当前位置:文档之家› 中英文翻译---冲压成形的特点与板材冲压成形性能

中英文翻译---冲压成形的特点与板材冲压成形性能

中英文翻译---冲压成形的特点与板材冲压成形性能
中英文翻译---冲压成形的特点与板材冲压成形性能

Characteristics of Stamping and Properties of

Sheet Metal Forming

1.overview

Stamping is a kind of plastic forming process in which a part is produced by means of the plastic forming the material under the action of a die. Stamping is usually carried out under cold state, so it is also called stamping. Heat stamping is used only when the blank thickness is greater than 8~100mm. The blank material for stamping is usually in the form of sheet or strip, and therefore it is also called sheet metal forming. Some non-metal sheets (such as plywood, mica sheet, asbestos, leather)can also be formed by stamping.

Stamping is widely used in various fields of the metalworking industry, and it plays a crucial role in the industries for manufacturing automobiles, instruments, military parts and household electrical appliances, etc.

The process, equipment and die are the three foundational problems that needed to be studied in stamping.

The characteristics of the sheet metal forming are as follows:

(1)High material utilization

(2)Capacity to produce thin-walled parts of complex shape.

(3)Good interchangeability between stamping parts due to precision in shape

and dimension.

(4)Parts with lightweight, high-strength and fine rigidity can be obtained.

(5)High productivity, easy to operate and to realize mechanization and automatization.

The manufacture of the stamping die is costly, and therefore it only fits to mass production. For the manufacture of products in small batch and rich variety, the simple stamping die and the new equipment such as a stamping machining center, are usually adopted to meet the market demands.

The materials for sheet metal stamping include mild steel, copper, aluminum, magnesium alloy and high-plasticity alloy-steel, etc.

Stamping equipment includes plate shear punching press. The former shears plate into

strips with a definite width, which would be pressed later. The later can be used both in shearing and forming.

2.Characteristics of stamping forming

There are various processes of stamping forming with different working patterns and names. But these processes are similar to each other in plastic deformation. There are following conspicuous characteristics in stamping:

(1).The force per unit area perpendicular to the blank surface is not large but is enough to cause the material plastic deformation. It is much less than the inner stresses on the plate plane directions. In most cases stamping forming can be treated approximately as that of the plane stress state to simplify vastly the theoretical analysis and the calculation of the process parameters.

(2).Due to the small relative thickness, the anti-instability capability of the blank is weak under compressive stress. As a result, the stamping process is difficult to proceed successfully without using the anti-instability device (such as blank holder). Therefore the varieties of the stamping processes dominated by tensile stress are more than dominated by compressive stress.

(3).During stamping forming, the inner stress of the blank is equal to or sometimes less than the yield stress of the material. In this point, the stamping is different from the bulk forming. During stamping forming, the influence of the hydrostatic pressure of the stress state in the deformation zone to the forming limit and the deformation resistance is not so important as to the bulk forming. In some circumstances, such influence may be neglected. Even in the case when this influence should be considered, the treating method is also different from that of bulk forming.

(4).In stamping forming, the restrain action of the die to the blank is not severs as in the case of the bulk forming (such as die forging). In bulk forming, the constraint forming is proceeded by the die with exactly the same shape of the part. Whereas in stamping, in most cases, the blank has a certain degree of freedom, only one surface of the blank contacts with the die. In some extra cases, such as the forming of the blank on the

deforming zone contact with the die. The deformation in these regions are caused and controlled by the die applying an external force to its adjacent area.

Due to the characteristics of stamping deformation and mechanics mentioned above, the stamping technique is different form the bulk metal forming:

(1).The importance or the strength and rigidity of the die in stamping forming is less than that in bulk forming because the blank can be formed without applying large pressure per unit area on its surface. Instead, the techniques of the simple die and the pneumatic and hydraulic forming are developed.

(2).Due to the plane stress or simple strain state in comparison with bulk forming, more research on deformation or force and power parameters has been done. Stamping forming can be performed by more reasonable scientific methods. Based on the real time measurement and analysis on the sheet metal properties and stamping parameters, by means of computer and some modern testing apparatus, research on the intellectualized control of stamping process is also in proceeding.

(3).It is shown that there is a close relationship between stamping forming and raw material. The research on the properties of the stamping forming, that is, forming ability and shape stability, has become a key point in stamping technology development, but also enhances the manufacturing technique of iron and steel industry, and provides a reliable foundation for increasing sheet metal quality.

3.Categories of stamping forming

Many deformation processes can be done by stamping, the basic processes of the stamping can be divided into two kinds: cutting and forming.

Cutting is a shearing process that one part of the blank is cut from the other. It mainly includes blanking, punching, trimming, parting and shaving, where punching and blanking are the most widely used. Forming is a process that one part of the blank has some displacement from the other. It mainly includes deep drawing, bending, local forming, bulging, flanging, necking, sizing and spinning.

In substance, stamping forming is such that the plastic deformation occurs in the

deformation zone of the stamping blank caused by the external force. The stress state and deformation characteristic of the deformation zone are the basic factors to decide the properties of the stamping forming. Based on the stress state and deformation characteristics of the deformation zone, the forming methods can be divided into several categories with the same forming properties and be studied systematically.

The deformation zone in almost all types of stamping forming is in the plane stress state. Usually there is no force or only small force applied on the blank surface. When is assumed that the stress perpendicular to the blank surface equals to zero, two principal stresses perpendicular to each other and act on the blank surface produce the plastic deformation of the material. Due to the small thickness of the blank, it is assumed approximately the two principal stresses distribute uniformly along the thickness direction. Based on this analysis, the stress state and the deformation characteristics of the deformation zone in all kinds of stamping forming can be denoted by the points in the coordinates of the plane principal stresses and the coordinates of the corresponding plane principal strains.

4.Raw materials for stamping forming

There are a lot of raw materials used in stamping forming, and the properties of these materials may have large difference. The stamping forming can be succeeded only by determining the stamping method, the forming parameters and the die structures according to the properties and characteristics of the raw materials. The deformation of the blank during stamping forming has been investigated quite thoroughly. The relationships between the material properties decided by the chemistry component and structure of the material and the stamping forming has been established clearly. Not only the proper material can be selected based on the working condition and usage demand, but also the new material can be developed according to the demands of the blank properties during processing the stamping part. This is an important domain in stamping forming research. The research on the material properties for stamping forming is as follows:

(1).Definition of the stamping property of the material.

(2).Method to judge the stamping property of the material, find parameters to express the definitely material property of the stamping forming, establish the relationship between the property parameters and the practical stamping forming, and investigate the testing methods of the property parameters.

(3).Establish the relationship among the chemical component, structure, manufacturing process and stamping property.

The raw materials for stamping forming mainly include various metals and nonmetal plate. Sheet metal includes both ferrous and nonferrous metals. Although a lot of sheet metals are used in stamping forming, the most widely used materials are steel, stainless steel, aluminum alloy and various composite metal plates.

5.Stamping forming property of sheet metal and its assessing method The stamping forming property of the sheet metal is the adaptation capability of the sheet metal to stamping forming. It has crucial meaning to the investigation of the stamping forming property of the sheet metal. In order to produce stamping forming parts with most scientific, economic and rational stamping forming process and forming parameters, it is necessary to understand clearly the properties of the sheet metal, so as to utilize the potential of the sheet metal fully in the production. On the other hand, to select plate material accurately and rationally in accordance with the characteristics of the shape and dimension of the stamping forming part and its forming technique is also necessary so that a scientific understanding and accurate judgment to the stamping forming properties of the sheet metal may be achieved.

There are direct and indirect testing methods to assess the stamping property of the sheet metal.

Practicality stamping test is the most direct method to assess stamping forming property of the sheet metal. This test is done exactly in the same condition as actual production by using the practical equipment and dies. Surely, this test result is most reliable. But this kind of assessing method is not comprehensively applicable, and cannot be shared as a commonly used standard between factories.

The simulation test is a kind of assessing method that after simplifying and summing up actual stamping forming methods, as well as eliminating many trivial factors, the stamping properties of the sheet metal are assessed, based on simplified axial-symmetric forming method under the same deformation and stress states between the testing plate and the actual forming states. In order to guarantee the reliability and generality of simulation results, a lot of factors are regulated in detail, such as the shape and dimension of tools for test, blank dimension and testing conditions(stamping velocity, lubrication method and blank holding force, etc).

Indirect testing method is also called basic testing method its characteristic is to connect analysis and research on fundamental property and principle of the sheet metal during plastic deformation, and with the plastic deformation parameters of the sheet metal in actual stamping forming, and then to establish the relationship between the indirect testing results(indirect testing value) and the actual stamping forming property (forming parameters). Because the shape and dimension of the specimen and the loading pattern of the indirect testing are different from the actual stamping forming, the deformation characteristics and stress states of the indirect test are different from those of the actual one. So, the results obtained form the indirect test are not the stamping forming parameters, but are the fundamental parameters that can be used to represent the stamping forming property of the sheet metal.

