当前位置:文档之家› 金属板材的冲压成形性能

金属板材的冲压成形性能

金属板材的冲压成形性能
金属板材的冲压成形性能

金属板材的冲压成形性能

作者:旭日笑出自:旭日笑浏览/评论:845/0 日期:2007年7月18日 16:28

金属板材的成形性能是指板材对冲压成形工艺的适应能力。板材成形性能的好坏会直接影响到冲压工艺过程,生产率,产品质量和生产成本。板料的冲压成形性能好,对冲压成形方法的适应性就强,就可以采用简便工艺,高生产率设备,生产出优质低成本的冲压零件。对冲压成形件来说,不产生破裂是基本前提,同时对它的表面质量和形状尺寸精度也有一定要求,故板料冲压成形性应包括:抗破裂性,贴模性和形状冻结性能等几个方面。所谓冲压成形就是板材可成形能力的总称,或者叫做广义的冲压成形性能。广义成形性能中的抗破裂性能,可视为狭义的冲压成形性能。板料在成形过程中,一是由于起皱,塌陷和鼓包等缺陷而不能与模具完全贴合;另一方面因为回弹,造成零件脱模后较大的形状和尺寸误差。通常将板材冲压成形中取得与模具形状一致的能力,称为贴模性;而把零件脱模后保持其既得形状和尺寸的能力,称为形状冻结性。通常把材料开始出现破裂时的极限变形程度作为板料冲压成形性能的判定尺度。目前对抗破裂性的研究已取得了不少成果。根据把冲压成形基本工序依其变形区应力应变的特点分为伸长类(拉伸类)与压缩类两个基本类别的理论,可以把这种冲压成形的分类与冲压成形性能的分类建立如表1-3所示的对应关系。板料冲压成形的试验方法有多种,概括起来分为直接试验和间接试验两类。直接试验中板材的应力和变形情况与真实冲压基相同,所得的结果也比较准确;而间接试验时板材的受力情况与变形特点却与实际冲压时有一定的差别。所以,所得的结果也只能间接地反映板材的冲压性能,有时还要借助于一定的分析方法才能做到。常用的方法为:直接试验中的模拟试验和间接试验中的拉伸试验。表1-3 冲压成形性能的分类冲压成形类别成形性能类别提高极限变形程度的措施伸长类冲压成形(翻边、胀形等) 伸长类成形性能(翻边性能、胀形性能等) 1) 提高材料的塑性 2) 减少变形不均匀程度 3) 消除变形区局部硬化层和应力集中

压缩类冲压成形(拉深、缩口等) 压缩类成形性能(拉深性能、缩口性能等) 1) 降低变形区的变形抗力、摩擦阻力 2) 防止变形区的压缩失稳(起皱) 3) 提高传力区的承载能力

复合类冲压成形(弯曲、曲面零件拉深成形等) 复合类成形性能 (弯曲性能等) 根据所述成形类别的主次,分别采取相应措施

一、板材拉伸试验拉伸试验是评价板材的基本力学性能用成形性能的主要试验方法。由于简单可行,所以是目前普遍采用的一种方法。由单向拉伸试验所能获得的材料特性值如图1-3所示。图1-3 单向拉深实验所得到的材料特性值示意图拉伸试验与冲压成形性能有密切关系的几项主要性能参数如

下: 1) 称屈强比较小的屈强比几乎对所有的冲压成形都是有利的。屈强比小,对压缩类成形工艺有利。拉深时,如果板材的屈服点低,材料起皱的趋势小,防止起皱所必需的压边力和摩擦损失也会降低,对提高极限变形程度有利。例如,低碳钢的时,极限拉深系数 m=0.48~ 0.5 65Mn 的时,极限拉深系数则为m=0.68~ 0.7 在伸长类成形工艺中,如胀形,拉型,拉弯,曲面形状的成形等,当低时,为消除零件的松弛等弊病和为使零件的形

状和尺寸得到固定所需的拉力也小,所以成形工艺的稳定性高,不易出废品。弯曲件所用板材的低时,卸载时的回弹变形也小,有利于提高零件精度。可见屈服比对板材的冲压成形性能的影响是多方面的,而且也是很重要的。(2)与叫均匀伸长率,板材在拉力作用下开始产生局部集中变形(缩颈时)的伸长率。称为总伸长率,是在拉伸中试样破坏时的伸长率。一般情况下,冲压成形性都在板材均匀变形范围内进行。所以表示板材产生均匀的或稳定增长的塑性变形的能力,它直接决定板材在伸长类变形中的成形性能。可以用间接表示伸长类变形的极限变形程度,如翻边系数,扩口系数,最小弯曲半径,胀形系数等。实验结果表明,大多数材料的翻边变形程度都与成正比例关系,具有很大胀形成分的复杂曲面拉深件用的钢板,要求具有很高的值。(3)硬化指数n 硬化指数n也称n值,它表示在塑性变形中材料硬化的强度。n值大时,在伸长类变形过程中可以使变形均匀化,具有扩展变形区,减少毛坯的局部变薄和增大极限变形参数等作用。n值是评定板材成形性能的重要指标,可用幂次式近似表示为:。式中指数n称为应变强化指数,它在数量上就等于单向拉伸时材料厂刚要出现颈缩时的实际应变。

表1-4 部分板材的n值及σ值

材料 n 值σ/MPa 材料 n 值σ/MPa

08F 0.185 708.76 T2 0.455 538.37

08Al(ZF) 0.252 553.47 H62 0.513 773.38

08Al(HF) 0.247 521.27 H68 0.435 759.12

08Al(Z) 0.233 507.73 QSn6.5-0.1 0.492 864.49

08Al(P) 0.25 613.13 Q235 0.236 630.27

10 0.215 583.84 SPCC(日本) 0.212 569.76

20 0.166 709.06 SPCD(日本) 0.249 497.63

LF2 0.164 165.64 1Cr18Ni9Ti 0.347 1093.61

2Al2M 0.192 366.29 1035M 0.286 112.43

(4) 厚向异性系数r值 r值是评价板材拉深成形性能的一个重要材料参数。r 值反映了板材在板平面方向和板厚方向由于各向异性而引起应变能力不一致的情况,它反映了板材在板平面内承受拉力或压力时抵抗变薄或变厚的能力,它是板拉伸试验中宽度应变与厚度应变之比,即式中、与、分别是变形前后试样的宽度与厚度。当r=1时,板宽与板厚间属各向同性。而时,则为各向异性。r>1说明该板材的宽度方向比厚度方向更易变形。即r值大时,能使筒形件的拉极限变形程度增大。用软钢、不锈钢、铝、黄铜等所做的试验也证明了拉深比与r值之间的关系(表1-5)。

表1-5 拉深比与r值的关系

r值 0.5 1 1.5 2

拉深比 2.12 2.18 2.25 2.5

由于板材轧制时的方向性,所以板材平面内各方向上的r值是不同的。因此,采用r值应取各个方向上平均值。即式中、、分别表示板材纵向(轧制方向)、横向和45°方向上的厚向异性系数(见图1-4)。表1-4 板材轧制方向(5)板平面各向异性系数板材平面的力学性能与方向有关,称为板平面方向性。圆筒形件拉伸时,板平面方向性明显地表现在零件口部形成突耳现象。板平面方向性越大,突耳的高度也越大,这时增大切边余量,增加了材料的消耗。板平面方向性大时,在拉深、翻边、胀形等冲压过程中,能够引起毛坯

变形的不均匀分布。其结果不但可能因为局部变形程度的加大而使总体的极限变形程度减小,而且还可能形成冲压件的不等壁厚,降低冲压件的质量。在板平面内不同方向上力学性能的各项指标中,板方向性系数对冲压成形性能的影响较明显,所以在生产中都用表示板平面方向性的大小,是板材平面内不同方向上板厚方向性系数r的平均差别,其值为: =0时,不产生突耳;>0时,在0°、90°方向产生凸耳;<0时,在45°方向产生凸

