当前位置:文档之家› 随机变量及其分布

随机变量及其分布

随机变量及其分布
随机变量及其分布

随机变量及其分布、统计 2012-1-3

1. 若X ~B (5,0.1),则P (X ≤2)等于

A.0.665

B.0.00856

C.0.91854

D.0.99144

2. 某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为

A.100

B.200

C.300

D.400

3. 已知随机变量ξ服从正态分布),1(2σN ,若023.0)2(=>ξP ,则=≤≤-)22(ξP

A.0.477

B.0.628

C.0.954

D.0.977

4. 若P (ξ≤n )=1-a ,P (ξ≥m )=1-b ,其中m <n ,则P (m ≤ξ≤n )等于

A.(1-a )(1-b )

B.1-a (1-b )

C.1-(a +b )

D.1-b (1-a )

5. 如图所示是一批产品中抽样得到数据的频率直方图,

由图可看出概率最大时数据所在范围是

A.(8.1,8.3)

B.(8.2,8.4)

C.(8.4,8.5)

D.(8.5,8.7)

6.

若列联表如下:

则K 2的值约为

A.1.4967

B.1.64

C.1.597

D.1.71

7. 假设有两个分类变量X 1,x 2}和{y 1,y 2},其2×2列联表为:

Y X

y 1 y 2 总计 x 1 a b a +b

x 2 c d c +d

总计 a +c b +d a +b +c +d

A.a =5,b =4,c =3,d =2

B.a =5,b =3,c =4,d =2

C.a =2,b =3,c =4,d =5

D.a =3,b =2,c =4,d =5

8. 若X 是一个随机变量,则E (X -E (X ))的值为

A.无法求

B.0

C.E (X )

D.2E (X )

9. 设A ,B 是两个独立事件,“A 和B 同时不发生”的概率为,9

1“A 发生且B 不 发生”的概率与“B 发生且A 不发生”的概率相等,则事件A 发生的概率为 181.

A 92.

B C. 31 3

2 10.某商场买来一车苹果,从中随机抽取了10个苹果,其重量(单位:克)分别为:150,152,153,149,148,146,151,150,152,147,由此估计这车苹果单个重量的期望值是

A.150.2克

B.149.8克

C.149.4克

D.147.8克 11. 已知随机变量ξ服从正态分布2(2)N σ,,(4)0.84P ξ=≤,则(0)P ξ=≤

A.0.16

B.0.32

C.0.68 D ,0.84

12. 已知随机变量ξ只能取三个值x 1,x 2,x 3,其概率依次成等差数列,则该等差数列公差的取值范围是

A.[0,13]

B.[-13,13

] C.[-3,3] D.[0,1] 13. 种子处理 种子未处理 总计

得病 32 101 133

不得病 61 213 274

总计 93 314 407

色盲 不色盲 合计 男 15 20 35 女 12 8 20 合计 27 28 55

根据以上数据,可得出

A.种子是否经过处理跟是否生病有关

B.种子是否经过处理跟是否生病无关

C.种子是否经过处理决定是否生病

D.以上都是错误的

14.

Y 有关系”的可信程度.

如果K 2≥5.024A.25% B.75% C.2.5% D.97.5%

15. 对两个变量y 和x 进行回归分析,得到一组样本数据:(x 1,y 1),(x 2,y 2),…,(x n ,y n ),则下列说法中不正确的是

A.由样本数据得到的回归方程y ^=b ^x +a ^必过样本点的中心(x ,y )

B.残差平方和越小的模型,拟合的效果越好

C.用相关指数R 2来刻画回归效果,R 2的值越小,说明模型的拟合效果越好

D.若变量y 和x 之间的相关系数r =-0.9362,则变量y 和x 之间具有线性相关关系

16. 一串钥匙有5把,只有一把能打开锁,依次试验,打不开的扔掉,直到找到能开锁的钥匙为止,则试验次数ξ的最大可能取值为

A.5

B.2

C.3

D.4

17. 甲、乙两人独立地解同一问题,甲解决这个问题的概率是P 1,乙解决这个问题的概率是P 2,那么其中至少有1人解决这个问题的概率是

A. P 1 + P 2

B. P 1·P 2

C.1-P 1·P 2

D.1-(1-P 1 )(1-P 2)

18. 设ξ~B(n.p )且E ξ=12 D ξ=4,则n, p 为

A.18,

13 B.36,13 C.18, 23 D.36,23

19. 设随机变量ξ服从正态分布N (0,1),记)()(x P x <=Φξ,则下列结论不正确...的是 A.2

1)0(=Φ B.)(1)(x x -Φ-=Φ C.)0(1)(2)|(|>-Φ=Φ-=>a a a P ξ

20. 设随机变量ξ~N (2,2),则D (12

ξ)的值为 A.1 B.2 C.12 D.4 21. 下列关于残差的叙述正确的是 A.残差就是随机误差 B.残差就是方差 C.残差都是正数 D.残差可用来判断模型拟合的效果

22. 下面是一个2×2列联表:

则表中a 、b 处的值分别为

A.94、96

B.52、50

C.52、60

D.54、52

23. 对于性别变量,其取值为男和女,这种变量的不同“值”表示个体所属的不同类别,像这样的变量我们称为________,利用K 2来确定在多大程度上可以认为“两个分类变量有关系”的方法称为两个分类变量的________.

24.

随机抛掷一个骰子,所得点数η的均值是________.

25. 事件A 、B 、C 相互独立,如果8

1)(,81)(,61)(=??=?=?C B A P C B P B A P ,则P (B )=_________;)(B A P ?=_________.

