhan ,Hubei 430072,China ; 21W uhan L ixing Power Sources Co 1,L td 1,W uhan ,Hubei 430074,China ) Abstract :HEV battery should be discharged at above 15C high current 1The effects of the thickness of the electrode ,the parti 2 cle sizes of the materials and the amount of the conductive carbon on the dischar ge rate were studied with the coin cell 1The 8Ah power battery was manufactured with optimized experimental parameters 1The performance of the battery was tested 1The power characteristic of the 8Ah power battery was discussed 1 K ey w ords :Li 2ion battery ; hybrid electric vehicles (HEV ); high rate 混合动力汽车主要动力源是内燃机,在启动加速和爬坡时用电池辅助,减速时通过电池回收能量,从而可以使内燃机始终在其最佳负载下工作,因此可以提高燃油的燃烧效率,同时降低油耗和减少污染气体的排放。这样,对电池的容量要求大幅度降低,但功率要求却相应提高[1]。 一般锂离子电池的最大放电倍率为3~5C ,而目前要将放电倍率提高到15C 以上,难免会有发热的问题。为了研究方便,本文作者首先采用扣式电池来研究配方和工艺对大幅减少电池发热的影响,待各方面条件优化后,再测试8Ah 电池。 1 实验 将LiCoO 2、碳黑、PVDF 按质量比93∶3∶4均匀混合,根据不同的涂覆量涂在厚度为0102mm 的铝箔上,正、反面涂覆厚度相同。将负极材料石墨、SBR (丁苯橡胶)、CMC 按质量比95∶3∶ 2混合均匀,涂覆在厚度为0102mm 的铜箔上,正、反面涂覆厚 度相同。将涂好的正、负极片放在真空干燥箱内120℃干燥8 h 。将正、负极片以卷绕方式组装成L IR2430扣式电池,注液后 封口。单体8Ah 电池壳为方形不锈钢,正、负极片按叠片方式装配。采用程控测试仪(武汉产)进行测试,环境温度为20~25℃。2 结果与讨论 211 极片厚度、导电剂和粒径的影响 将用不同厚度的极片做成的扣式电池,用20C 电流进行放电,放电曲线如图1a 。由图1a 看出:以20C 放电时,正极厚度为0106mm 的电池可放出额定容量(25mAh )的76%;正极厚度为0112mm 的电池可放出额定容量的6%;而正极厚度为0116mm 的电池基本放不出电。由此可知:极片的厚度对电池在大倍率放电时的容量有很大影响。减小极片厚度,可改善电池高倍率放电的性能。 在正极中加入不同量的导电剂(石墨)后,做成电池进行放电,放电曲线如图1b 。由此可知:在正极粉中加大导电剂的量,对大电流放电影响不大。 用不同粒径的正极材料按相同的配方和极片厚度做成扣式电池,进行放电,其放电曲线如图1c 。由图1c 可以看出:正极材料LiCoO 2的粒径为11μm 和6μm 时,电池放电容量基本相同。6μm 的放电平台稍高。212 8Ah 电池的性能 选择粒径为6μm 的LiCoO 2,导电剂含量为3%,做成厚度为0106mm 的正极片;负极采用人造石墨,电极厚度也为0106mm ,用叠片方法做成8Ah 的电池;分别用715C 和15C 倍率放电,放电结果如图2a 。电池表面温度变化如图2b 。 第35卷 第4期2005年 8月电 池 BA TTER Y BIMON THL Y Vol 135,No 14 Aug 1,2005