耳。由于板平面方向性对冲压变形式冲压件质量均为不利,所以生产中尽量设法降低值,表1-6给出了常用板材的r

用值。

表1-6 一些板材的r值及值

材料

沸腾钢 1.23 0.91 1.58 1.16 0.51

脱碳沸腾钢 1.88 1.63 2.52 1.92 0.57

钛镇静钢 1.85 1.92 2.61 2.08 0.31

铝镇静钢 1.68 1.19 1.90 1.49 0.60

钛 4.00 5.49 7.05 5.51 —

铜O材 0.90 0.94 0.77 0.89 -0.01

铜1/2H材 0.76 0.87 0.90 0.85 -0.04

铝O材 0.62 1.58 0.52 1.08 -1.01

铝1/2材 0.41 1.12 0.81 0.87 -0.51

不锈钢 1.02 1.19 0.98 1.10 -0.19

黄铜2种O材 0.94 1.12 1.01 1.05 -0.14

黄铜3种1/4H材 0.94 1.00 1.00 0.99 -0.03

① O 意思是软质,钢O材指软质钢材。② H意思是硬质,铜 H材指半硬质的铜材。(6)值 x值为双向等拉与单向拉伸的抗拉强度之比,即设双向等拉伸状态下的抗拉强度为,单向拉伸状态下的抗拉强度为,平面应变状态下的抗拉强度为,为应力比值,即,上式可写成下式: x 值可用图1-5所示的方法求出。x值与拉深深度的关系如图1-6所示。由图可知,x值能很好反映各种板材的拉深性能。用式(1-1)求x值实际比较困难,所以用代替x 值,即具体求的方法是:用常规拉伸试样进行拉伸试验,求出单向拉伸时的抗拉强度,再用带圆弧切口试样进行拉伸试验求出平面应变下的抗拉强度。然后取二者比值,即可得到值。图1-5 x值的求法

图1-6 成形深度与x值的关系

值是与材料力学性能有关的参数。 x值表达式中对应的应力状态(双等拉)与圆筒形件拉深的凸模圆角处毛坯的应力状态相似,而表达式中对应的应力状态(平面应变)与圆角形拉深件侧壁部分的应力状态相似。因此,值大的材料,表明拉深变形毛坯侧壁传力区具有更高的强度,即有更高的承载能力。另外,对高的材料,当应力单向拉伸转为双向拉伸时,表现出更强的性质。所以圆筒形拉深件做侧壁所经历的变形,材料可以得到强化。因此,高的材料拉深极限也高。(7)应变速率敏感性指数m m值原为超塑性成形材料的一个重要性能参数。经研究表明,即使在非超塑性状态下,甚至很小的m值,也将影响胀形成形极限。m值的增大,使成形极限线水平提高。一般认为,m值对提高伸长类变形的成形极限的贡献主要在拉伸失稳以后,使过缩颈伸长率行到了提高。二、模拟实验试验中,试件的应力状态用变形特点与相应的冲压工艺基本一致,

因此试验结果可直接反映该种工艺的成形性能。对伸长类成形常用的模拟试验方法有艾利克辛试验(杯突试验)、液压胀形试验、扩孔试验等。对压缩类成形常用杯形件拉深成形(又称Swift试验)、最大拉伸力对比试验用锥形杯复合成形性能试验等。对于复合成形(大型覆盖件的成形多为复合成形)常用锥形杯复合成形性能试验、杯突试验及方板对角试验等。⒈利克辛试验(杯突试

验)艾利克辛试验采用材料胀形深度胀形深度h值作为衡量胀形工艺的性能指标。在试验,材料向凹模孔中有一定的流入,并非纯胀形,略带一点拉深工艺的特点,比较接近于实际生产的胀形工艺,因此,其试验数据比较反映实际,由于操作简单,所以应用较广。试验装置见图1-7,标准的杯突值如图1-8所示。我国标准见国标GB4156-1984金属杯突试验。图 1-7 艾利克辛实验图

1-8 标准杯突值 2.液压胀形试验用液压胀形法评定材料的纯胀形性是比较好的,试验装置简图如图1-9所示。试验参数用极限胀形系数表示,

即 (1-3) 式中—开始产生裂纹时的高

度;—模口半径。极限胀形系数K值越大,材料的胀形性能越好。图1-9 液压胀形实验 3.KWI扩孔试

验作为评价材料翻边性能的试验方法,是采用带有内孔直径为的圆形毛坯。在图1-10所示的模具中进行扩孔,直径内孔边缘出现裂纹为止。测定此时的内孔直径,并用下式计算极限扩孔系数λ % 式中λ值越大,材料扩孔性能越好。 4.Swift杯形件拉深试验 Swift试验是以求极限拉深比LDR作为评定板材拉深性能的试验方法,我国采用 JB4409.3-1988称为冲杯试验。试验用模具如图1-11所示。图1-10 KWI扩孔试验简图图1-11 求 LDR的试验方法 1-凸模 2-压力圈 3-凹模 4-试样试验时,用不同直径的平板毛坯置于模具中,按规定的条件进行试验。确定出不发生破裂所能拉深成形件的最大毛坯直径与凸模直径之比,此比值称极限拉深比。通常用LDR表示,即 LDR值越大,板材的拉深性能就越好,这种方法简单易行,缺点是压边力不能准确地给定,影响试验值的准确性。 5.拉深力对比试验(TZP试验)图1-12所示为JB4409.2-1988薄钢板 TZP试验方法的示意图。试验模具的凸模直径d与试片直径的比例可采用。试验时,当拉深力越过最大拉深力后,加大压边力,使试片外圈完全压死,然后再往下拉深,这时拉深力急剧上升,直至拉裂,测得破裂点的拉深力,采用指标TZP来评定材料的拉深工艺性能,即 TZP值越大时,说明最大拉深力与拉断力之差越大,工艺稳定性越好,板材拉深性能越好。图1-12 TZP拉深力对比试验 a)试验方法 b)拉深力-行程的关系 c)TZP试

验图1-13 锥形件拉深试验方法 1-球形冲头 2-支撑圆 3-凹模 4-试样 6.福井锥形杯成形试

验图1-13所示为

JB4409.6-1988薄钢板锥形杯试验方法的示意图。试验时,试样放在锥形凹模孔内,钢球压入试样成形为锥杯,锥杯上部靠材料流入凹模成形,为拉深成形;底部球面靠材料变薄成形,为胀形变形。钢球继续压入材料,直至杯底或其附近发生破裂时停止试验,测量杯中部最大直径和最小直径,其平均值称锥杯试验值CCV。

CCV值越大,拉深-胀形成形性能越好。表1-7为材料单向拉伸性能与冲压成形性能的关系。表1-7 板料单向拉伸性能与冲压成形性能的关系

中英文翻译---冲压成形的特点与板材冲压成形性能

Characteristics of Stamping and Properties of Sheet Metal Forming 1.overview Stamping is a kind of plastic forming process in which a part is produced by means of the plastic forming the material under the action of a die. Stamping is usually carried out under cold state, so it is also called stamping. Heat stamping is used only when the blank thickness is greater than 8~100mm. The blank material for stamping is usually in the form of sheet or strip, and therefore it is also called sheet metal forming. Some non-metal sheets (such as plywood, mica sheet, asbestos, leather)can also be formed by stamping. Stamping is widely used in various fields of the metalworking industry, and it plays a crucial role in the industries for manufacturing automobiles, instruments, military parts and household electrical appliances, etc. The process, equipment and die are the three foundational problems that needed to be studied in stamping. The characteristics of the sheet metal forming are as follows: (1)High material utilization (2)Capacity to produce thin-walled parts of complex shape. (3)Good interchangeability between stamping parts due to precision in shape and dimension. (4)Parts with lightweight, high-strength and fine rigidity can be obtained. (5)High productivity, easy to operate and to realize mechanization and automatization. The manufacture of the stamping die is costly, and therefore it only fits to mass production. For the manufacture of products in small batch and rich variety, the simple stamping die and the new equipment such as a stamping machining center, are usually adopted to meet the market demands. The materials for sheet metal stamping include mild steel, copper, aluminum, magnesium alloy and high-plasticity alloy-steel, etc. Stamping equipment includes plate shear punching press. The former shears plate into

