当前位置:文档之家› 初三数学 圆的综合的专项 培优练习题及答案

初三数学 圆的综合的专项 培优练习题及答案

初三数学 圆的综合的专项 培优练习题及答案
初三数学 圆的综合的专项 培优练习题及答案

初三数学圆的综合的专项培优练习题及答案

一、圆的综合

1.如图,AB是半圆O的直径,C是的中点,D是的中点,AC与BD相交于点E.

(1)求证:BD平分∠ABC;

(2)求证:BE=2AD;

(3)求DE

BE

的值.

【答案】(1)答案见解析(2)BE=AF=2AD(3)21 -

【解析】

试题分析:(1)根据中点弧的性质,可得弦AD=CD,然后根据弦、弧、圆周角、圆心角的性质求解即可;

(2)延长BC与AD相交于点F, 证明△BCE≌△ACF, 根据全等三角形的性质可得

BE=AF=2AD;

(3)连接OD,交AC于H.简要思路如下:设OH为1,则BC为2,OB=OD=2,

DH=21

-, 然后根据相似三角形的性质可求解.

试题解析:(1)∵D是的中点

∴AD=DC

∴∠CBD=∠ABD

∴BD平分∠ABC

(2)提示:延长BC与AD相交于点F,

证明△BCE≌△ACF,

BE=AF=2AD

(3)连接OD,交AC于H.简要思路如下:

设OH为1,则BC为2,2,

21, DE

BE

=

DH

BC

DE BE =21

2

-

2.四边形 ABCD 的对角线交于点 E ,且 AE =EC ,BE =ED ,以 AD 为直径的半圆过点 E ,圆心 为 O .

(1)如图①,求证:四边形 ABCD 为菱形;

(2)如图②,若 BC 的延长线与半圆相切于点 F ,且直径 AD =6,求弧AE 的长.

【答案】(1)见解析;(2)π

2

【解析】

试题分析:(1)先判断出四边形ABCD 是平行四边形,再判断出AC ⊥BD 即可得出结论; (2)先判断出AD =DC 且DE ⊥AC ,∠ADE =∠CDE ,进而得出∠CDA =30°,最后用弧长公式即可得出结论.

试题解析:证明:(1)∵四边形ABCD 的对角线交于点E ,且AE =EC ,BE =ED ,∴四边形ABCD 是平行四边形.∵以AD 为直径的半圆过点E ,∴∠AED =90°,即有AC ⊥BD ,∴四边形ABCD 是菱形;

(2)由(1)知,四边形ABCD 是菱形,∴△ADC 为等腰三角形,∴AD =DC 且DE ⊥AC ,∠ADE =∠CDE .如图2,过点C 作CG ⊥AD ,垂足为G ,连接FO .∵BF 切圆O 于点F ,∴OF ⊥AD ,且1

32

OF AD =

=,易知,四边形CGOF 为矩形,∴CG =OF =3. 在Rt △CDG 中,CD =AD =6,sin ∠ADC =

CG CD =1

2

,∴∠CDA =30°,∴∠ADE =15°. 连接OE ,则∠AOE =2×∠ADE =30°,∴?

303180

2

AE ππ??==.

点睛:本题主要考查菱形的判定即矩形的判定与性质、切线的性质,熟练掌握其判定与性质并结合题意加以灵活运用是解题的关键.

3.如图1

O e ,的直径12AB P =,是弦BC 上一动点(与点B C ,不重合)30ABC o ,∠=,过点P 作PD OP ⊥交O e 于点D .

()1如图2,当//PD AB 时,求PD 的长;

()2如图3,当??DC AC

=时,延长AB 至点E ,使12

BE AB =,连接DE . ①求证:DE 是O e 的切线;

②求PC 的长.

【答案】(1)26;(2)333-①见解析,②. 【解析】

分析:()1根据题意首先得出半径长,再利用锐角三角函数关系得出OP PD ,的长;

()2①首先得出OBD V 是等边三角形,进而得出ODE OFB 90∠∠==o ,求出答案即

可;

②首先求出CF 的长,进而利用直角三角形的性质得出PF 的长,进而得出答案.

详解:()1如图2,连接OD ,

//OP PD PD AB ⊥Q ,,

90POB ∴∠=o ,

O Q e 的直径12AB =,

6OB OD ∴==,

在Rt POB V 中,30ABC o ∠=,

3

tan306233

OP OB ∴=?=?

=o 在Rt POD V 中,

22226(23)26PD OD OP =-=-=;

()2①证明:如图3,连接OD ,交CB 于点F ,连接BD ,

??DC AC =Q ,

30DBC ABC ∴∠=∠=o ,

60ABD o ∴∠=,

OB OD =Q , OBD ∴V 是等边三角形, OD FB ∴⊥,

1

2

BE AB =Q ,

OB BE ∴=, //BF ED ∴,

90ODE OFB o ∴∠=∠=,

DE ∴是O e 的切线; ②由①知,OD BC ⊥, 3

cos306332

CF FB OB ∴==?=?

=o 在Rt POD V 中,OF DF =,

1

3(2

PF DO ∴=

=直角三角形斜边上的中线,等于斜边的一半), 333CP CF PF ∴=-=.

点睛:此题主要考查了圆的综合以及直角三角形的性质和锐角三角函数关系,正确得出

OBD V 是等边三角形是解题关键.

4.如图,已知AB 为⊙O 直径,D 是?BC

的中点,DE ⊥AC 交AC 的延长线于E ,⊙O 的切线交AD 的延长线于F .

(1)求证:直线DE 与⊙O 相切;

(2)已知DG ⊥AB 且DE =4,⊙O 的半径为5,求tan ∠F 的值.

【答案】(1)证明见解析;(2)2.

【解析】

试题分析:(1)连接BC、OD,由D是弧BC的中点,可知:OD⊥BC;由OB为⊙O的直径,可得:BC⊥AC,根据DE⊥AC,可证OD⊥DE,从而可证DE是⊙O的切线;

(2)直接利用勾股定理得出GO的长,再利用锐角三角函数关系得出tan∠F的值.

试题解析:解:(1)证明:连接OD,BC,∵D是弧BC的中点,∴OD垂直平分BC,∵AB 为⊙O的直径,∴AC⊥BC,∴OD∥AE.∵DE⊥AC,∴OD⊥DE,∵OD为⊙O的半径,∴DE 是⊙O的切线;

(2)解:∵D是弧BC的中点,∴??

DC DB

,∴∠EAD=∠BAD,∵DE⊥AC,DG⊥AB且

DE=4,∴DE=DG=4,∵DO=5,∴GO=3,∴AG=8,∴tan∠ADG=8

4

=2,∵BF是⊙O的切

线,∴∠ABF=90°,∴DG∥BF,∴tan∠F=tan∠ADG=2.

点睛:此题主要考查了切线的判定与性质以及勾股定理等知识,正确得出AG,DG的长是解题关键.

5.如图,△ABC内接于⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC 交AC于点E,交PC于点F,连结AF.

(1)判断AF与⊙O的位置关系并说明理由;

(2)若AC=24,AF=15,求sin B.

【答案】(1) AF与⊙O相切理由见解析;(2)3 5

【解析】

试题分析:(1)连接OC ,先证∠OCF =90°,再证明△OAF ≌△OCF ,得出∠OAF =∠OCF =90°即可;

(2)先求出AE 、EF ,再证明△OAE ∽△AFE ,得出比例式OA AE

AF EF

=,可求出半径,进而求出直径,由三角函数的定义即可得出结论. 试题解析:解:(1)AF 与⊙O 相切.理由如下:

连接OC .如图所示.∵PC 是⊙O 的切线,∴OC ⊥PC ,∴∠OCF =90°.∵OF ∥BC ,∴∠B =∠AOF ,∠OCB =∠COF .∵OB =OC ,∴∠B =∠OCB ,∴∠AOF =∠COF .在△OAF 和△OCF 中,∵OA =OC ,∠AOF =∠COF ,OF =OF ,∴△OAF ≌△OCF (SAS ),∴∠OAF =∠OCF =90°,∴AF 与⊙O 相切;

(2)∵△OAF ≌△OCF ,∴∠OAE =∠COE ,∴OE ⊥AC ,AE =

1

2

AC =12,∴EF =2215129-=.∵∠OAF =90°,∴△OAE ∽△AFE ,∴OA AE AF EF =,即12

159

OA =,∴OA =20,∴AB =40,sin B =

243

405

AC AB ==.

点睛:本题考查了切线的性质与判定和全等三角形的判定与性质以及相似三角形的判定与性质;熟练掌握切线的证法和三角形相似是解题的关键.

