当前位置:文档之家› 碳化硼陶瓷制备工艺

碳化硼陶瓷制备工艺

碳化硼陶瓷制备工艺
碳化硼陶瓷制备工艺

碳化硼陶瓷制备工艺

碳化硼是一种新型非氧化陶瓷材料,因其具有熔点高、硬度高、密度低、热稳定性好,抗化学侵蚀能力强和中子吸收能力强等特点而被广泛应用于能源、军事、核能以及防弹领域。碳化硼又称黑钻石,是仅次于金刚石和立方氮化硼的第三硬材料,故成为超硬材料家族中的重要成员。

目前碳化硼防弹材料主要通过烧结法制备,不过碳化硼是共价键很强的陶瓷材料,共价键占90%以上,而且碳化硼的塑性差,品界移动阻力很大,固态时表面张力很小,从而决定了碳化硼是一种极难烧结的陶瓷材料。纯碳化硼在烧结过程中通常存在烧结温度高、烧结后所得陶瓷致密度低,断裂韧性较差等问题。工业上一般采用无压烧结、热压烧结、热等静压烧结、放电等离子烧结等技术,通过改进烧结工艺、添加烧结助剂提高碳化硼的力学性能,为进一步研究碳化硼的烧结工艺奠定基础。

1、无压烧结

纯B4C的无压烧结致密化非常困难,气孔缺陷和致密度是影响碳化硼陶瓷性能指标的关键因素。而烧结温度和粉末粒度是影响碳化硼陶瓷致密度的重要指标。研究表明,纯碳化硼无压烧结致密化最主要的条件是采用低氧含量的粒度≤3μm的超细粉末且温度范围在2250~2350℃。

无压烧结碳化硼制品工艺简单、加工成本低,对烧结条件没有太多要求,可适用于生产形状复杂的产品,适合大批量工业化生产,是制备陶瓷常用的烧结技术。但由于烧结温度高,晶粒容易异常生长,使烧结过程难以控制,产品性能不稳定。

2、热压烧结

热压是在高温条件下改善粉末塑性,具有成型压力低,变形阻力小,产品密度高,显微组织优良等优点,因而,降低碳化硼的烧结温度可以采用热压烧结工艺。

与单纯热压相比,将液相烧结和热压烧结相结合,烧结温度大大降低,致密度相对提高。

通常热压烧结条件为:真空或惰性气氛,压力20~40MPa,温度2200~2300℃,保温时间0.5~2h。碳化硼是共价键很强的化合物,在高温下烧结扩散速率慢,物质流动发生较少,使其致密化过程非常困难。

为了降低烧结温度和表面能,提高碳化硼陶瓷的综合性能,必须加入添加剂来促进碳化硼的热压烧结。添加剂包括烧结助剂或第二相反应烧结,在高温高压条件下,可以促进烧结,控制晶粒长大,提高力学性能,获得高致密度、高性能的碳化硼陶瓷产品。目前加入的添加剂主要包括金属单质(Fe、Al、Ni、Ti、Cu、Cr等)、金属氧化物(Al2O3、TiO2等)、过渡金属碳化物(CrC、VC、WC、TiC等)及其他添加剂(AlF3、MgF2、Be2C、Si等)。

热压烧结的特点是工艺较复杂,对设备要求高,加工成本高且生产效率低,而且只能制备形状较为简单的产品。

3、热等静压烧结

热等静压烧结碳化硼,将粉末压坯成型或装入包套的粉料放入高压容器中,无需烧结助剂,把惰性气体作为传递压力的介质(如N2、Ar),使粉料受到各向同性的压力,降低烧结温度,可获得细晶显微结构、高弯曲强度和致密度的碳化硼陶瓷材料。

热等静压烧结的特点是陶瓷材料的显微结构均匀,综合性能好,设备费用较高,只能加工形状简单的零件。

4、放电等离子烧结

电等离子烧结(SPS)是集等离子活化、电阻加热和热压为一体,具有升温速度快、烧结时间短、晶粒均匀、冷却迅速、外加压力、材料致密度高和烧结气氛可控等特点的一种新型快速烧结技术。可以有效利用粉末内部的自身发热,放电点的弥散分布实现均匀加热。

碳化硼粉末的制备方法_李蓓

核 动 力 工 程 Nuclear Power Engineering 第33卷 增刊2 2012年 12月 Vo l.33. S 2 D e c. 2012 文章编号:0258-0926(2012)S2-0110-05 碳化硼粉末的制备方法 李 蓓1,简 敏2,王美玲2,付道贵2,邹从沛2 1. 中国核动力研究设计院科学技术处,成都,610041; 2. 中国核动力研究设计院反应堆燃料及材料重点实验室,成都,610041 摘要:目前制备碳化硼(B 4C )的方法主要有碳热还原法、直接合成法、自蔓延高温合成法、机械化学法、化学气相沉积法、溶胶凝胶法和溶剂热还原法。本文概述制备B 4C 方法的主要特点和最新的研究进展。 关键词:碳化硼;制备方法;研究进展 中图分类号:TQ174.75+ 8.12 文献标志码:A 1 引 言 碳化硼(B 4C )是一种高强度、高性能中子吸收材料,具有硬度高、熔点高、密度低、较好的化学惰性、优良的热学和电学性能等优点,在航空航天、军工防护、核电厂、机械和化工领域有着广泛的用途[1~2]。 我国是世界上最大的B 4C 生产国和出口国,如何提高B 4C 的品质是材料工作者比较关心的热点问题。本文概述了目前B 4C 粉末制备的主要方法及其国内外最新的研究动态,为制备高性能B 4C 粉末提供一定的参考。 2 制备方法 2.1 碳热还原法 碳热还原法通常用硼酸或硼酐为原料,碳为还原剂,在电弧炉中进行高温还原反应。该方法是目前国内外制备工业B 4C 的主要方法,通常是大批量生产的首选。由于电弧温度高,炉区温差大,炉区中心部位温度可能超过B 4C 的熔点,使其发生包晶分解,析出自由碳和其它高硼化合物,而远离中心区温度偏低,反应进行不完全,残留有B 2O 3和C 等。 因此,制得的B 4C 粉末粒度较大,且杂质含量一般较高,通常还要经过球磨或其他的粉碎方式来制备烧结所需要的B 4C 粉末,因此常常伴随着酸洗等工艺步骤,使得制备的过程比较复杂,且产物的纯度不高。 2.2 直接合成法 直接合成法通常是将碳粉和硼粉进行充分混合后,压制成小球,在温度高于1500℃的真空或惰性气氛条件下进行反应来制备B 4C 。 直接合成法制备的B 4C 粉末纯度较高,并且反应中B/C 比容易控制,但用于直接合成法的原料单质硼的制备工艺相对复杂且成本较高。此方法过去仅在制备超纯或浓缩B 4C 方面应用较多。近年来,直接合成法用于超细B 4C 的制备得到了较快发展,很多材料制备的新方法也被用于这个过程。Yamada [3]以无定形硼粉和碳粉为原 料,将冲击波技术应用到反应体系中,制备的B 4C 粒度小于1μm ;Romos 等人[4]将机械合金化法(MA )用于直接合成法中,硼粉与碳粉的混合物在经过90 h 的高能球磨之后,制备得到的B 4C 粉末粒度小于1μm ;Umberto 等人[5]用放电等离子法制备95%致密度的B 4C ;Heian 等人[6]用无定形硼粉和4种不同的碳粉为原料,结合MA 和等离子放电烧结的方法,实现了B 4C 粉末的制备和致密化。 2.3 自蔓延高温合成法 自蔓延高温合成法(SHS )与传统的碳热还原法相比,反应温度较低,当体系达到一定的温度后,仅靠反应放出的热量即可使反应进行下去,并且合成出的B 4C 粉末纯度较高且原始粉末粒度较细,一般不需要再破碎处理。在自蔓延高温合成B 4C 的过程中,用得最多的还原金属为Mg [7~9],所以SHS 经常又被称作镁热还原法,近年来Al [10]、 收稿日期:2012-12-11;修回日期:2012-12-24 基金项目:反应堆燃料及材料重点实验室运行基金(ZK111);中国核动力研究设计院青年基金(ZDSY-ZSYX-11-11-001-08)