冲压成形的特点与板材冲压成形性能

1.概述

冲压是通过模具使板材产生塑性变形而获得成品零件的一次成形工艺方法。由于冲压通常在冷态下进行,因此也称为冷冲压。只有当板材厚度超过8~100mm时,才采用热冲压。冲压加工的原材料一般为板材或带材,故也称板材冲压。某些非金属板材(如胶木板、云母片、石棉、皮革等)亦可采用冲压成形工艺进行加工。

冲压广泛应用于金属制品各行业中,尤其在汽车、仪表、军工、家用电器等工业中占有极其重要的地位。

冲压成形需研究工艺设备和模具三类基本问题。

板材冲压具有下列特点:

(1).材料利用率高。

(2).可加工薄壁、形状复杂的零件。

(3).冲压件在形状和尺寸方面的互换性好。

(4).能获得质量轻而强度高、刚性好的零件。

(5).生产率高,操作简单,容易实现机械化和自动化。

冲压模具制作成本高,因此适合大批量生产。对于小批量、多品种生产,常采用简易冲模,同时引进冲压加工中心等新型设备,以满足市场求新求变的需求。

板材冲压常用的金属材料有低碳钢、铜、铝、镁合金及高塑性的合金刚等。如前所述,材料形状有板材和带材。

冲压生产设备有剪床和冲床。剪床是用来将板材剪切成具有一定宽度的条料,以供后续冲压工序使用,冲床可用于剪切及成形。

2.冲压成行的特点

生产时间中所采用的冲压成形工艺方法有很多,具有多种形式饿名称,但塑性变形本质是相同的。冲压成形具有如下几个非常突出的特点。

(1).垂直于板面方向的单位面积上的压力,其数值不大便足以在板面方向上使板材产生塑性变形。由于垂直于板面方向上的单位面积上压力的素质远小于板面方向上的内应力,所以大多数的冲压变形都可以近似地当作平面应力状态来处理,使其变

形力学的分析和工艺参数的计算大呢感工作都得到很大的简化。

(2).由于冲压成形用的板材毛胚的相对厚度很小,在压应力作用下的抗失稳能力也很差,所以在没有抗失稳装置(如压边圈等)的条件下,很难在自由状态下顺利地完成冲压成形过程。因此,以拉应力作用为主的伸长类冲压成形过程多于以压应力作用为主的压缩类成形过程。

(3).冲压成形时,板材毛胚内应力的数值等于或小于材料的屈服应力。在这一点上,冲压成形与体积成形的差别很大。因此,在冲压成形时变形区应力状态中的静水压力成分对成形极限与变形抗力的影响,已失去其在体积成形时的重要程度,有些情况下,甚至可以完全不予考虑,即使有必要考虑时,其处理方法也不相同。

(4).在冲压成形时,模具对板材毛胚作用力所形成的约束作用较轻,不像体积成形(如模锻)是靠与制件形状完全相同的型腔对毛胚进行全面接触而实现的强制成形。在冲压成形中,大多数情况下,板材毛胚都有某种程度的自由度,常常是只有一个表面与模具接触,甚至有时存在板材两侧表面都有于模具接触的变形部分。在这种情况下,这部分毛胚的变形是靠模具对其相邻部分施加的外力实现其控制作用的。例如,球面和锥面零件成形时的悬空部分和管胚端部的卷边成形都属这种情况。

由于冲压成形具有上述一些在变形与力学方面的特点,致使冲压技术也形成了一些与体积成形不同的特点。

由于不需要在板材毛的表面施加很大的单位压力即可使其成形,所以在冲压技术中关于模具强度与刚度的研究并不十分重要,相反却发展了学多简易模具技术。由于相同原因,也促使靠气体或液体压力成形的工艺方法得以发展。

因冲压成形时的平面应力状态或更为单纯的应变状态(与体积成形相比),当前对冲压成形汇中毛胚的变形与力能参数方面的研究较为深入,有条件运用合理的科学方法进行冲压加工。借助于电子计算机与先进的测试手段,在对板材性能与冲压变形参数进行实时测量与分析基础上,实现冲压过程智能化控制的研究工作也在开展。

人们在对冲压成形过程有离开较为深入的了解后,已经认识到冲压成型与原材料有十分密切的关系。所以,对板材冲压性能即成形性与形状稳定性的研究,目前已成为冲压技术的一个重要内容。对板材冲压性能的研究工作不仅是冲压技术发展的需要,而且也促进了钢铁工业生产技术的发展,为其提高板材的质量提供了一个可靠的基础与依据。

3.冲压变形的分类

冲压变形工艺可完成多种工序,其基本工序可分为分离工序和变形工序两大类。

分离工序是使胚料的一部分与另一部分相互分离的工艺方法,主要有落料、冲孔、切边、剖切、修整等。其中又以冲孔、落料应用最广。变形工序是使胚料的一部分相对于另一部分产生位移而不破裂的工艺方法,主要有拉深、弯曲、局部成形、胀形、翻边、缩径、校形、旋压等。

从本质上看,冲压成形就是毛胚的变形区在外力的作用下产生相应的塑性变形,所以变形区内的应力状态和变形特点景象的冲压成形分类,可以把成形性质相同的成形方法概括成同一个类型并进行体系化的研究。

绝大多数冲压成形时毛胚变形区均处于平面应力状态。通常认为在板材表面上不受外力的作用,即使有外力作用,其数值也是较小的,所以可以认为垂直于板面方向上的应力为零,使板材毛胚产生塑性变形的是作用于板面方向上相互的两个主应力。由于板厚较小,通常都近似地认为这两个主应力在厚度方向上是均匀分布的。基于这样的分析,可以把各种形式冲压成型中的毛陪变形区的受力状态与变形特点,在平面应力的应力坐标系中与相应的两向应变坐标系中以应力与应变坐标决定的位置来表示。

4.冲压用原材料

冲压加工用原材料有很多种,它们的性能也有很大的差别,所以必须根据原材料的性能与特点,采用不同的冲压成形方法、工艺参数和模具结构,才能达到冲压加工的目的。由于人们对冲压成形过程板材毛胚的变形行为有了较为深入的认识,已经相当清楚的建立了由原材料的化学成分、组织等因素所决定的材料性能与冲压成形之间的关系,这就使原材料生产部门不但按照冲压件的工作条件与使用要求进行原材料的设计工作,而且也根据冲压件加工过程对板材性能的要求进行新型材料的开发工作,这是冲压技术在原材料研究方面的一个重要方向。对冲压用原材料冲压性能方面的研究工作有:

(1)原材料冲压性能的含义。

(2)判断原材料冲压性能的科学方法,确定可以确切反映材料冲压性能的参数,建立冲压性能的参数与实际冲压成形间的关系,以及冲压性能参数的测试方法等。

(3)建立原材料的化学成分、组织和制造过程与冲压性能之间的关系。

冲压用原材料主要是各种金属与非金属板材。金属板材包括各种黑色技术和有色金属板材。虽然在冲压生产中所用金属板材的种类很多,但最多的原材料蛀牙是钢板、不锈钢板、铝合金板及各种复合金属板。

5.板材冲压性能及其鉴定方法

板材是指对冲压加工的适应能力。对板材冲压性能的研究具有飞行重要的意义。为了能够运用最科学与最经济合理的冲压工艺过程与工艺参数制造出冲压零件,必须对作为加工对象的板材的性能具有十分清楚的了解,这样才有可能充分地利用板材在加工方面的潜在能力。另一方面,为了能够依据冲压件的形状与尺寸特点及其所需的成形工艺等基本因素,正确、合理地选用板材,也必须对板材的冲压性能有一个科学的认识与正确的判断。

评定板材冲压性能的方法有直接试验法与间接试验法。

实物冲压试验是最直接的板材冲压性能的评定方法。利用实际生产设备与模具,在与生产完全相同的条件下进行实际冲压零件的性能评定,当然能够的最可靠的结果。但是,这种评定方法不具有普遍意义,不能作为行业之间的通用标准进行信息的交流。

模拟试验是把生产中实际存在的冲压成形方法进行归纳与简单化处理,消除许多过于复杂的因素,利用轴对称的简化了的成形方法,在保证试验中板材的变形性质与应力状态都与实际冲压成形相同的条件下进行的冲压性能的评定工作。为了保证模拟试验结果的可靠性与通用性,规定了私分具体的关于试验用工具的几何形状与尺寸、毛胚的尺寸、试验条件(冲压速度、润滑方法、压边力等)。

间接试验法也叫做基础试验法。间接试验法的特点是:在对板材在塑性变形过程中所表现出的基本性质与规律进行分析与研究的基础上,进一步把它和具体的冲压成形中板材的塑性变形参数联系起来,建立间接试验结果(间接试验值)与具体的冲压成形性能(工艺参数)之间的相关性。由于间接试验时所用试件的形状与尺寸以及加载的方式等都不同于具体的冲压成形过程,所以它的变形性质和应力状态也不同于冲压变形。因此间接试验所得的结果(试验值)并不是冲压成形的工艺参数,而是可以用来表示板材冲压性能的基础性参数。