6.(8分)已知AB 为⊙O 的直径,OC ⊥AB ,弦DC 与OB 交于点F ,在直线AB 上有一点E ,连接ED ,且有ED =EF.

(1)如图①,求证:ED 为⊙O 的切线;

(2)如图②,直线ED 与切线AG 相交于G ,且OF =2,⊙O 的半径为6,求AG 的长. 【答案】(1)见解析;(2)12 【解析】

试题分析:(1)连接OD ,由ED =EF 可得出∠EDF =∠EFD ,由对顶角相等可得出

∠EDF =∠CFO ;由OD =OC 可得出∠ODF =∠OCF ,结合OC ⊥AB 即可得知∠EDF +∠ODF =90°,即∠EDO =90°,由此证出ED 为⊙O 的切线;

(2)连接OD ,过点D 作DM ⊥BA 于点M ,结合(1)的结论根据勾股定理可求出ED 、EO 的长度,结合∠DOE 的正弦、余弦值可得出DM 、MO 的长度,根据切线的性质可知GA ⊥EA ,从而得出DM ∥GA ,根据相似三角形的判定定理即可得出△EDM ∽△EGA ,根据相似三角形的性质即可得出GA 的长度

试题解析:解:(1)连接OD ,∵ED =EF ,∴∠EDF =∠EFD ,∵∠EFD =∠CFO ,∴∠EDF =∠CFO .∵OD =OC ,∴∠ODF =∠OCF .∵OC ⊥AB ,∴∠CFO +∠OCF =∠EDF +∠ODF =∠EDO =90°,∴ED 为⊙O 的切线;

(2)连接OD ,过点D 作DM ⊥BA 于点M ,由(1)可知△EDO 为直角三角形,设ED =EF =a ,EO =EF +FO =a +2,由勾股定理得,EO 2=ED 2+DO 2,即(a +2)2=a 2+62,解得,a =8,即ED =8,EO =10.∵sin ∠EOD =45ED EO =,cos ∠EOD =3

5

OD OE =,∴DM =OD ?sin ∠EOD =6×

45=245,MO =OD ?cos ∠EOD =6×35=185

,∴EM =EO ﹣MO =10﹣185=32

5

,EA =EO +OA =10+6=16. ∵GA 切⊙O 于点A ,∴GA ⊥EA ,∴DM ∥GA ,∴△EDM ∽△EGA ,∴

DM EM

GA EA

=,即2432

5516

GA = ,解得GA =12.

点睛:本题考查的是切线的判定、垂径定理和勾股定理的应用、等腰三角形的性质、角的三角函数值、相似三角形的判定及性质,解题的关键是:(1)通过等腰三角形的性质找出∠EDO =90°;(2)通过相似三角形的性质找出相似比.

7.如图所示,AB 是半圆O 的直径,AC 是弦,点P 沿BA 方向,从点B 运动到点A ,速度为1cm/s ,若10AB cm =,点O 到AC 的距离为4cm .

(1)求弦AC的长;

(2)问经过多长时间后,△APC是等腰三角形.

【答案】(1)AC=6;(2)t=4或5或14

5

s时,△APC是等腰三角形;

【解析】

【分析】

(1)过O作OD⊥AC于D,根据勾股定理求得AD的长,再利用垂径定理即可求得AC的长;(2)分AC=PC、AP=AC、AP=CP三种情况求t值即可.

【详解】

(1)如图1,过O作OD⊥AC于D,

易知AO=5,OD=4,

从而AD==3,

∴AC=2AD=6;

(2)设经过t秒△APC是等腰三角形,则AP=10﹣t

①如图2,若AC=PC,过点C作CH⊥AB于H,

∵∠A=∠A,∠AHC=∠ODA=90°,

∴△AHC∽△ADO,

∴AC:AH=OA:AD,即AC: =5:3,

解得t=s,

∴经过s后△APC是等腰三角形;

②如图3,若AP=AC,

由PB=x,AB=10,得到AP=10﹣x,

又∵AC=6,

则10﹣t=6,解得t=4s,

∴经过4s后△APC是等腰三角形;

③如图4,若AP=CP,P与O重合,

则AP=BP=5,

∴经过5s后△APC是等腰三角形.

综上可知当t=4或5或s时,△APC是等腰三角形.

【点睛】

本题是圆的综合题,解决问题利用了垂径定理,勾股定理等知识点,解题时要注意当

△BPC是等腰三角形时,点P的位置有三种情况.

8.如图,在Rt△ABC中,∠ACB=60°,☉O是△ABC的外接圆,BC是☉O的直径,过点B作☉O的切线BD,与CA的延长线交于点D,与半径AO的延长线交于点E,过点A作☉O的切线AF,与直径BC的延长线交于点F.

(1)连接EF,求证:EF是☉O的切线;

(2)在圆上是否存在一点P,使点P与点A,B,F构成一个菱形?若存在,请说明理由.

【答案】(1)见解析;(2)存在,理由见解析

【解析】

【分析】

(1)过O作OM⊥EF于M,根据SAS证明△OAF≌△OBE,从而得到OE=OF,再证明EO平分

∠BEF,从而得到结论;

(2)存在,先证明△OAC为等边三角形,从而得出∠OAC=∠AOC=60°,再得到AB=AF,再证明AB=AF=FP=BP,从而得到结论.

【详解】

(1)证明:如图,过O作OM⊥EF于M,

∵OA=OB,∠OAF=∠OBE=90°,∠BOE=∠AOF,

∴△OAF≌△OBE,

∴OE=OF,

∵∠EOF=∠AOB=120°,

∴∠OEM=∠OFM=30°,

∴∠OEB=∠OEM=30°,即EO平分∠BEF,

又∠OBE=∠OME=90°,

∴OM=OB,

∴EF为☉O的切线.

(2)存在.

∵BC为☉O的直径,

∴∠BAC=90°,

∵∠ACB=60°,

∴∠ABC=30°,

又∵∠ACB=60°,OA=OC,

∴△OAC为等边三角形,即∠OAC=∠AOC=60°,

∵AF为☉O的切线,

∴∠OAF=90°,

∴∠CAF=∠AFC=30°,

∴∠ABC=∠AFC,

∴AB=AF.

当点P在(1)中的点M位置时,此时∠OPF=90°,

∴∠OAF=∠OPF=90°,

又∵OA=OP,OF为公共边,

∴△OAF≌△OPF,

∴AF=PF,

∠BFE=∠AFC=30°.

又∵∠FOP=∠OBP=∠OPB=30°,

∴BP=FP ,

∴AB=AF=FP=BP , ∴四边形AFPB 是菱形.

【点睛】

考查了切线的判定定理和菱形的判定,经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.

9.如图,四边形ABCD 是⊙O 的内接四边形,AC 为直径,??BD AD =,DE ⊥BC ,垂足为

E .

(1)判断直线ED 与⊙O 的位置关系,并说明理由; (2)若CE =1,AC =4,求阴影部分的面积.

【答案】(1)ED 与O e 相切.理由见解析;(2)2

=33

S π-阴影 【解析】 【分析】

(1)连结OD ,如图,根据圆周角定理,由??BD AD =得到∠BAD =∠ACD ,再根据圆内接

四边形的性质得∠DCE =∠BAD ,所以∠ACD =∠DCE ;利用内错角相等证明OD ∥BC ,而DE ⊥BC ,则OD ⊥DE ,于是根据切线的判定定理可得DE 为⊙O 的切线;

(2)作OH ⊥BC 于H ,易得四边形ODEH 为矩形,所以OD =EH =2,则CH =HE ﹣CE =1,于是有∠HOC =30°,得到∠COD =60°,然后根据扇形面积公式、等边三角形的面积公式和阴影部分的面积=S 扇形OCD ﹣S △OCD 进行计算即可. 【详解】

(1)直线ED 与⊙O 相切.理由如下:

连结OD ,如图,∵??BD AD =,∴∠BAD =∠ACD .

∵∠DCE =∠BAD ,∴∠ACD =∠DCE .

∵OC =OD ,∴∠OCD =∠ODC ,而∠OCD =∠DCE ,∴∠DCE =∠ODC ,∴OD ∥BC . ∵DE ⊥BC ,∴OD ⊥DE ,∴DE 为⊙O 的切线;

(2)作OH ⊥BC 于H ,则四边形ODEH 为矩形,∴OD =EH .

∵CE =1,AC =4,∴OC =OD =2,∴CH =HE ﹣CE =2﹣1=1.在Rt △OHC 中,∵OC =2,CH =1,

∠OHC =90°,∠HOC =30°,∴∠COD =60°,∴阴影部分的面积=S 扇形OCD ﹣S △OCD

260233604

π??=-

?22

2

3

=

π3-.