防弹陶瓷碳化硼的介绍

防弹陶瓷碳化硼的介绍 近四五十年来,随着科学技术的发展,原子能、火箭、燃气轮机等技术领域对材料提出了更高的要求,迫切需要比耐热合金更能承受高温、比普通陶瓷更能抵御化学腐蚀的材料。而某些陶瓷因为能满足这些要求,因此,这类陶瓷得到了迅速的发展。这些新发展起来的陶瓷,无论从原料、工艺或性能上均与传统陶瓷有很大的差异,被称为特种陶瓷。由于特种陶瓷具有许多独特的性能,潜力很大。而且制作特种陶瓷的主要原料在地球上储量丰富,价格便宜,容易得到。近20年来,各主要工业国家都十分注重特种陶瓷的开发和研究,形成世界性的“陶瓷热”,并取得了很大的进展。所以,特种陶瓷被誉为“万能陶瓷”,是21世纪最有发展前景的重要新材料之一。 碳化硼就是一种有着许多优良性能的重要特种陶瓷。碳化硼最早是在1858年被发现的,然后英国的Joly于1883年、法国的Moissan于1894年分别制备和认定了B3C、B6C。化学计量分子式为B4C的化合物直到1934年才被认知。随后,俄国学者提出了许多不同的碳-硼化合物分子式,但这些分子式未能得到确认。事实上,由B-C相图可以知道,碳-硼化合物有一个从B4.0C到B10.5C的很宽的均相区,在这个均相区内的物质习惯上通称为碳化硼,从20世纪50年代起,人们对碳化硼,尤其是对其结构、性能进行了大量的研究,取得了许多研究成果,推动了碳化硼制备和应用技术的长足发展。由于碳化硼具有其它材料不可比拟的优异性能,人们对碳化硼陶瓷的研究深度与力度不断加大,除高纯度、超细碳化硼粉体合成新方法不断涌现外,人们更多地致力于开展先进实用的成型工艺及烧结工艺技术研究,以使碳化硼制品能够在某些高技术领域实用化并进一步工业化生产。

碳化硼特性

碳化硼特性 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

碳化硼特性 B 4 C 具有高熔点、高硬度、低密度等优良性能,并具有良好的中子吸收能力 和抗化学侵蚀能力,因而广泛应用于耐火材料、工程陶瓷、核工业、宇航等领域。化学计量分子式为 B 4C,碳化硼存在许多同分异构体,含碳量从8%-20%,最 稳定的碳化硼结构是具有斜方六面体结构的B 13C 2 、B 13C 3、B 4C 和其它接近于B 13C 3的相。碳化硼斜方六面体结构中包括12个二十面的原子团簇,这些原子团簇通过共价键相互连接,并在斜方六面体的对角线上有一个三原子链。多硼的十二面体结构位于斜方六面体的顶点。硼原子和碳原子可以在二十面体和原子链上互相替代 ,这也是碳化硼具有如此多的同分异构体的主要原因。正因为碳化硼的特殊结构,使之有很多优 良的物理、机械性能。 碳化硼最重要的性能在于其超常的硬度(莫氏硬度为,显微硬度为55GPa-67G Pa),是最理想的高温耐磨材料;碳化硼密度很小,是陶瓷材料中最轻的,可用于航天航空领域;碳化硼的中子吸收能力很强,相对于纯元素B 和Cd 来说,造价低、耐腐蚀性好、热稳定性好,广泛用于核工业,碳化硼中子吸收能力还可以通过添加B 元素而进一步改善;碳化硼的化学性能优良,在常温下不与酸、碱和大多数无机化合物反应,仅在氢氟酸一硫酸、氢氟酸一硝酸混合物中有缓慢的腐蚀,是化学性质最稳定的化合物之一;碳化硼还具有高熔点、高弹性模量、低膨胀系数和良好的氧气吸收能力等优点。 不可否认,相对于其它陶瓷材料而言,碳化硼的强度和韧性略显偏低,尤其是断裂韧性低,影响了该材料的可靠性和应用性。但是可利用晶粒细化,相变韧化,相复合等多种手段使碳化 硼材料强韧化。众所周知,碳化硼的烧结温度过高、抗氧化能力差以及对金属的稳定性