透析膜表面荷电性能的研究进展_邵嘉慧

?综述? 透析膜表面荷电性能的研究进展 邵嘉慧 中图分类号:R316.021 文献标识码:A 作者单位: 200240 上海,上海交通大学环境科学与工程学院 血液透析器用于去除肾衰竭患者血液中的新陈代谢废物(溶质分子质量小于49 600Iu)和过量的水。透析膜是血液透析器的关键。透析膜的设计最主要考虑两方面的因素:膜的传递特性和膜表面性质。膜的传递特性决定了溶质的清除率和对液体的去除。膜的表面性质决定了血液和膜之间相互作用的特性及程度,包括蛋白质的吸附、血栓症、补体激活和免疫反应等[1]。虽然透析膜的性能最终需要在实际的临床透析过程中确定,但透析膜的体外研究可为深入探究其质量传递和表面性质提供重要的本质认识。现有的文献报道中有大量的关于血液透析膜传质方面的研究工作,而对膜表面性质的研究报道则较少。膜表面的荷电性是表征膜表面性质、血液和透析膜之间相互作用的关键特性之一。因此本文将简要介绍膜的荷电性(?电位),总结近年来透析膜表面荷电性能研究的进展。1 膜的?电位(zeta电位) 图1为一负荷电膜表面上的离子分布示意图[2]。紧靠膜表面的一层称为Stern层,它是不可移动层,由牢固吸附在膜表面的离子和参予部分溶剂化的水分子构成。在Stern层的最外缘处液体开始可以移动,这个平面被称为剪切面。Stern层以外的层被称为扩散层或双电层,在这里过量的补偿反离子集聚以补偿膜表面的荷电来保持溶液体系的荷电平衡。膜在溶液中表现的荷电性是由于膜材料本身的荷电官能基团(如磺酸、羧酸或胺基团)所致,和/或由于溶液中离子在膜表面不同程度的吸附所致。膜的?电位是膜表面动电效应中,固液相之间相对运动时剪切面上的电位差,可以通过实验方法获得。?电位可以反映出膜表面荷电性质、荷电分布密度等,是研究膜表面荷电性的重要参数。流动电位方法是测量膜表面?电位使用最广泛的方法。流动电位测量时,电解质溶液在 当双电层厚度(德拜屏蔽长度)远小于膜孔孔径,同时膜表面电导可以忽略时,膜的?电位可应用Helmholtz-Smoluchowski公式,直接从实验测得的不同压力(?P)条件下的流动电位(Ez)的斜率数据计算出[2]: 式中,?为溶液粘度;?o为溶液电导率;?o为自由空间的介电常数;?r为电解质溶液的介电常数。典型的血液透析膜表面?电位测量的实验装置如图2所示。 外界压力作用下流过膜孔时,靠近膜表面双电层中扩散层中的补偿反离子也随主体流体流经膜孔,并在膜孔的下游积聚而产生电势,这就是通常所指的流动电位。此流动电位可导致反离子的相对于压力流动方向相反的流动。在稳态平衡时,这些离子流完全平衡而使整个系统呈电中性。通过电解质溶液平行流过膜表面,流动电位也可由于相反离子在膜表面集聚而产生。 图1 负荷电膜表面离子分布示意图 ? =????????? ( )??o dEz ?o?r d?P

锂离子电池研究进展

华东理工大学2013—2014学年第1学期 《新能源与新材料》课程论文 2013.11 班级___复材101__ 学号__10103638__ 姓名____温乐斐_____ 开课学院材料学院任课教师张衍成绩__________

锂离子电池研究进展 温乐斐 (华东理工大学) 摘要 二次锂电池的优点是高体积、高质量比容量、长循环寿命、低放电速率,是环保型电源的理想备选之一。本文简单介绍了锂离子电池的正极材料、负极材料及电解质的种类和发展概况,并对当今锂离子电池发展所面临的问题和发展前景进行阐述。最后说明了一下其发展前途和产业化趋势。 关键词:锂电池;正极材料;负极材料;电解质;发展进程 The Research and Development of Rechargeable Lithium-ion Battery Wen Lefei (East China University of Science and Technology) Abstract The rechargeable lithium-ion battery has been extensively used in mobile communication and portable instruments due to many advantages, such as high volumetric and gravimetric energy density, long cycle life, and low self-discharge rate. In addition, it is one of the promising alternatives as the power sources. The development of researches on materials of lithium-ion battery for cathode, abode and electrolyte are introduced in this paper, at the same time lithium-ion existing problems is battery and prospects are also outlined. At last, the strategic position and some future investigating trends are also presented. Key words: Li-ion battery; cathode materials; anode materials; electrode materials; research and development; progress