C型冲床材料的冲压成形性能

C型冲床材料的冲压成形性能 卷料对冲压成形工艺的适应能力叫做卷料的冲压成形性能。卷料的冲压成形性能是一个综合性的概念,包括成形极限和成形质量两个方面。 (1)成形极限:在C型冲床冲压成形过程中板料在发生失稳前所能达到的最大变形程度。卷料在成形过程中可能出现两种失稳现象,一种叫拉伸失稳;即在拉应力作用下局部出现颈缩或拉裂;另一种失稳叫压缩失稳:即在压应力作用下起皱。对于不同的成形工序,成形极限是采用不同的极限变形系数来表示的。在变形坯料的内部,凡是受到过大拉应力作用的区域,就会使坯料局部严重变形,甚至拉裂而使冲件报废;只是受到过大压应力作用的区域,若超过了临界应力就会使坯料失稳而起皱。 (2)成形质量:C型冲床的冲压件的质量指标主要是指尺寸和形状精度、厚度变化、表面质量及成形后材料的物理性能等。冲压件不但要求具有所需形状,还必须保证产品质量。影响形状和尺寸精度的主要因案是回弹与劝变,因为在塑性变形过程总包含着一定的弹性变形,卸载后或多或少会出现回弹现象,使得尺寸和形状的精度降低。影响厚度变化的主要原因是冲压成形伴随有伸长或压缩变形,由塑性交形体积不变定律可知,势必导致厚度变化。影响表面质量的主要因素是中由于冲模间隙不合理或不均匀、模具表面祖糙以及材料粘附模具在C型冲床冲压过程所造成的擦伤。 (3)板料的冲压成形性能试验方法:卷料的冲压成形性能试验方法通常分为三种;力学试验、金属学试验(又称间接试验)、和工艺试验(直接试验)。力学试验方法有简单拉伸试验和双向拉伸试验等,用以测定板料的力学性能指标;间接试验方法有硬度试验、金相试验等,用以测定材料的硬度、表面粗糙度、化学成分等;直接试验方法有弯曲试验、胀形试验、拉深性能试验等,是用模拟实际生产中的某种冲压成形工艺的方法测定出相应的工艺参数。

金属板材的牌号及选用

金属板材的牌号及选用 我们通常所说的板材,是指薄钢板(带);而所谓的薄钢板,是指板材厚度小于4mm的钢板,它分为热轧板和冷轧板。众所周知,在家电制造领域里,冷轧板以及以冷轧板为原板的镀锌板的用途十分广泛,冰箱、空调、洗衣机、微波炉、燃气热水器等等的零件材料的选用都与它紧密相连。近年来,国外牌号钢材的大量涌入,丰富了国内钢材市场,使板材选用范围逐步扩大了,这对提高家电产品的制造质量,提供更丰富的款式和外观,起到了显而易见的作用;然而,由于国外的板材型号与我国板材牌号及标记不一致,再加上目前市面上很少有这方面专门介绍的资料和技术书籍,这给如何选用比较恰当的钢板带来了一定的困惑。 本文针对上述情况,介绍了在我国经常用到和使用最多的几个国家(日本、德国、俄罗斯)的冷轧薄钢板以及以冷轧板为原板的镀锌板的基本资料,并归纳出与我们国家钢板牌号的相互对应关系,借此提高我们对国外板材的识别和认知度,并能熟练选用之。 一、板材牌号及标记的识别 1.冷轧普通薄钢板 冷轧薄钢板是普通碳素结构钢冷轧板的简称,俗称冷板。它是由普通碳素结构钢热轧钢带,经过进一步冷轧制成厚度小于4mm的钢板。由于在常温下轧制,不产生氧化铁皮,因此,冷板表面质量好,尺寸精度高,再加之退火处理,其机械性能和工艺性能都优于热轧薄钢板,在许多领域里,特别是家电制造领域,已逐渐用它取代热轧薄钢板。 适用牌号:Q195、Q215、Q235、Q275;

符号:Q—普通碳素结构钢屈服点(极限)的代号,它是“屈”的第一个汉语拼音字母的大小写;195、215、235、255、275—分别表示它们屈服点(极限)的数值,单位:兆帕MPa(N/mm2);由于Q235钢的强度、塑性、韧性和焊接性等综合机械性能在普通碳素结构钢中属最了,能较好地满足一般的使用要求,所以应用范围十分广泛。 标记:尺寸精度—尺寸—钢板品种标准 冷轧钢板:钢号—技术条件标准 标记示例:B-0.5×750×1500-GB708-88 冷轧钢板:Q225-GB912-89 产地:鞍钢、武钢、宝钢等 2.冷轧优质薄钢板 同冷轧普通薄钢析一样,冷轧优质碳素结构钢薄钢板也是冷板中使用最广泛的薄钢板。冷轧优质碳素薄钢板是以优质碳素结构钢为材质,经冷轧制成厚度小于4mm的薄板。 适用牌号:08、08F、10、10F 符号:08、10—钢号开头的两位数字表示钢的含碳量,以平均碳含量×100表示;F—不脱氧的沸腾钢;b—半镇静钢,Z—一般脱氧的镇静钢(有时无字母表示)。 例如:08F表示其平均含碳量为0.08%的不脱氧沸腾钢;由于08F钢板的塑性好,冲压性能也好,大多用来制造一般有拉延结构的钣金件制品。 拉延级别:Z—最深拉延级,S—深拉延级,P—普通拉延级

哈工大研究生板材成型性能实验报告

Harbin Institute of Technology 实践环节实验报告 课程名称:金属板材成型性能测试与评价院系:材料科学与工程学院 学生:孙巍 学号: 14S109063 哈尔滨工业大学

实践环节-杯突实验报告 一、实验目的 1、学习确定板材胀形性能的实验方法; 2、了解金属薄板试验机的构造及操作。 二、实验内容 将板材用模具压好,冲头以一定的速度冲压板材,直至板材出现裂缝为止 三、实验原理 板材的冲压性能是指板材对各种冲压加工方法的适应能力。目前,有关板材冲压性能的试验方法,概括起来可分为直接试验和间接试验两类。而直接试验法又包括实物冲压试验和模拟试验两种。模拟试验,即把生产实际存在的冲压成形方法进行归纳与简化处理,消除许多过于复杂的因素,利用轴对称的简化了的成形方法,在保证实验中板材的变形性质与应力状态都与实际冲压成形相同的条件下进行的冲压性能的评定工作。为了保证模拟试验结果的可靠性与通用性,规定了十分具体的关于实验用工具的几何形状与尺寸、毛坯的尺寸、实验条件。杯突实验是目前应用较多,而且具有普遍意义的模拟试验方法之一。 杯突实验时,借助杯金属薄板试验机进行。用一规定的球状冲头向夹紧于规定球形凹模内的试样施加压力,直至试样产生微细裂纹为止,此时冲头的压入深度称为材料的杯突深度值。板材的杯突深度值反映板材对胀形的适应性,可作为衡量板材胀形、曲面零件拉深的冲