26. 已知随机变量的分布列为

那么的数学期望 ,设的数学期望 . 27. 某中学200名考生的高考数学成绩近似服从正态分布N (120,100),则此校数学成绩在140分以上的考生人数约为________。(注:正态总体2

(,)N μσ在区间(2,2)μσμσ-+内取值的概率约为0.954)

28. 某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为________.

29.有甲、乙两名学生,经统计,他们在解答同一份数学试卷时,各自的成绩在80分、90分、100分的概率分布大致如下表所示:

甲: 乙:

试分析两名学生的成绩水平.

30.

已知某运动员投篮命中率p =0.6.

(1)求一次投篮命中次数ξ的期望与方差;

(2)求重复5次投篮时,命中次数η的期望与方差.

31. 某迷宫有三个通道,进入迷宫的每个人都要经过一扇智能门.首次到达此门,系统会随机(即等可能)为你打开一个通道.若是1号通道,则需要1小时走出迷宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门.再次到达智能门时,系统会随机打开一个你未到过的通道,直至走出迷宫为止.令ξ表示走出迷宫所需的时间.

(1)求ξ的分布列;

(2)求ξ的数学期望.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

D B C C B A D B D B A B B D C 16 17 18 19 20 21 22

D D C B C D C

1. P (X ≤2)=P (X =0)+P (X =1)+P (X =2)

=C 050.10×0.95+C 150.1×0.94+C 250.12×

0.93=0.99144. 7. 对于同一样本,|ad -bc |越小,说明X 与Y 相关性越弱,而|ad -bc |越大,说明X 与Y 相关性越强,通过计算知,对于A ,B ,C 都有|ad -bc |=|10-12|=2.对于选项D 有|ad -bc |=|15-8|=7,显然7>2.

8. E (X )是常数,设E (X )=b ,

则E (X -E (X ))=E (X -b )=E (X )-b =E (X )-E (X )=0.

13.

14. k =5.024对应的0.025是“X 与Y 有关系”不合理的程度,因此两个分类变量有关系的可信程度约为97.5%.

15. R 2的值越大,说明残差平方和越小,也就是说模型的拟合效果越好,故选C.

16.

20. ∵ξ~N (2,2),∴D (ξ)=2.

∴D (12ξ)=122D (ξ)=14×2=12

. 22. ∵a +21=73,∴a =52,

∴b =a +8=52+8=60.

二.简答题答案:

23. 分类变量 独立性检验

24. 3.5 P (η=i )=16,i =1,2,…,6.∴E (η)=16(1+2+…+6)=16×7×62

=3.5. 25. 3

1,21 26. -1/6 2/3 27. 46 28. 200 ∵种子发芽率为0.9,不发芽率为0.1,每粒种子发芽与否相互独立,故设没有发芽的种子数为ξ,

则ξ~B (1000,0.1),∴E (ξ)=1000×0.1=100,

故需补种的期望为2E (ξ)=200.

.解答题答案:

1. ∵E (X )=80×0.2+90×0.6+100×0.2=90,

D (X )=(80-90)2×0.2+(90-90)2×0.6+(100-90)2×0.2=40,

E (Y )=80×0.4+90×0.2+100×0.4=90,

D (Y )=(80-90)2×0.4+(90-90)2×0.2+(100-90)2×0.4=80,

∴E (X )=E (Y ),D (X )

∴甲生与乙生的成绩均值一样,甲的方差较小,因此甲生的学习成绩较稳定.

2. (1)投篮一次命中次数ξ的分布列为

则E (ξ)=0×0.4+1×0.6=0.6,

D (ξ)=(0-0.6)2×0.4+(1-0.6)2×0.6=0.24.

(2)由题意,重复5次投篮,命中的次数η服从二项分布,即η~B (5,0.6).

由二项分布期望与方差的计算结论,有

E (η)=5×0.6=3,

D (η)=5×0.6×0.4=1.2.

3. (1)ξ的所有可能取值为1,3,4,6.

P (ξ=1)=13,P (ξ=3)=16,P (ξ=4)=16,P (ξ=6)=13

,所以ξ的分布列为

(2)E (ξ)=1×13+3×16+4×16+6×13=72

(小时).

第2章 随机变量及其分布习题解答

第二章 随机变量及其分布 1、解: 设公司赔付金额为X ,则X 的可能值为; 投保一年内因意外死亡:20万,概率为0.0002 投保一年内因其他原因死亡:5万,概率为0.0010 投保一年内没有死亡:0,概率为1-0.0002-0.0010=0.9988 所以X 2、一袋中有5X 表示取出的三只球中的最大号码,写出随机变量X 的分布律 解:X 可以取值3,4,5,分布律为 10 61)4,3,2,1,5()5(1031)3,2,1,4()4(10 11)2,1,3()3(35 2 435 2 335 2 2=?= === ?==== ?= ==C C P X P C C P X P C C P X P 中任取两球再在号一球为中任取两球再在号一球为号两球为号一球为 也可列为下表 X : 3, 4,5 P :10 6, 103,101 3、设在15只同类型零件中有2只是次品,在其中取三次,每次任取一只,作不放回抽样,以X 表示取出次品的只数,(1)求X 的分布律,(2)画出分布律的图形。 解:任取三只,其中新含次品个数X 可能为0,1,2个。 35 22 )0(315313= ==C C X P 3512)1(3 15213 12=?==C C C X P 35 1)2(3 15 113 22= ?= =C C C X P 再列为下表 X : 0, 1, 2 P : 35 1, 3512,3522 4、进行重复独立实验,设每次成功的概率为p ,失败的概率为q =1-p (0