中国碳化硼产业现状演示课件.doc

. 中国碳化硼产业现状 一、碳化硼的性质及用途 从1893年研究所制造出碳化硼到现在已经有一百多年的历程,碳化硼从不被人们所熟悉到应用于多个领域,从电阻炉试验到电弧炉生产,从卧式炉冶炼演变成立式炉冶炼,从世界的需求量从几吨到几千吨,国内的产量也由几十吨/年发展到上万吨/年,碳化硼发展的如此迅速让硼行业刮目相看。碳化硼为黑色粉末,莫氏硬度9.36,微氏显微硬度49Gpa仅次于金刚石;粉末常用于硬质合金、宝石等硬质材料的磨削和抛光,具有非常高的研磨能力,是理想的最硬的人造磨料之一;碳化硼具有很好的化学稳定性,能抵抗酸、碱腐蚀,因而作为抗腐蚀材料制成耐酸、碱零部件;碳化硼耐高温,熔融温度高达2450℃是耐热制品和高级耐火材料的重要原料;碳化硼是高性能结构陶瓷和复相超硬、超高温陶瓷的原料,常制造成耐磨损喷砂嘴、水射流喷嘴、机械密封环、泥浆泵的柱塞、高温叶轮等;由于硬度高而密度为2.52g/cm3,所以其陶瓷制品也用于航天高级装备防护上,在直升飞机、防弹装甲、防弹衣、舰船涂层方面普遍应用;碳化硼具有良好的中子吸收性能,目前已广泛用于核工业原子能反应堆的屏敝板和中子吸收芯块。 由于碳化硼在机械研磨、耐火、化工、工程陶瓷、核工业和军事等不同领域方面应用,碳化硼质量也有一定的差别,它们的用量又在不断增加,因此批量生产的碳化硼不得不对其主要的原料硼酸提出不同的要求、从而开始了硼酸的选择使用。 二、我国碳化硼生产现状 我国现有的碳化硼生产厂主要分布在黑龙江的牡丹江、黑河、大连、内蒙古通辽等地。主要生产企业有大连金玛科技产业有限公司、牡丹江金钢钻碳化硼精细陶瓷有限公司等。据不完全的统计,国内现有碳化硼冶炼能力可达10000-12000吨/年,碳化硼加工能力不超过8000吨/年。实际上各厂都没有满负荷生产,现有的产品几乎一半外销。近几年碳化硼产量波动在国内年需求2400-3000吨和国外年需求3000-3500的水平,其中耐火材料和混合原料用量的比例远远大于研磨和工程陶瓷的用量。 国外碳化硼厂大都集中在经济发达的国家如美国、德国、日本等国家,由于国外对碳化硼冶炼和生产环境污染控制的要求格外严格,加上能源和人工费用昂贵,几乎都不再生产碳化硼。他们由原来的生产改为进口。2007-2008年度我国出口碳化硼约3500吨(分别约为亚

碳化硼原料(石墨)

碳化硼原料(石墨) 石墨种类有很多,主要分天然的和人造的,天然的就是在地下经过变动造成的环境将含碳的物质石墨化,主要有:鳞片石墨,蠕状石墨,不定型石墨等。 人造石墨:是人为的将含碳物质进行石墨化而成的产品。 石墨质软,黑灰色;有油腻感,石墨的工艺特性主要决定于它的结晶形态。结晶形态不同的石墨矿物,具有不同的工业价值和用途。工业上,根据结晶形态不同,将天然石墨分为三类。 1.致密结晶状石墨 致密结晶状石墨又叫块状石墨。此类石墨结晶明显晶体肉眼可见。颗粒直径大于0.1毫米。晶体排列杂乱无章,呈致密块状构造。这种:石墨的特点是品位很高,一般含碳量为60~65%,有时达80~98%,但其可塑性和滑腻性不如鳞片石墨好。 2.鳞片石墨 石墨晶体呈鳞片状;这是在高强度的压力下变质而成的,有大鳞片和细鳞片之分。此类石墨矿石的特点是品位不高,一般在2~3%,或10~25%之间。是自然界中可浮性最好的矿石之一,经过多磨多选可得高品位石墨精矿。这类石墨的可浮性、润滑性、可塑性均比其他类型石墨优越;因此它的工业价值最大。 3.隐晶质石墨 隐品质石墨又称非晶质石墨或土状石墨,这种石墨的晶体直径一般小于1微米,是微晶石墨的集合体,只有在电子显微镜下才能见到晶形。此类石墨的特点是表面呈土状,缺乏光泽,润滑性也差。品位较高。一般的60~80%。少数高达90%以上。矿石可选性较差。 石墨由于其特殊结构,而具有如下特殊性质: 1)耐高温型:石墨的熔点为3850±50℃,沸点为4250℃,即使经超高温电弧灼烧,重量的损失很小,热膨胀系数也很小。石墨强度随温度提高而加强,在2000℃时,石墨强度提高一倍。 2)导电、导热性:石墨的导电性比一般非金属矿高一百倍。导热性超过钢、铁、铅等金属材料。导热系数随温度升高而降低,甚至在极高的温度下,石墨成绝热体。石墨能够导电是因为石墨中每个碳原子与其他碳原子只形成3个共价键,每个碳原子仍然保留1个自由电子来传输电荷. 3)润滑性:石墨的润滑性能取决于石墨鳞片的大小,鳞片越大,摩擦系数越小,润滑性能越好。 4)化学稳定性:石墨在常温下有良好的化学稳定性,能耐酸、耐碱和耐有机溶剂的腐蚀。 5)可塑性:石墨的韧性好,可年成很薄的薄片。 6)抗热震性:石墨在常温下使用时能经受住温度的剧烈变化而不致破坏,温度突变时,石墨的体积变化不大,不会产生裂纹。 另外要说明的石墨是碳的一种形态,它的层间距是可以被压缩的,石墨密封材料就是用石墨压制而成,它压缩了层间距,同时形态也发生改变,一般采用天然的可膨胀石墨加工制成。 钻石也是碳的一种形态,它与石墨之间的差别就是纯度,层间距和碳原子排列。

碳化硼

碳化硼 科技名词定义 中文名称:碳化硼 英文名称:boron carbide 定义:以碳化硼为主体的磨料。 应用学科: 机械工程(一级学科);磨料磨具(二级学科);磨料(三级学科) 百科名片 碳化硼(boron carbide ),又名一碳化四硼,分子式为B4C,通常为灰黑色粉末。俗称人造金刚石,是一种有很高硬度的硼化物。与酸、碱溶液不起反应,容易制造而且价格相对便宜。广泛应用于硬质材料的磨削、研磨、钻孔等。 目录 1简介管制信息 1名称 1化学式 1相对分子质量 1性状 1储存 1用途 1质检信息质检项目指标值 理化常数 物理化学性质 制备 1应用控制核裂变 1研磨材料 1涂层涂料 1喷嘴 1其他 包装及储存 简介 管制信息 本品不受管制