干荷电蓄电池的特点及使用

干荷电蓄电池的外观与普通蓄电池的内部零件结构及使用效果基本相同。二者的根本区别在于前者的极板在干燥状态下能较长期地保存制造过程中所得到的电荷。普通蓄电池在开始使用之前,必须进行60-70h初充电,甚至还需要更长时间的充、放电循环;而对干荷电蓄电池,由于其负极板的制造工艺不同,故初次使用时,只需按规定加足电解液,浸泡2-3h后即可装车使用,不需要进行长时间的初充电,因而使用更方便。 1 .干荷电蓄电池的特点 a.在规定的贮存期内(一般2年),只要加注符合规定密度的电解液,并调整好液面高度,搁置2h 后即可使用,勿需进行初充电。 b.对存储时间超过规定贮存期的干荷电蓄电池,因为极板可能部分氧化,所以在使用前应以补充充电的电流充电5-1Oh后再用。 c.正、负极板都具有干荷电性能。正极板的活性物质是二氧化铅,其化学性比较稳定,荷电性能可长期保持;负极板的活性物质是海绵状铅,因其表面积较大,化学活性较高,易被氧化,故要制成干荷电极板(其制造工艺与普通负极板大不相同)。 d.干荷电蓄电池的补充充电是采用恒电流充电法,充电电流值应为蓄电池额定容量值的1/10。当充电至蓄电池电解液密度在2h内不再上升、端电压上升到1.65V左右、有大量气泡从加液口冒出、电解液密度为1.27-1.29时,表明已充足电,勿需继续充电了。 判断干荷电蓄电池是否需进行补充充电有两种方法:一是检测电解液密度。试验证明,电解液密度比充足电时的密度每下降0.1,就相当于蓄电池放电6%。如用密度表检查电解液时发现密度已降至1.24以下,则应补充充电;二是用电压表检测蓄电池每个单格电池的端电压。如低于1.7V,应补充充电,否则会造成极板硫化而损坏。 2.干荷电蓄电池的使用维护要点 a.为使干荷电蓄电池的极板在贮存和装运期间不受潮,应用密封物密封新出厂的干荷电蓄电池的通气孔;在未加注电解液时,切忌打开通气孔塞蜡封或拧开加液口孔塞,以防干荷电蓄电池内部受潮而影响其性能。 b.电解液必须使用纯净的硫酸和蒸馆水配制,以防止干荷电蓄电池自放电而降低容量。 c.初次加注电解液几min后,电解液液面将有所下降,此时应重新向每个单格电池内添加相同密度的电解液,以恢复原来的电解液液面高度,盖上通气孔塞后即可使用。 d.虽然干荷电蓄电池能保证起动性能,但是电荷量并非十分充足,因此使用前若有充裕时间,最好用6A电流充电3-4h,以利于使用。 e.干荷电蓄电池的电解液密度应为1.27(夏季)-1.29(冬季),以保证其有足够高的端电压。 f.若使用中因故要将干荷电蓄电池停用1-2个月,应将其充足电,并将其电解液的密度与液面高度调整至规定值后方可存放;在存放期内,每月应检查一次电解液密度,用以判断其自放电程度,必要时应补充充电。对存放半年以上者,应当采用干贮存法。 g.低温条件下,初次使用干荷电蓄电池前应进行短时间的快速充电,以提高电解液和蓄电池的温度,改善其使用性能。

电连接器选择方式

电连接器的选择方法 连接器是连接电气线路的机电元件。因此连接器自身的电气参数是选择连接器首先要考虑的问题。正确选择和使用电连接器是保证电路可靠性的一个重要方面。 引言 电连接器(以下简称连接器)也可称插头座,广泛应用于各种电气线路中,起着连接或断开电路的作用。提高连接器的可靠性首先是制造厂的责任。但由于连接器的种类繁多,应用范围广泛,因此,正确选择连接器也是提高连接器可靠性的一个重要方面。只有通过制造者和使用者双方共同努力,才能最大限度的发挥连接器应有的功能。 连接器有不同的分类方法。按照频率分,有高频连接器和低频连接器;按照外形分有圆形 连接器,矩形连接器;按照用途分,有印制板用连接器,机柜用连接器,音响设备用连接器,电源连接器,特殊用途连接器等等。下面主要论述低频连接器(频率为3MHZ以下)的选择方法。 电气参数要求 连接器是连接电气线路的机电元件。因此连接器自身的电气参数是选择连接器首先要考虑的问题。 额定电压 额定电压又称工作电压,它主要取决于连机器所使用的绝缘材料,接触对之间的间距大小。某些元件或装置在低于其额定电压时,可能不能完成其应有的功能。连接器的额定电压事实上应理解为生产厂推荐的最高工作电压。原则上说,连接器在低于额定电压下都能正常工作。笔者倾向于根据连接器的耐压(抗电强度)指标,按照使用环境,安全等级要求来合理选用额定电压。也就是说,相同的耐压指标,根据不同的使用环境和安全要求,可使用到不同的最高工作电压。这也比较符合客观使用情况。 额定电流 额定电流又称工作电流。同额定电压一样,在低于额定电流情况下,连接器一般都能正常工作。在连接器的设计过程中,是通过对连接器的热设计来满足额定电流要求的,因为在接触对有电流流过时,由于存在导体电阻和接触电阻,接触对将会发热。当其发热超过一定极限时,将破坏连接器的绝缘和形成接触对表面镀层的软化,造成故障。因此,要限制额定电流,事实上要限制连接器内部的温升不超过设计的规定值。在选择时要注意的问题是:对多芯连接器而言,额定电流必须降额使用。这在大电流的场合更应引起重视,例如φ3.5mm接触对,一般规定其额定电流为50A,但在5芯时要降额33%使用,也就是每芯的额定电流只有38A,芯数越多,降额幅度越大。降额幅度可参看表1 接触电阻 接触电阻是指两个接触导体在接触部分产生的电阻。在选用时要注意到两个问题,第一,连接器的接触电阻指标事实上是接触对电阻,它包括接触电阻和接触对导体电阻。通常导体电阻较小,因此接触对电阻在很多技术规范中被称为接触电阻。第二,在连接小信号的电路中,要注意给出的接触电阻指标是在什么条件下测试的,因为接触表面会附则氧化层,油污或其他污染物,两接触件表面会产生膜层电阻。在膜层厚度增加时,电阻迅速增大,是膜层成为不良导体。但是,膜层在高接触压力下