随机变量及其分布列概念公式总结

随机变量及其分布总结 1、定义:随着试验结果变化而变化的变量称为随机变量 .随机变量常用字母 X , Y ,ξ,η,… 表示. 2、定义:所有取值可以一一列出的随机变量,称为离散型随机变量 3、分布列:设离散型随机变量ξ可能取得值为 x 1,x 2,…,x 3,…, ξ取每一个值x i (i =1,2,…)的概率为()i i P x p ξ==,则称表 为随机变量ξ的概率分布,简称ξ的分布列 4. 分布列的两个性质: (1)P i ≥0,i =1,2,…; (2)P 1+P 2+…=1. 5.求离散型随机变量ξ的概率分布的步骤: (1)确定随机变量的所有可能的值x i (2)求出各取值的概率p(ξ=x i )=p i (3)画出表格 6.两点分布列: 7超几何分布列: 一般地,在含有M 件次品的 N 件产品中,任取 n 件,其中恰有X 件次品 数,则事件 {X=k }发生的概率为(),0,1,2,,k n k M N M n N C C P X k k m C --=== ,其中mi n {,} m M n =,且,,,,n N M N n M N N *≤≤∈.称分布列 为超几何分布列.如果随机变量 X 的分布列为超几何分布列,则称随机变量 X

服从超几何分布 8.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是 k n k k n n q p C k P -==)(ξ,(k =0,1,2,…,n ,p q -=1). 于是得到随机变量ξ的概率分布如下: ξ 1 … k … n P n n q p C 00 111-n n q p C … k n k k n q p C - … q p C n n n 称这样的随机变量ξ服从二项分布,记作ξ~B (n ,p ),其中n ,p 为参数。 9.离散型随机变量的均值或数学期望: 一般地,若离散型随机变量ξ的概率分布为 则称 =ξE +11p x +22p x …++n n p x … 为ξ的均值或数学期望,简称期望. 10.离散型随机变量的均值或数学期望的性质: (1)若ξ服从两点分布,则=ξE p . (2)若ξ~B (n ,p ),则=ξE np . (3)()c c E =,c 为常数 (4)ξ~N (μ,2σ),则=ξE μ (5)b aE b a E +=+ξξ)( 11.方差: 对于离散型随机变量ξ,如果它所有可能取的值是1x ,2x ,…,n x ,…, 且取这些值的概率分别是1p ,2p ,…,n p ,…,那么, ξD =121)(p E x ?-ξ+222)(p E x ?-ξ+…+n n p E x ?-2)(ξ+…

随机变量及其分布函数

随机变量及其分布函数 将随机事件以数量来标识,即用随机变量描述随机现象的研究方法,它是定义在样本空间上具有某种可预测性的实值函数。 分布函数则完整的表述了随机变量。 一、 随机变量与分布函数 (1) 随机变量: 取值依赖于某个随机试验的结果(样本空间),并随着试验结果不同而变化的变量,称之为随机变量。 分布函数: [1] 定义: 设X 是一个随机变量,对任意实数x ,记作 (){}F x P X x ≤=,称()F x 为随机变量X 的分 布函数,又称随机变量X 服从分布()F x ,显然,函数 ()F x 的定义域为(),-∞+∞,值域为[0,1]。 [2] 性质: ?()F x 单调非降。 ?()0F -∞=、()1F +∞=。 ?()(0)F x F x =+,即()F x 一定是右连续的。 ?对于任意两个实数a b <, {}()()P a X b F b F a <≤=- ?对于任意实数0x ,

00 0{}()()P X x F x F x ==-- ?000{}1{}1()P X x P X x F x >=-≤=- ?000{}{)lim }(x x P X x P X x x F →- =≤<=- ?000{}1{}1()P X x P X x F x ≥=-<=-- 二、 离散型随机变量与连续型随机变量 (1) 离散型随机变量 [1] 概念:设X 是一个随机变量,如果X 的取值是有限个或者 无穷可列个,则称X 为离散型随机变量。其相应的概率()i i P X x p ==(12)i =、……称为X 的概率分布或分布律,表格表示形式如下: [2] 性质: ?0i p ≥ ? 1 1n i i p ==∑ ?分布函数()i i x x F x p ==∑ ?1{}()()i i i P X x F x F x -==- (2) 连续型随机变量 [1] 概念:如果对于随机变量的分布函数()F x ,存在非 负的函数 ()f x ,使得对于任意实数x ,均有:

随机变量及其分布考点总结

第二章 随机变量及其分布 复习 一、随机变量. 1. 随机试验的结构应该是不确定的.试验如果满足下述条件: ①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果. 它就被称为一个随机试验. 2. 离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是一个随机变量,a ,b 是常数.则b a +=ξη也是一个随机变量.一般地,若ξ是随机变量,)(x f 是连续函数或单调函数,则)(ξf 也是随机变量.也就是说,随机变量的某些函数也是随机变量. 3、分布列:设离散型随机变量ξ可能取的值为:ΛΛ,,,,21i x x x ξ取每一个值),2,1(Λ=i x 的概率p x P ==)(,则表称为随机变量ξ的概率分布,简称ξ的分布列. 121i 注意:若随机变量可以取某一区间内的一切值,这样的变量叫做连续型随机变量.例如:]5,0[∈ξ即ξ可以取0~5之间的一切数,包括整数、小数、无理数. 典型例题: 1、随机变量ξ的分布列为(),1,2,3(1) c P k k k k ξ== =+……,则P(13)____ξ≤≤= 2、袋中装有黑球和白球共7个,从中任取两个球都是白球的概率为1 7 ,现在甲乙两人从袋中轮流摸去一 球,甲先取,乙后取,然后甲再取……,取后不放回,直到两人中有一人取到白球时终止,用ξ表示取球的次数。(1)求ξ的分布列(2)求甲取到白球的的概率 3、5封不同的信,放入三个不同的信箱,且每封信投入每个信箱的机会均等,X 表示三哥信箱中放有信件树木的最大值,求X 的分布列。 4 已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为5 . (1)请将上面的列联表补充完整; (2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由; (3)已知喜爱打篮球的10位女生中,12345,,A A A A A ,,还喜欢打羽毛球,123B B B ,,还喜欢打乒乓球,12C C ,还喜欢踢足球,现再从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的女生中各选出1名进行其他方面的调查,求1B 和1C 不全被选中的概率. (参考公式:2 ()()()()() n ad bc K a b c d a c b d -=++++,其中n a b c d =+++)