压性能指标。 四、实验设备及用具 试验机一台、杯突实验模具、游标卡尺、深度尺等。 五、实验步骤 1、先了解金属薄板试验机的结构、原理和操作方法,了解各按钮的作用; 2、装好模具; 3、把试样清洗干净,在试样与冲头接触的一面和冲头球面上涂上润滑油,把试样放在下模上。 4、将下模向上提起,压好试样。按下压边按钮,设定压边力。 5、按中心活塞上行按钮,注意观察试样。当试样圆顶附近出现有能够透光的裂缝时,迅速停止。 6、将下模向下移动,然后将冲头向下移动,取出试件。 7、实验完毕后,将模具拆下。

金属材料性能知识大汇总(超全)

金属材料性能知识大汇总 1、关于拉伸力-伸长曲线和应力-应变曲线的问题 低碳钢的应力-应变曲线 a、拉伸过程的变形:弹性变形,屈服变形,加工硬化(均匀塑性变形),不均匀集中塑性变形。 b、相关公式:工程应力σ=F/A0;工程应变ε=ΔL/L0;比例极限σP;弹性极限σ ε;屈服点σS;抗拉强度σb;断裂强度σk。 真应变e=ln(L/L0)=ln(1+ε) ;真应力s=σ(1+ε)= σ*eε指数e为真应变。 c、相关理论:真应变总是小于工程应变,且变形量越大,二者差距越大;真应力大于工程应力。弹性变形阶段,真应力—真应变曲线和应力—应变曲线基本吻合;塑性变形阶段两者出线显著差异。

2、关于弹性变形的问题 a、相关概念 弹性:表征材料弹性变形的能力 刚度:表征材料弹性变形的抗力 弹性模量:反映弹性变形应力和应变关系的常数,E=σ/ε;工程上也称刚度,表征材料对弹性变形的抗力。 弹性比功:称弹性比能或应变比能,是材料在弹性变形过程中吸收变形功的能力,评价材料弹性的好坏。 包申格效应:金属材料经预先加载产生少量塑性变形,再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 滞弹性:(弹性后效)是指材料在快速加载或卸载后,随时间的延长而产生的附加弹性应变的性能。 弹性滞后环:非理想弹性的情况下,由于应力和应变不同步,使加载线与卸载线不重合而形成一封闭回线。 金属材料在交变载荷作用下吸收不可逆变形功的能力,称为金属的循环韧性,也叫内耗 b、相关理论: 弹性变形都是可逆的。 理想弹性变形具有单值性、可逆性,瞬时性。但由于实际金属为多晶体并存在各种缺陷,弹性变形时,并不是完整的。 弹性变形本质是构成材料的原子或离子或分子自平衡位置产生可逆变形的反映

不锈钢材料的基本性能如下

薄壁不锈钢水管原材料基础知识(六) -- 不锈钢材料的基本性能 不锈钢水管(薄壁不锈钢管)具有很高的强度和良好的加工成型性能,使不锈钢水管能承受很高的水压(可达10MPA 以上),容易安装,而且抵御外来破坏的能力也远远高于PPR 管和铜管。 不锈钢材料的基本性能如下: 1、屈服强度(力学符号Rp0.2 ,英文缩写YS) Rp0.2=P0.2/F0 P0.2—拉伸试样塑性变形量为0.2%时承受的载荷 F0 —拉伸试样的原始截面积材料的屈服强度小,表示材料容易屈服,成形后 回弹小,贴模性和定形性好。 2、抗拉强度(力学符号Rm,英文缩写TS) Rm =Pb/F0 Pb—拉伸试样断裂前承受的最大载荷 F0—拉伸试样的原始截面积材料的抗拉强度大,材料变形过程中不容易被拉断,有利于塑性变形。 3、屈强比(Rp0.2/Rm ) 屈强比对材料冲压成形性能影响很大,屈强比小,材料由屈服到破裂的塑性变形阶段长,成形过程中发生断裂的危险性小,有利于冲压成形。一般来讲,较小的屈强比对材料在各种成形工艺中的抗破裂性都有利。 表6-1 常见不锈钢材料的屈强比

4、延伸率(力学符号A,英文缩写EL) 延伸率是材料从发生塑性变形到断裂的总的伸长长度与原有长度的比值,即:L— L。 A =100% L 式中A —材料的延伸率(%) L —试样被拉断时的长度(mm) L0 —拉伸前试样的长度(mm) 材料的延伸率大,就是材料允许的塑性变形程度大,抗破裂性好,对拉深、翻 边、胀形各类变形都有利。 一般来说,材料的翻边系数和胀形性能(埃里克森值)都与延伸率成正比关系。 5、不锈钢的冲压性能 对应的材料的性能为胀形成形性能、翻边成形性能、扩孔成形性能和弯曲 成形性能。要了解冲压成形性能首先要了解冲压成形工艺。基本的冲压成形加 工工艺有:拉深工艺、胀形工艺、翻边工艺(包括扩孔)、弯曲工艺。 1 )拉深成形工艺 拉深是利用专用模具将冲裁或剪裁后所得到的平板坯料制成开口的空心件的一种冲压工艺方法。 其特点是板料在凸模的带动下,可以向凹模内流动,即依靠材料的流动

金属材料的使用性能

金属材料的使用性能 1. 密度(比重):材料单位体积所具有的质量,即密度=质量/体积,单位为g/cm3。 2. 力学性能: 金属材料在外力作用下表现出来的各种特性,如弹性、塑性、韧性、强度、硬度等。 3. 强度: 金属材料在外力作用下抵抗变形和断裂的能力。屈服点、抗拉强度是极为重要的强度指标,是金属材料选用的重要依据。强度的大小用应力来表示,即用单位面积所能承受的载荷(外力)来表示。 4. 屈服点: 金属在拉力试验过程中,载荷不再增加,而试样仍继续发生变形的现象,称为“屈服”。产生屈服现象时的应力,即开始产生塑性变形时的应力,称为屈服点,用符号σs表示,单位为MPa。 5. 抗拉强度: 金属在拉力试验时,拉断前所能承受的最大应力,用符号σb表示,单位为MPa。 6. 塑性: 金属材料在外力作用下产生永久变形(去掉外力后不能恢复原状的变形),但不会被破坏的能力。 7. 伸长率: 金属在拉力试验时,试样拉断后,其标距部分所增加的长度与原始标距长度的百分比,称为伸长率。用符号δ,%表示。伸长率反映了材料塑性的大小,伸长率越大,材料的塑性越大。 8. 韧性: 金属材料抵抗冲击载荷的能力,称为韧性,通常用冲击吸收功或冲击韧性值来度量。 9. 冲击吸收功: 试样在冲击载荷作用下,折断时所吸收的功。用符号A?k表示,单位为J 。 10. 硬度: 金属材料的硬度,一般是指材料表面局部区域抵抗变形或破裂的能力。根据试验方法和适用范围的不同,可分为布氏硬度和洛氏硬度等多种。布氏硬度用符号HB表示:洛氏硬度用符号HRA、HRB或HRC表示。 部分常用钢的用途 (一)各牌号碳素结构钢的主要用途: 1.牌号Q195,含碳量低,强度不高,塑性、韧性、加工性能和焊接性能好。用于轧制薄板和盘条。冷、热轧薄钢板及以其为原板制成的镀锌、镀锡及塑料复合薄钢板大量用用屋面板、装饰板、通用除尘管道、包装容器、铁桶、仪表壳、开关箱、防护罩、火车车厢等。盘条则多冷拔成低碳钢丝或经镀锌制成镀锌低碳钢丝,用于捆绑、张拉固定或用作钢丝网、铆钉等。 2.牌号Q215,强度稍高于Q195钢,用途与Q195大体相同。此外,还大量用作焊接钢管、镀锌焊管、炉撑、地脚螺钉、螺栓、圆钉、木螺钉、冲制铁铰链等五金零件。