锂离子电池的正极材料的分析研究综述

锂离子电池的正极材料的研究综述 班级:********* 姓名: ******** 学号:********* 课程老师:***** 日期: *******

锂离子电池的正极材料的研究综述 摘要:本文简要介绍了锂离子电池的发展简况,并对锂离子电池的工作原理进行分析。重点综述了各类锂离子电池正极材料的研究状况和性能表征,通过比较各类材料的优缺点,对今后的进一步研究分析,提供了一个思路和纲领。最后,介绍了正极材料的近期一些研究进展,并对锂离子电池的今后发展进行了展望。希望,锂离子电池材料能够有个更大的突破。 关键词:锂离子电池;正极材料;工作原理;制备方法 1 引言 过去半个世纪内,可充电电池作为一种高效储能装置得到了迅猛的发展。而科学技术的进步则对这种储能装置的电化学性能提出了越来越多的要求。比如:集成电路技术的发展使电子仪器日趋小型化、便携化,相应地要求电池具有体积小、重量轻、比能量高的特点;空间探索技术和国防、军事装备技术的不断发展要求电池具有高的比能量和长储存寿命;环境保护意识的加强使人们对电动机车的发展日益关注,而这种电池则应有大的比能量和比功率。在众多的电池体系中,锂离子电池以其工作电压高、能量密度大和质量轻等优点倍受全球该领域的科研工作者的关注。 自1980年Goodenough等提出钻酸锂(LICoO2>作为锂充电电池的正极材料,揭开了锂离子电池发展的雏形后,锂离子电池在其后得到了飞速的发展。1990年,日本SONY公司的新型锂离子二次电池研制成功并实现商品化,进入90年代以后锂离子电池作为新一代的高效便携式能源,在无线电通讯、笔记本电脑、摄录一体化及空间技术等方面显示出广阔的应用前景和潜在的巨大经济效益,并被认为是21世纪最有潜力的新型能源。 2 锂离子电池的发展简况 2.1锂原电池 20世纪60年代发生的能源危机促进了锂原电池的的商品化。锂原电池是以Li或Li-Al合金作为负极材料的一系列电池,包括Li/MnO2、Li/I2、 Li/SOC12、Li/FeS2等。与一般的原电池相比,它具有电压高、比能量高、工作温度范围宽和放电平稳的优点,因此先后在便携式电器、心脏起搏器、军事设备、及航空航天领域得到应用。 2.2锂二次电池

电动汽车电池的分类及性能参数

电动汽车电池的分类及性能参数 电池的分类 电动汽车用电池为化学电源,它的分类方法很多。按电解液分为: a.碱性电池。即电解液为碱性水溶液的电池; b.酸性电池。即电解液为酸性水溶液的电池; c.中性电池。即电解液为中性水溶液的电池; d.有机电解质溶液电池。即电解液为有机电解质溶液的电池。 按活性物质的存在方式分为: a.活性物质保存在电极上。可分为一次电池(非再生式,原电池)和 二次电池(再生式,蓄电池); b.活性物质连续供给电极。可分为非再生燃料电池和再生燃料电池。按电池的某些特点分为: a.高容量电池; b.免维护电池; c.密封电池; d.燃结式电池; e.防爆电池; f.扣式电池、矩形电池、圆柱形电池等。 尽管由于化学电源品种繁多,用途广泛,外形差别大,使上述分类方法难以统一,但习惯上按其工作性质及存贮方式不同,一般分为四类: a. 一次电池

一次电池,又称“原电池”,即放电后不能用充电的方法使它复原的电池。换言之,这种电池只能使用一次,放电后电池只能被遗弃了。这类电池不能再充电的原因,或是电池反应本身不可逆,或是条件限制使可逆反应很难进行。如: 锌锰干电池 Zn│NH4Cl·ZnCl2│MnO2(C) 锌汞电池 Zn│KOH│HgO 银锌电池 Zn│KOH│Ag2O b.二次电池 二次电池,又称“蓄电池”,即放电后又可用充电的方法使活性物质复原而能再次放电,且可反复多次循环使用的一类电池。这类电池实际上是一个化学能量贮存装置,用直流电将电池充足,这时电能以化学能的形式贮存在电池中,放电时,化学能再转换为电能。如:铅酸电池 Pb│H2SO4│PbO2 镍镉电池 Cd│KOH│NiOOH 镍氢电池 H2│KOH│NiOOH 锂离子电池 LiCoO2│有机溶剂│6C 锌空气电池 Zn│KOH│O2(空气) c.贮备电池 贮备电池,又称“激活电池”,是正、负极活性物质和电解液不直接接触,使用前临时注入电解液或用其他方法使电池激活的一类电池。这类电池的正、负极活性物质的化学变质或自放电,因与电解液的隔离而基本上被排除,从而使电池能长时间贮存。如:镁银电