“随机变量及其分布”简介

“随机变量及其分布”简介 北京师范大学数学科学院李勇 随机变量是研究随机现象的重要工具之一,他建立了连接随机现象和实数空间的一座桥梁,使得我们可以借助于有关实数的数学工具来研究随机现象的本质,从而可以建立起应用到不同领域的概率模型,如二项分布模型、超几何分布模型、正态分布模型等。 在本章中将通过具体实例,帮助学生理解取有限值的离散型随机变量及其分布列、均值、方差的概念,理解超几何分布和二项分布的模型并能解决简单的实际问题,使学生认识分布列对于刻画随机现象的重要性,认识正态分布曲线的特点及曲线所表示的意义。 一、内容与要求 1. 随机变量及其分布的概念。 通过具体实例使学生理解随机变量及其分布列的概念,认识随机变量及其分布对于刻画随机现象的重要性。要求学生会用随机变量表达简单的随机事件,并会用分布列来计算这类事件的概率。 2.超几何分布模型及其应用。 通过实例,理解超几何分布及其导出过程,并能进行简单的应用。 3. 二项分布模型及其应用。 通过具体实例使学生了解条件概率和两个事件相互独立的概念,理解n次独立重复试验和二项分布模型,并能解决一些简单的实际问题。 4.离散随机变量的均值与方差。 通过实例使学生理解离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题。 5.正态分布模型。 借助直观使学生认识正态分布曲线的特点及含义。 二、内容安排及说明 1.全章共安排了4个小节,教学约需12课时,具体内容和课时分配如下(仅供参考): 2.1 离散型随机变量及其分布列约3课时 2.2 二项分布及其应用约4课时

2.3 离散型随机变量的均值与方差约3课时 2.4 正态分布约1课时 小结约1课时 2. 本章知识框图 3.对内容安排的说明。 研究一个随机现象,可以借助于随机变量,而分布描述了随机变量取值的概率分布规律。二项分布和超几何分布是两个应用广泛的概率模型.为了使学生能够更好地理解它们,并能用来解决一些实际问题,教科书在内容安排上作了如下考虑: (1) 为学生把注意力集中在随机变量的基本概念和方法的理解上,通过取有限个不同 值的随机变量为载体介绍这些概念,以便他们能更好的应用这些概念解决实际问 题。例如,如何定义随机变量来描述所感兴趣的随机事件;一个具体的随机变量都 能表达什么样的事件,如何表达这些事件;如何用分布列来表达随机事件发生的概 率等。 (2) 介绍超几何分布模型及其应用,其目的是 i. 让学生了解它的广泛应用背景,并使学生能够应用该分布设计一些能够丰富学生课外

随机变量及其分布小结与复习

复习课: 随机变量及其分布列 教学目标 重点:理解随机变量及其分布的概念,期望与方差等的概念;超几何分布,二项分布,正态分布等的特点;会求条件概率,相互独立事件的概率,独立重复试验的概率等. 难点:理清事件之间的关系,并用其解决一些具体的实际问题. 能力点:分类整合的能力,运算求解能力,分析问题解决问题的能力. 教育点:提高学生的认知水平,为学生塑造良好的数学认识结构. 自主探究点:例题及变式的解题思路的探寻. 易错点:容易出现事件之间的关系混乱,没能理解问题的实际意义. 学法与教具 1.学法:讲授法、讨论法. 2.教具:投影仪. 一、【知识结构】 二、【知识梳理】 1.随机变量 ⑴随机变量定义:在随机试验中,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化.像这种随着试验结果变化而变化的变量称为随机变量.简单说,随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量.常用希腊字母x、y、ξ、η等表示. ⑵如果随机变量可能取的值可以按次序一一列出(可以是无限个)这样的随机变量叫做离散型随机变量.

⑶如果随机变量可能取的值是某个区间的一切值,这样的随机变量叫做连续型随机变量. 2.概率分布定义(分布列) 设离散型随机变量ξ可能取的值为123,,,,i x x x x L L ,ξ取每一个值(1,2,)i x i =L 的概率 ()i i P x p ξ==,则称表 ξ 1x 2x L i x L P 1P 2P L i P L 称为随机变量ξ的概率分布列,简称ξ的分布列. 注:1.离散型随机变量的分布列具有下述两个性质: (1)0,123≥,,,i p i =L ;123(2)1p p p +++=L 3.常见的分布列 ⑴二项分布:在一次试验中某事件发生的概率是p ,那么在n 次独立重复试验中这个事件恰发生k 次的概 率为()(1)k k n k n p X k C p p -==-,显然x 是一个随机变量.随机变量x 的概率分布如下: x 1 L k L n P 00n n C p q 111 n n C p q - L k k n k n C p q - L n n n C p q 我们称这样的随机变量x 服从二项分布,记作~(,)X B n p ⑵两点分布列:如果随机变量ξ的分布列为: ξ 0 1 P 1P - P 这样的分布列称为两点分布列,称随机变量服从两点分布,而称(1)p P ξ==为成功概率.两点分布是特殊的二项分布(1)p ξ~B , ⑶超几何分布:一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有x 件次品数,则事件{} x k =发生的概率为(),0,1,2,3,,k N k M N M n N C C P X k k m C --===L .其中{}min ,m M n =,且*,,,,n N M N n M N N ≤≤∈,则称分布列