【点睛】

本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了扇形面积的计算.

10.如图, Rt △ABC 中,∠B=90°,它的内切圆分别与边BC 、CA 、AB 相切于点D 、E 、F , (1)

设AB=c, BC=a, AC=b, 求证: 内切圆半径r =

1

2

(a+b-c). (2) 若AD 交圆于P , PC 交圆于H, FH//BC, 求∠CPD;

(3)若r=310, PD =18, PC=272. 求△ABC 各边长.

【答案】(1)证明见解析(2)45°(3)1010,1510,12【解析】 【分析】

(1)根据切线长定理,有AE=AF ,BD=BF ,CD=CE .易证四边形BDOF 为正方形,BD=BF=r ,用r 表示AF 、AE 、CD 、CE ,利用AE+CE=AC 为等量关系列式.

(2)∠CPD 为弧DH 所对的圆周角,连接OD ,易得弧DH 所对的圆心角∠DOH=90°,所以∠CPD=45°.

(3)由PD=18和10,联想到垂径定理基本图形,故过圆心O 作PD 的垂线OM ,求得弦心距OM=3,进而得到∠MOD 的正切值.延长DO 得直径DG ,易证PG ∥OM ,得到同位角∠G=∠MOD .又利用圆周角定理可证∠ADB=∠G ,即得到∠ADB 的正切值,进而求得AB .再设CE=CD=x ,用x 表示BC 、AC ,利用勾股定理列方程即求出x .

【详解】

解:(1)证明:设圆心为O,连接OD、OE、OF,

∵⊙O分别与BC、CA、AB相切于点D、E、F

∴OD⊥BC,OE⊥AC,OF⊥AB,AE=AF,BD=BF,CD=CE ∴∠B=∠ODB=∠OFB=90°

∴四边形BDOF是矩形

∵OD=OF=r

∴矩形BDOF是正方形

∴BD=BF=r

∴AE=AF=AB-BF=c-r,CE=CD=BC-BD=a-r

∵AE+CE=AC

∴c-r+a-r=b

整理得:r=1

2

(a+b-c)

(2)取FH中点O,连接OD

∵FH∥BC

∴∠AFH=∠B=90°

∵AB与圆相切于点F,

∴FH为圆的直径,即O为圆心

∵FH∥BC

∴∠DOH=∠ODB=90°

∴∠CPD=1

2

∠DOH=45°

(3)设圆心为O,连接DO并延长交⊙O于点G,连接PG,过O作OM⊥PD于M ∴∠OMD=90°

∵PD=18

∴DM=

1

2

PD=9 ∵BF=BD=OD=r=310,

∴OM=22OD DM -=22(310)9-=9081-=3 ∴tan ∠MOD=DM

OM

=3 ∵DG 为直径 ∴∠DPG=90°

∴OM ∥PG ,∠G+∠ODM=90° ∴∠G=∠MOD

∵∠ODB=∠ADB+∠ODM=90° ∴∠ADB=∠G ∴∠ADB=∠MOD ∴tan ∠ADB=

AB

BD

=tan ∠MOD=3 ∴AB=3BD=3r=910

∴AE=AF=AB-BF=910?310=610 设CE=CD=x ,则BC=310+x ,AC=610+x ∵AB 2+BC 2=AC 2

∴(910)2.+(310+x)2=(610+x)2 解得:x=910

∴BC=1210,AC=1510

∴△ABC 各边长AB=910,AC=1510,BC=1210

【点睛】

本题考查切线的性质,切线长定理,正方形的判定,圆周角定理,垂径定理,勾股定理.切线长定理的运用是解决本题的关键,而在不能直接求得线段长的情况下,利用勾股定理作为等量关系列方程解决是常用做法.

11.如图,AB 是半圆⊙O 的直径,点C 是半圆⊙O 上的点,连接AC ,BC ,点E 是AC 的中点,点F 是射线OE 上一点.

(1)如图1,连接FA,FC,若∠AFC=2∠BAC,求证:FA⊥AB;

(2)如图2,过点C作CD⊥AB于点D,点G是线段CD上一点(不与点C重合),连接FA,FG,FG与AC相交于点P,且AF=FG.

①试猜想∠AFG和∠B的数量关系,并证明;

②连接OG,若OE=BD,∠GOE=90°,⊙O的半径为2,求EP的长.

【答案】(1)见解析;(2)①结论:∠GFA=2∠ABC.理由见解析;②PE=

3

6

【解析】

【分析】

(1)证明∠OFA=∠BAC,由∠EAO+∠EOA=90°,推出∠OFA+∠AOE=90°,推出∠FAO=90°即可解决问题.

(2)①结论:∠GFA=2∠ABC.连接FC.由FC=FG=FA,以F为圆心FC为半径作

⊙F.因为??

AG AG

,推出∠GFA=2∠ACG,再证明∠ACG=∠ABC.

②图2﹣1中,连接AG,作FH⊥AG于H.想办法证明∠GFA=120°,求出EF,OF,OG即可解决问题.

【详解】

(1)证明:连接OC.

∵OA=OC,EC=EA,

∴OF⊥AC,

∴FC=FA,

∴∠OFA=∠OFC,

∵∠CFA=2∠BAC,

∴∠OFA=∠BAC,

∵∠OEA=90°,

∴∠EAO+∠EOA=90°,

∴∠OFA+∠AOE=90°,

∴∠FAO=90°,

∴AF⊥AB.

(2)①解:结论:∠GFA=2∠ABC.

理由:连接FC.

∵OF垂直平分线段AC,

∴FG=FA,

∵FG=FA,

∴FC=FG=FA,以F为圆心FC为半径作⊙F.∵??

AG AG

∴∠GFA=2∠ACG,

∵AB是⊙O的直径,

∴∠ACB=90°,

∵CD⊥AB,

∴∠ABC+∠BCA=90°,

∵∠BCD+∠ACD=90°,

∴∠ABC=∠ACG,

∴∠GFA=2∠ABC.

②如图2﹣1中,连接AG,作FH⊥AG于H.

∵BD=OE,∠CDB=∠AEO=90°,∠B=∠AOE,∴△CDB≌△AEO(AAS),

∴CD=AE,

∵EC=EA,

∴AC=2CD.

∴∠BAC=30°,∠ABC=60°,

∴∠GFA=120°,

∵OA=OB=2,

∴OE=1,AE=,BA=4,BD=OD=1,

∵∠GOE=∠AEO=90°,

∴OG∥AC,

DG OG

∴==,

3

AG

∴==,

∵FG=FA,FH⊥AG,

∴AH=HG

∠AFH=60°,

∴AF

sin603

AH

?

=,

在Rt△AEF中,EF

1

3

=,

∴OF=OE+EF=4

3

∵PE∥OG,

∴PE EF

OG0F

=,

1

3

4

3

=,

∴PE

【点睛】

圆综合题,考查了垂径定理,勾股定理,圆周角定理,全等三角形的判定和性质,锐角三角函数,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.

12.如图,AB是O

e的直径,DF切O

e于点D,BF DF

⊥于F,过点A作AC//BF 交BD的延长线于点C.

(1)求证:ABC C

∠∠

=;

(2)设CA的延长线交O

e于E BF

,交O

e于G,若?DG的度数等于60o,试简要说明点D和点E关于直线AB对称的理由.

【答案】(1)见解析;(2)见解析.

【解析】

【分析】

(1)作辅助线,连接OD,由DF为⊙O的切线,可得OD⊥DF,又BF⊥DF,AC∥BF,所以OD∥AC,∠ODB=∠C,由OB=OD得∠ABD=∠ODB,从而可证∠ABC=∠C;

(2)连接OG,OD,AD,由BF∥OD,?GD=60°,可求证?BG=??

==60°,由平行线

GD AD

的性质及三角形的内角和定理可求出∠OHD=90°,由垂径定理便可得出结论.

【详解】

(1)连接OD,

∵DF为⊙O的切线,

∴OD⊥DF.

∵BF⊥DF,AC∥BF,

∴OD∥AC∥BF.

∴∠ODB=∠C.

∵OB=OD,

∴∠ABD=∠ODB.

∴∠ABC=∠C.

(2)连接OG,OD,AD,DE,DE交AB于H,

∵BF∥OD,

∴∠OBG=∠AOD,∠OGB=∠DOG,

∴??

GD AD

==?BG.

∵?GD=60°,

∴?BG=??

GD AD

==60°,

∴∠ABC=∠C=∠E=30°,

∵OD//CE

∴∠ODE=∠E=30°.

在△ODH中,∠ODE=30°,∠AOD=60°,

∴∠OHD=90°,

∴AB⊥DE.