什么是连接器,连接器的基本性能

什么是连接器,连接器的基本性能 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 连接器,即CONNECTOR。国内亦称作接插件、插头和插座。一般是指电连接器。即连接两个有源器件的器件,传输电流或信号。 连接器的基本性能 连接器知识连接器的基本性能可分为三大类:即 机械性能、电气性能和环境性能。 1.机械性能 就连接功能而言,插拔力是重要地机械性能。插拔力分为插入力和拔出力(拔出力亦称分离力),两者的要求是不同的。在有关标准中有最大插入力和最小分离力规定,这表明,从使用角度来看,插入力要小(从而有低插入力LIF和无插入力ZIF的结构),而分离力若太小,则会影响接触的可靠性。连接器的插拔力和机械寿命与接触件结构(正压力大小)接触部位镀层质量(滑动摩擦系数)以及接触件排列尺寸精度(对准度)有关。 2.电气性能

连接器的主要电气性能包括接触电阻、绝缘电阻和抗电强度。 ①接触电阻高质量的电连接器应当具有低而稳定的接触电阻。连接器的接触电阻从几毫欧到数十毫欧不等。 ②绝缘电阻衡量电连接器接触件之间和接触件与外壳之间绝缘性能的指标,其数量级为数百兆欧至数千兆欧不等。 ③抗电强度或称耐电压、介质耐压,是表征连接器接触件之间或接触件与外壳之间耐受额定试验电压的能力。 ④其它电气性能。 电磁干扰泄漏衰减是评价连接器的电磁干扰屏蔽效果,一般在100MHz~10GHz频率范围内测试。 对射频同轴连接器而言,还有特性阻抗、插入损耗、反射系数、电压驻波比(VSWR)等电气指标。由于数字技术的发展,为了连接和传输高速数字脉冲信号,出现了一类新型的连接器即高速信号连接器,相应地,在电气性能方面,除特性阻抗外,还出现了一些新的电气指

℃荷电保持性能测试规范

M 版本:A 60℃荷电保持性能测试规范 页码:第1 页共2 页1.0目的和范围 规范迈科新能源有限公司锂离子二次电池芯的60℃荷电保持性能的测试。 适用于迈科新能源有限公司锂离子二次电池芯或客户要求的成品电池60℃荷电保持性能测试。 1.1变更记录 变更日期版本变更内容 2004-8-11 A 新版发行 1.2定义(无) 1.3相关文件和资料 2.0测试仪器 2.1擎天检测柜(BS-9300R)、内阻测试仪(NZY-200)、数显卡尺(分辨率为0.01mm)3.0试验环境 3.1温度:20℃±5℃,相对湿度:45%-75%,大气压力:86kPa~106kPa。 4.0作业内容及方法(客户有特殊要求时,按具体要求的条件测试) 4.1取样:当有重大工艺变更(材料改变)或新产品开发时(含新型号)或常规测试,由测 试员或实验员从检测车间新批次或试验批次电池芯中随机抽取10只,如正常生产批每周每类抽取2批,将电池芯编号,测试并记录其内阻、电压、厚度。 编制审核批准

M 版本:A 60℃荷电保持性能测试规范 页码:第2 页共2 页 4.2 60℃荷电保持能力测试: 步骤: A在环境温度20±5℃,湿度45%-75%的条件下,以1C5A充电至电池芯端电压达 到充电限制电压4.2V时,改为恒压充电直到电流小于或等于0.01C5A。搁置2min 后,再以1C5A电流放电到终止电压3.0V。循环2次。电池芯放电结束后记录第 二次的放电容量及3.6V平台。 B单充电:以1C5A充电,当电池芯端电压达到充电限制电压4.2V,改为恒压充电, 直到充电电流小于或等于0.01C5A。 C电池芯按照规定进行2次循环及单充电后,记录电池芯的内阻、电压、厚度、容量 及平台。然后在环境温度60℃±5℃的条件下,将电池芯开路贮存7天。贮存期间, 测试一周以后的电压,记录数据。七天后将电池芯直接以1C5A放电80 min,再将 电池芯循环三次,记录电池芯直接放电容量和3.6V平台及第一次、第三次的循环 容量和3.6V平台。然后将电池芯单充至3.85V,下夹测内阻,准备入库。 4.3电池芯处理:试验结束后,将所有电池芯按容量、内阻档次分类标识入库。 4.4异常反馈:如果60℃荷电保持性能测试数据有异常,则在测试电池芯电压完成后必须 立即向测试负责人反馈,然后再以书面的形式向技术部、品质部反馈。技术部应立 即对此问题进行分析、试验,以尽快找出原因,消除引起异常的因素。 4.5数据处理:将测试数据及现象详细记录,做成60℃荷电保持性能测试报告,报告经整 理后,上交领导核准,按照批次顺序放入60℃荷电保持性能测试报告文件夹内存档,以备查验。 5. 0判定标准(无) 6.0质量记录 《60℃荷电保持能力测试报告》 7.0附件(无)