付:外文翻译

电火花加工

电火花加工法对加工超韧性的导电材料(如新的太空合金)特别有价值。这些金属很难用常规方法加工,用常规的切削刀具不可能加工极其复杂的形状,电火花加工使之变得相对简单了。在金属切削工业中,这种加工方法正不断寻找新的应用领域。塑料工业已广泛使用这种方法,如在钢制模具上加工几乎是任何形状的模腔。

电火花加工法是一种受控制的金属切削技术,它使用电火花切除(侵蚀)工件上的多余金属,工件在切削后的形状与刀具(电极)相反。切削刀具用导电材料(通常是碳)制造。电极形状与所需型腔想匹配。工件与电极都浸在不导电的液体里,这种液体通常是轻润滑油。它应当是点的不良导体或绝缘体。用伺服机构是电极和工件间的保持0.0005~0.001英寸(0.01~0.02mm)的间隙,以阻止他们相互接触。频率为20000Hz左右的低电压大电流的直流电加到电极上,这些电脉冲引起火花,跳过电极与工件的见的不导电的液体间隙。在火花冲击的局部区域,产生了大量的热量,金属融化了,从工件表面喷出融化金属的小粒子。不断循环着的不导电的液体,将侵蚀下来的金属粒子带走,同时也有助于驱散火花产生的热量。

在最近几年,电火花加工的主要进步是降低了它加工后的表面粗糙度。用低的金属切除率时,表面粗糙度可达2—4vin.(0.05—0.10vin)。用高的金属切除率[如高达15in3/h(245.8cm3/h)]时,表面粗糙度为1000vin.(25vm)。

需要的表面粗糙度的类型,决定了能使用的安培数,电容,频率和电压值。快速切除金属(粗切削)时,用大电流,低频率,高电容和最小的间隙电压。缓慢切除金属(精切削)和需获得高的表面光洁度时,用小电流,高频率,低电容和最高的间隙电压。

与常规机加工方法相比,电火花加工有许多优点。

1 . 不论硬度高低,只要是导电材料都能对其进行切削。对用常规方法极难切削的硬质合金和超韧性的太空合金,电火化加工特别有价值。

2 . 工件可在淬火状态下加工,因克服了由淬火引起的变形问题。

3 . 很容易将断在工件中的丝锥和钻头除。

4 . 由于刀具(电极)从未与工件接触过,故工件中不会产生应力。

5 . 加工出的零件无毛刺。

6 . 薄而脆的工件很容易加工,且无毛刺。

7 . 对许多类型的工件,一般不需第二次精加工。

8 .随着金属的切除,伺服机构使电极自动向工件进给。

9 .一个人可同时操作几台电火花加工机床。

10.能相对容易地从实心坯料上,加工出常规方法不可能加工出来的极复杂的形状。

11.能用较低价格加工出较好的模具。

12.可用冲头作电极,在阴模板上复制其形状,并留有必须的间隙。

Electrical discharge machining

Electrical discharge machining has proved especially valuable in the machining of super-tough, electrically conductive materials such as the new space-age alloys. These metals would have been difficult to machine by conventional methods, but EDM has made it relatively simple to machine intricate shapes that would be impossible to produce with conventional cutting tools. This machining process is continually finding further applications in the metal-cutting industry. It is being used extensively in the plastic industry to produce cavities of almost any shape in the steel molds.

Electrical discharge machining is a controlled metal removal technique whereby an electric spark is used to cut (erode) the workpiece, which takes a shape opposite to that of the cutting tool or electrode. The cutting tool (electrode) is made from electrically conductive material, usually carbon. The electrode, made to the shape of the cavity required, and the workpiece are both submerged in a dielectric fluid, which is generally a light lubricating oil. This dielectric fluid should be a nonconductor (or poor conductor) of electricity. A servo mechanism maintains a gap of about 0.0005 to 0.001 in. (0.01 to 0.02 mm) between the electrode and the work, preventing them from coming into contact with each other. A direct current of low voltage and high amperage is delivered to the electrode at the rate of approximately 20 000 hertz (Hz). These electrical energy impulses become sparks which jump the dielectric fluid. Intense heat is created in the localized area of the park impact, the metal melts and a small particle of molten metal is expelled from the surface of the workpiece . The dielectric fluid, which is constantly being circulated, carries away the eroded particles of metal and also assists in dissipating the heat caused by the spark.

In the last few years, major advances have been made with regard to the surface finishes that can be produced. With the low metal removal rates, surface finishes of 2 to 4 um. (0.05 to 0.10um) are possible. With high metal removal rates finishes of 1 000uin. (25um) are produced.

The type of finish required determines the number of amperes which can be used, the capacitance, frequency, and the voltage setting. For fast metal removal (roughing cuts), high amperage, low frequency, high capacitance, and minimum gap voltage are required. For slow metal removal (finish cut) and good surface finish, low amperage, high frequency, low capacitance, and the highest gap voltage are required.

Electrical discharge machining has many advantages over conventional machining processes.

1. Any material that is electrically conductive can be cut, regardless of its hardness. It is especially valuable for cemented carbides and the new supertough space-age alloys that are extremely difficult to cut by conventional means.

2. Work can be machined in a hardened state, thereby overcoming the deformation caused by the hardening process.

3. Broken taps or drills can readily be removed from workpieces.

4. It does not create stresses in the work material since the tool (electrode)

never comes in contact with the work.

5. The process is burr-free.

6. Thin, fragile sections can be easily machined without deforming.

7. Secondary finishing operations are generally eliminated for many types of work.

8. The process is automatic in that the servomechanism advances the electrode into the work as the metal is removed.

9. One person can operate several EDM machines at one time.

10. Intricate shapes, impossible to produce by conventional means, are cut out of a solid with relative ease.

11. Better dies and molds can be produced at lower costs.

12. A die punch can be used as the electrode to reproduce its shape in the matching die plate, complete with the necessary clearance.

中英文翻译---冲压成形的特点与板材冲压成形性能

Characteristics of Stamping and Properties of Sheet Metal Forming 1.overview Stamping is a kind of plastic forming process in which a part is produced by means of the plastic forming the material under the action of a die. Stamping is usually carried out under cold state, so it is also called stamping. Heat stamping is used only when the blank thickness is greater than 8~100mm. The blank material for stamping is usually in the form of sheet or strip, and therefore it is also called sheet metal forming. Some non-metal sheets (such as plywood, mica sheet, asbestos, leather)can also be formed by stamping. Stamping is widely used in various fields of the metalworking industry, and it plays a crucial role in the industries for manufacturing automobiles, instruments, military parts and household electrical appliances, etc. The process, equipment and die are the three foundational problems that needed to be studied in stamping. The characteristics of the sheet metal forming are as follows: (1)High material utilization (2)Capacity to produce thin-walled parts of complex shape. (3)Good interchangeability between stamping parts due to precision in shape and dimension. (4)Parts with lightweight, high-strength and fine rigidity can be obtained. (5)High productivity, easy to operate and to realize mechanization and automatization. The manufacture of the stamping die is costly, and therefore it only fits to mass production. For the manufacture of products in small batch and rich variety, the simple stamping die and the new equipment such as a stamping machining center, are usually adopted to meet the market demands. The materials for sheet metal stamping include mild steel, copper, aluminum, magnesium alloy and high-plasticity alloy-steel, etc. Stamping equipment includes plate shear punching press. The former shears plate into

C型冲床材料的冲压成形性能

C型冲床材料的冲压成形性能 卷料对冲压成形工艺的适应能力叫做卷料的冲压成形性能。卷料的冲压成形性能是一个综合性的概念,包括成形极限和成形质量两个方面。 (1)成形极限:在C型冲床冲压成形过程中板料在发生失稳前所能达到的最大变形程度。卷料在成形过程中可能出现两种失稳现象,一种叫拉伸失稳;即在拉应力作用下局部出现颈缩或拉裂;另一种失稳叫压缩失稳:即在压应力作用下起皱。对于不同的成形工序,成形极限是采用不同的极限变形系数来表示的。在变形坯料的内部,凡是受到过大拉应力作用的区域,就会使坯料局部严重变形,甚至拉裂而使冲件报废;只是受到过大压应力作用的区域,若超过了临界应力就会使坯料失稳而起皱。 (2)成形质量:C型冲床的冲压件的质量指标主要是指尺寸和形状精度、厚度变化、表面质量及成形后材料的物理性能等。冲压件不但要求具有所需形状,还必须保证产品质量。影响形状和尺寸精度的主要因案是回弹与劝变,因为在塑性变形过程总包含着一定的弹性变形,卸载后或多或少会出现回弹现象,使得尺寸和形状的精度降低。影响厚度变化的主要原因是冲压成形伴随有伸长或压缩变形,由塑性交形体积不变定律可知,势必导致厚度变化。影响表面质量的主要因素是中由于冲模间隙不合理或不均匀、模具表面祖糙以及材料粘附模具在C型冲床冲压过程所造成的擦伤。 (3)板料的冲压成形性能试验方法:卷料的冲压成形性能试验方法通常分为三种;力学试验、金属学试验(又称间接试验)、和工艺试验(直接试验)。力学试验方法有简单拉伸试验和双向拉伸试验等,用以测定板料的力学性能指标;间接试验方法有硬度试验、金相试验等,用以测定材料的硬度、表面粗糙度、化学成分等;直接试验方法有弯曲试验、胀形试验、拉深性能试验等,是用模拟实际生产中的某种冲压成形工艺的方法测定出相应的工艺参数。