两个随机变量和与商的分布函数和密度函数

设(X ,Y )的联合密度函数为f (x ,y ),现求Z=X+Y 的概率密度。 令{(,)|}z D x y x y z =+≤,则Z 的分布函数为: (){} {}(,)((,))Z D z z y F z P Z z P X Y z f x y dxdy f x y dx dy +∞--∞ -∞ =≤=+≤==??? ? (1.1) 固定z 和y 对积分 (,)z y f x y dx --∞ ?作换元,令x y u +=,得 (,)(,)z y z f x y dx f u y y du --∞ -∞ =-?? (1.2) 于是 ()(,)[(,)]z z Z F z f u y y dudy f u y y dy du +∞+∞ -∞-∞ -∞ -∞ =-=-???? (1.3) 由概率论定义,即得Z 的概率密度为 ()(,)Z f z f z y y dy +∞-∞ =-? (1.4) 由X 与Y 的对称性,又可得 ()(,)Z f z f x z x dx +∞-∞ =-? , (1.5) 特别的,当X 与Y 相互独立时,有 ()()()()()Z X Y X Y F z f z y f y dx f x f z x dx +∞ +∞ -∞ -∞ =-=-? ? (1.6) 其中,()X f x 、()Y f y 分别是X 和Y 的密度函数。 式(1.6)又称为()X f x 和()Y f y 的卷积,常记为*()X Y f f z 。因此式(1.6)又称为独立和分布的卷积公式。

设(X ,Y )的联合密度函数为f (x ,y ),又X Z Y =,现求X Z Y =的概率密度,Z 的分布函数为 1 2 (){} (,)(,)Z D D F z P Z z f x y dxdy f x y dxdy =≤=+???? (2.1) 而 1 (,)(,)yz D f x y dxdy f x y dxdy +∞ -∞=?? ? ? (2.2) 对于固定的z ,y ,积分 (,)yz f x y dx -∞ ?作换元x u y = (这里y>0),得 (,)(,)yz z f x y dx yf yu y du -∞ -∞ =?? (2.3) 于是 01 (,)(,)(,)z D z f x y dxdy yf yu y dudy yf yu y dydu +∞-∞+∞ -∞==????? ? (2.4) 类似的可得 2 (,)(,)(,)yz D z f x y dxdy f x y dxdy yf yu y dydu +∞ -∞-∞-∞ ==-??? ? ? ? (2.5) 故有 12 0()(,)(,)[(,)(,)][(,)]Z D D z z F z f x y dxdy f x y dxdy yf yu y dy yf yu y dy du y f yu y dy du +∞-∞ -∞ +∞-∞-∞ =+=-=?????? ? ?? (2.6) 有概率密度定义可得X Z Y = 的概率密度为 ()(,)Z f z y f yz y dy +∞ -∞ =? (2.7) 特别的,当X 与Y 相互独立时,有 ()()()Z X Y f z y f yz f y dy +∞-∞ =? (2.8)

第二章随机变量及其分布练习题

第二章随机变量及其分布练习题 1.甲、乙两人各进行一次射击,甲击中目标的概率是0.8,乙击中目标的概率 是0.6,则两人都击中目标的概率是( ) A.1.4 B.0.9 C.0.6 D.0.48 2.设随机变量1~62X B ?? ???,,则(3)P X =等于( ) A.516 B.316 C.5 8 D.716 3.设随机变量X 的概率分布列为 X 1 2 3 P 1 6 1 3 1 2 则E (X +2) ( ). A.113 B .9 C.133 D.73 4.两台相互独立工作的电脑,产生故障的概率分别为a ,b ,则产生故障的电脑 台数的均值为( ) A.ab B.a b + C.1ab - D.1a b -- 5.某普通高校招生体育专业测试合格分数线确定为60分.甲、乙、丙三名考生 独立参加测试,他们能达到合格的概率分别是0.9,0.8,0.75,则三人中至少有 一人达标的概率为( ) A .0.015 B .0.005 6.设随机变量~()X B n p ,,则22 ()()DX EX 等于( ) A.2p B.2(1)p - C.np D.2(1)p p - 7.对标有不同编号的6件正品和4件次品的产品进行检测,不放回地依次摸出 2件.在第一次摸出正品的条件下,第二次也摸到正品的概率是 ( ). A.35 B.25 C.110 D.59 8.从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶 数”,事件B =“取到的2个数均为偶数”,则P (B |A )= ( ). A.18 B.14 C.25 D.12

9.设随机变量ξ服从正态分布N(0,1),P(ξ>1)=p,则P(-1<ξ<0)等于(). A.1 2p B.1-p C.1-2p D. 1 2-p 10.已知随机变量X服从正态分布N(μ,σ2),且P(μ-2σ

随机变量及其分布知识点整理

随机变量及其分布知识点整理 一、离散型随机变量的分布列 一般地,设离散型随机变量X 可能取的值为12,,,,,i n x x x x ??????,X 取每一个值(1,2,,)i x i n =???的概率()i i P X x p ==,则称以下表格 为随机变量X 的概率分布列,简称X 的分布列. 离散型随机变量的分布列具有下述两个性质: (1)0,1 ,2,,i P i n =???≥ (2)121n p p p ++???+= 1.两点分布 如果随机变量X 的分布列为 则称X 服从两点分布,并称=P(X=1)p 为成功概率. 2.超几何分布 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{}X k =发生的概率为: (),0,1,2,3,...,k n k M N M n N C C P X k k m C --=== {}*min ,,,,,,m M n n N M N n M N N =≤≤∈其中且。 注:超几何分布的模型是不放回抽样 二、条件概率 一般地,设A,B 为两个事件,且()0P A >,称()(|)() P AB P B A P A =为在事件A 发生的条件下,事件B 发生的条件概率. 0(|)1P B A ≤≤ 如果B 和C 互斥,那么[()|](|)(|)P B C A P B A P C A =+ 三、相互独立事件 设A ,B 两个事件,如果事件A 是否发生对事件B 发生的概率没有影响(即()()()P AB P A P B =),则称事件A 与事件B 相互独立。()()()A B P AB P A P B ?=即、相互独立 一般地,如果事件A 1,A 2,…,A n 两两相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概