连接器常用知识

连接器常用知识 文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

连接器常用知识 连接器的选用包含了使用环境条件、电参数、机械参数、端接方式等的选用,正确的选用是使用好的先决条件,同时正确的使用也必不可少,正确的使用又是保证产品可靠性的关键。一、使用环境条件: 1、环境温度——是指产品工作的环境,应在产品规定的环境温度内使用。即使外部环境温度不高但若产品工作在机箱内,散热条件差且加上其它元器件发热都会造成产品所处的环境温度大大高于外部的环境温度。超出规定的环境温度使用将使金属镀层或绝缘体受损,同时过低的温度也会使绝缘体龟裂,最终使连接器性能降低或功能丧失。 2、潮湿或水——潮湿或水都会使绝缘体表面形成水膜使绝缘性能降低甚至造成相临接触件之间误导通。一般长期在高潮湿或在有水的条件下使用的连接器都应采用有密封作用的连接器。 3、低气压:高空条件下气压会降低(恒定气压密封仓内除外),当产品处于低气压条件下,产品的介质耐压会下降,若传输的电压高于产品技术条件的规定,就有可能发生电击穿,造成失效。 4、腐蚀环境:是指产品周围的气氛,比如盐雾严重的海上,酸碱严重的化工原料储存仓库等,这些条件都会对连接器的金属件、绝缘体等产生腐蚀和侵蚀作用,在选用时应注意向生产方提出特殊要求或选用能满足你要求的产品。同时也应注意,有个别连接器的塑料件是不耐如香蕉水、苯、丙酮等溶剂的,请注意产品样本中的规定。 5、力学条件:是指振动、冲击、碰撞、加速度等力学作用,按产品样本中的参数选用,一般来说,同类产品中麻花针的力学参数较高,也容易保证。注意,实际使用中线缆与接触件端接后应采用线

电容的特性(精)

电容的特性: 电容器是一种能储存电荷的容器.它是由两片靠得较近的金属片,中间再隔以绝缘物质而组成的.按绝缘材料不同,可制成各种各样的电容器.如:云母.瓷介.纸介,电解电容器等.在构造上,又分为固定电容器和可变电容器.电容器对直流电阻力无穷大,即电容器具有隔直流作用.电容器对交流电的阻力受交流电频率影响,即相同容量的电容器对不同频率的交流电呈现不同的容抗.为什么会出现这些现象呢?这是因为电容器是依靠它的充放电功能来工作的,如图1,电源开关s未合上时.电容器的两片金属板和其它普通金属板—样是不带电的。当开关S合上时,如图2所示,电容器正极板上的自由电子便被电源所吸引,并推送到负极板上面。由于电容器两极板之间隔有绝缘材料,所以从正极板跑过来的自由电子便在负极板上面堆积起来.正极板便因电子减少而带上正电,负极板便因电子逐渐增加而带上负电。电容器两个极板之间便有了电位差,当这个电位差与电源电压相等时,电容器的充电就停上了.此时若将电源切断,电容器仍能保持充电电压。对已充电的电容器,如果我们用导线将两个极板连接起来,由于两极板间存在的电位差,电子便会通过导线,回到正极板上,直至两极板间的电位差为零.电容器又恢复到不带电的中性状态,导线中也就没电流了.电容器的放电过程如图3所示.加在电容器两个极板上的交流电频率高,电容器的充放电次数增多;充放电电流也就增强;也就是说.电容器对于频率高的交流电的阻碍作用就减小,即容抗小,反之电容器对频率低的交流电产生的容抗大.对于同一频率的交流电电.电容器的容量越大,容抗就越小,容量越小,容抗就越大. 第2讲:电容器的参数与分类 在电子产品中,电容器是必不可少的电子器件,它在电子设备中充当整流器的平滑滤波、电源的退耦、交流信号的旁路、交直流电路的交流耦合等。由于电容器的类型和结构种类比较多,因此,我们不仅需要了解各类电容器的性能指针和一般特性,而且还必须了解在给定用途下各种组件的优缺点,以及机械或环境的限制条件等。这里将对电容器的主要参数及其应用做简单说明。 1. 标称电容量(C R )。电容器产品标出的电容量值。云母和陶瓷介质电容器的电容量较低(大约在5000pF 以下);纸、塑料和一些陶瓷介质形式的电容器居中(大约在0.005uF~1.0uF );通常电解电容器的容量较大。这是一个粗略的分类法。 2. 类别温度范围。电容器设计所确定的能连续工作的环境温度范围。该范围取决于它相应类别的温度极限值,如上限类别温度、下限类别温度、额定温度(可以连续施加额定电压的最高环境温度)等。 3. 额定电压(U R )。在下限类别温度和额定温度之间的任一温度下,可以连续施加在电容器上的最大直流电压或最大交流电压的有效值或脉冲电压的峰值。电容器应用在高电压场和时,必须注意电晕的影响。电晕是由于在介质/ 电极层之间存在空隙而产生的,它除了可以产生损坏设备的寄生信号外,还会导致电容器介质击穿。在交流或脉动条件下,电晕特别容易发生。对于所有的电容器,在使用中应保证直流电压与交流峰值电压之和不得超过电容器的额定电压。 4. 损耗角正切(tg )。在规定频率的正弦电压下,电容器的损耗功率除以电容器的无功功率为损耗角正切。在实际应用中,电容器并不是一个纯电容,其内部还有等效电阻,它的简化等效电路如附图所示。对于电子设备来说,要求R S 愈小愈好,也就是说要求损耗功率小,其与电容的功率的夹角要小。 5. 电容器的温度特性。通常是以20 ℃基准温度的电容量与有关温度的电容量