∴点D和点E关于直线AB对称.

【点睛】

本题考查的是切线的性质、圆周角定理及垂径定理,解答此题的关键是作出辅助线,利用数形结合解答.

13.设C为线段AB的中点,四边形BCDE是以BC为一边的正方形,以B为圆心,BD长为半径的⊙B与AB相交于F点,延长EB交⊙B于G点,连接DG交于AB于Q点,连接AD.

求证:(1)AD是⊙B的切线;

(2)AD=AQ;

(3)BC2=CF×EG.

【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析.

【解析】

【分析】

()1连接BD,由DC AB

⊥,C为AB的中点,由线段垂直平分线的性质,可得=,再根据正方形的性质,可得90

AD BD

∠=o;

ADB

()2由BD BG

CD BE,利用等边对等角与平行线的性质,即可求得

=与//

1

22.52

G CDG BDG BCD ∠=∠=∠=

∠=o ,继而求得67.5ADQ AQD ∠=∠=o ,由等角对等边,可证得AD AQ =; ()3易求得67.5GDE GDB BDE DFE ∠=∠+∠==∠o ,90DCF E ∠=∠=o ,即可证

得Rt DCF V ∽Rt GED V ,根据相似三角形的对应边成比例,即可证得结论. 【详解】

证明:()1连接BD ,

Q 四边形BCDE 是正方形,

45DBA ∴∠=o ,90DCB ∠=o ,即DC AB ⊥,

C Q 为AB 的中点,

CD ∴是线段AB 的垂直平分线, AD BD ∴=,

45DAB DBA ∴∠=∠=o , 90ADB ∴∠=o ,

即BD AD ⊥,

BD Q 为半径,

AD ∴是B e 的切线;

()2BD BG =Q ,

BDG G ∴∠=∠, //CD BE Q , CDG G ∴∠=∠,

1

22.52

G CDG BDG BCD ∴∠=∠=∠=

∠=o , 9067.5ADQ BDG ∴∠=-∠=o o ,9067.5AQB BQG G ∠=∠=-∠=o o , ADQ AQD ∴∠=∠, AD AQ ∴=;

()3连接DF ,

在BDF V 中,BD BF =,

BFD BDF ∴∠=∠,

2018中考数学圆(大题培优)

(2018?畐建A卷)已知四边形ABCD是O O的内接四边形,AC是。O的直径,DE丄AB,垂足为E. (1)延长DE交。O于点F,延长DC, FB交于点P,如图1.求证:PC=PB (2)过点B作BC丄AD,垂足为G, BG交DE于点H,且点O和点A都在DE的 左侧,如图2.若AB=;, DH=1,Z OHD=8°,求/ BDE的大小. (12.00分)(2018?畐建B卷)如图,D是厶ABC外接圆上的动点,且B, D位于AC的两侧,DE丄AB,垂足为E, DE的延长线交此圆于点F. BG丄AD,垂足为G, BG交DE于点H, DC, FB的延长线交于点P,且PC=PB (1)求证:BG// CD; (2)设厶ABC外接圆的圆心为O,若AB^'DH,/ OHD=8°,求/ BDE的大小. 备用圉 25. (10.00分)(2018?河北)如图,点A在数轴上对应的数为26,以原点O为 4 圆心,OA为半径作优弧■■-,使点B在O右下方,且tan/AOB=,在优弧加上任取一点P,且能过P作直线I// OB交数轴于点Q,设Q在数轴上对应的数为x, 连接OP (1)若优弧恥上一段4P的长为13 n求/ AOP的度数及x的值; (2)求x的最小值,并指出此时直线I与?期所在圆的位置关系;

(3)若线段PQ 的长为12.5,直接写出这时x 的值. 23. (10.00分)(2018?恩施州)如图,AB 为。O 直径,P 点为半径 OA 上异于O 点和A 点的一个点,过P 点作与直径AB 垂直的弦CD,连接AD,作BE ± AB, OE// AD 交 BE 于 E 点,连接 AE 、DE 、AE 交 CD 于 F 点. AD _ EC 交EC 的延长线于点D ,AD 交L O 于F ,FM _AB 于H ,分别交L O 、AC 于 M 、N ,连接 MB ,BC . (1)求证:AC 平方.DAE ; 4 (2)若 cosM ,BE =1,①求 5 25. (10.00分)(2018?株洲)如图,已知 AB 为。O 的直径,AB=8,点C 和点D 是。O 上关于直线AB 对称的两个点,连接 OC AC,且/ BOC X 90°直线BC 和 直线AD 相交于点E,过点C 作直线CG 与线段AB 的延长线相交于点F ,与直线 O 的半径;②求FN 的长. (1)求证:DE 为。O 切线; DC E 第23融圈

初三九年级上册数学 压轴解答题(培优篇)(Word版 含解析)

初三九年级上册数学 压轴解答题(培优篇)(Word 版 含解析) 一、压轴题 1.阅读理解: 如图,在纸面上画出了直线l 与⊙O ,直线l 与⊙O 相离,P 为直线l 上一动点,过点P 作⊙O 的切线PM ,切点为M ,连接OM 、OP ,当△OPM 的面积最小时,称△OPM 为直线l 与⊙O 的“最美三角形”. 解决问题: (1)如图1,⊙A 的半径为1,A(0,2) ,分别过x 轴上B 、O 、C 三点作⊙A 的切线BM 、OP 、CQ ,切点分别是M 、P 、Q ,下列三角形中,是x 轴与⊙A 的“最美三角形”的是 .(填序号) ①ABM ;②AOP ;③ACQ (2)如图2,⊙A 的半径为1,A(0,2),直线y=kx (k≠0)与⊙A 的“最美三角形”的面积为 1 2 ,求k 的值. (3)点B 在x 轴上,以B 为圆心,3为半径画⊙B ,若直线y=3x+3与⊙B 的“最美三角形”的面积小于 3 ,请直接写出圆心B 的横坐标B x 的取值范围. 2.点P 为图形M 上任意一点,过点P 作PQ ⊥直线,l 垂足为Q ,记PQ 的长度为d . 定义一:若d 存在最大值,则称其为“图形M 到直线l 的限距离”,记作()max ,D M l ; 定义二:若d 存在最小值,则称其为“图形M 到直线l 的基距离”,记作()min ,D M l ; (1)已知直线1:2l y x =--,平面内反比例函数2 y x = 在第一象限内的图象记作,H 则

() 1 , min D H l=. ( 2)已知直线 2 :33 l y x =+,点() 1,0 A-,点()() 1,0,,0 B T t是x轴上一个动点, T的半径为3,点C在T上,若() max2 43,63, D ABC l ≤≤求此时t的取值范围, (3)已知直线 212 11 k k y x k k -- =+ -- 恒过定点 1111 , 8484 P a b c a b c ?? ? ? +-+ ? +,点(), D a b 恒在直线3l上,点() ,28 E m m+是平面上一动点,记以点E为顶点,原点为对角线交点的正方形为图形, K() min3 ,0 D K l=,若请直接写出m的取值范围. 3.如图, AB是⊙O的直径,点D、E在⊙O上,连接AE、ED、DA,连接BD并延长至点C,使得DAC AED ∠=∠. (1)求证: AC是⊙O的切线; (2)若点E是BC的中点, AE与BC交于点F, ①求证: CA CF =; ②若⊙O的半径为3,BF=2,求AC的长. 4.【问题学习】小芸在小组学习时问小娟这样一个问题:已知α为锐角,且sinα= 1 3,求sin2α的值.小娟是这样给小芸讲解的: 构造如图1所示的图形,在⊙O中,AB是直径,点C在⊙O上,所以∠ACB=90°,作CD⊥AB于D.设∠BAC=α,则sinα= 1 3 BC AB = ,可设BC=x,则AB=3x,…. 【问题解决】 (1)请按照小娟的思路,利用图1求出sin2α的值;(写出完整的解答过程) (2)如图2,已知点M,N,P为⊙O上的三点,且∠P=β,sinβ= 3 5,求sin2β的值.