名称 中文名称:碳化硼英文别名:Boroncarbide,Tetraboroncarbide 化学式 B4C 相对分子质量 55.26 性状 坚硬黑色有光泽晶体。硬度比工业金刚石低,但比碳化硅高。与大多数陶器相比,易碎性较低。具有大的热能中子俘获截面。抗化学作用强。不受热氟化氢和硝酸的侵蚀。溶于熔化的碱中,不溶于水和酸。相对密度(d204)2.508~2.512。熔点2350℃。沸点3500℃。 储存 密封保存。 用途 防化学品陶器、耐磨工具制造。 质检信息质检项目指标值 质检项目项目指标值 含量(B4C) ≥90.0% 游离炭及三氧化二硼和其它杂质总量≤10.0% 理化常数 名称;碳化硼 IUPAC英文名Boron carbide 别名B4-C、B4C、黑钻石、一碳化四硼 CAS号12069-32-8 化学式B4C 摩尔质量55.255 g mol 外观黑色粉状 密度 2.52 g/cm (固) 熔点2350 °C (2623.15 K)

碳化硼陶瓷的制备

碳化硼陶瓷的制备 1 碳化硼陶瓷的制备方法 1.1 碳化硼粉末的合成 根据合成碳化硼粉末所采用的反应原理、原料及设备的不同,碳化硼粉末的工业制取方法主要有高温自蔓延合成法(SHS)和碳管炉、电弧炉碳热还原法,近年来还出现了激光化学气相反应法、溶胶-凝胶碳热还原法等。 1.1.1 碳管炉、电弧炉碳热还原法 这是合成碳化硼粉末最常用的方法,早在化学计量的B4C被确定(1934年)后不久,电炉生产工业碳化硼的研究即取得成功,碳化硼作为磨料开始在工业上得到应用。将硼单质或含硼的化合物与碳粉或含碳的化合物均匀混合后放入高温设备,例如碳管炉或电弧炉中,通以保护气体或N2在一定温度下合成碳化硼粉末,基本的化学方程式为: 2B2O3(4H3BO3)+7C=B4C+6CO2(g)+6H2O(g) 这种方法的优点是:设备结构简单、占地面积小、建成速度快、工艺操作成熟、稳定。但该法也有较大的缺陷,包括能耗大、生产能力较低、高温下对炉体的损坏严重,尤其是合成的原始粉末平均粒径大(20~40μm),作为烧结碳化硼的原料还需要大量的破碎处理工序,大大增加了生产成本。 1.1.2 自蔓延高温合成法 自蔓延高温合成法(SHS)是利用化合物合成时的反应热,使反应进行下去的一种工艺方法。由前苏联物理化学研究所的MerzhahovG,BorovlnskayaLp发明,并成功制备了多种高纯度的陶瓷粉末,例如 B4C、BN等。由于此法制备碳化硼时多以镁作为助熔剂,故又称镁热法。与其他方法相比,具有反应温。度较低(1273~1473K)、节约能源、反应迅速及容易控制等优点,所以合成的碳化硼粉的纯度较高且原始粉末粒度较细(0.1~4μm),一般不需要破碎处理,是目前合成碳化硼粉的较佳方法,缺点是反应物中残留的MgO必须通过附加的工艺洗去,且极难彻底除去。 1.1.3 激光诱导化学气相沉积法 激光诱导化学气相沉积法(LICVD)是利用反应气体分子对特定波长激光束的吸收而产生热分解或化学反应,经成核生长形成超细粉末。1.1.4 溶胶-凝胶碳热还原法 溶胶-凝胶法(sol-gel)是指无机物或金属醇盐经过溶液、溶胶、凝胶而固化,再经热处理合成化合物的方法。由于提供硼源的硼化物很难与其他无机物或有机物形成凝胶,故用此法合成碳化的报道较少。

碳化硼陶瓷参数整理2019.6.3

碳化硼陶瓷参数整理 一、物理性能 密度:2.52g/cm3 熔点:2450℃ 沸点:3500℃ 显微硬度:4980kg/mm2 显微硬度:55GPa~67GPa 莫氏硬度:9.36 弹性模量:450GPa 抗弯强度:≥400MPa 二、碳化硼粉体制备 1、硼碳元素直接合成法 将纯硼粉和石焦油(或其他碳粉)按化学计量比B/C约为4:1配制,均匀混合,在真空或保护气氛下加热至1700℃~2100℃混合物发生反应生成B4C。 4B+C→B4C。 生产效率低下,不适合工业化生产。 2、硼酐干碳热还原法 工业上一般采用碳还原硼酸(或硼酐)的方法制备B4C。将硼酐或硼酸碳混合均匀,在电弧炉中加热至1700℃~2300℃合成。 2H3BO3→B2O3+3H2O 2B2O3+7C→B4C+6CO 3、自蔓延高温合成法(SHS) 自蔓延高温合成法是利用化合物合成时自身产生的反应热,使反应持续进行下去的一种工艺。由于采用此法制各碳化硼时以镁作为助熔剂,因而得名“镁热法”。将碳粉、B2O3和镁粉混合均匀,在1000℃~1200℃按下式进行反应: 2B2O3+6Mg+C→B4C+6MgO 4、激光诱导化学气相沉积法(LICVD) 以含有碳源及硼源的气体(BCl3,B2H6,CHCl3,CH4等)为原料,在激光辐照的条件下,混合气体之间发生反应生成B4C纳米颗粒,经过一定的处理后可以得到具有较高纯度的碳化硼纳米粉。