板料冲压件螺纹底孔冲压成形技术

板料冲压件螺纹底孔冲压成形技术 摘要:在板料冲压件上,按其料厚不同分别采用精冲小孔、变薄翻边、冷冲挤等工艺方法,成形螺纹底孔。本文论述了上述螺纹冲压成形工艺、冲模结构及其设计与制造技术。 主题词:冲件螺纹底孔冲小孔变薄翻边冷冲挤成形技术 螺纹联接结构,尤其紧螺纹联接结构,是各种机电与家电产品中零部件最主要的联接结构型式。薄板冲压件进行紧螺纹联接,需要有大于料厚的联接螺纹长度,以确保其联接可靠性,增强其负载能力,才能达到使薄板冲件联接牢靠、重量小的目的,从而使其成为结实、轻巧、紧凑的理想结构零件。 在仪器仪表、电子电器、各类家电、家用器具、玩具等产品的板料冲压件上,经常采用M2-M10的小螺纹紧联接结构。为提高效率并满足大量生产的需求,采用精冲小孔、变薄翻边、冷冲挤等工艺方法,冲压成形这些小螺纹底孔,不仅能以冲压制孔取代钻孔而大幅度提高生产效率,同时能获得尺寸精确、一致性好的底孔,并可使螺纹联接有足够的长度,从而确保其联接可靠性及设计要求的承载能力。所以,用冲压成形技术加工小螺纹底孔,具有优质高产的效果,也是一种成熟而值得推广的工艺技术。 1 螺纹底孔的计算 合适螺纹底孔的大小,不仅取决于螺纹直径,而且与其螺距有着密切的关系,通常可按下式计算: 当t L≤1时,取:d Z=d-t L

当t L>1时,取:d Z=d-~t L (2) 式中 t L-螺距,mm d z-螺纹底孔直径,mm d-螺纹直径,mm 表1 螺纹底孔直径的合理值(mm) 螺纹直径d 螺 距 t L 底 孔 直 径d z M1 M2 M3 M4 M5 M6 M8 M10 M12 1 5

M14 M16 M18 M20 M22 M24 M27 M302 2 3 3 2 冲制螺纹底孔的基本工艺方法 用冷冲压冲制板料冲压件上螺纹底孔的主要工艺方法有如下几种: (1)厚料冲小孔与精冲孔 当冲件厚t可以满足螺纹联接所需长度时,可用冲压制孔工艺解决。通常在这种情况下,多为厚料冲小孔,即冲制螺纹底孔的直径dz≤t或稍大于t,见表2。螺纹联接的最小有效长度取决于螺纹直径、螺距并与联接件的材料种类密切相关。

板料冲压工艺

板料冲压工艺 板料冲压是指用冲模使板料经分离或成形得到制件的工艺方法,它通常是在室温下进行,所以又称为冷冲压,简称冲压。 1、板料冲压的特点及应用 冲压用原材料必须具有足够的塑性,广泛应用的金属材料有低碳钢、高塑性合金钢、铝、铜及其合金等;非金属材料有石棉板、硬橡皮、绝缘纸、纤维板等。他广泛应用于汽车、拖拉机、航空、电器、仪表、国防等工业部门。 板料冲压具有以下特点: (1)冲压件的尺寸精度高,表面质量好,互换性好,一般不需切削加工即可直接使用,且质量稳定。 (2)可压制形状复杂的零件,且材料的利用率高、产品的重量轻、强度和刚度较高。 (3)冲压生产生产率高,操作简单,其工艺过程易于实现机械化和自动化,成本低。 (4)冲压用模具结构复杂,精度要求高,制造费用高。冲压只有在大批量生产时,才能显示其优越性。 (5)冲压件的质量为一克至几十千克,尺寸为一毫米至几米。 2、冲压设备 (1)剪床 剪床的用途是把板料切成一定宽度的条料,以供下一步冲压工序之用。 (2)冲床 冲床将完成除剪切以外的其他冲压工作。 右图为单柱式冲床的外形及其传动简图。电动机5带动飞轮4转动,当踩下踏板6时,离合器3使飞轮与曲轴2连接,因而曲轴随飞轮一起转动,通过连杆8带动滑块7作上下运动,从而进行冲压工作。当松开踏板时,离合器脱开,曲轴不随飞轮转动,同时制动闸1使曲轴停止转动,并使滑块7停在上面位置

3、冲压模具 (1)简单冲模 简单冲模在冲床一次行程中只完成一道工序,见右图。凸模1用压板6固定在上模板3上,通过模柄5与冲床滑块连接。凹模2用压板7固定在下模板4上。操作时,条料沿两导料板9之间送进,碰到挡料销10停止。冲下部分落入凹模孔。 此时,条料夹住凸模一起返回,被卸料板8推下。重复上述动作,完成连续冲压。导柱12和导套11组成的导向机构可保证凸模、凹模的合模准确性。 简单冲模结构简单,容易制造,价格低廉,维修方便,生产率低,适用于小批量生产。(2)连续冲模 连续冲模在冲床一次行程中,按着一定顺序,在模具的不同位置上,同时完成数道冲压工序,见右图。操作时,条料7向前送进,送进距离由挡料销控制。定位销2对准预先冲出的定位孔,上模向下运动时,冲孔凸模4进行冲孔,落料凸模1同时进行落料工序。条料夹住模具返程时,被卸料板6推下,如此循环进行操作,完成连续冲压工序。图中9是废料、8是成品、5是冲孔凹模、3是落料凹模。 连续冲模生产效率高,易于实现自动化,但定位精度要求高、结构复杂、制造成本高。主要用于大批量生产精度要求不高的中、小型零件。 (3)复合冲模 复合冲模在冲床一次行程中,在模具的同一位置上,完成两道以上冲压工序。此种模具具有生产率高,零件加工精度高,平正性好等优点,但结构复杂,成本高,主要适合批量大、精度高的冲压件的生产。 4、板料冲压的基本工序 (1)分离工序 分离工序是使坯料的一部分相对另一部分相互分离的工序,如剪切、落料、冲孔等。 1)剪切 剪切是使坯料按不封闭轮廓分离的工序,见右图。其任务是将板料切成具有有一定宽度的坯料,主要用于为下一步工序备料。 2)落料和冲孔

不锈钢材料的基本性能如下

薄壁不锈钢水管原材料基础知识(六) -- 不锈钢材料的基本性能 不锈钢水管(薄壁不锈钢管)具有很高的强度和良好的加工成型性能,使不锈钢水管能承受很高的水压(可达10MPA 以上),容易安装,而且抵御外来破坏的能力也远远高于PPR 管和铜管。 不锈钢材料的基本性能如下: 1、屈服强度(力学符号Rp0.2 ,英文缩写YS) Rp0.2=P0.2/F0 P0.2—拉伸试样塑性变形量为0.2%时承受的载荷 F0 —拉伸试样的原始截面积材料的屈服强度小,表示材料容易屈服,成形后 回弹小,贴模性和定形性好。 2、抗拉强度(力学符号Rm,英文缩写TS) Rm =Pb/F0 Pb—拉伸试样断裂前承受的最大载荷 F0—拉伸试样的原始截面积材料的抗拉强度大,材料变形过程中不容易被拉断,有利于塑性变形。 3、屈强比(Rp0.2/Rm ) 屈强比对材料冲压成形性能影响很大,屈强比小,材料由屈服到破裂的塑性变形阶段长,成形过程中发生断裂的危险性小,有利于冲压成形。一般来讲,较小的屈强比对材料在各种成形工艺中的抗破裂性都有利。 表6-1 常见不锈钢材料的屈强比

4、延伸率(力学符号A,英文缩写EL) 延伸率是材料从发生塑性变形到断裂的总的伸长长度与原有长度的比值,即:L— L。 A =100% L 式中A —材料的延伸率(%) L —试样被拉断时的长度(mm) L0 —拉伸前试样的长度(mm) 材料的延伸率大,就是材料允许的塑性变形程度大,抗破裂性好,对拉深、翻 边、胀形各类变形都有利。 一般来说,材料的翻边系数和胀形性能(埃里克森值)都与延伸率成正比关系。 5、不锈钢的冲压性能 对应的材料的性能为胀形成形性能、翻边成形性能、扩孔成形性能和弯曲 成形性能。要了解冲压成形性能首先要了解冲压成形工艺。基本的冲压成形加 工工艺有:拉深工艺、胀形工艺、翻边工艺(包括扩孔)、弯曲工艺。 1 )拉深成形工艺 拉深是利用专用模具将冲裁或剪裁后所得到的平板坯料制成开口的空心件的一种冲压工艺方法。 其特点是板料在凸模的带动下,可以向凹模内流动,即依靠材料的流动