锂离子电池性能影响因素分析及其改进方法研究

云南大学学报(自然科学版),2007,29(S1):237~242CN53-1045/N ISSN0258-7971 Journal of Yunnan U niversity Ξ锂离子电池性能影响因素分析及其改进方法研究 王晋鹏,胡欲立 (西北工业大学航海学院,陕西西安 710072) 摘要:如何提高锂离子电池的性能已经成为锂离子电池开发研究中的一个热点问题.介绍分析了影响锂离子电池性能的几种因素,讨论了几种改善锂离子电池性能的方法,有助于采取相应措施来提高锂离子电池的性 能. 关键词:锂离子电池;性能;影响因素;改进方法 中图分类号:TM912.9 文献标识码:A 文章编号:0258-7971(2007)S1-0237-06 锂离子电池是继镍氢电池之后的新一代绿色高能可充电电池,具有电压高、体积小、比能量高、循环性能好、自放电小、无记忆效应、无污染等突出优点,近10a来得到了飞速的发展,已在二次电池市场中与镍镉电池,镍氢电池呈三足鼎立之势,并且其市场份额仍在不断扩大.锂离子电池以其卓越的性价比优势在笔记本电脑、移动电话、武器装备等领域占据了主导地位,被认为是21世纪对国民经济和人民生活具有重要意义的高科技产品[1]. 随着锂离子电池在各个领域的大量应用,对锂离子电池的性能要求越来越高,如何提高锂离子电池的性能已经成为锂离子电池开发研究中的一个热点问题[2].影响锂离子电池性能的因素是多种多样的,本文分析介绍了影响锂离子电池性能的主要因素,并介绍了改善锂离子电池性能的几种方法. 1 影响锂离子电池性能的主要因素 影响锂离子电池性能的主要因素包括:正负极材料的选择、电解质的选择、隔膜的选择以及电池的结构和尺寸. 1.1 正极材料的选择 正极材料是锂离子电池中Li+的“贮存库”.在充电时锂离子从正极脱出嵌入负极,放电时锂离子从负极脱出插入正极材料中.作为锂离子电池正极材料要求具有以下性能[3]: (1)具有较高的氧化还原电位,从而使电池的输出电压高; (2)电极中大量的锂能够发生可逆嵌入和脱嵌以得到高容量; (3)在整个嵌入/脱嵌过程中,锂的嵌入和脱嵌应可逆且主体结构没有或很少发生变化,这样可确保良好的循环性能; (4)氧化还原电位的变化应尽可能少,这样电池的电压不会发生显著变化,可保持平稳的充电和放电; (5)具有较好的电子导电率和离子导电率,这样可减少极化,并能进行大电流充放电; (6)电极在整个电压范围内化学稳定性好,不与电解质等发生反应; (7)锂离子在电极材料中有较大的扩散系数,便于快速充放电; (8)具有良好的热稳定性; (9)从实用角度而言,电极材料应该便宜,对环境无污染. 理论上具有层状结构和尖晶石结构的材料都可用作锂离子电池的正极材料,但由于制备工艺上存在困难,目前所应用的正极材料仍然是钴、镍、锰、钒和铁的氧化物,如:LiCoO2、LiNiO2、LiMn2O4 Ξ收稿日期:2007-03-20  作者简介:王晋鹏(1982- ),男,山西人,硕士生,主要从事锂离子电池的热分析方面的研究.