(金属板材不同变形方式下冲压成形极限减薄率测试及评价方

(金属板材不同变形方式下冲压成形极限减薄率测试及评价方 【一】工作简况 1.1任务来源 《金属板材不同变形方式下冲压成形极限减薄率测试及评价方法》团体标准是由中国汽车工程学会批准立项,任务号为2018-47。本标准由中国汽车轻量化技术创新战略联盟提出,由宝山钢铁股份有限公司、同济大学、泛亚汽车技术股份有限公司、河钢集团邯钢公司等共同起草。 1.2编制背景与目标 成形极限图和减薄率是评价材料成形性〔开裂、起皱〕的重要指标,零件不同变形区域呈现不同的应变状态,成形性与应变状态相关。成形极限图是数值仿真的重要评价依据,减薄率是汽车厂和零部件厂在评估材料成形性时通常会考虑的一个指标,而当前多数都考虑单一减薄率数值作为成形性评价指标,即同一材料〔强度级别〕只规定1个减薄率,极少考虑变形方式的妨碍。同时,零件的边部成形性与板材的边部质量相关,特别是一些先进超高强钢材料,尤其敏感。建立一种能够综合考虑不同变形方式及边部质量下材料极限厚度建薄率测试方法,是完善当前成形性评价方法的重要工作,对汽车厂和零部件厂开展零件设计和模具开发兼具指导意义 1.3要紧工作过程 2018年5月召开轻量化团体标准制定工作讨论会,确定待立标准 2018年6月-8月完成相关内容前期调研,初步确定标准的相关参数和指标 2018年8月15日参加标准立项评审,汇报标准的要紧内容,专家给予确信,并提出相关撰写意见 2018年9月-12月进行标准初稿撰写 2018年12月21日参加中国汽车学会组织的标准创新大会,汇报了本标准的背景、目标和要紧内容,听取参会代表意见 2019年1月-3月对不同材料开展标准方法试验,验证方法适用性 2019年4月-5月完成标准初稿,开展标准的意见征询和试用工作 【二】标准编制原那么和要紧内容 本标准制定的金属板材不同变形方式下冲压成形极限减薄率测试及评价方法,充分调研了国内主机厂和零部件厂对材料冲压可成形性评价方法的现状,并对国内外相关研究进展进行了检索,充分吸取、参考现行标准的良好应用经验,并结合标准起草组相关单位多年积存和对本标准约定方法的试验验证,本着科学性、通用性、指导性的原那么进行标准的编制。 科学性原那么,本标准提出的方法是在国内和国外学者进行科学研究的基础上,对其研发成果的应用延伸,对不同应变方式下的减薄率测试采纳何种方法以及边部开裂的实现和应变测量,均通过了相关理论分析和大量试验验证。 有用性原那么,本标准的需求来自于长期与主机厂和零部件厂冲压工程师,对其而言,减薄率是使用最为便利和现场最直观的评价指标。本标准建议的试验方法能够获得材料在不同变形方式包括边部的极限减薄率,试验方法在编制组内认可,且通过试验材料验证可行。 指导性原那么,本标准能够指导包括主机厂、零部件厂和材料供应商在内的技术人员基于常规成形极限图测量模具,获得所需板料的成形失效判据,试验方法和数据处理都相对简单,可操作性强,所测结果可用于数值仿真和现场冲压对零件成形性进行评判。

金属材料的工艺性能

金属材料的工艺性能 金属材料的工艺性能是指制造工艺过程中材料适应加工的性能,即指其铸造性能、锻造性能、焊接性能、切削加工性能和热处理工艺性能。 1、铸造性能 金属材料铸造成形获得优良铸件的能力称为铸造性能,用流动性、收缩性和偏析来衡量。1)流动性熔融金属的流动能力称为流动性。流动性好的金属容易充满铸型,从而获得外形完整和尺寸精确、轮廓清晰的铸件; 2)收缩性铸件在凝固和冷却的过程中,其体积和尺寸减少的现象称为收缩性。铸件用金属材料的收视率越小越好; 3)偏析铸锭或铸件化学成分和组织的不均匀现象称为偏析,偏析大会使铸件各部分的力学性能有很大的差异,降低铸件的质量。 被铸物质多为原为固态,但加热至液态的金属,如铜、铁、锡等,铸模的材料可以是沙,金属甚至陶瓷。南关菜市场东头前两年有两个人把大量的铝易拉罐盒熔化后倒进模子里铸成大大小小的铝锅、铝盆等 2、锻造性 工业革命前锻造是普遍的金属加工工艺,马蹄铁、冷兵器、铠甲均由各国的铁匠手锻造(俗称打铁),金银首饰加工、金属包装材料是锻造与冲压的总和。什么是锻造性能? 锻造性能:金属材料用锻压加工方法成形的适应能力称锻造性。锻造性主要取决于金属材料的塑性和变形抗力。塑性越好,变形抗力越小,金属的锻造性能越好。高碳钢不易锻造,高速钢更难。 (塑性:断裂前材料产生永久变形的能力。) 3、焊接性 金属材料对焊接加工的适应性成为焊接性。也就是在一定的焊接工艺条件下,获得优质焊接接头的难易程度。钢材的含碳量高低是焊接性能好坏的主要因素,含碳量和合金元素含量越高,焊接性能越差。 4、切削加工性能 切削加工性能一般用切削后的表面质量(用表面粗糙程度高低衡量)和道具寿命来表示。金属材料具有适当的硬度和足够的脆性时切削性良好。改变钢的化学成分(如加入少量铅、磷等元素)和进行适当的热处理(如低碳钢进行正火,高碳钢进行球化退火)可以提高刚的切削加工性能。(热处理的四把火:正火、退火、淬火、回火等,后面我们将进一步学习。)铜有良好的切削加工性能。 5、热处理工艺性能 钢的热处理工艺性能主要考虑其淬透性,即钢接受淬火的能力。(淬火能获得较高的硬度和光洁的表面),含锰、铬、镍等元素的合金钢淬透性比较好,碳钢的淬透性较差。铝合金的热处理要求较严,铜合金只有几种可以熔热处理强化。三国时诸葛亮带兵打仗,请当时的著名工匠蒲元为他造了3000把钢刀,蒲元用了(清水淬其锋)的热处理工艺,经过千锤百炼,使钢刀削铁如泥,从而大败敌军.有关方面的成语:趁热打铁、斩钉截铁等。