哈工大研究生板材成型性能实验报告

Harbin Institute of Technology 实践环节实验报告 课程名称:金属板材成型性能测试与评价院系:材料科学与工程学院 学生:孙巍 学号: 14S109063 哈尔滨工业大学

实践环节-杯突实验报告 一、实验目的 1、学习确定板材胀形性能的实验方法; 2、了解金属薄板试验机的构造及操作。 二、实验内容 将板材用模具压好,冲头以一定的速度冲压板材,直至板材出现裂缝为止 三、实验原理 板材的冲压性能是指板材对各种冲压加工方法的适应能力。目前,有关板材冲压性能的试验方法,概括起来可分为直接试验和间接试验两类。而直接试验法又包括实物冲压试验和模拟试验两种。模拟试验,即把生产实际存在的冲压成形方法进行归纳与简化处理,消除许多过于复杂的因素,利用轴对称的简化了的成形方法,在保证实验中板材的变形性质与应力状态都与实际冲压成形相同的条件下进行的冲压性能的评定工作。为了保证模拟试验结果的可靠性与通用性,规定了十分具体的关于实验用工具的几何形状与尺寸、毛坯的尺寸、实验条件。杯突实验是目前应用较多,而且具有普遍意义的模拟试验方法之一。 杯突实验时,借助杯金属薄板试验机进行。用一规定的球状冲头向夹紧于规定球形凹模内的试样施加压力,直至试样产生微细裂纹为止,此时冲头的压入深度称为材料的杯突深度值。板材的杯突深度值反映板材对胀形的适应性,可作为衡量板材胀形、曲面零件拉深的冲

压性能指标。 四、实验设备及用具 试验机一台、杯突实验模具、游标卡尺、深度尺等。 五、实验步骤 1、先了解金属薄板试验机的结构、原理和操作方法,了解各按钮的作用; 2、装好模具; 3、把试样清洗干净,在试样与冲头接触的一面和冲头球面上涂上润滑油,把试样放在下模上。 4、将下模向上提起,压好试样。按下压边按钮,设定压边力。 5、按中心活塞上行按钮,注意观察试样。当试样圆顶附近出现有能够透光的裂缝时,迅速停止。 6、将下模向下移动,然后将冲头向下移动,取出试件。 7、实验完毕后,将模具拆下。

冲压成形工艺

冲压成形工艺 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

冲压成型资料 1 冲压成型工艺定义: 冲压工艺是通过模具对毛坯施加外力,使之产生塑性变形或分离,从而获得一定尺寸、形状和性能的工件的加工方法。冲压工艺的应用范围十分广泛,既可以加工金属板料、棒料,也可以加工多种非金属材料。由于加工通常是在常温下进行的,故又称为冷冲压。 2冲压工艺的特点: 2.1 用冷冲压加工方法可以得到形状复杂、用其他加工方法难以加工的工件,如薄壳零件等。冷冲压件的尺寸精度是由模具保证的,因此,尺寸稳定,互换性好。 2.2 材料利用率高,工件重量轻、刚性好、强度高、冲压过程耗能少。因此,工件的成本较低。 2.3 操作简单、劳动强度低、易于实现机械化和自动化、生产率高。 2.4 冲压加工中所用的模具结构一般比较复杂,生产周期较长、成本较高, 3 冲压材料的基本要求: 冲压所用的材料,不仅要满足产品设计的技术要求,还应当满足冲压工艺的要求和冲压后的加工要求 (如切削加工、电镀、焊接等)。冲压工艺对材料的基本要求主要有: 3.1 对冲压成形性能的要求: 对于成形工序,为了有利于冲压变形和制件质量的提高,材料应具有:良好的塑性(均匀伸长率δb高)、屈强比(σs/σb)小、板厚方向性系数大、板平面方向性系数小、材料的屈服强度与弹性模量的比值 (σs /E)小。

对于分离工序,并不需要材料有很好的塑性,但应具有一定的塑性。塑性越好的材料,越不易分离。 3.2 对材料厚度公差的要求: 材料的厚度公差应符合国家规定标准。因为一定的模具间隙适用于一定厚度的材料,材料厚度公差太大,不仅直接影响制件的质量,还可能导致模具和冲床的损坏。 3.3 对表面质量的要求 材料的表面应光洁平整,无分层和机械性质的损伤,无锈斑、氧化皮及其它附着物。表面质量好的材料,冲压时不易破裂,不易擦伤模具,工件表面质量也好。 4 冲压常用材料: 冷冲压用材料大部分是各种规格的板料、带料和块料。板料的尺寸较大,一般用于大型零件的冲压。对于中小型零件,多数是将板料剪裁成条料后使用。带料 (又称卷料)有各种规格的宽度,展开长度可达几十米,适用于大批量生产的自动送料,材料厚度很小时也可做成带料供应。块料只用于少数钢号和价钱昂贵的有色金属的冲压。 4.1 黑色金属普通碳素结构钢、优质碳素结构钢、合金结构钢、碳素工具钢、不锈钢、电工硅钢等。 对冷轧钢板,根据国家标准GB708-88规定,按轧制精度(钢板厚度精度)可分为A、B级: A──较高精度; B──普通精度。

汽车厚板料零件冲压成形分析及回弹计算

汽车厚板料零件冲压成形分析及回弹计算 作者:中国第一汽车集团富壮王广盛 摘要:汽车上板厚大于5mm 的厚板料零件的冲压成形CAE技术在材料、工艺、计算和评估等方面都与薄板料零件有所不同,基于MSC.Marc 软件并结合作者在厚板料零件冲压成形CAE 分析方面的实际工作,对计算模型建立时需注意的问题如单元选择、单元划分、屈服准则、硬化曲线、工况设定和回弹计算等进行了详细说明,并对厚板料零件上的伸长类翻边结构的成形极限问题进行了探讨。 关键词:厚板料;冲压成形;成形极限;CAE 引言 随着我国汽车板料零件设计、制造水平的不断提高,薄板料零件冲压成形CAE 技术的应用已日趋成熟,相关产品的设计和制造部门针对不同软件及计算方法建立起了对应的材料、工艺、计算和评估方面的标准和规范。这些标准和规范经过实践的检验和修正,目前在产品设计和生产制造环节中得到了广泛应用。 与薄板料零件不同,对于板厚大于5mm 的厚板料零件,例如商用车车架横梁、纵梁和加强板类零件,其在冲压成形、失效判定和回弹计算方面还没有一个明确的计算方法和分析思路,应用也远不如薄板料零件冲压成形CAE 技术广泛和成熟,这是与厚板料零件冲压成形的特点及其CAE 技术有关的。 目前国内针对这方面的研究相对少,这部分工作也有进一步研究和完善的必要,为此作者将近年关于厚板料零件冲压成形CAE 技术方面的工作进行了总结,并对其中一些具体问题进行了深入探讨。当然由于个人能力有限并且所面对问题又是行业内公认的“顽疾”,因此所做的工作远没有达到解决精确回弹计算的程度。 本文所讨论的相关内容都是基于MSC.Marc 平台的,选择MSC.Marc 软件除了非线性计算功能方面的考量外,更主要的是作者有十年以上该软件的使用经验,对于成形和回弹计算模型的精度和效率的控制有一定把握。 1 厚板料零件冲压成形及其CAE 技术的特点

弯板冲压成型工艺与模具的设计

1 绪论 目前,我国冲压技术与工业发达国家相比还相当的落后,主要原因是我国在冲压基础理论及成形工艺、模具标准化、模具设计快速化等程度不高的原因。 1.1国内外发展概况 改革开放20多年来,我国的模具工业获得了飞速的发展,设计、制造加工能力和水平、都有一了很大的提高。据中国模具工业协会统计,1995年中国模具总产值为145亿元,而2003年已达450亿元左了,年均增长14%。另据统计2004年中国(不包括台湾、香港、澳门地区)共有模具专业生产厂、产品厂配套的模具车问(分厂)近20000家,约60万从业人员,年模具总产值达1亿元人民币以上的有十多家。但是,我国模具工业现有能力只能满足需求最的60%左右,还不能适应国民经济发展的需要。据有关部门统计,1997年进口模具价值6-3亿美元,这还不包括随设备一起进口的模具;1997年出口模具仅为7800万美元。目前我国模具工业的技术水平和制造能力,是我国国民经济建设中的薄弱环节和制约经济持续发展的瓶颈。国内已经认识到了模具在制造业中的重要基础地位,许多模具企业十分重视技术发展,增大了用于模具技术进步的投资。 1.2我国未来模具的研发探讨 ——模具设计的标准化、网络化、智能化、三维化、集成化1、标准化 标准化是实现模具专业化生产的基本前提,是系统提高整个模具行业技术水平和经济效益的重要手段,是机械制造业向深层次发展必由之路。国际上工业发达的国家和公司都极为重视模具的标准化,我国的模具标准化程度不足30%,而且标准品种少、质量低、交货期长,严重阻碍模具的合理流向和效能发挥。 CAD/CAM系统可建立标准零件数据库,非标准零件数据库和模具参数数据库。标准零件库中的零件在CAD设计中可以随时调用,并采用GT(成组技术)生产。非标准零件库中存放的零件,虽然与设计所需结构不尽相同,但利用系