三、碳化硼陶瓷制备 1、常压烧结 序号添加剂B4C粒度烧结温度产品性能 1碳4wt%时在2150℃和下常压下 烧结 获得95%的相对密度 2Al、Mg或TiB2 加5-10wt.% 在2150~2250℃致密度达到99% 3Al2O3;加3wt.%于2150℃下 保温15分钟 到理论密度的96%,平 均晶粒尺寸约为7μm, 4 亚微米TiO2(添加量 10-30wt.%)和碳粉 (添加量1-6wt.%), 粒径为0.63μm的 B4C粉 1900-2050℃温度下常 压烧结,保温1h, 致密度达到99%以上的 B4C-TiB2复相陶瓷, 材料的抗弯强度和断裂 韧性分别达到513MPa 和 3.71MPa·m1/2 B4C的无压烧结可制备形状复杂制品,但往往造成晶粒过度生长且含有3-7Vol.%的气孔率,因此材料 的强度和韧性偏低(σf IC≤3MPa·m1/2)。而采用热压烧结技术,可获得致密度更高和力学性能更好的B4C陶瓷。 2、热压烧结 序号添加剂B4C粒度烧结温度及压力产品性能 1/平均粒径为1.21μm 的B4C粉末和 自由碳含量为 3.13wt.%, 热压压力和温度分别为 30-35MPa和 2000-2100℃时 B4C烧结体的相对 密度为92-98%,晶粒尺 寸为3-5μm,抗弯强度 为400-500MPa 2Al2O3添加量为 3-5vol.%, 为1.3μm的B4C粉 末 在2000℃和30MPa压 力下烧结,保温1h 烧结致密度达到98%以 弯曲强度约550MPa, 韧性3.8MPa·m1/2 3 4 3、热等静压烧结 采用热等静压(HIP)烧结碳化硼,可无需添加剂而达到致密化,并且获得细晶显微结构和高的弯曲强度。成功地采用特殊氧化硼玻璃包套填充亚微米级纯B4C粉,于1700℃以上,200MPa压力下保温60min,制得相对密度达到100%的B4C陶瓷,其三点抗弯强度达到714MPa、韦伯摸数m为8.3。目前工业化热等静压烧结用的包套材料还有困难,这是因为通常使用的金属或玻璃包套会与B4C发生反应。 通常是先进行无压烧结得到无开口连通气孔的B4C,再进行热等静压处理来消除剩余的闭口气孔,达到完全致密化,热等静压处理温度在1950-2050℃。

碳化硼原料检测

前言 本标准是根据碳化硼产品标准和客户对产品质量提出的要求将多年的实验验证结果,以标准规定的技术条件能满足产品质量的要求为前提,结合工业化碳化硼生产的实际而制订。它将原、辅材料的检查、分析方法整理归纳一起并入本标准之内形成切实可行的检测方法,使原、辅材料的检测规范化、标准化。本标准为避免标准版本更换而形成的工作不便,特将有关条款的内容详细叙述,尽量减少引用标准代号和条款编号。 本标准是由三个独立部分组成 一、碳化硼原、辅材料技术条件 二、碳化硼原、辅材料检验方法 三、碳化硼原、辅材料分析方法 本标准从实施之日起原有的碳化硼原、辅材料标准、碳化硼辅助材料检查方法、碳化硼原辅材料分析方法即告作废。 本标准由磨料公司提出。 本标准主要起草人:何贤良

碳化硼原、辅材料技术条件 1 范围 本标准规定了生产碳化硼所需的原、辅材料的种类、技术要求,以及检验方法。本标准适用于对生产碳化硼产品所用原、辅材料的控制。 2 生产碳化硼所用的原、辅助材料种类 2.1 原材料:硼酸、炭素材料(石墨、石油焦、炭黑) 2.2 辅助材料:石墨化电极、硫酸、钢球、筛网、分散剂。 3 技术条件(见表) 表1 4 检验方法 入厂原、辅材料实施进货检验,检验的实施按下述规定执行。 4.1 原、辅材料粒径及尺寸按碳化硼原、辅材料检验方法的规定执行。 4.2 原、辅材料化学成份分析按碳化硼原、辅材料分析方法的规定执行。

碳化硼原、辅材料检验 1 范围 本标准规定了碳化硼原、辅材料外径尺寸、粒径等物理测定方法。 适用于碳化硼生产用原、辅材料的检测。 2 测定方法 2.1 硼酸 将手感松散无结块的硼酸100g,样品置于35目(500μm)筛上,用手拍击1min,当筛上物应为0视为合格。 2.2 炭素材料 将经过预粉碎的石墨或石油焦取100g,样品放置于10目(2000μm)筛上,用手拍击,允许混料使用的合格炭素材料筛上物应为0。 2.3 石墨电极 2.3.1 外观目测,表面无裂纹,粗细均匀,按10%比例随机用卷尺或钢板尺测量长度与外径。 2.3.2 电阻率的检测采用外委检测或按供方提供的检测报告为依据。 2.4 钢球 2.4.1 规格尺寸测定 在待检钢球中任意抽取10个以上钢球,用卡尺测量直径,要求80%试样尺寸偏差符合标准。当试样平均直径满足标准时,视为尺寸合格。 2.4.2 硬度:用洛氏硬度计检测 2.5 筛网 外观:网面平整、清洁、无跳丝、并丝、断丝,不得有机械损伤、锈蚀等现象,金属丝光滑无起皮、无裂纹. 测量工具:测量网孔尺寸选用钢板尺、游标卡尺或带分度值的显微镜. 网孔基本尺寸测量方法:网孔基本尺寸500mm以上可以测量连续分布10-30个网孔间距所占的长度. 网孔基本尺寸500mm以下可以测量10-3mm 长度上的网孔数.