板料成形性能及冲压材料

板料冲压成形性能及冲压材料 板料的冲压成形性能 板料对各种冲压成形加工的适应能力称为板料的冲压成形性能。具体地说,就是指能否用简便地工艺方法,高效率地用坯料生产出优质冲压件。冲压成形性能是个综合性的概念,它涉及到的因素很多,其中有两个主要方面:一方面是成形极限,希望尽可能减少成形工序;另一方面是要保证冲压件质量符合设计要求。下面分别讨论。 (一)成形极限 在冲压成形中,材料的最大变形极限称为成形极限。对不同的成形工序,成形极限应采用不同的极限变形系数来表示。例如弯曲工序的最小相对弯曲半径、拉深工序的极限拉深系数等等。这些极限变形系数可以在各种冲压手册中查到,也可通过实验求得。 依据什么来确定极限变形系数呢?这要看影响成形过程正常进行的因素是哪些。冲压成形时外力可以直接作用在毛坯的变形区(例如胀形),也可以通过非变形区,包括已变形区(例如拉深)和待变形区(例如缩口、扩口等),将变形力传给变形区。因此,影响成形过程正常进行的因素,可能发生在变形区,也可能发生在非变形区。归纳起来,大致有下述几种情况: 1.属于变形区的问题 伸长类变形一般是因为拉应力过大,材料过度变薄,局部失稳而产生断裂,如胀形、翻孔、扩口和弯曲外区等的拉裂。压缩类变形一般是因为压应力过大,超过了板材的临界应力,使板材丧失稳定性而产生起皱,如缩口、无压边圈拉深等的起皱。 2.属于非变形区的问题 传力区承载能力不够:非变形区作为传力区时,往往由于变形力超过了该传力区的承载能力而使变形过程无法继续进行。也分为两种情况: 1)拉裂或过度变薄;例如拉深是利用已变形区作为拉力的传力区,若变形力超过已变形区的抗拉能力,就会在该区内发生拉裂或局部严重变薄而使工件报废。 2)失稳或塑性镦粗:例如扩口和缩口工序是利用待变形区作为压力的传力区,若变形力超过了管坯的承载能力,待变形区就会因失稳而压屈,或者发生塑性镦粗变形。 非传力区在内应力作用下破坏:非变形区不是传力区时,由于变形过程中金属流动的不均匀性,也可能产生过大的内应力而使之破坏。根据发生问题的部位不同,可分为: 1)待变形区拉裂或起皱:例如在盒形件的后续拉深工序中,待变形区金属流入变形区的速度不一致,靠直边部分流入速度快,角部金属流入速度慢。在这两部分金属的相互影响下,直边部分容易发生拉裂,角部则容易沿高度方向压屈起皱。 2)已变形区拉裂或起皱:如薄壁件反挤时,若金属从变形区流到已变形区的速度不均匀,则速度快的部位易因受附加压应力而起皱,速度慢的部位易受附加拉应力的作用而开裂。

冲压金属材料的性能

第一章材料的性能 教学重点: 材料的力学性能指标及其物理意义; 重点:材料的力学性能指标及其物理意义 一、弹性与刚度 评价材料力学性能最简单和最有效的办法就是测定材料的拉伸曲线。将标准试样(见图1-1)施加一单轴拉伸载荷,使之发生变形直至断裂,便可得到试样伸长率(试样原始标距的伸长与原始标距之比的百分率)随应力(试验期间任一时刻的力除以试样原始横截面积之商)变化的关系曲线,称为应力-应变曲线,图1-2为低碳钢的应力-应变曲线。 图1-1 圆形标准拉伸试样 图1-2 低碳钢的应力-应变曲线 在应力-应变曲线中,OA段为弹性变形阶段,此时卸掉载荷,试样恢复到原来尺寸。A点所对应的应力为材料承受最大弹性变形时的应力,称为弹性极限。其中OA’部分为一斜直线,应力与应变呈比例关系,A’点所对应的应力为保持这种比例关系的最大应力,称为比例极限。由于大多数材料的A点和A’点几乎重合在一起,一般不作区分。 在弹性变形范围内,应力与伸长率的比值称为弹性模量E。E实际上是OA线段的斜率: αtg E=(MPa),其物理意义是产生单位弹性变形时所需应力的大小。弹性模量是材料最稳定的性质之一,它的大小主要取

决于材料的本性,除随温度升高而逐渐降低外,其他强化材料的手段如热处理、冷热加工、合金化等对弹性模量的影响很小。材料受力时抵抗弹性变形的能力称为刚度,其指标即为弹性模量。可以通过增加横截面积或改变截面形状来提高零件的刚度。 二、强度与塑性 1、强度 材料在外力作用下抵抗变形和破坏的能力称为强度。根据加载方式不同,强度指标有许多种,如抗拉强度、抗压强度、抗弯强度、抗剪强度、抗扭强度等。其中以拉伸试验测得的屈服强度和抗拉强度两个指标应用最多。 ⑴ 屈服强度 在图1-2中, 应力超过B 点后, 材料将发生塑性变形。在BC 段,塑性变形发生而力不增加,这种现象称为屈服。B 点所对应的应力称为屈服强度(σ S )。屈服强度反映材料抵抗永久变形的能力,是最重要的零件设计指标之一。实际上多数材料的屈服强度不是很明显的, 因此规定拉伸时产生0.2% 残余延伸率所对应的应力为规定残余延伸强度,记为R r0.2(σ 0.2),如图1-3所示。(注:括弧内为旧标准符号,下同) ⑵ 抗拉强度R m (σb ) 图1-3 条件屈服强度的确定 图1-2中的CD 段为均匀塑性变形阶段。在这一阶段,应力随应变增加而增加,产生应变强化。变形超过D 点后,试样开始发生局部塑性变形,即出现颈缩,随应变增加,应力明显下降,并迅速在E 点断裂。D 点所对应的应力为材料断裂前所承受的最大应力,称为抗拉强度R m 。抗拉强度反映材料抵抗断裂破坏的能力,也是零件设计和评价材料的重要指标。 2、塑性 塑性是指材料受力破坏前承受最大塑性变形的能力,指标为断后伸长率和断面收缩率。 试样被拉断后,标距部分的残余伸长与原始标距之比的百分率称为断后伸长率A (δ)。 %10000?-= L L L A u (%l l l 1000 01?-=δ)。式中,)(00l L 为原始标距,)(1l L u 为断后标距。

材料冲压性能试验

材料冲压性能试验方法 一 前言 板料冲压性能是指板料对冲压加工方法的适应能力,如便于加工,容易得到高质量和高精度的冲压件,生产效率高,模具消耗低,不易产生废品等。 板材的冲压性能的试验方法很多,概括起来分为直接试验与间接试验两类。见图1-1。直接试验中板材的应力状态和变形情况与真实冲压时基本相同,所得结果也比较准确;而间接试验时板材的受力情况与变形特点与实际冲压时有一定的差别。所以,所得结果也只能间接的反映材料的冲压性能,有时侯还要借助于一定的分析方法才能做到。本文只介绍拉伸试验的试验方法. 图1-1 冲压性能试验方法 二 拉伸试验 试样标准 拉伸试验是评价板材的基本力学性能的主要试验方法。由于简单易行,所以是目前普遍采用的一种方法。 拉伸试验是利用图2-1(a)所示尺寸符合要求的标准拉伸试样,在拉伸机上进行。利用拉伸力行程测试与记录装置,得到图2-1(b)所示的拉伸曲线,经过必要的处理与计算,即可得到与成形性能有关的拉伸试验值:s σ、b σ、b s σσ/、δ、

u δ、n 、r 、r ?、φ等值。 (a) (b) 图2-1 拉伸试样与拉伸曲线 (a) 拉伸试样 (b) 拉伸曲线 1 常规拉伸试样(图2-1(a)) 常规拉伸试样又分为比例试样和非比例试样两种。 比例试样标距0l 按下式计算 00A K L = 式中 0A -----原始截面积; K -----系数,当65.5=K 时,为短比例试样;当3.11=K 时,为长比例试样。 非比例试样标距0L 与原始截面积无一定关系。 两种试样的标距L 应不小于2 00b L +,试样宽度0b 通常为10、15、20、30(mm)等。试样的宽度加工精度为:=0b 10、15()mm 时,偏差为)(2.0mm ±,在0L 范围 内最大与最小宽度之差不得大于()mm 1.0;=0b 20、30()mm 时,偏差为)(5.0mm ±,