随机变量及其分布

随机变量及其分布 1. 在某项测量中,测量结果ξ服从正态分布),1(2σN )0(>σ,若ξ在(0,2)内取值的概率为0.8,则ξ在(]0,∞-内取值的概率为 。 2. 92 )22(x x - 展开式中的常数项是 。 3. 有5本不同的书,其中语文书2本,数学书2本,物理书1本。若将其随机地并排摆放到书架的同一层上,则同一科目的书都不相邻的概率是 。 4. 在某种信息传递过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息。若用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为 。 5. 在学校组织的足球比赛中,某班要与其他4个班级各赛一场,在这4场比赛的任意一场中,此班级每次胜、负、平的概率相等。已知当这四场比赛结束后,该班胜场多于负场。 (1) 求班级胜场多于负场的所有可能的个数和。 (2) 若胜场次数为X ,求X 的分布列及其数学期望。

6.某品牌汽车的 4S 店,对最近100为采用分期付款的购车者进行了统计,统计结果如下表所示:已知分3期付款的频率为0.2,且4S 店经销一辆该品牌的汽车,顾客分1期付款,其利润为1万元,分2起或3期付款其利润为1.5万元;分4期或5期付款,其利润为2万元。用η表示经销一辆汽车的利润。 (1) 若以频率作为概率,求事件A:“购买该品牌汽车的3为顾客中,至多有1位采用分3 期付款”的概率P(A); (2) 求η的分布列及其数学期望E η。 7.2011年3月11日,日本地震引起了核泄漏,现有A,B 两组反应堆,据有关技术部分析,A 组中的两个反应堆爆炸的概率都是32,B 组中两个反应堆爆炸的概率都是2 1,假设这四个反应堆是否爆炸互不影响。 (1)求A 组,B 组中各有一个反应堆爆炸的概率; (2)求A,B 两组反应堆爆炸的个数ξ的分布列与期望。

(word完整版)基础随机变量及其分布知识点,推荐文档

随机变量及其分布 一、离散型随机变量的分布列 一般地,设离散型随机变量X 可能取的值为12,,,,,i n x x x x ??????,X 取每一个值(1,2,,)i x i n =???的概率()i i P X x p ==,则称以下表格 为随机变量X 的概率分布列,简称X 的分布列. 离散型随机变量的分布列具有下述两个性质: (1)0,1,2,,i P i n =???≥ (2)121n p p p ++???+= 常见的两种分布: 1.两点分布 如果随机变量X 的分布列为 则称X 服从两点分布,并称=P(X=1)p 为成功概率. 2.超几何分布 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{}X k =发生的概率为: (),0,1,2,3,...,k n k M N M n N C C P X k k m C --== =

则随机变量X 的概率分布列如下: {}*min ,,,,,,m M n n N M N n M N N =≤≤∈其中且。 注:超几何分布的模型是不放回抽样 二、条件概率 一般地,设A,B 为两个事件,且()0P A >,称() (|)()P AB P B A P A =为在事件A 发生的条件下,事件B 发生的条件概率. 0(|)1P B A ≤≤ 三、相互独立事件 设A ,B 两个事件,如果事件A 是否发生对事件B 发生的概率没有影响(即 ()()()P AB P A P B =),则称事件A 与事件B 相互独立。 ()()()A B P AB P A P B ?=即、相互独立 一般地,如果事件A 1,A 2,…,A n 两两相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积,即1212(...)()()...()n n P A A A P A P A P A =. 注:(1)互斥事件:指同一次试验中的两个事件不可能同时发生; (2) 相互独立事件:指在不同试验下的两个事件互不影响.

随机变量及其分布考点汇总

随机变量及其分布考点汇总

————————————————————————————————作者:————————————————————————————————日期:

第二章 随机变量及其分布 复习 一、随机变量. 1. 随机试验的结构应该是不确定的.试验如果满足下述条件: ①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果. 它就被称为一个随机试验. 2. 离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是一个随机变量,a ,b 是常数.则b a +=ξη也是一个随机变量.一般地,若ξ是随机变量,)(x f 是连续函数或单调函数,则)(ξf 也是随机变量.也就是说,随机变量的某些函数也是随机变量. 3、分布列:设离散型随机变量ξ可能取的值为:ΛΛ,,,,21i x x x ξ取每一个值),2,1(1Λ=i x 的概率i i p x P ==)(ξ,则表称为随机变量ξ的概率分布,简称ξ的分布列. ξ 1x 2x … i x … P 1p 2p … i p … 有性质①Λ,2,1,01=≥i p ; ②121=++++ΛΛi p p p . 注意:若随机变量可以取某一区间内的一切值,这样的变量叫做连续型随机变量.例如:]5,0[∈ξ即ξ可以取0~5之间的一切数,包括整数、小数、无理数. 典型例题: 1、随机变量ξ的分布列为(),1,2,3(1) c P k k k k ξ== =+……,则P(13)____ξ≤≤= 2、袋中装有黑球和白球共7个,从中任取两个球都是白球的概率为1 7 ,现在甲乙两人从袋中轮流摸去一 球,甲先取,乙后取,然后甲再取……,取后不放回,直到两人中有一人取到白球时终止,用ξ表示取球的次数。(1)求ξ的分布列(2)求甲取到白球的的概率 3、5封不同的信,放入三个不同的信箱,且每封信投入每个信箱的机会均等,X 表示三哥信箱中放有信件树木的最大值,求X 的分布列。 4、为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表: 喜爱打篮球 不喜爱打篮球 合计 男生 5 女生 10 合计 50 已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为3 5 . (1)请将上面的列联表补充完整; (2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由; (3)已知喜爱打篮球的10位女生中,12345,,A A A A A ,,还喜欢打羽毛球,123B B B ,,还喜欢打乒乓球,12C C ,还喜欢踢足球,现再从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的女生中各选出1名进行其他方面的调查,求1B 和1C 不全被选中的概率. 下面的临界值表供参考: 2 ()p K k ≥ 0.15 0.10 0.05 0.025 0.010 0.005 0.001 k 2.072 2.706 3.841 5.024 6.635 7.879 10.828 (参考公式:2 2 ()()()()() n ad bc K a b c d a c b d -=++++,其中n a b c d =+++)