碳化硼特性

碳化硼特性 B4C具有高熔点、高硬度、低密度等优良性能,并具有良好的中子吸收能力和抗化学侵蚀能力,因而广泛应用于耐火材料、工程陶瓷、核工业、宇航等领域。化学计量分子式为 B4C,碳化硼存在许多同分异构体,含碳量从8%-20%,最稳定的碳化硼结构是具有斜方六面体结构的B13C2 、B13C3、B4C和其它接近于B13C3的相。碳化硼斜方六面体结构中包括12个二十面的原子团簇,这些原子团簇通过共价键相互连接,并在斜方六面体的对角线上有一个三原子链。多硼的十二面体结构位于斜方六面体的顶点。硼原子和碳原子可以在二十面体和原子链上互相替代,这也是碳化硼具有如此多的同分异构体的主要原因。正因为碳化硼的特殊结构,使之有很多优良的物理、机械性能。 碳化硼最重要的性能在于其超常的硬度(莫氏硬度为,显微硬度为55GPa-67GPa),是最理想的高温耐磨材料;碳化硼密度很小,是陶瓷材料中最轻的,可用于航天航空领域;碳化硼的中子吸收能力很强,相对于纯元素B和Cd来说,造价低、耐腐蚀性好、热稳定性好,广泛用于核工业,碳化硼中子吸收能力还可以通过添加B元素而进一步改善;碳化硼的化学性能优良,在常温下不与酸、碱和大多数无机化合物反应,仅在氢氟酸一硫酸、氢氟酸一硝酸混合物中有缓慢的腐蚀,是化学性质最稳定的化合物之一;碳化硼还具有高熔点、高弹性模量、低膨胀系数和良好的氧气吸收能力等优点。不可否认,相对于其它陶瓷材料而言,碳化硼的强度和韧性略显偏低,尤其是断裂韧性低,影响了该材料的可靠性和应用性。但是可利用晶粒细化,相变韧化,相复合等多种手段使碳化硼材料强韧化。众所周知,碳化硼的烧结温度过高、抗氧化能力差以及对金属的稳定性不好等缺点,但是近年来随着超细粉末制备技术的发展和有效烧结助剂的开发,使碳化硼的常规烧结问题得到解决。 2 碳化硼粉末的制备 现在工业上生产B4C的方法是用硼酸或脱水氧化硼与碳在碳管炉或者电炉中进行高温还原反应: 2B203(4H3BO3)+7C=B4C+6C0 +(6H2O)。目前国内外制取碳化硼粉末的方法主要有:碳管炉或电弧炉碳热还原法,镁热法,激光诱导CVD法,直接制备法,溶胶凝胶碳热还原法等。 碳管炉、电弧炉碳热还原法热法是用硼酸或脱水氧化硼与碳在电炉中进行高温还原反应。电弧炉根据石墨的电极工作原理分为立式冶炼炉和卧式冶炼炉。该反应必须严格控制才能获得高纯度和稳定性的碳化硼粉,决不允许有多余的碳存在,一般加入余量的硼或加入过量的硼酸和硼酐。其工艺流程为:硼酸+碳黑混合焙解碳化过筛分析检测产品(粉末)。碳管炉、电弧炉碳热还原法是目前工业制备碳化硼的最重要的方法。缺点:电弧的温度高,炉区温差大,在中心部分的温度可能超过碳化硼的熔点,使其发生包晶分解(包晶反应是有些合金当凝固到一定温度时,已结晶出来的一定成分的固相与剩余液相发生反应生成另一种新固相的恒温转变过程),析出游离碳和其它高硼化合物,而远离中心的地方温度偏低,反应进行不完全,残留的氧化硼和碳以游离碳和游离硼的形式存在于碳化硼粉中。因而制得的碳化硼粉含有较高的游离碳和游离硼。能量消耗大、生产能力低、高温下对炉体损坏严重、合成的原始粉末平均粒径大,需要经过破碎处理等。其优点在于:设备结构简单、占地面积小、建成速度快、工艺操作成熟等。 镁热法是利用化合物合成时的反应热,使反应进行下去的一种工艺,大多用镁作为助熔剂。其化学反应方程式为:2B203+5Mg+2C=B4C+CO +5MgO。镁热法的优点在于:过程简单、反应温度较低、节约能源、反应迅速、容易控制、纯度高、可制得极细至微米)碳化硼粉。但是反应物中残留的氧化镁即使通过附加的工序洗去也难彻底除去等利用自蔓延高温合成法,合成Mg-B4C。并研究了其微观组织,结果表明:由于Mg的高挥发性,B203-Mg-C体系燃烧产物显微组织受到环境气压的影响,B4C的晶粒尺寸受到气压的显着影响,高压下生成的B4C晶粒比大一个数量级以上。 近年出现了一些新的制备碳化硼粉末的方法:激光诱导CVD法,直接制备法,溶胶凝胶碳热还原法,气流粉碎B4C粗粉法,以BCI3、H2及CH4为原料通过气相沉积合成碳化硼法等。激光诱导化学气相沉积法是利用反应气体分子对特定波长激光束的吸收而产生热分解或化学反应,经成核生长成超细粉末。其优

碳化硼陶瓷制备工艺

碳化硼陶瓷制备工艺 碳化硼是一种新型非氧化陶瓷材料,因其具有熔点高、硬度高、密度低、热稳定性好,抗化学侵蚀能力强和中子吸收能力强等特点而被广泛应用于能源、军事、核能以及防弹领域。碳化硼又称黑钻石,是仅次于金刚石和立方氮化硼的第三硬材料,故成为超硬材料家族中的重要成员。 目前碳化硼防弹材料主要通过烧结法制备,不过碳化硼是共价键很强的陶瓷材料,共价键占90%以上,而且碳化硼的塑性差,品界移动阻力很大,固态时表面张力很小,从而决定了碳化硼是一种极难烧结的陶瓷材料。纯碳化硼在烧结过程中通常存在烧结温度高、烧结后所得陶瓷致密度低,断裂韧性较差等问题。工业上一般采用无压烧结、热压烧结、热等静压烧结、放电等离子烧结等技术,通过改进烧结工艺、添加烧结助剂提高碳化硼的力学性能,为进一步研究碳化硼的烧结工艺奠定基础。 1、无压烧结 纯B4C的无压烧结致密化非常困难,气孔缺陷和致密度是影响碳化硼陶瓷性能指标的关键因素。而烧结温度和粉末粒度是影响碳化硼陶瓷致密度的重要指标。研究表明,纯碳化硼无压烧结致密化最主要的条件是采用低氧含量的粒度≤3μm的超细粉末且温度范围在2250~2350℃。

无压烧结碳化硼制品工艺简单、加工成本低,对烧结条件没有太多要求,可适用于生产形状复杂的产品,适合大批量工业化生产,是制备陶瓷常用的烧结技术。但由于烧结温度高,晶粒容易异常生长,使烧结过程难以控制,产品性能不稳定。 2、热压烧结 热压是在高温条件下改善粉末塑性,具有成型压力低,变形阻力小,产品密度高,显微组织优良等优点,因而,降低碳化硼的烧结温度可以采用热压烧结工艺。 与单纯热压相比,将液相烧结和热压烧结相结合,烧结温度大大降低,致密度相对提高。 通常热压烧结条件为:真空或惰性气氛,压力20~40MPa,温度2200~2300℃,保温时间0.5~2h。碳化硼是共价键很强的化合物,在高温下烧结扩散速率慢,物质流动发生较少,使其致密化过程非常困难。 为了降低烧结温度和表面能,提高碳化硼陶瓷的综合性能,必须加入添加剂来促进碳化硼的热压烧结。添加剂包括烧结助剂或第二相反应烧结,在高温高压条件下,可以促进烧结,控制晶粒长大,提高力学性能,获得高致密度、高性能的碳化硼陶瓷产品。目前加入的添加剂主要包括金属单质(Fe、Al、Ni、Ti、Cu、Cr等)、金属氧化物(Al2O3、TiO2等)、过渡金属碳化物(CrC、VC、WC、TiC等)及其他添加剂(AlF3、MgF2、Be2C、Si等)。