(完整版)金属材料知识大全

金属材料是指金属元素或以金属元素为主构成的具有金属特性的材料的统称。包括纯金属、合金、金属材料金属间化合物和特种金属材料等。(注:金 属氧化物(如氧化铝)不属于金属材料) 1.意义 人类文明的发展和社会的进步同金属材料关系十分密切。继石器时代之后 出现的铜器时代、铁器时代,均以金属材料的应用为其时代的显著标志。现代,种类繁多的金属材料已成为人类社会发展的重要物质基础。 2.种类 金属材料通常分为黑色金属、有色金属和特种金属材料。 (1)黑色金属又称钢铁材料,包括含铁90%以上的工业纯铁,含碳2%~4%的铸铁,含碳小于 2%的碳钢,以及各种用途的结构钢、不锈钢、耐热钢、高温合金、不锈钢、精密合金等。广义的黑色金属还包括铬、锰及其合金。 (2)有色金属是指除铁、铬、锰以外的所有金属及其合金,通常分为轻金属、重金属、贵金属、半金属、稀有金属和稀土金属等。有色合金的强度和硬 度一般比纯金属高,并且电阻大、电阻温度系数小。 (3)特种金属材料包括不同用途的结构金属材料和功能金属材料。其中有通过快速冷凝工艺获得的非晶态金属材料,以及准晶、微晶、纳米晶金属材料等;还有隐身、抗氢、超导、形状记忆、耐磨、减振阻尼等特殊功能合金以及 金属基复合材料等。 3.性能 一般分为工艺性能和使用性能两类。所谓工艺性能是指机械零件在加工制 造过程中,金属材料在所定的冷、热加工条件下表现出来的性能。金属材料工 艺性能的好坏,决定了它在制造过程中加工成形的适应能力。由于加工条件不同,要求的工艺性能也就不同,如铸造性能、可焊性、可锻性、热处理性能、 切削加工性等。 所谓使用性能是指机械零件在使用条件下,金属材料表现出来的性能,它 包括力学性能、物理性能、化学性能等。金属材料使用性能的好坏,决定了它 的使用范围与使用寿命。在机械制造业中,一般机械零件都是在常温、常压和 非常强烈腐蚀性介质中使用的,且在使用过程中各机械零件都将承受不同载荷 的作用。金属材料在载荷作用下抵抗破坏的性能,称为力学性能(过去也称为 机械性能)。金属材料的力学性能是零件的设计和选材时的主要依据。外加载 荷性质不同(例如拉伸、压缩、扭转、冲击、循环载荷等),对金属材料要求 的力学性能也将不同。常用的力学性能包括:强度、塑性、硬度、冲击韧性、 多次冲击抗力和疲劳极限等。 金属材料特质

金属板材不同变形方式下冲压成形极限减薄率测试及评价方法

金属板材不同变形方式下冲压成形极限减薄率测试及评价方法 1适用范围 本规范规定了金属板材不同变形方式下成形极限减薄率测试的相关术语和定义、试验原理、参数定义、符号和说明、试验方法、试验环境、试验装备、试验过程、数据处理和试验报告要求等。适用于金属板材,包括金属钢板、铝合金、镁合金等冲压用板材的成形极限减薄率评价,适用金属板材厚度区间0.35-3.0mm。 2规范性引用文件 下列文件对于本技术规范的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有修改单)适用于本文件。 1)GB/T 1.1 规范化工作导则第1部分:规范的结构和编写; 2)GBT 15825.1-2008 金属薄板成形性能与试验方法第1部分:成形性能和指标; 3)GBT 15825.2-2008 金属薄板成形性能与试验方法第2部分:通用试验规程; 4)GBT 15825.3-2008 金属薄板成形性能与试验方法第3部分:拉深与拉深载荷试验; 5)GBT 24524-2009 金属材料薄板和薄带扩孔试验方法; 6)GBT 232-2010 金属材料弯曲试验方法(2011-6-1实施); 7)GBT 24171.1-2009 金属材料薄板和薄带成形极限曲线的测定第1部分:冲压车间成形极限图的测量及应用; 8)GBT 24171.2-2009 金属材料薄板和薄带成形极限曲线的测定第2部分:实验室成形极限曲线的测定; 9)GBT 228-2008 金属材料拉伸试验方法; 注:执行引用标准的最新版本,当引用标准与本标准发生不一致值,需要对本标准进行更新。

冲压成形工艺

冲压成形工艺 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

冲压成型资料 1 冲压成型工艺定义: 冲压工艺是通过模具对毛坯施加外力,使之产生塑性变形或分离,从而获得一定尺寸、形状和性能的工件的加工方法。冲压工艺的应用范围十分广泛,既可以加工金属板料、棒料,也可以加工多种非金属材料。由于加工通常是在常温下进行的,故又称为冷冲压。 2冲压工艺的特点: 2.1 用冷冲压加工方法可以得到形状复杂、用其他加工方法难以加工的工件,如薄壳零件等。冷冲压件的尺寸精度是由模具保证的,因此,尺寸稳定,互换性好。 2.2 材料利用率高,工件重量轻、刚性好、强度高、冲压过程耗能少。因此,工件的成本较低。 2.3 操作简单、劳动强度低、易于实现机械化和自动化、生产率高。 2.4 冲压加工中所用的模具结构一般比较复杂,生产周期较长、成本较高, 3 冲压材料的基本要求: 冲压所用的材料,不仅要满足产品设计的技术要求,还应当满足冲压工艺的要求和冲压后的加工要求 (如切削加工、电镀、焊接等)。冲压工艺对材料的基本要求主要有: 3.1 对冲压成形性能的要求: 对于成形工序,为了有利于冲压变形和制件质量的提高,材料应具有:良好的塑性(均匀伸长率δb高)、屈强比(σs/σb)小、板厚方向性系数大、板平面方向性系数小、材料的屈服强度与弹性模量的比值 (σs /E)小。

对于分离工序,并不需要材料有很好的塑性,但应具有一定的塑性。塑性越好的材料,越不易分离。 3.2 对材料厚度公差的要求: 材料的厚度公差应符合国家规定标准。因为一定的模具间隙适用于一定厚度的材料,材料厚度公差太大,不仅直接影响制件的质量,还可能导致模具和冲床的损坏。 3.3 对表面质量的要求 材料的表面应光洁平整,无分层和机械性质的损伤,无锈斑、氧化皮及其它附着物。表面质量好的材料,冲压时不易破裂,不易擦伤模具,工件表面质量也好。 4 冲压常用材料: 冷冲压用材料大部分是各种规格的板料、带料和块料。板料的尺寸较大,一般用于大型零件的冲压。对于中小型零件,多数是将板料剪裁成条料后使用。带料 (又称卷料)有各种规格的宽度,展开长度可达几十米,适用于大批量生产的自动送料,材料厚度很小时也可做成带料供应。块料只用于少数钢号和价钱昂贵的有色金属的冲压。 4.1 黑色金属普通碳素结构钢、优质碳素结构钢、合金结构钢、碳素工具钢、不锈钢、电工硅钢等。 对冷轧钢板,根据国家标准GB708-88规定,按轧制精度(钢板厚度精度)可分为A、B级: A──较高精度; B──普通精度。