人教数学 圆的综合的专项 培优练习题及答案

一、圆的综合真题与模拟题分类汇编(难题易错题) 1.如图,AB是半圆O的直径,C是的中点,D是的中点,AC与BD相交于点E. (1)求证:BD平分∠ABC; (2)求证:BE=2AD; (3)求DE BE 的值. 【答案】(1)答案见解析(2)BE=AF=2AD(3)21 2 - 【解析】 试题分析:(1)根据中点弧的性质,可得弦AD=CD,然后根据弦、弧、圆周角、圆心角的性质求解即可; (2)延长BC与AD相交于点F, 证明△BCE≌△ACF, 根据全等三角形的性质可得 BE=AF=2AD; (3)连接OD,交AC于H.简要思路如下:设OH为1,则BC为2,OB=OD=2, DH=21 -, 然后根据相似三角形的性质可求解. 试题解析:(1)∵D是的中点 ∴AD=DC ∴∠CBD=∠ABD ∴BD平分∠ABC (2)提示:延长BC与AD相交于点F, 证明△BCE≌△ACF, BE=AF=2AD (3)连接OD,交AC于H.简要思路如下: 设OH为1,则BC为2,2, 21, DE BE = DH BC

DE BE = 21 2 - 2.如图,⊙O是△ABC的外接圆,AC为直径,BD=BA,BE⊥DC交DC的延长线于点E (1) 求证:BE是⊙O的切线 (2) 若EC=1,CD=3,求cos∠DBA 【答案】(1)证明见解析;(2)∠DBA 3 5 = 【解析】 分析:(1)连接OB,OD,根据线段垂直平分线的判定,证得BF为线段AD的垂直平分线,再根据直径所对的圆周角为直角,得到∠ADC=90°,证得四边形BEDF是矩形,即 ∠EBF=90°,可得出结论. (2)根据中点的性质求出OF的长,进而得到BF、DE、OB、OD的长,然后根据等角的三角函数求解即可. 详解:证明:(1) 连接BO并延长交AD于F,连接OD ∵BD=BA,OA=OD ∴BF为线段AD的垂直平分线 ∵AC为⊙O的直径 ∴∠ADC=90° ∵BE⊥DC ∴四边形BEDF为矩形 ∴∠EBF=90° ∴BE是⊙O的切线 (2) ∵O、F分别为AC、AD的中点 ∴OF=1 2CD= 3 2 ∵BF=DE=1+3=4

九年级数学培优练习题

(第2题图) A D C B P N M l 九年级数学培优练习题 1、二次函数542 +-=x x y 中,已知1≤x ≤4,则y 的取值围是 。 2、如图,正方形ABCD 的边长与等腰直角三角形PMN 的腰长均 为4cm ,且AB 与MN 都在直线l 上,开始时点B 与点M 重合. 让正方形沿直线向右平移,直到A 点与N 点重合为止,设正方 形与三角形重叠部分的面积为y(cm 2 ),MB 的长度为x(cm),则 y 与x 之间的函数关系的图象大致是 【 】 3、若抛物线2 (1)y x b x c =+-+经过点(12)P b --,,则b c +的值为 ;如果 3b =,则此条抛物线的顶点坐标为 。 4、如图, 四边形OABC 为直角梯形,A (4,0),B (3,4),C (0,4). 点M 从O 出发以每秒2个单位长度的速度向A 运动;点N 从B 同时出发,以每秒1个单位长度的速度向C 运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N 作NP 垂直x 轴于点P ,连结AC 交NP 于Q ,连结MQ . (1)点 (填M 或N )能到达终点; (2)求△AQM 的面积S 与运动时间t 的函数关系式,并写出自变量t 的取值围,当t 为何值时,S 的值最大; x

九年级数学培优练习题 1、如图,直线MN 和EF 相交于点O ,∠EOF =60°,AO =2,∠AOE =20°。设点A 关于EF 的对称点是B ,点B 关于MN 的对称点是C ,则A 、C 两点间的距离为 。 2、如图,在直角坐标系中,A 点的坐标为(3,0),B 点坐标为(0,4),把线段AB 绕原点顺时针方向旋转,使AB 与y 轴平行,则A 点的坐标为 。 3、抛物线bx x y 23 22 +- =与x 轴的两个不同交点是O 、A ,顶点B 在直线x y 33=上,则关于△OAB 是 三角形。 4、如图,从等边三角形ABC 一点P 向三边作垂线,PQ =6,PR =8,PS =10,则△ABC 的面积是 。 5、如图①,OABC 是一放在平面直角坐标系中的矩形纸片,O 为原点,点A 在x 轴的正半轴上,点C 在y 轴的正半轴上,OA =5,OC =4. (1)在OC 边上取一点D ,将纸片沿AD 翻折,使点O 落在BC 边上的点E 处,求D 、E 两点的坐标; (2)图②,若AE 上有一动点P (不与A 、E 重合)自A 点沿AE 方向向E 点匀速运动,运动的速度为每秒1个单位长度,设运动的时间为t 秒(0<t <5),过P 点作ED 的平行线交AD 于点M ,过点M 作AE 的平行线交DE 于点N .求四边形PMNE 的面积S 与时间t 之间的函数关系式;当t 取何值时,S 有最大值?最大值是多少? (3)在(2)的条件下,当t 为何值时,以A 、M 、E 为顶点的三角形为等腰三角形,并求出相应时刻点M 的坐标. A M N O F E

初三数学中考培优试题

初三数学中考培优试题 一.解答题: 1.如图,矩形OBCD的边OD、OB分别在x轴正半轴和y轴的负半轴上,且OD=10,OB=8,将矩形的边BC绕点B逆时针旋转,使点C恰好与x轴上的点A重合 (1)直接写出点A、B的坐标:A(_________,_________)、B(_________,_________); (2)若抛物线y=﹣x2+bx+c经过A、B两点,则这条抛物线的解析式是_________; (3)若点M是直线AB上方抛物线上的一个动点,作MN⊥x轴于点N,问是否存在点M,使△AMN与△ACD相似?若存在,求出点M的横坐标;若不存在,说明理由; (4)当≤x≤7时,在抛物线上存在点P,使△ABP得面积最大,求△ABP面积的最大值. 2.如图,在平面直角坐标系中,点C的坐标为(0,4),动点A以每秒1个单位长的速度,从点O出发沿x轴的正方向运动,M是线段AC的中点.将线段AM以点A为中心,沿顺时针方向旋转90°,得到线段AB.过点B作x轴的垂线,垂足为E,过点C作y轴的垂线,交直线BE于点D.运动时间为t秒. (1)当点B与点D重合时,求t的值; (2)设△BCD的面积为S,当t为何值时,S=? (3)连接MB,当MB∥OA时,如果抛物线y=ax2﹣10ax的顶点在△ABM内部(不包括边),求a的取值范围.

3.如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”. (1)“抛物线三角形”一定是_________三角形; (2)若抛物线y=﹣x2+bx(b>0)的“抛物线三角形”是等腰直角三角形,求b的值;(3)如图,△OAB是抛物线y=﹣x2+b′x(b′>0)的“抛物线三角形”,是否存在以原点O 为对称中心的矩形ABCD?若存在,求出过O、C、D三点的抛物线的表达式;若不存在,说明理由. 4.如图,抛物线y=ax2+bx﹣3交y轴于点C,直线l为抛物线的对称轴,点P在第三象限 且为抛物线的顶点.P到x轴的距离为,到y轴的距离为1.点C关于直线l的对称点为 A,连接AC交直线l于B. (1)求抛物线的表达式; (2)直线y=x+m与抛物线在第一象限内交于点D,与y轴交于点F,连接BD交y轴于 点E,且DE:BE=4:1.求直线y=x+m的表达式; (3)若N为平面直角坐标系内的点,在直线y=x+m上是否存在点M,使得以点O、F、M、N为顶点的四边形是菱形?若存在,直接写出点M的坐标;若不存在,请说明理由.

初三数学圆的专项培优练习题含答案

初三数学圆的专项培优练习题(含答案) ?EB 1.如图1,已知AB是⊙O的直径,AD切⊙O于点A,点C是的中点,则下列结论不成 立的是() A.OC∥AE B.EC=BC C.∠DAE=∠ABE D.AC⊥OE 图一图二图三 2.如图2,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆 的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为() A.4 B.C.6 D. 3.四个命题: ①三角形的一条中线能将三角形分成面积相等的两部分; ②有两边和其中一边的对角对应相等的两个三角形全等; ③点P(1,2)关于原点的对称点坐标为(-1,-2); ④两圆的半径分别是3和4,圆心距为d,若两圆有公共点,则1

7.已知AB是⊙O的直径,AD⊥l于点D. (1)如图①,当直线l与⊙O相切于点C时,若∠DAC=30°,求∠BAC的大小; (2)如图②,当直线l与⊙O相交于点E、F时,若∠DAE=18°,求∠BAF的大小. 8.如图,AB为的直径,点C在⊙O上,点P是直径AB上的一点(不与A,B重合),过点P作AB的垂线交BC的延长线于点Q。在线段PQ上取一点D,使DQ=DC,连接DC,试判断CD与⊙O的位置关系,并说明理由。 9.如图,AB是⊙O的直径,AF是⊙O切线,CD是垂直于AB的弦,垂足为E,过点C作DA 的平行线与AF相交于点F,CD=,BE=2.