碳化硼陶瓷论文

碳化硼陶瓷 摘要:碳化硼陶瓷具有高硬度、高熔点和低密度的特点,是优异的结构陶瓷。本文综述了碳化硼陶瓷的粉体制备,着重阐述了5种烧结的方法,以及碳化硼陶瓷在增韧方面的研究。介绍了碳化硼陶瓷在结构材料、电学性能、方面的应用。关键词:碳化硼;制备;烧结;应用 1、碳化硼陶瓷概述 1.1、碳化硼的发展 碳化硼这一化合物最早是在1858 年被发现的,然后英国的Joly于1883 年、法国的Moissan于1894 年分别制备和认定了B3C、B6C。化学计量分子式为B4C 的化合物直到1934 年方被认知。随后,俄国学者提出了许多不同的碳-硼化合物分子式,但这些分子式未能得到确认。事实上,由B-C相图可以知道,碳-硼化合物有一个从B4.0C到B10.5C的很宽的均相区,在这个均相区内的物质习惯上通称为碳化硼。从20世纪50年代起,人们对碳化硼,尤其是对其结构、性能进行了大量的研究,取得了许多研究成果,推动了碳化硼制备和应用技术的长足发展。现在碳化硼陶瓷广泛应用于民用、宇航和军事等领域。 1.2、碳化硼的优良性能 碳化硼陶瓷是一种仅次于金刚石和立方氮化硼的超硬材料,这是由其特殊的晶体结构所决定的。C原子与B原子半径很小,而且是非金属元素,B与C相互很接近,形成强共价键的结合。这种晶体结构形式决定了碳化硼具有超硬、高熔点(2450℃)、密度低(2.55g/cm3)等一系列的优良物理化学性能。 2、碳化硼陶瓷的制备 2.1、粉体的制备 目前国内外碳化硼粉末的工业制取方法主要有3种。 (1)碳管炉碳热还原法:在碳管炉中用碳黑还原硼酐2B2O3 + 7C = B4C+6CO↑,这是一个强烈的吸热反应。 (2)电弧炉碳热还原法:上述反应在电弧炉中进行。 (3)镁热法:2B2O3 + 5Mg + 2C = B4C + CO↑+ 5MgO,这是一个强烈的放热反应。 实验室规模,碳化硼粉末可用多种气相合成方法制得。用气相法制得的粉末粒度细、纯度高。气相法的代表反应为:4BCl3 + CH4 + 4H2 = B4C + 12HCl↑。 电弧炉碳热还原法是制取廉价碳化硼粉的主要工业方法。但由于电弧的温度高,炉区温差大,在中心部分的温度可能超过B4C的熔点,使其发生包晶分解,析出游离碳和其他高硼化合物。而远离中心的地方,温度偏低,反应进行不完全,残留的B2O3和C 以游离碳和游离硼的形式存在于碳化硼粉中。所以电弧炉法制得的碳化硼粉一般含有较高的游离碳和游离硼。这种碳化硼粉主要用来作原料、磨料和制造砂轮。镁热法虽可制得极细的碳化硼粉,但反应产物中残留的MgO 必须有附加的工序洗去,且极难彻底除去。 2.2、碳化硼陶瓷的烧结 2.2.1、无压烧结 碳化硼是一种共价键很强的化合物,其共价键比例高达93.94%。因此烧结性能非常差,不加任何添加剂的无压烧结温度大约在2300℃左右,其机理是在温度

碳化硼原料(石油焦)标准

碳化硼的原料(石油焦) 石油焦是生产碳化硼的主要碳素材料之一,其基本理化性质如下: 石油焦(Petroleum coke)是原油经蒸馏将轻重质油分离后,重质油再经热裂的过程,转化而成的产品,从外观上看,焦碳为形状不规则,大小不一的黑色块状(或顆粒),有金属光泽,焦碳的颗粒具多孔隙结构,主要的元素组成为碳,占有80wt%以上,其余的为氢、氧、氮、硫和金属元素。石油焦具有其特有的物理、化学性质及机械性质,本身是发热部份的不挥发性碳,挥发物和矿物杂质(硫、金属化合物、水、灰等)這些指标決定焦炭的化学性质。 一、石油焦分类及性质 石油焦的形态随制程、操作条件及进料性质的不同而有所差异。从石油焦工场所生产的石油焦均称为生焦(green cokes),含一些未碳化的碳烃化合物的挥发份,生焦就可当做燃料级的石油焦,如果要做炼铝的阳极或炼钢用的电极,则需再经高温锻烧,使其完成碳化,降低挥发份至最少程度。 大部份石油焦工场所生产的焦外观为黑褐色多孔固体不规则块状,此种焦又称为海绵焦(sponge coke)。第二种品质较佳的石油焦叫做针状焦(ne EDL e coke)与海绵焦比,由于其具较低的电阻及热膨胀系数,因此更适合做电极。有时另一种坚硬石油焦亦会产生,称之为球状焦(shot coke)。这种焦形如弹丸,表面积少,不易焦化,故用途不多。 石油焦具有其特有的物理、化学性质及机械性质,本身是发热部份的不挥发性碳,挥发物和矿物杂质(硫、金属化合物、水、灰等)这些指针决定焦炭的化学性质。物理性质中孔隙度及密度,决定焦炭的反应能力和热物理性质。机械性质有硬度、耐磨性、强度及其它机械特性,颗粒组成及其它加工和运输、堆放、贮存等性质影响的情形。 二、石油焦的加工工艺 石油焦是以原油经蒸馏后的重油或其它重油为原料,以高流速通过500℃±1℃加热炉的炉管,使裂解和缩合反应在焦炭塔内进行,再经生焦到一定时间冷焦、除焦生产出石油焦。 用途:主要用于制取炭素制品,如石墨电极、阳极弧,提供炼钢、有色金属、炼铝之用;制取炭化硅制品,如各种砂轮、砂皮、砂纸等;制取商品电石供制作合成纤维、乙炔等产品;也可做为燃料。 石油焦(PE troleum coke)是原油经蒸馏将轻重质油分离后,重质油再经热裂的过程,转化而成的产品,从外观上看,焦碳为形状不规则,大小不一的黑色块状(或颗粒),有金属光泽,焦碳的颗粒具多孔隙结构,主要的元素组成为碳,占有80wt%以上,其余的为氢、氧、氮、硫和金属。 三、石油焦的质量标准