材料冲压性能试验

材料冲压性能试验方法 一 前言 板料冲压性能是指板料对冲压加工方法的适应能力,如便于加工,容易得到高质量和高精度的冲压件,生产效率高,模具消耗低,不易产生废品等。 板材的冲压性能的试验方法很多,概括起来分为直接试验与间接试验两类。见图1-1。直接试验中板材的应力状态和变形情况与真实冲压时基本相同,所得结果也比较准确;而间接试验时板材的受力情况与变形特点与实际冲压时有一定的差别。所以,所得结果也只能间接的反映材料的冲压性能,有时侯还要借助于一定的分析方法才能做到。本文只介绍拉伸试验的试验方法. 图1-1 冲压性能试验方法 二 拉伸试验 试样标准 拉伸试验是评价板材的基本力学性能的主要试验方法。由于简单易行,所以是目前普遍采用的一种方法。 拉伸试验是利用图2-1(a)所示尺寸符合要求的标准拉伸试样,在拉伸机上进行。利用拉伸力行程测试与记录装置,得到图2-1(b)所示的拉伸曲线,经过必要的处理与计算,即可得到与成形性能有关的拉伸试验值:s σ、b σ、b s σσ/、δ、

u δ、n 、r 、r ?、φ等值。 (a) (b) 图2-1 拉伸试样与拉伸曲线 (a) 拉伸试样 (b) 拉伸曲线 1 常规拉伸试样(图2-1(a)) 常规拉伸试样又分为比例试样和非比例试样两种。 比例试样标距0l 按下式计算 00A K L = 式中 0A -----原始截面积; K -----系数,当65.5=K 时,为短比例试样;当3.11=K 时,为长比例试样。 非比例试样标距0L 与原始截面积无一定关系。 两种试样的标距L 应不小于2 00b L +,试样宽度0b 通常为10、15、20、30(mm)等。试样的宽度加工精度为:=0b 10、15()mm 时,偏差为)(2.0mm ±,在0L 范围 内最大与最小宽度之差不得大于()mm 1.0;=0b 20、30()mm 时,偏差为)(5.0mm ±,

板料成形性能及冲压材料

板料冲压成形性能及冲压材料 板料的冲压成形性能 板料对各种冲压成形加工的适应能力称为板料的冲压成形性能。具体地说,就是指能否用简便地工艺方法,高效率地用坯料生产出优质冲压件。冲压成形性能是个综合性的概念,它涉及到的因素很多,其中有两个主要方面:一方面是成形极限,希望尽可能减少成形工序;另一方面是要保证冲压件质量符合设计要求。下面分别讨论。 (一)成形极限 在冲压成形中,材料的最大变形极限称为成形极限。对不同的成形工序,成形极限应采用不同的极限变形系数来表示。例如弯曲工序的最小相对弯曲半径、拉深工序的极限拉深系数等等。这些极限变形系数可以在各种冲压手册中查到,也可通过实验求得。 依据什么来确定极限变形系数呢?这要看影响成形过程正常进行的因素是哪些。冲压成形时外力可以直接作用在毛坯的变形区(例如胀形),也可以通过非变形区,包括已变形区(例如拉深)和待变形区(例如缩口、扩口等),将变形力传给变形区。因此,影响成形过程正常进行的因素,可能发生在变形区,也可能发生在非变形区。归纳起来,大致有下述几种情况: 1.属于变形区的问题 伸长类变形一般是因为拉应力过大,材料过度变薄,局部失稳而产生断裂,如胀形、翻孔、扩口和弯曲外区等的拉裂。压缩类变形一般是因为压应力过大,超过了板材的临界应力,使板材丧失稳定性而产生起皱,如缩口、无压边圈拉深等的起皱。 2.属于非变形区的问题 传力区承载能力不够:非变形区作为传力区时,往往由于变形力超过了该传力区的承载能力而使变形过程无法继续进行。也分为两种情况: 1)拉裂或过度变薄;例如拉深是利用已变形区作为拉力的传力区,若变形力超过已变形区的抗拉能力,就会在该区内发生拉裂或局部严重变薄而使工件报废。 2)失稳或塑性镦粗:例如扩口和缩口工序是利用待变形区作为压力的传力区,若变形力超过了管坯的承载能力,待变形区就会因失稳而压屈,或者发生塑性镦粗变形。 非传力区在内应力作用下破坏:非变形区不是传力区时,由于变形过程中金属流动的不均匀性,也可能产生过大的内应力而使之破坏。根据发生问题的部位不同,可分为: 1)待变形区拉裂或起皱:例如在盒形件的后续拉深工序中,待变形区金属流入变形区的速度不一致,靠直边部分流入速度快,角部金属流入速度慢。在这两部分金属的相互影响下,直边部分容易发生拉裂,角部则容易沿高度方向压屈起皱。 2)已变形区拉裂或起皱:如薄壁件反挤时,若金属从变形区流到已变形区的速度不均匀,则速度快的部位易因受附加压应力而起皱,速度慢的部位易受附加拉应力的作用而开裂。

板料冲压成型模拟

课题:板料冲压成型模拟 姓名:李仁庚 学号:0905010710

板料冲压成型模拟 0905010710 李仁庚(一)摘要 利用有限元分析软件Marc分析板料在冲压成型过程中,板料内部的应力分布,从而辅助确定合理的生产工艺参数,本文阐明了板料冲压成型有限元模拟的一般步骤,预测了可能出现的缺陷。 (二)引言 板材冲压成型是金属成型的一种重要方法,在机械加工业中占有重要地位。在板料冲压成型的过程中,冲压件的成型质量取决于模具的结构和工艺设计,而模具的结构和工艺设计又依赖于有限元数值模拟过程,因此板材冲压成型必须立足于以计算机为基础的数值方法来预测其成型规律。 随着计算机技术的迅速发展,有限元方法不断成熟,采用有限元法对板材成型过程进行计算机模拟和分析的技术也得到广泛应用。本文通过成型过程的数值模拟来分析板料各部分在成型过程中的变形情况,阐明了板料冲压成型有限元模拟的一般步骤,预测了可能出现的缺陷,辅助确定合理的生产工艺参数。(三)原理 板料冲压过程实际上十分复杂,其变化过程与模具与板料的接触与摩擦、模具和压板的运动以及压力机加载过程有关,因此在用有限元分析软件模拟时必须将问题适当的规范和简化,建立合适的力学模型。 由于板料冲压成型过程中,模具的刚性通常远远大于板料的刚性,因此模具

的变形相对板料的变形来说极小,可以忽略不计。在冲压成型过程计算机仿真中应考虑的问题就可归结为如下几个方面:板料在载荷作用下弹塑性变形的描述和内部应力的计算;模具的几何描述和运动形式;压力机加载过程的描述和模拟。 本课题可以抽象为:一定厚度的板料放置在U型刚体模具上,圆形刚体以一定的运动方式加载在板料中间,通过有限元数值模拟,研究板料在冲压过程中形态和内部应力的变化。 模拟基本过程①建立力学模型,划分网格。板料尺寸为0.2×2mm,U型模具宽0.5mm,截面为圆形模具半径为0.2mm,如下图所示。 ②确定定义材料性质:材料泊松比为0.3,杨氏模量为71000MPa,屈服强度为340MPa,抗拉强度为430MPa。③定义接触:板料及模具的摩擦系数均为0.1,圆形模具的运动方式:向下运动0.3mm。④定义边界条件。⑤定义工况。⑥定义工作条件。⑦后处理,分析板料各处应力分布。 (四)关键技术分析

高速率板材冲压成形

2015 年春季学期研究生课程考核 (读书报告、研究报告) 考核科目: 板材成形性能与塑性失稳理论学生所在院(系):材料科学与工程学院 学生所在学科:材料工程 学生姓名 学号 学生类别:应用型 考核结果阅卷人