数学九年级上册 期末试卷(培优篇)(Word版 含解析)

数学九年级上册 期末试卷(培优篇)(Word 版 含解析) 一、选择题 1.已知圆锥的底面半径为5cm ,母线长为13cm ,则这个圆锥的全面积是( ) A .265cm π B .290cm π C .2130cm π D .2155cm π 2.一元二次方程x 2=9的根是( ) A .3 B .±3 C .9 D .±9 3.如图,点P 为⊙O 外一点,PA 为⊙O 的切线,A 为切点,PO 交⊙O 于点B ,∠P=30°,OB=3,则线段BP 的长为( ) A .3 B .33 C .6 D .9 4.关于2,6,1,10,6这组数据,下列说法正确的是( ) A .这组数据的平均数是6 B .这组数据的中位数是1 C .这组数据的众数是6 D .这组数据的方差是10.2 5.将二次函数2 2y x =的图象先向左平移4个单位长度,再向下平移1个单位长度后,所得新的图象的函数表达式为( ) A .()2 241y x =-- B .()2 241y x =+- C .()2241y x =-+ D .()2 241y x =++ 6.已知一组数据2,3,4,x ,1,4,3有唯一的众数4,则这组数据的中位数是( ) A .2 B .3 C .4 D .5 7.我国传统文化中的“福禄寿喜”图(如图)由四个图案构成.这四个图案中既是轴对称图形,又是中心对称图形的是( ) A . B . C . D . 8.将二次函数y =x 2的图象沿y 轴向上平移2个单位长度,再沿x 轴向左平移3个单位长度,所得图象对应的函数表达式为( ) A .y =(x +3)2+2 B .y =(x ﹣3)2+2 C .y =(x +2)2+3 D .y =(x ﹣2)2+3 9.下列说法正确的是( ) A .所有等边三角形都相似 B .有一个角相等的两个等腰三角形相似 C .所有直角三角形都相似 D .所有矩形都相似 10.如图是二次函数y =ax 2+bx+c 图象的一部分,图象过点A(﹣3,0),对称轴为直线x =﹣1,下列结论:①b 2>4ac ;②2a+b =0;③a+b+c >0;④若B(﹣5,y 1)、C(﹣1,y 2)为函数图象上的两点,则y 1<y 2.其中正确结论是( )

初三数学中考培优试题

2013级初三数学中考培优试题 一.解答题: 1.如图,矩形OBCD的边OD、OB分别在x轴正半轴和y轴的负半轴上,且OD=10,OB=8,将矩形的边BC绕点B逆时针旋转,使点C恰好与x轴上的点A重合 (1)直接写出点A、B的坐标:A(_________,_________)、B(_________,_________); (2)若抛物线y=﹣x2+bx+c经过A、B两点,则这条抛物线的解析式是_________; (3)若点M是直线AB上方抛物线上的一个动点,作MN⊥x轴于点N,问是否存在点M,使△AMN与△ACD相似?若存在,求出点M的横坐标;若不存在,说明理由; (4)当≤x≤7时,在抛物线上存在点P,使△ABP得面积最大,求△ABP面积的最大值. 2.如图,在平面直角坐标系中,点C的坐标为(0,4),动点A以每秒1个单位长的速度,从点O出发沿x轴的正方向运动,M是线段AC的中点.将线段AM以点A为中心,沿顺时针方向旋转90°,得到线段AB.过点B作x轴的垂线,垂足为E,过点C作y轴的垂线,交直线BE于点D.运动时间为t秒. (1)当点B与点D重合时,求t的值; (2)设△BCD的面积为S,当t为何值时,S=? (3)连接MB,当MB∥OA时,如果抛物线y=ax2﹣10ax的顶点在△ABM内部(不包括边),求a的取值范围.

3.如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”. (1)“抛物线三角形”一定是_________三角形; (2)若抛物线y=﹣x2+bx(b>0)的“抛物线三角形”是等腰直角三角形,求b的值;(3)如图,△OAB是抛物线y=﹣x2+b′x(b′>0)的“抛物线三角形”,是否存在以原点O 为对称中心的矩形ABCD?若存在,求出过O、C、D三点的抛物线的表达式;若不存在,说明理由. 4.如图,抛物线y=ax2+bx﹣3交y轴于点C,直线l为抛物线的对称轴,点P在第三象限 且为抛物线的顶点.P到x轴的距离为,到y轴的距离为1.点C关于直线l的对称点为 A,连接AC交直线l于B. (1)求抛物线的表达式; (2)直线y=x+m与抛物线在第一象限内交于点D,与y轴交于点F,连接BD交y轴于点E,且DE:BE=4:1.求直线y=x+m的表达式; (3)若N为平面直角坐标系内的点,在直线y=x+m上是否存在点M,使得以点O、F、M、N为顶点的四边形是菱形?若存在,直接写出点M的坐标;若不存在,请说明理由.

初三数学圆的专项培优练习题(含答案)

初三数学圆的专项培优练习题(含答案) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

初三数学圆的专项培优练习题(含答案) 1.如图1,已知AB是⊙O的直径,AD切⊙O于点A,点C是EB的中点,则下列结论不成立的 是() A.OC∥AE B.EC=BC C.∠DAE=∠ABE D.AC⊥OE 图一图二图三2.如图2,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为() A.4 B.33C.6 D.23 3.四个命题: ①三角形的一条中线能将三角形分成面积相等的两部分; ②有两边和其中一边的对角对应相等的两个三角形全等; ③点P(1,2)关于原点的对称点坐标为(-1,-2); ④两圆的半径分别是3和4,圆心距为d,若两圆有公共点,则1

A.19° B.38° C.52° D.76° 图四图五 6.如图五,AB为⊙O的直径,弦CD⊥AB于点E,若CD=6,且AE:BE =1:3,则AB= .7.已知AB是⊙O的直径,AD⊥l于点D. (1)如图①,当直线l与⊙O相切于点C时,若∠DAC=30°,求∠BAC的大小; (2)如图②,当直线l与⊙O相交于点E、F时,若∠DAE=18°,求∠BAF的大小. 8.如图,AB为的直径,点C在⊙O上,点P是直径AB上的一点(不与A,B重合),过点P作AB的垂线交BC的延长线于点Q。在线段PQ上取一点D,使DQ=DC,连接DC,试判断CD与⊙O的位置关系,并说明理由。

初三数学培优试题(含答案)

初三数学培优试题一 学校: 班级: 姓名: 分数: 一.选择题 1、下列函数:① 3y x =-,②21y x =-,③() 1 0y x x =-<,④223y x x =-++ 其中y 的值随x 值的增大而增大的函数有( ) (A )4个 (B )3个 (C )2个 (D )1个 2.(2018济南,9,4分)如图,在平面直角坐标系中,△ABC 的顶点都在方格线的格点上,将△ABC 绕点P 顺时针方向旋转90°,得到△A ′B ′C ′,则点P 的坐标为( ) A .(0,4) B .(1,1) C .(1,2) D .(2,1) x y –1–2–3–41 2 34 1 234 567B C A A' C 'B' O 3、按下面的程序计算,若开始输入x 的值为正数,最后输出的结果为656, 则满足条件的x 的不同值最多有( ) (A )2个 (B )3个 (C )4个 (D )5个

4、已知关于x 的不等式组1 2 x a x a ->-?? -或2a <- (B )25a -≤≤ (C )25a -<< (D )5a ≥或 2a ≤- 5、如图所示,已知点A 是半圆上一个三等分点,点B 是AN 的中点,点P 是半径ON 上的动点。 若O 的半径长为,则AP BP +的最小值为( ) (A )2 (B )3 (C )2 (D ) 6.(3分)如图,矩形ABCD 中,E 是AB 的中点,将△BCE 沿CE 翻折,点B 落在点F 处,tan ∠DCE=.设AB=x ,△ABF 的面积为y ,则y 与x 的函数图象大致为( ) A . B . C . D . B A

2019中考数学培优试题

2019级初三数学中考培优试题 一.解答题: 1.如图,矩形OBCD的边OD、OB分别在x轴正半轴和y轴的负半轴上,且OD=10,OB=8,将矩形的边BC绕点B逆时针旋转,使点C恰好与x轴上的点A重合 (1)直接写出点A、B的坐标:A(_________,_________)、B(_________,_________); (2)若抛物线y=﹣x2+bx+c经过A、B两点,则这条抛物线的解析式是_________; (3)若点M是直线AB上方抛物线上的一个动点,作MN⊥x轴于点N,问是否存在点M,使△AMN与△ACD相似?若存在,求出点M的横坐标;若不存在,说明理由; (4)当≤x≤7时,在抛物线上存在点P,使△ABP得面积最大,求△ABP面积的最大值. 2.如图,在平面直角坐标系中,点C的坐标为(0,4),动点A以每秒1个单位长的速度,从点O出发沿x轴的正方向运动,M是线段AC的中点.将线段AM以点A为中心,沿顺时针方向旋转90°,得到线段AB.过点B作x轴的垂线,垂足为E,过点C作y轴的垂线,交直线BE于点D.运动时间为t秒. (1)当点B与点D重合时,求t的值; (2)设△BCD的面积为S,当t为何值时,S=? (3)连接MB,当MB∥OA时,如果抛物线y=ax2﹣10ax的顶点在△ABM内部(不包括边),求a的取值范围.