连接器电气性能检测

1 引言 不论是高频电连接器,还是低频电连接器,绝缘电阻、介质耐压(又称抗电强度)和接触电阻都是保证电连接器能正常可靠地工作的最基本的电气参数。通常在电连接器产品技术条件的质量一致性检验A、B 组常规交收检验项目中都列有明确的技术指标要求和试验方法。这三个检验项目也是用户判别电连接器质量和可靠性优劣的重要依据。但根据笔者多年来从事电连接器检验的实践发现,目前各生产厂之间以及生产厂和使用厂之间,在具体执行有关技术条件时尚存在许多不一致和差异,往往由于采用的仪器、测试工装、操作方法、样品处理和环境条件等因素不同,直接影响到检验准确和一致。为此,笔者认为,针对目前这三个常规电性能检验项目和实际操作中存在的问题进行一些专题研讨,对提高电连接器检验可靠性是十分有益的。 另外,随着电子信息技术的迅猛发展,新一代的多功能自动检测仪正在逐步替代原有的单参数测试仪。这些新型测试仪器的应用必将大大提高电性能的检测速度、效率和准确可靠性。 2 绝缘电阻检验 2.1作用原理 绝缘电阻是指在连接器的绝缘部分施加电压,从而使绝缘部分的表面或内部产生漏电流而呈现出的电阻值。即绝缘电阴(MΩ)=加在绝缘体上的电压(V)/泄漏电流(μA)。通过绝缘电阻检验,确定连接器的绝缘性能能否符合电路设计的要求,或在经受高温、潮湿等环境应力时,其绝缘电阻是否符合有关技术条件的规定。 绝缘电阻是设计高阻抗电路的限制因素。绝缘电阻低,意味着漏电流大,这将破坏电路和正常工作。如形成反馈回路,过大的漏电流所产生的热和直流电解,将使绝缘破坏或使连接器的电性能变劣。 2.2影响因素 主要受绝缘材料、温度、湿度、污损、试验电压及连续施加测试电压的持续时间等因素影响。 2.2.1绝缘材料 设计电连接器时选用何种绝缘材料非常重要,它往往影响产品的绝缘电阻能否稳定合格。如某厂原使用酚醛玻纤塑料和增强尼龙等材料制作绝缘体,这些材料内含极性基因,吸湿性大,在常温下绝缘性能可满足产品要求,而在高温潮湿下则绝缘性能不合格。后采用特种工程塑料PES(聚苯醚砜)材料,产品经200℃、1000h和240h潮湿试验,绝缘电阻变化较小,仍在105MΩ以上,无异常变化。 2.2.2温度 高温会破坏绝缘材料,引起绝缘电阻和耐压性能降低。对金属壳体,高温可使接触件失去弹性、加速氧化和发生镀层变质。如按GJB598生产的耐环境快速分离电连接器系列II产品,绝缘电阻规定25℃时应不小于5000MΩ,而200℃时,则降低至不小于500MΩ。 2.2.3温度 潮湿环境引起水蒸气在绝缘体表面的吸引和扩散,容易使绝缘电阻降低到MΩ级以下。长期处于高温环境下会引起绝缘体物理变形、分解、逸出生成物,产生呼吸效应及电解腐蚀及裂纹。如按GJB2281生产的带状电缆电连接器,标准大气条件下的绝缘电阻值应不小于5000MΩ,而经相对湿度90%~95%、温度40±2℃、96h湿热试验后的绝缘电阻降至不小于1000MΩ。 2.2.4污损 绝缘体内部和表面的洁净度对绝缘电阻影响很大,由于注塑绝缘体用的粉料或胶接上、下绝缘安装板的胶料中混有杂质,或由于多次插拔磨损残留的金属屑及锡焊端接时残留的焊剂渗入绝缘体表面,都会明显降低绝缘电阻。如某厂生产的圆形电连接器在成品交收试验时发现有一个产品接触件之间的绝缘电阻很低,仅20MΩ,不合格。后经解剖分析发现,这是因注塑绝缘体用的粉料中混有杂质而造成的。后只得将该批产品全部报废。 2.2.5 试验电压 绝缘电阻检验时施加的试验电压对测试结果有很大关系。因为试验电压升高时,漏电流的增加不成线性

相关主题
文本预览
相关文档 最新文档