高速率板材冲压成形 高速率成形技术指在极短的时间内,将巨大能量通过介质(空气或水等)以高压冲击波作用于工件,使其在极高的速度下变形和紧贴模具而成形的一种加工方法。它在大约几十到几百微秒的短促时间内,将能量由化学能源、电能源或其它机械能源,通过介质(空气或水等)以高压冲击波作用于工件,高速率成形的成形速率高达50-300m/s,与传统金属成形工艺最大的不同在于压力大、压力持续时间短,工件变形速度快,主要靠获得的动能,在惯性力的作用下成形。与机械冲压成形技术、准静态液压成形技术等传统成形技术相比,具有成形力量大、成形时间短、装置简单等特点。 高速动车、航空航天、武器装备等制造业结构的轻量化要求对高强度难成形材料(如铝合金、镁合金、高强度钢等)应用日益增加,高速率成形技术因其具有提高难成形材料成形性能和减小工件回弹的优势,显示出越来越重要的应用价值。高速率成形技术包括爆炸成形、电磁成形和液电成形等。 在高速率成形中,极高的成形压力在极短时间内加载使得工件上具有非常大的惯性力和动能,惯性的作用不可忽略。因为高速率成形是高能量在短时间内的释放,所以高速率成形也称为高能率成形(High Energy Rate Forming)〕。高成形速率使得多种难金属工件的成形性得到提高,使某些难加工的金属也能变得容易成形,并且在正确选择工艺参数及边界条件的情况下,可以使金属得到远大于传统准静态成形所能达到的变形程度。 1.爆炸成形技术 爆炸成形是利用爆炸物质在爆炸瞬间释放出巨大的化学能使金属坯料产生塑性变形的高速率成形方法。爆炸瞬间释放出的巨大化学能转化为周围介质的高压冲击波,并以脉冲形式作用于毛坯,使其发生塑性变形。爆炸成形技术可将成形能量直接作用于金属坯料,也可以通过空气、水和砂等介质传播后作用于坯料。利用介质传播爆炸成形能量的成形方法主要用于板材和管件成形、压印和翻边等,直接作用于金属坯料的爆炸成形主要用于胀形、挤压、焊接、粉末压实和表面强化等。爆炸成形技术作为高速率成形技术相较于传统成形技术具有简化的设备和模具,高速率成形带来的低回弹率,以及可以对大型零件生产加工等特点。但是,爆炸成形多为户外作业,受气候环境影响严重,且自动化程度低,生产效率较低,只适合单件小批量生产;危险性高、操作条件高,阻碍了其广泛应用。

冲压成形工艺

冲压成型资料 1 冲压成型工艺定义: 冲压工艺是通过模具对毛坯施加外力,使之产生塑性变形或分离,从而获得一定尺寸、形状和性能的工件的加工方法。冲压工艺的应用范围十分广泛,既可以加工金属板料、棒料,也可以加工多种非金属材料。由于加工通常是在常温下进行的,故又称为冷冲压。 2冲压工艺的特点: 2.1 用冷冲压加工方法可以得到形状复杂、用其他加工方法难以加工的工件,如薄壳零件等。冷冲压件的尺寸精度是由模具保证的,因此,尺寸稳定,互换性好。 2.2 材料利用率高,工件重量轻、刚性好、强度高、冲压过程耗能少。因此,工件的成本较低。 2.3 操作简单、劳动强度低、易于实现机械化和自动化、生产率高。 2.4 冲压加工中所用的模具结构一般比较复杂,生产周期较长、成本较高, 3 冲压材料的基本要求: 冲压所用的材料,不仅要满足产品设计的技术要求,还应当满足冲压工艺的要求和冲压后的加工要求 (如切削加工、电镀、焊接等)。冲压工艺对材料的基本要求主要有: 3.1 对冲压成形性能的要求: 对于成形工序,为了有利于冲压变形和制件质量的提高,材料应具有:良好的塑性(均匀伸长率δb高)、屈强比(σs/σb)小、板厚方向性系数大、板平面方向性系数小、材料的屈服强度与弹性模量的比值 (σs /E)小。 对于分离工序,并不需要材料有很好的塑性,但应具有一定的塑性。塑性越好的材料,越不易分离。 3.2 对材料厚度公差的要求: 材料的厚度公差应符合国家规定标准。因为一定的模具间隙适用于一定厚度的材料,材料厚度公差太大,不仅直接影响制件的质量,还可能导致模具和冲床的损坏。 3.3 对表面质量的要求 材料的表面应光洁平整,无分层和机械性质的损伤,无锈斑、氧化皮及其它附着物。表面质量好的材料,冲压时不易破裂,不易擦伤模具,工件表面质量也好。

金属板材的冲压成形性能

金属板材的冲压成形性能 作者:旭日笑出自:旭日笑浏览/评论:845/0 日期:2007年7月18日 16:28 金属板材的成形性能是指板材对冲压成形工艺的适应能力。板材成形性能的好坏会直接影响到冲压工艺过程,生产率,产品质量和生产成本。板料的冲压成形性能好,对冲压成形方法的适应性就强,就可以采用简便工艺,高生产率设备,生产出优质低成本的冲压零件。对冲压成形件来说,不产生破裂是基本前提,同时对它的表面质量和形状尺寸精度也有一定要求,故板料冲压成形性应包括:抗破裂性,贴模性和形状冻结性能等几个方面。所谓冲压成形就是板材可成形能力的总称,或者叫做广义的冲压成形性能。广义成形性能中的抗破裂性能,可视为狭义的冲压成形性能。板料在成形过程中,一是由于起皱,塌陷和鼓包等缺陷而不能与模具完全贴合;另一方面因为回弹,造成零件脱模后较大的形状和尺寸误差。通常将板材冲压成形中取得与模具形状一致的能力,称为贴模性;而把零件脱模后保持其既得形状和尺寸的能力,称为形状冻结性。通常把材料开始出现破裂时的极限变形程度作为板料冲压成形性能的判定尺度。目前对抗破裂性的研究已取得了不少成果。根据把冲压成形基本工序依其变形区应力应变的特点分为伸长类(拉伸类)与压缩类两个基本类别的理论,可以把这种冲压成形的分类与冲压成形性能的分类建立如表1-3所示的对应关系。板料冲压成形的试验方法有多种,概括起来分为直接试验和间接试验两类。直接试验中板材的应力和变形情况与真实冲压基相同,所得的结果也比较准确;而间接试验时板材的受力情况与变形特点却与实际冲压时有一定的差别。所以,所得的结果也只能间接地反映板材的冲压性能,有时还要借助于一定的分析方法才能做到。常用的方法为:直接试验中的模拟试验和间接试验中的拉伸试验。表1-3 冲压成形性能的分类冲压成形类别成形性能类别提高极限变形程度的措施伸长类冲压成形(翻边、胀形等) 伸长类成形性能(翻边性能、胀形性能等) 1) 提高材料的塑性 2) 减少变形不均匀程度 3) 消除变形区局部硬化层和应力集中 压缩类冲压成形(拉深、缩口等) 压缩类成形性能(拉深性能、缩口性能等) 1) 降低变形区的变形抗力、摩擦阻力 2) 防止变形区的压缩失稳(起皱) 3) 提高传力区的承载能力 复合类冲压成形(弯曲、曲面零件拉深成形等) 复合类成形性能 (弯曲性能等) 根据所述成形类别的主次,分别采取相应措施 一、板材拉伸试验拉伸试验是评价板材的基本力学性能用成形性能的主要试验方法。由于简单可行,所以是目前普遍采用的一种方法。由单向拉伸试验所能获得的材料特性值如图1-3所示。图1-3 单向拉深实验所得到的材料特性值示意图拉伸试验与冲压成形性能有密切关系的几项主要性能参数如 下: 1) 称屈强比较小的屈强比几乎对所有的冲压成形都是有利的。屈强比小,对压缩类成形工艺有利。拉深时,如果板材的屈服点低,材料起皱的趋势小,防止起皱所必需的压边力和摩擦损失也会降低,对提高极限变形程度有利。例如,低碳钢的时,极限拉深系数 m=0.48~ 0.5 65Mn 的时,极限拉深系数则为m=0.68~ 0.7 在伸长类成形工艺中,如胀形,拉型,拉弯,曲面形状的成形等,当低时,为消除零件的松弛等弊病和为使零件的形

超高强度钢板冲压件热成形工艺

.生产侵侵。 超高强度钢板冲压件热成形工艺 热成形技术是近年来出现的一项专门用于生产汽车高强度钢板冲压件的先进制造技术。本文介绍了该技术的原理,讨论了材料,工艺参数.模具等热成形工艺的主要影响因素,完成了汽车典型件热成形工艺试验试制。获得了合格的成形件。检测结果表明。成形件的微观组织为理想的条状马氏体,其抗拉强度.硬度 等性能指标满足生产要求。 1前言 在降低油耗、减少排放的诸多措施中.减轻车重的效果最为明显.车重减轻10%.可节省燃油 3%一7%,因此塑料.铝合金.高强度钢板等替代材料在车辆制造中开始使用。其中,高强度钢板可以通过减小板厚或者截面尺寸等方式减轻零件质量.在实现车辆轻量化和提高安全性方面比其他材料有明显优势,可以同时满足实现轻量化和提高安全性的要求,因此其在汽车领域内的应用越来越广 泛。 热成形技术是近年来出现的一项专门用于成形高强度钢板冲压件的新技术,该项技术以板料在红热状态下冲压成形并同时在模具内被冷却淬火为特征.可 以成形强度高达1500MPa的冲压件,广泛用于车门防撞梁.前后保险杠等保安件以及A柱,B柱.C柱.中通道等车体结构件的生产。由于具有减轻质量和提高安全性的双重优势,目前.这一技术在德国.美国等工业发达国家发展迅速.并开发出商品化的高强钢热冲压件生产线.高强钢热冲压件在车辆生产中应用也很 . 一吉林大学材料学院谷诤巍姜超 ●机械科学研究总院先进制造技术研究中心单忠德徐虹 广泛。国内汽车业对该项技术也十分认同,并有少数几个单位从国外 耗巨资引入了相关技术与生产线, 为一汽-大众等汽车制造公司的部分车型配套热冲压件,关于该项技术的研究工作也已经开始。本文阐述了热冲压成形 工艺原理,对典型冲压件的热冲压