3.如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”. (1)“抛物线三角形”一定是_________三角形; (2)若抛物线y=﹣x2+bx(b>0)的“抛物线三角形”是等腰直角三角形,求b的值;(3)如图,△OAB是抛物线y=﹣x2+b′x(b′>0)的“抛物线三角形”,是否存在以原点O 为对称中心的矩形ABCD?若存在,求出过O、C、D三点的抛物线的表达式;若不存在,说明理由. 4.如图,抛物线y=ax2+bx﹣3交y轴于点C,直线l为抛物线的对称轴,点P在第三象限 且为抛物线的顶点.P到x轴的距离为,到y轴的距离为1.点C关于直线l的对称点为 A,连接AC交直线l于B. (1)求抛物线的表达式; (2)直线y=x+m与抛物线在第一象限内交于点D,与y轴交于点F,连接BD交y轴于 点E,且DE:BE=4:1.求直线y=x+m的表达式; (3)若N为平面直角坐标系内的点,在直线y=x+m上是否存在点M,使得以点O、F、M、N为顶点的四边形是菱形?若存在,直接写出点M的坐标;若不存在,请说明理由.

初三数学培优练习题(含答案)

C A B D 初三数学培优练习题13 1、自然数4、5、5、x 、y 从小到大排列后,其中位数...为4,如果这组数据唯一.. 的众数是5,那么,所有满足条件的x 、y 中,y x +的最大值是( ) (A )3 (B )4 (C )5 (D )6 2、两个相同的瓶子装满酒精溶液,在一个瓶子中酒精与水的容积之比是:1p ,而在另一个瓶子中是:1q ,若把两瓶溶液混合在一起,混合液中的酒精与水的容积之比是( ) A .2 p q + B .22 p q p q ++ C . 2pq p q + D . 22 p q pq p q ++++ 3.由325x y a x y a x y a m -=+??+=??>??>?得a>-3,则m 的取值范围是( ) A m>-3 B m ≥-3 C m ≤-3 D m<-3 4、在ABC ?中,b CA c AB a BC ===,,。且a 、b 、c 满足:2382-=-b a ,34102-=-c b , 762=-a c 。则=+B A sin sin 2 ( ) A .1 B . 5 7 C .2 D .512 5.将一副三角板如下图摆放在一起,连结AD ,则ADB ∠的正 切值为( ) A 1 B 1 C 6.给出下列四个命题: (1)如果某圆锥的侧面展开图是半圆,则其轴截面一定是等边三角形; (2)若点A 在直线y =2x -3上,且点A 到两坐标轴的距离相等,则点A 在第一或第四象限; (3)半径为5的圆中,弦AB=8,则圆周上到直线AB 的距离为2的点共有四个; (4)若A (a ,m )、B (a –1,n )(a >0)在反比例函数x y 4 = 的图象上,则m y 2 D y 1与y 2的大小不能确定

中考数学圆的综合(大题培优 易错 难题)含答案

一、圆的综合 真题与模拟题分类汇编(难题易错题) 1.如图1,已知扇形MON 的半径为2,∠MON=90°,点B 在弧MN 上移动,联结BM ,作OD ⊥BM ,垂足为点D ,C 为线段OD 上一点,且OC=BM ,联结BC 并延长交半径OM 于点A ,设OA=x ,∠COM 的正切值为y. (1)如图2,当AB ⊥OM 时,求证:AM=AC ; (2)求y 关于x 的函数关系式,并写出定义域; (3)当△OAC 为等腰三角形时,求x 的值. 【答案】 (1)证明见解析;(2) 2=+y x 02<≤x 142 2 =x . 【解析】 分析:(1)先判断出∠ABM =∠DOM ,进而判断出△OAC ≌△BAM ,即可得出结论; (2)先判断出BD =DM ,进而得出 DM ME BD AE =,进而得出AE =1 22 x (),再判断出2OA OC DM OE OD OD ==,即可得出结论; (3)分三种情况利用勾股定理或判断出不存在,即可得出结论. 详解:(1)∵OD ⊥BM ,AB ⊥OM ,∴∠ODM =∠BAM =90°. ∵∠ABM +∠M =∠DOM +∠M ,∴∠ABM =∠DOM . ∵∠OAC =∠BAM ,OC =BM ,∴△OAC ≌△BAM , ∴AC =AM . (2)如图2,过点D 作DE ∥AB ,交OM 于点E . ∵OB =OM ,OD ⊥BM ,∴BD =DM . ∵DE ∥AB ,∴DM ME BD AE =,∴AE =EM .∵OM 2,∴AE =1 22x (). ∵DE ∥AB ,∴ 2OA OC DM OE OD OD ==, ∴22 DM OA y OD OE x =∴=+,02x ≤<

初三数学初中数学旋转的专项培优易错难题练习题(含答案)及答案.docx

初三数学初中数学旋转的专项培优易错难题练习题(含答案)及答案 一、旋转 1.(操作发现) (1)如图1,△ ABC为等边三角形,先将三角板中 的 60°角与∠ACB重合,再将三角板绕 点 C 按顺时针方向旋转(旋转角大于0°且小于30°),旋转后三角板的一直角边与AB 交于点 D,在三角板斜边上取一点F,使CF=CD,线段AB 上取点E,使∠ DCE=30°,连接AF,EF. ①求∠ EAF的度数; ②DE 与 EF相等吗?请说明理由; (类比探究) (2)如图 2,△ ABC为等腰直角三角形,∠ ACB=90°,先将三角板的 90°角与∠ ACB 重合,再将三角板绕点 C 按顺时针方向旋转(旋转角大于0°且小于 45°),旋转后三角板的一直 角边与 AB 交于点 D,在三角板另一直角边上取一点F,使 CF=CD,线段 AB 上取点 E,使 ∠D CE=45 ,°连接 AF, EF.请直接写出探究结 果:① ∠EAF的度数; ②线段 AE, ED, DB 之间的数量关系. 【答案】( 1)①120°② DE=EF;( 2)①90°② AE 2+DB2=DE2【解析】 试题分析:( 1)①由等边三角形的性质得出AC=BC,∠ BAC=∠ B=60°,求出 ∠ACF=∠ BCD,证明△ ACF≌ △ BCD,得出∠ CAF=∠ B=60 ,°求出∠ EAF=∠BAC+∠CAF=120 ;°②证出∠ DCE=∠ FCE,由 SAS证明△ DCE≌ △FCE,得出 DE=EF即可; (2)①由等腰直角三角形的性质得出 AC=BC,∠ BAC=∠ B=45°,证出∠ ACF=∠ BCD,由SAS证 明△ACF≌△ BCD,得出∠ CAF=∠ B=45 °,AF=DB,求出∠ EAF=∠ BAC+∠ CAF=90 °; ②证出∠ DCE=∠ FCE,由 SAS证明△ DCE≌ △FCE,得出 DE=EF;在 Rt△ AEF中,由勾 股定理得出 AE2+AF2=EF2,即可得出结论. 试题解析:解:(1)① ∵ △ ABC是等边三角形,∴ AC=BC, ∠B AC=∠B=60 .°∵ ∠DCF=60 ,°∴∠ ACF=∠ BCD. 在△ ACF和△ BCD中,∵ AC=BC,∠ ACF=∠ BCD, CF=CD,∴ △ACF≌△ BCD(SAS),∴∠ CAF=∠B=60 ,°∴∠EAF=∠ BAC+∠ CAF=120 ;° ② DE=EF.理由如下:

初三数学圆的综合的专项培优 易错 难题练习题

初三数学圆的综合的专项培优易错难题练习题 一、圆的综合 1.如图,点A、B、C分别是⊙O上的点, CD是⊙O的直径,P是CD延长线上的一点,AP=AC. (1)若∠B=60°,求证:AP是⊙O的切线; (2)若点B是弧CD的中点,AB交CD于点E,CD=4,求BE·AB的值. 【答案】(1)证明见解析;(2)8. 【解析】 (1)求出∠ADC的度数,求出∠P、∠ACO、∠OAC度数,求出∠OAP=90°,根据切线判定推出即可; (2)求出BD长,求出△DBE和△ABD相似,得出比例式,代入即可求出答案. 试题解析:连接AD,OA, ∵∠ADC=∠B,∠B=60°, ∴∠ADC=60°, ∵CD是直径, ∴∠DAC=90°, ∴∠ACO=180°-90°-60°=30°, ∵AP=AC,OA=OC, ∴∠OAC=∠ACD=30°,∠P=∠ACD=30°, ∴∠OAP=180°-30°-30°-30°=90°, 即OA⊥AP, ∵OA为半径, ∴AP是⊙O切线. (2)连接AD,BD,

∵CD是直径, ∴∠DBC=90°, ∵CD=4,B为弧CD中点, ∴BD=BC=, ∴∠BDC=∠BCD=45°, ∴∠DAB=∠DCB=45°, 即∠BDE=∠DAB, ∵∠DBE=∠DBA, ∴△DBE∽△ABD, ∴, ∴BE?AB=BD?BD=. 考点:1.切线的判定;2.相似三角形的判定与性质. 2.如图,⊙A过?OBCD的三顶点O、D、C,边OB与⊙A相切于点O,边BC与⊙O相交于点H,射线OA交边CD于点E,交⊙A于点F,点P在射线OA上,且∠PCD=2∠DOF,以O为原点,OP所在的直线为x轴建立平面直角坐标系,点B的坐标为(0,﹣2). (1)若∠BOH=30°,求点H的坐标; (2)求证:直线PC是⊙A的切线; (3)若OD=10,求⊙A的半径. 【答案】(1)(132)详见解析;(3)5 3 . 【解析】 【分析】 (1)先判断出OH=OB=2,利用三角函数求出MH,OM,即可得出结论;

初三数学圆的专项培优练习题含答案

初三数学圆的专项培优练习题含答案 1.如图1,已知AB是⊙O的直径,AD切⊙O于点A,点C是?EB 的中点,则下列结论不成立的是() A.OC∥AE B.EC=BC C.∠DAE=∠ABE D.AC⊥OE 图一图二图三 2.如图2,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F 作BC的垂线交BC于点G.若AF的长为2,则FG的长为() A.4 B.33C.6 D.23 3.四个命题: ①三角形的一条中线能将三角形分成面积相等的两部分; ②有两边和其中一边的对角对应相等的两个三角形全等; ③点P(1,2)关于原点的对称点坐标为(-1,-2); ④两圆的半径分别是3和4,圆心距为d,若两圆有公共点,则1

=38°.点E在AB右侧的半圆上运动(不与A、B重合),则∠AED的大小是() A.19° B.38° C.52° D.76° 图四图五 6.如图五,AB为⊙O的直径,弦CD⊥AB于点E,若CD=6,且AE:BE =1:3,则AB= .7.已知AB是⊙O的直径,AD⊥l于点D. (1)如图①,当直线l与⊙O相切于点C时,若∠DAC=30°,求∠BAC的大小; (2)如图②,当直线l与⊙O相交于点E、F时,若∠DAE=18°,求∠BAF的大小.

初三数学圆的专项培优练习题

初三数学圆的专项培优练习题 【知识点回顾】 1、平分弦(不是直径)的直径垂直于弦,?并且平分弦所对的两条弧及其运用. 2、在同圆或等圆中,相等的圆心角所对的弧相等,?所对的弦也相等及其运用. 3、在同圆或等圆中,同弧或等弧所对的圆周角相等,?都等于这条弧所对的圆心角的一半及其运用. 4、半圆(或直径)所对的圆周角是直角,90?°的圆周角所对的弦是直径及其运用. 5、不在同一直线上的三个点确定一个圆. 6、直线L 和⊙O 相交?dr 及其运用. 7、圆的切线垂直于过切点的半径及其运用. 8、经过半径的外端并且垂直于这条半径的直线是圆的切线并利用它解决一些具体问题. 9、从圆外一点可以引圆的两条切线,它们的切线长相等,?这一点和圆心的连线平分两条切线的夹角及其运用. 10、两圆的位置关系:d 与r 1和r 2之间的关系:外离?d>r 1+r 2;外切?d=r 1+r 2;相交?│r 2-r 1│

九年级上册上册数学压轴题培优测试卷

九年级上册上册数学压轴题培优测试卷 一、压轴题 1.已知在ABC 中,AB AC =.在边AC 上取一点D ,以D 为顶点、DB 为一条边作 BDF A ∠=∠,点E 在AC 的延长线上,ECF ACB ∠=∠. (1)如图(1),当点D 在边AC 上时,请说明①FDC ABD ∠=∠;②DB DF =成立 的理由. (2)如图(2),当点D 在AC 的延长线上时,试判断DB 与DF 是否相等? 2.如图,在矩形ABCD 中,AB=20cm ,BC=4cm ,点p 从A 开始折线A ——B ——C ——D 以4cm/秒的 速度 移动,点Q 从C 开始沿CD 边以1cm/秒的速度移动,如果点P 、Q 分别从A 、C 同时出发,当其中一点到达D 时,另一点也随之停止运动,设运动的时间t (秒) (1)t 为何值时,四边形APQD 为矩形. (2)如图(2),如果⊙P 和⊙Q 的半径都是2cm ,那么t 为何值时,⊙P 和⊙Q 外切? 3.如图,点A 和动点P 在直线l 上,点P 关于点A 的对称点为Q .以AQ 为边作 Rt ABQ △,使90BAQ ∠=?,:3:4AQ AB =,作ABQ △的外接圆O .点C 在点P 右 侧,4PC =,过点C 作直线m l ⊥,过点O 作OD m ⊥于点D ,交AB 右侧的圆弧于点 E .在射线CD 上取点 F ,使3 2 DF CD =,以DE 、DF 等邻边作矩形DEGF ,设3AQ x = (1)用关于x 的代数式表示BQ 、DF . (2)当点P 在点A 右侧时,若矩形DEGF 的面积等于90,求AP 的长. (3)在点P 的整个运动过程中,当AP 为何值时,矩形DEGF 是正方形.

初三数学圆与相似的专项培优练习题及答案

初三数学圆与相似的专项培优练习题及答案 一、相似 1.如图所示,△ABC中,AB=AC,∠BAC=90°,AD⊥BC,DE⊥AC,△CDE沿直线BC翻折到△CDF,连结AF交BE、DE、DC分别于点G、H、I. (1)求证:AF⊥BE; (2)求证:AD=3DI. 【答案】(1)证明:∵在△ABC中,AB=AC,∠BAC=90°,D是BC的中点, ∴AD=BD=CD,∠ACB=45°, ∵在△ADC中,AD=DC,DE⊥AC, ∴AE=CE, ∵△CDE沿直线BC翻折到△CDF, ∴△CDE≌△CDF, ∴CF=CE,∠DCF=∠ACB=45°, ∴CF=AE,∠ACF=∠DCF+∠ACB=90°, 在△ABE与△ACF中,, ∴△ABE≌△ACF(SAS), ∴∠ABE=∠FAC, ∵∠BAG+∠CAF=90°, ∴∠BAG+∠ABE=90°, ∴∠AGB=90°, ∴AF⊥BE (2)证明:作IC的中点M,连接EM,由(1)∠DEC=∠ECF=∠CFD=90°

∴四边形DECF是正方形, ∴EC∥DF,EC=DF, ∴∠EAH=∠HFD,AE=DF, 在△AEH与△FDH中, ∴△AEH≌△FDH(AAS), ∴EH=DH, ∵∠BAG+∠CAF=90°, ∴∠BAG+∠ABE=90°, ∴∠AGB=90°, ∴AF⊥BE, ∵M是IC的中点,E是AC的中点, ∴EM∥AI, ∴, ∴DI=IM, ∴CD=DI+IM+MC=3DI, ∴AD=3DI 【解析】【分析】(1)根据翻折的性质和SAS证明△ABE≌△ACF,利用全等三角形的性质得出∠ABE=∠FAC,再证明∠AGB=90°,可证得结论。 (2)作IC的中点M,结合正方形的性质,可证得∠EAH=∠HFD,AE=DF,利用AAS证明△AEH与△FDH全等,再利用全等三角形的性质和中位线的性质解答即可。 2.如图,抛物线y=﹣ +bx+c过点A(3,0),B(0,2).M(m,0)为线段OA上一个动点(点M与点A不重合),过点M作垂直于x轴的直线与直线AB和抛物线分别交于点P、N.

相关主题
文本预览
相关文档 最新文档