随机变量及其分布公式

随机变量及其分布 一,离散型随机变量 1,试验:凡是对现象的观察或为此而进行的实验,都称之为试验。 2,随机试验:一个试验如果满足(1)试验可以在相同的情形下重复进行;(2)试验的所有可能结果是明确可知的,并且不止一个;(3)每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果,那么,这个试验就叫做随机试验。 3,随机变量:随着试验结果变化而变化的变量称为随机变量,随机变量常用字母ηξ,,,Y X 表示。例如抛筛子、掷硬币 4,离散型随机变量:如果随机变量X 的所有可能的取值都能一一列举出来,则称X 为离散型随机变量 二,离散型随机变量的分布列 要掌握一个离散型随机变量X 的取值规律,必须知道: 1,X 所有可能取的值n x x x ,,,21 ; 2,X 取每一个值i x 的概率n p p p ,,,21 分布列 : 我们称这个表为离散型随机变量X 的概率分布,或称为离散型随机变量X 的分布列。 3,离散型随机变量的分布列性质: (1)*,0N i p i ∈≥;(2)1321=++++n p p p p 三,两点分布与超几何分布 1,两点分布 若随机变量X 的分布列为 则称X 的分布列为两点分布列。 如果随机变量X 的分布列为 两点分布列,就称X 服从两点分布,并称)1(==x P p 为成功概率 2,超几何分布: 一般的,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{}k X =发生的概率为 n N k n M N k M C C C k x P --==)((m k ,2,1,0=),其中{}*,,,,,,m in N N M n N M N n n M m ∈≤≤=且,称 为超几何分布列,如果随机变量X 的分布列为超几何分布列,则称随机变量X 服从超几何分布 四,独立重复试验与二项分布 1,独立重复试验:一般的,在相同条件下重复做的n 次试验称为n 次独立重复试验。 2,独立重复试验事件A 恰有k 次发生的概率: 一般的,如果在1次实验中某事件发生的概率是p ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率 =)(k P n k n k k n p p C --)1(,(n k ,2,1,0=)

随机变量独立同分布的概念

1、随机变量独立同分布的概念 随机变量X1和X2独立,是指X1的取值不影响X2的取值,X2的取值也不影响X1的取值。随机变量X1和X2同分布,意味着X1和X2具有相同的分布形状和相同的分布参数,对离散型随机变量具有相同的概率函数,对连续型随机变量具有相同的概率密度函数,有着相同的分布函数,相同的均值、方差与标准差。 反之,若随机变量X1和X2是同类型分布,且分布参数全相同,则X1和X2一定同分布。 一般来说,在相同条件下,进行两次独立试验,则这两次实验结果所对应的随机变量是独立同分布的。 比如,将一枚质地均匀的硬币抛掷两次,设X1为第一次抛掷硬币的结果,X2为第二次抛掷硬币的结果。显然,第一次抛掷硬币的结果对第二次的结果没有影响,反之亦然,故X1和X2相互独立。 同时,X1和X2都只有两种试验结果:正面朝上和背面朝上,以0代表正面朝上,1代表背面朝上,则 P(X1=0)=P(X2=0)=0.5, P(X1=1)=P(X2=1)=0.5, 故X1和X2是独立同分布的随机变量。 随机变量独立同分布的特性可以推广到三个或更多个随机变量。 2、独立同正态分布(定理1) 3、独立同分布(定理2——中心极限定理) 当的分布对称时,只要n 5,那么,近似效果就比较理想;当的分布非对称时,要求n 值较大,一般n 30近似效果较理想。 这个定理表明:无论随机变量服从何种分布,可能是离散分布,也可能是连续分布,连续分布可能是正态分布,也可能是非正态分布,只要独立同分布随机变量的个数n较大,那么,随机变量之和的分布、随机变量均值X-的分布都可以近似为正态分布。这一结论意义深远。 4、标准误 统计学中把均值X-的标准差称为均值的标准误,记为,无论是正态还是非正态,均值X-的标准误都有 SEM随着n的增加而减少。 常常对一个零件的质量特性只观测一次,就用该观测结果去估计过程输出的质量特性。这里建议一种简单有效的减少测量系统误差的方法。对同一个零件的质量特性作两次或更多次重复测量,用其观测结果的平均值去估计过程输出的质量特性,就可以减少标准差。当然,这不是回避使用更精确量具的理由,而是一种提高现有量具精度的简易方法,多次测量值的平均值要比单次测量值更精确。