机械常用金属材料与特性

1、45——优质碳素结构钢,是最常用中碳调质钢。(欢迎关注自动化爱好者论坛,更多学习资料,更多交流者) 主要特征: 最常用中碳调质钢,综合力学性能良好,淬透性低,水淬时易生裂纹。小型件宜采用调质处理,大型件宜采用正火处理。应用举例: 主要用于制造强度高的运动件,如透平机叶轮、压缩机活塞。轴、齿轮、齿条、蜗杆等。焊接件注意焊前预热,焊后消除应力退火。 2、Q235(A3钢)——最常用的碳素结构钢。 主要特征: 具有高的塑性、韧性和焊接性能、冷冲压性能,以及一定的强度、好的冷弯性能。应用举例: 广泛用于一般要求的零件和焊接结构。如受力不大的拉杆、连杆、销、轴、螺钉、螺母、套圈、支架、机座、建筑结构、桥梁等。 3、40Cr——使用最广泛的钢种之一,属合金结构钢。 主要特征: 经调质处理后,具有良好的综合力学性能、低温冲击韧度及低的缺口敏感性,淬透性良好,油冷时可得到较高的疲劳强度,水冷时复杂形状的零件易产生裂纹,冷弯塑性中等,回火或调质后切削加工性好,但焊接性不好,易产生裂纹,焊前应预热到100~150℃,一般在调质状态下使用,还可以进行碳氮共渗和高频表面淬火处理。应用举例:调质处理后用于制造中速、中载的零件,如机床齿轮、轴、蜗杆、花键轴、顶针套等,调质并高频表面淬火后用于制造表面高硬度、耐磨的零件,如齿轮、轴、主轴、曲轴、心轴、套筒、销子、连杆、螺钉螺母、进气阀等,经淬火及中温回火后用于制造重载、中速冲击的零件,如油泵转子、滑块、齿轮、主轴、套环等,经淬火及低温回火后用于制造重载、低冲击、耐磨的零件,如蜗杆、主轴、轴、套环等,碳氮共渗处即后制造尺寸较大、低温冲击韧度较高的传动零件,如轴、齿轮等。 4、HT150——灰铸铁应用举例:齿轮箱体,机床床身,箱体,液压缸,泵体,阀体,飞轮,气缸盖,带轮,轴承盖等 5、35——各种标准件、紧固件的常用材料 主要特征: 强度适当,塑性较好,冷塑性高,焊接性尚可。冷态下可局部镦粗和拉丝。淬透性低,正火或调质后使用应用举例: 适于制造小截面零件,可承受较大载荷的零件:如曲轴、杠杆、连杆、钩环等,各种标准件、紧固件

金属板材的冲压成形性能

金属板材的冲压成形性能 作者:旭日笑出自:旭日笑浏览/评论:845/0 日期:2007年7月18日 16:28 金属板材的成形性能是指板材对冲压成形工艺的适应能力。板材成形性能的好坏会直接影响到冲压工艺过程,生产率,产品质量和生产成本。板料的冲压成形性能好,对冲压成形方法的适应性就强,就可以采用简便工艺,高生产率设备,生产出优质低成本的冲压零件。对冲压成形件来说,不产生破裂是基本前提,同时对它的表面质量和形状尺寸精度也有一定要求,故板料冲压成形性应包括:抗破裂性,贴模性和形状冻结性能等几个方面。所谓冲压成形就是板材可成形能力的总称,或者叫做广义的冲压成形性能。广义成形性能中的抗破裂性能,可视为狭义的冲压成形性能。板料在成形过程中,一是由于起皱,塌陷和鼓包等缺陷而不能与模具完全贴合;另一方面因为回弹,造成零件脱模后较大的形状和尺寸误差。通常将板材冲压成形中取得与模具形状一致的能力,称为贴模性;而把零件脱模后保持其既得形状和尺寸的能力,称为形状冻结性。通常把材料开始出现破裂时的极限变形程度作为板料冲压成形性能的判定尺度。目前对抗破裂性的研究已取得了不少成果。根据把冲压成形基本工序依其变形区应力应变的特点分为伸长类(拉伸类)与压缩类两个基本类别的理论,可以把这种冲压成形的分类与冲压成形性能的分类建立如表1-3所示的对应关系。板料冲压成形的试验方法有多种,概括起来分为直接试验和间接试验两类。直接试验中板材的应力和变形情况与真实冲压基相同,所得的结果也比较准确;而间接试验时板材的受力情况与变形特点却与实际冲压时有一定的差别。所以,所得的结果也只能间接地反映板材的冲压性能,有时还要借助于一定的分析方法才能做到。常用的方法为:直接试验中的模拟试验和间接试验中的拉伸试验。表1-3 冲压成形性能的分类冲压成形类别成形性能类别提高极限变形程度的措施伸长类冲压成形(翻边、胀形等) 伸长类成形性能(翻边性能、胀形性能等) 1) 提高材料的塑性 2) 减少变形不均匀程度 3) 消除变形区局部硬化层和应力集中 压缩类冲压成形(拉深、缩口等) 压缩类成形性能(拉深性能、缩口性能等) 1) 降低变形区的变形抗力、摩擦阻力 2) 防止变形区的压缩失稳(起皱) 3) 提高传力区的承载能力 复合类冲压成形(弯曲、曲面零件拉深成形等) 复合类成形性能 (弯曲性能等) 根据所述成形类别的主次,分别采取相应措施 一、板材拉伸试验拉伸试验是评价板材的基本力学性能用成形性能的主要试验方法。由于简单可行,所以是目前普遍采用的一种方法。由单向拉伸试验所能获得的材料特性值如图1-3所示。图1-3 单向拉深实验所得到的材料特性值示意图拉伸试验与冲压成形性能有密切关系的几项主要性能参数如 下: 1) 称屈强比较小的屈强比几乎对所有的冲压成形都是有利的。屈强比小,对压缩类成形工艺有利。拉深时,如果板材的屈服点低,材料起皱的趋势小,防止起皱所必需的压边力和摩擦损失也会降低,对提高极限变形程度有利。例如,低碳钢的时,极限拉深系数 m=0.48~ 0.5 65Mn 的时,极限拉深系数则为m=0.68~ 0.7 在伸长类成形工艺中,如胀形,拉型,拉弯,曲面形状的成形等,当低时,为消除零件的松弛等弊病和为使零件的形

金属材料的使用性能

金属材料的性能及比较 一、金属材料性能 (2) 二、常用金属性能介绍 (5) 1.铜的性质 (5) 2.黄金的物化性质 (7) 3.铝的性质 (10) 4.铬的性质与用途 (12)

一、金属材料性能 金属材料的性能可分为使用性能和工艺性能(又称为加工性能)。 使用性能包括:1、物理性能(比重、熔点、导电性、导热性、热膨胀性、磁性等);2、化学性能(耐腐蚀性、耐氧化性等);3、机械或力学性能(强度、塑性、硬度、韧性、疲劳强度等)。 工艺性能(加工性能):1、铸造性能;2、锻造性能;3、焊接性能;4、切削加工性能;5、弯曲;6、热处理性能等。 1、比重:比重是一种物体的重量与同体积的水的重量的比值,常用符号γ表示,以克/厘米3为单位。 2、熔点:金属和合金从固体状态向液体状态转变时的熔化温度叫做熔点。 3、导电性:金属传导电流的性能叫做导电性。衡量金属导电性能的指标是导电率γ(又叫导电系数)和电阻率ρ(又叫电阻系数),导电率与电阻率互成反比,导电率越大,则电阻越小。 4、导热性:金属传导热量的性能叫导热性。它反映了金属在加热和冷却时的导热能力,在金属中银和铜的导热性最好。 5、热膨胀性:金属温度升高时,产生体积胀大的现象,称为热膨胀性。用热膨胀系数a表示,它的单位是:毫米/毫米?℃或1/℃,即金属温度每升高1℃其单位长度所伸长的长度(毫米)。 6、磁性:金属被磁场磁化或吸引的性能叫磁性,用导磁率(μ)表示。 根据金属材料在磁场中受磁化的程度,可把它们分成: (1)铁磁性材料;导磁率特别大的金属材料它在外加磁场中能强烈地被磁化。如铁、钴、镍、钆等。铁磁材料加热到某一温度就会失去磁性。 (2)顺磁性材料:导磁率大于1的金属材料称为顺磁性材料,它在外加磁场中只是微弱地被磁化。如:锰、铬、钼、钒、镁、钙、铝、锇、锂、铱等。(3)抗磁性材料:导磁率小于1的材料称抗磁材料,它能抗拒或削弱外加磁场对材料本身的磁化作用。如:铜、金、银、铅、锌、铋、汞、钛、铍等。 7、比热:单位质量的金属温度升高或降低1/℃时,所吸收的热量,叫金属的比热。用符号C表示。 8、腐蚀性:金属材料和周围环境发生化学反映和受到物理作用而引起的破坏,

相关主题
文本预览
相关文档 最新文档