冲压材料及其冲压成型性能 冲压模具变形理论基础

冲压材料及其冲压成型性能冲压模具变形理 论基础 来源:未知模具站责任编辑:模具站发表时间:2010-06-26 00:06 冲压模具变形冲压材料冲压成型性能塑胶模具五金模具锻压模具模具综合 核心提示:冲压成形加工方法与其它加工方法一样,都是以自身性能作为加工依据,材料实施冲压成形加工必须有好的冲压成形性能。1.材料的冲压成形性能材料对各种冲压加工方法的适应能力称为材料的冲压成形性能。材料的冲压性能好,就是指其便于冲压加工,一次冲压工序的极限变形… 冲压成形加工方法与其它加工方法一样,都是以自身性能作为加工依据,材料实施冲压成形加工必须有好的冲压成形性能。 1.材料的冲压成形性能 材料对各种冲压加工方法的适应能力称为材料的冲压成形性能。材料的冲压性能好,就是指其便于冲压加工,一次冲压工序的极限变形程度和总的极限变形程度大,生产率高,容易得到高质量的冲压件,模具寿命长等。由此可见,冲压成形性能是一个综合性的概念,它涉及的因素很多,但就其主要内容来看,有两方面:一是成形极限,二是成形质量。 (1)成形极限在冲压成形过程中,材料能达到的最大变形程度称为成形极限。对于不同的成形工艺,?成形极限是采用不同的极限变形系数来表示的。?由于大多数冲压成形都是在板厚方向上的应力数值近似为零的平面应力状态下进行的,因此,不难分析:在变形坯料的内部,凡是受到过大拉应力作用的区域,就会使坯料局部严重变薄,甚至拉裂而使冲件报废;凡是受到过大压应力作用的区域,若超过了临界应力就会使坯料丧失稳定而起皱。因此,从材料方面来看,为了提高成形极限,就必须提高材料的塑性指标和增强抗拉、抗压能力。? 冲压时,当作用于坯料变形区内的拉应力的绝对值最大时,在这个方向上的变形一定是伸长变形,故称这种冲压变形为伸长类变形(如胀形、扩口、内孔翻边等)。?当作用于坯料变形区内的压应力的绝对值最大时,在这个方向上的变形一定是压缩变形,故称这种冲压变形为压缩类变形(如拉深、缩口等)。伸长类变形的极限变形系数主要决定于材料的塑性;压缩类变形的极限变形系数通常是受坯料传力区的承载能力的限制,有时则受变形区或传力区的失稳起皱的限制。 (2)成形质量冲压件的质量指标主要是尺寸精度、厚度变化、表面质量以及成形后材料的物理机械性能等。影响工件质量的因素很多,不同的冲压工序情况又各不相同。 材料在塑性变形的同时总伴随着弹性变形,当载荷卸除后,由于材料的弹性回复,?造成制件的尺寸和形状偏离模具,影响制件的尺寸和形状精度。因此,掌握回弹规律,?控制回弹量是非常重要的。 冲压成形后,一般板厚都要发生变化,有的是变厚,有的是变薄。?厚度变薄直接影响冲压件的强度和使用,对强度有要求时,往往要限制其最大变薄量。 材料经过塑性变形后,除产生加工硬化现象外,还由于变形不均,造成残余应力,从而引起工件尺寸及形状的变化,严重时还会引起工件的自行开裂。所有这些情况,?在制定冲压工

板料成形工艺

1.胀形工艺 2.翻边工艺 3.校平和整形
PDF created with pdfFactory Pro trial version https://www.doczj.com/doc/006104648.html,

局部成形的概念:用各种不同变形性质的局部变形 来改变毛坯的形状和尺寸的冲压成形工序称为局 部成形工艺。 主要有胀形、翻边、缩口、校平、整形、旋压等
PDF created with pdfFactory Pro trial version https://www.doczj.com/doc/006104648.html,

5.1
胀形工艺
胀形:是利用模具强迫板料厚度减薄和表面积增大, 以获得所需几何形状的零件的冲压加工方法。 局部胀形可在平板毛坯上压出各种形状,压加强筋、 压 凸包、压字、压花、压标记等。
a)加强筋;b) 局部凹坑
PDF created with pdfFactory Pro trial version https://www.doczj.com/doc/006104648.html,

实现方法:
PDF created with pdfFactory Pro trial version https://www.doczj.com/doc/006104648.html,

一、胀形变形特点
如右图示,胀形变形有以下特点:
1.胀形变形属板面方向的双向拉伸应 力状态 ,变形主要是由材料厚度方 向的减薄量支持板面方向的伸长量而 完成的,变形后材料厚度减薄表面积 增大。
PDF created with pdfFactory Pro trial version https://www.doczj.com/doc/006104648.html,

冲压材料

冲压工艺用材料 一、冲压对板料的基本要求 冲压对板料的要求中,首先要满足对产品的技术要求,如强度、刚度等力学性能指标要求,还有一些物理化学等方面的特殊要求,如电磁性、防腐性等。其次还必须满足冲压工艺的要求,即应具有良好的冲压成形性能。为满足上述两方面的要求,冲压工艺对板料的基本要求如下: (一)对力学性能的要求 板料力学性能对冲压成形性能有着密切的关系,力学性能的指标很多,其中尤以伸长率(δ)、屈强比(σs/σb)、弹性模数(E)、硬化指数(n)和厚向异性系数(r)影响较大。一般来说,伸长率大、屈强比小、弹性模数大、硬化指数高和厚向异性系数大有利于各种冲压成形工序。 (二)对化学成分的要求 板材的化学成分对冲压成形性能影响很大,如在钢中的碳、硅、锰、磷、硫等元素的含量增加,就会使材料的塑性降低、脆性增加,导致材料冲压成形性能变坏。一般低碳沸腾钢容易产生时效现象,拉深成形时出现滑移线,这对汽车覆盖件是不允许的。为了消除滑移线,可在拉深之前增加一道辊压工序,或采用加入铝和钒等脱氧的镇静钢,拉深时就不会出现时效现象。铝镇静钢08Al按其拉深质量分为3级:ZF(最复杂)用于拉深最复杂零件,HF(很复杂)用于拉深很复杂零件,F(复杂)用于拉深复杂零件。其它深拉深薄钢板按冲压性能分:Z (最深拉深)、S(深拉深)、P(普通拉深)3级。 (三)对金相组织的要求 由于对产品的强度要求与对材料成形性能的要求,材料可处于退火状态(或软态)(M)也可处于淬火状态(C)或硬态(Y)。使用时可根据产品对强度要求及对材料成形性能的要求进行选择。有些钢板对其晶粒大小也有一定的规定,晶粒大小合适、均匀的金相组织拉深性能好,晶粒大小不均易引起裂纹,深拉深用冷轧薄钢板的晶粒为6至8级。过大的晶粒在拉深时产生粗糙的表面。此外,在钢板中的带状组织与游离碳化物和非金属夹杂物,也会降低材料的冲压成形性能。 (四)对表面质量的要求 材料表面应光滑,无氧化皮、裂纹、划伤等缺陷。表面质量高的材料,成形时不易破裂不易擦伤模具,零件表面质量好。优质钢板表面质量分3组:I组(高质量表面),II组(较高质量表面)、III组(一般质量表面)。 (五)对材料厚度公差的要求 在一些成形工序中,凸、凹模之间的间隙是根据材料厚度来确定的,尤其在校正弯曲和整形工序中,板料厚度公差对零件的精度与模具寿命会有很大的影响。厚度公差分:A(高级)、B(较高级)、和C(普通级)3种。 二、板料力学性能与冲压成形性能的关系 板料对冲压成形工艺的适应能力称为板料的冲压成形性能。板料在成形过程中可能出现两种失稳现象,一种称为拉伸失稳,即板料在拉应力作用下局部出现缩颈或断裂;另外一种称为压缩失稳,即板料在压应力作用下出现起皱。板料在失稳之前可以达到的最大变形程度叫做成形极限。成形极限分为总体成形极限和局部成形极限。总体成形极限反映板料失稳前总体尺寸可以达到的最大变形程度,如极限拉深系数、极限胀形高度和极限翻孔系数等。这些极限系数通常作为规则

相关主题
文本预览
相关文档 最新文档