我国碳化硼产业现状及对于我省硼酸企业建议

我国碳化硼产业现状及对于我省硼酸企业建议 (辽宁省硼工业协会第三届会员代表大会暨技术交流会的报告)2010.1.28 一、碳化硼的性质及用途 从1893年研究制造出碳化硼到现在已经有一百多年的历程,碳化硼从不被人们所熟悉到应用于多个领域,从电阻炉试验到电弧炉生产,从卧式炉冶炼演变成立式炉冶炼,从世界的需求量从几吨到几千吨,国内的产量也由几十吨/年发展到上万吨/年,碳化硼发展的如此迅速让硼行业刮目相看。 碳化硼为黑色粉末,莫氏硬度9.36,维氏显微硬度49Gpa仅次于金刚石;粉末常用于硬质合金、宝石等硬质材料的磨削和抛光,具有非常高的研磨能力,是理想的最硬的人造磨料之一;碳化硼具有很好的化学稳定性,能抵抗酸、碱腐蚀,因而作为抗腐蚀材料制成耐酸、碱零部件;碳化硼耐高温,熔融温度高达 2450℃是耐热制品和高级耐火材料的重要原料;碳化硼是高性能结构陶瓷和复相超硬、超高温陶瓷的原料,常制造成耐磨损喷砂嘴、水射流喷嘴、机械密封环、泥浆泵的柱塞、高温叶轮等;由于硬度高而密度为2.52g/cm3所以其陶瓷制品也用于航天高级装备防护上,在直升飞机、防弹装甲、防弹衣、舰船涂层方面普遍应用;碳化硼具有良好的中子吸收性能目前已广泛用于核工业原子能反应堆的屏蔽板和中子吸收芯块。 由于碳化硼在机械研磨、耐火、化工、工程陶瓷、核工业和军事等不同领域方面应用,碳化硼质量也有一定的差别,它们的用量又在不断增加,因此批量生产的碳化硼不得不对其主要的原料硼酸提出不同的要求、从而开始了硼酸的选择使用。 二、我国碳化硼生产现状 我国现有的碳化硼生产厂主要分布在黑龙江的牡丹江、黑河、大连、内蒙古通辽等地,由于碳化硼企业比较封闭,生产工艺比较落后,沿用前苏联的模式生产的小企业较多。近几年大连正兴磨料有限公司引进国外的先进冶炼技术,自主消化,提高冶炼水平,对碳化硼冶炼炉进行了突破性改进,使冶炼能力和产量大幅度提高,尤其是在B10同位素上有了新的突破。同时大连金玛、牡丹江金刚钻也先后进行了改造。据不完全的统计国内现有碳化硼冶炼能力可达10000--12000吨/年,碳化硼加工能力不超过8000吨/年。实际上各厂都没有达到满负荷生产能力,现有的产品几乎一半外销。近几年碳化硼产量波动在国内年需求2400—3000吨和国外年需求3000-3500的水平,其中耐火材料和混合原料用量的比例远远大于研磨和工程陶瓷的用量。

影响碳化硼陶瓷致密化的因素'

第25卷第6期 辽宁工学院学报 V o l .25 N o .62005年12月 Journal of L iaon ing In stitute of T echno l ogy D ec .2005 ① 影响碳化硼陶瓷致密化的因素 张 辉,穆柏春,唐立丹 (辽宁工学院材料与化学工程学院,辽宁锦州 121001) 摘 要:从纯碳化硼的无压烧结、添加烧结助剂、烧结时加压等方面介绍了碳化硼陶瓷活化烧结致密化的方法,综述了国内外在不同的烧结工艺下制备的碳化硼陶瓷材料的性能,进而分析了各种方法提高碳化硼陶瓷致密度的机制,比较了各种烧结方法的优缺点。结果表明:通过综合各种措施可以提高碳化硼陶瓷的致密度。 关键词:碳化硼;致密化;热压烧结;常压烧结 中图分类号:TM 286 文献标识码:A 文章编号:100521090(2005)0620378204 Effecti n g Factors on Co mpacti n g Boron Carbi de Ceram i cs ZHAN G H ui ,M U Bai 2chun ,TAN G L i 2dan (M aterials &Che m ical Engineering College ,L iaoning Institute of Technol ogy ,J inzhou 121001,China ) Key words :bo ron carbide ;compacting ;ho t p ressed sin tering ;no r m al p ressed sin tering Abstract :T he pykno sis m ethod of activated sin tering of bo ron carbide cera m ics w as p resen ted th rough s om e as pects of no 2vo ltage sin tering ,adding to sin tering assistan t ,fo rcing w h ile sin tering of pure bo ron carbide .T he p roperties of bo ron carbide cera m icsw h ich w ere p repared at differen t sin ter 2ing bo th at hom e and abroad w ere summ arized .T he m echan is m of i m p roving den sity of bo ron carbide cera m ics th rough vari ous m ethods w as analysed .T he m erits and faults of vari ous sin tering m ethods w ere compared ,the result indicates that it can i m p rove den sity of bo ron carbide cera m ics by syn thesiz 2ing vari ous m easures . 陶瓷材料在人类生存和发展过程中是不可缺少 的,陶瓷可分为传统陶瓷和新型陶瓷,而新型陶瓷按其组成成分可分为氧化物陶瓷、碳化物陶瓷和氮化物陶瓷等[1]。碳化物陶瓷是重要的耐高温材料之一,碳化物陶瓷包括Si C 、B 4C 、T i C 等,在众多的碳化物陶瓷中B 4C 陶瓷是最引人注目的一种,在碳化硼中,硼与碳同样为非金属元素,且原子半径相接近,其结合方式与一般间隙化合物不同[2],正是由于这种特殊的结合方式使它具有许多优良性能,如:①高熔点(2450℃)和超硬度(>30GPa )。其硬度在自然界中仅次于金刚石和立方氮化硼,被用于耐磨剂、耐磨部件和制造防弹装甲。②具有密度小(2.51 g c m 3 ),而且在高温下仍然具有较大的抗拉强度,因 此,正在研究利用它做喷气机叶片的金属陶瓷材料[3]。③具有很高的热中子吸收能力。可用作核反应堆的控制棒,又可用作核反应屏蔽材料[4]。④具有热电性,日本已开发出正常工作温度为2200℃的碳化硼热电偶,美国的SAN I A 实验室也正在研究一种新型的碳化硼热电转化装置。⑤具有优越的抗氧化侵蚀能力,如在室温下碳化硼陶瓷与酸碱不发生化学反应。正是由于B 4C 具有这些优良性能因此得到了广泛的应用,然而致密度是B 4C 陶瓷制品的重要的性能指标,研究如何提高B 4C 陶瓷制品的致密度具有重要的意义。 ① 收稿日期:2005201210 基金项目:辽宁省自然科学基金资助项目(9910300401);辽宁省专利局科研项目资助作者简介:张辉(19782),男(满族),辽宁锦州人,硕士生。

相关主题
文本预览
相关文档 最新文档