随机变量及其分布

随机变量及其分布、统计 2012-1-3 1. 若X ~B (5,0.1),则P (X ≤2)等于 A.0.665 B.0.00856 C.0.91854 D.0.99144 2. 某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为 A.100 B.200 C.300 D.400 3. 已知随机变量ξ服从正态分布),1(2σN ,若023.0)2(=>ξP ,则=≤≤-)22(ξP A.0.477 B.0.628 C.0.954 D.0.977 4. 若P (ξ≤n )=1-a ,P (ξ≥m )=1-b ,其中m <n ,则P (m ≤ξ≤n )等于 A.(1-a )(1-b ) B.1-a (1-b ) C.1-(a +b ) D.1-b (1-a ) 5. 如图所示是一批产品中抽样得到数据的频率直方图, 由图可看出概率最大时数据所在范围是 A.(8.1,8.3) B.(8.2,8.4) C.(8.4,8.5) D.(8.5,8.7) 6. 若列联表如下: 则K 2的值约为 A.1.4967 B.1.64 C.1.597 D.1.71 7. 假设有两个分类变量X 1,x 2}和{y 1,y 2},其2×2列联表为: Y X y 1 y 2 总计 x 1 a b a +b x 2 c d c +d 总计 a +c b +d a +b +c +d A.a =5,b =4,c =3,d =2 B.a =5,b =3,c =4,d =2 C.a =2,b =3,c =4,d =5 D.a =3,b =2,c =4,d =5 8. 若X 是一个随机变量,则E (X -E (X ))的值为 A.无法求 B.0 C.E (X ) D.2E (X ) 9. 设A ,B 是两个独立事件,“A 和B 同时不发生”的概率为,9 1“A 发生且B 不 发生”的概率与“B 发生且A 不发生”的概率相等,则事件A 发生的概率为 181. A 92. B C. 31 3 2 10.某商场买来一车苹果,从中随机抽取了10个苹果,其重量(单位:克)分别为:150,152,153,149,148,146,151,150,152,147,由此估计这车苹果单个重量的期望值是 A.150.2克 B.149.8克 C.149.4克 D.147.8克 11. 已知随机变量ξ服从正态分布2(2)N σ,,(4)0.84P ξ=≤,则(0)P ξ=≤ A.0.16 B.0.32 C.0.68 D ,0.84 12. 已知随机变量ξ只能取三个值x 1,x 2,x 3,其概率依次成等差数列,则该等差数列公差的取值范围是 A.[0,13] B.[-13,13 ] C.[-3,3] D.[0,1] 13. 种子处理 种子未处理 总计 得病 32 101 133 不得病 61 213 274 总计 93 314 407 色盲 不色盲 合计 男 15 20 35 女 12 8 20 合计 27 28 55

两个随机变量的和与商的分布函数与密度函数

两个随机变量的和与商的分布函数与密度函数 一、两个随机变量的和的分布 设(X ,Y )的联合密度函数为f (x ,y ),现求Z=X+Y 的概率密度。 令{(,)|}z D x y x y z =+≤,则Z 的分布函数为: (){} {}(,)((,))Z D z z y F z P Z z P X Y z f x y dxdy f x y dx dy +∞--∞ -∞ =≤=+≤==??? ? (1.1) 固定z 和y 对积分(,)z y f x y dx --∞ ? 作换元,令x y u +=,得 (,)(,)z y z f x y dx f u y y du --∞ -∞ =-?? (1.2) 于是 ()(,)[(,)]z z Z F z f u y y dudy f u y y dy du +∞+∞ -∞-∞ -∞ -∞ =-=-? ??? (1.3) 由概率论定义,即得Z 的概率密度为 ()(,)Z f z f z y y dy +∞ -∞ =-? 注意:积分限为?∞到+∞ (1.4) 由X 与Y 的对称性,又可得 ()(,)Z f z f x z x dx +∞ -∞ =-? 注意:积分限为?∞到+∞ (1.5) (1.4)与(1.5)相当于分别在 x z y y z x =-=-或条件下,求X 或Y 的边缘概率密度。 特别的,当X 与Y 相互独立时,有 ()()()()()Z X Y X Y f z f z y f y dy f x f z x dx +∞ +∞ -∞ -∞ =-=-? ? (1.6) 其中,()X f x 、()Y f y 分别是X 和Y 的边缘概率密度。 式(1.6)又称为()X f x 和()Y f y 的卷积公式,常记为()*()X Y f z f z 。因此式(1.6)又称为独立随机变量和的分布的卷积公式。 二、两个随机变量的商的分布 设(X ,Y )的联合密度函数为f (x ,y ),现求X Z Y =的概率密度,Z 的分布函数为

二、随机变量及其分布(答案)

概率论与数理统计练习题 系 专业 班 姓名 学号 第二章 随机变量及其分布(一) 一.选择题: 1.设X 是离散型随机变量,以下可以作为X 的概率分布是 [ B ] (A ) 1234111124816 X x x x x p (B ) 123411112488 X x x x x p (C ) 123411112 3 4 12 X x x x x p (D ) 1234 11112 3 412 X x x x x p - 2.设随机变量ξ的分布列为 0123 0.10.30.40.2 X p )(x F 为其分布函数,则)2(F = [ C ] (A )0.2 (B )0.4 (C )0.8 (D )1 二、填空题: 1.设随机变量X 的概率分布为 0120.20.5 X p a ,则a = 0.3 2.某产品15件,其中有次品2件。现从中任取3件,则抽得次品数X 的概率分布为 313315660105()C P X C ===,12213315361105()C C P x C ===,212133 15 3 2105()C C P x C === 3.设射手每次击中目标的概率为0.7,连续射击10次,则击中目标次数X 的概率分布为 1010070301210()(.)(.) (,,,,)k k k P X k C k -=== 三、计算题: 1.同时掷两颗骰子,设随机变量X 为“两颗骰子点数之和”求: (1)X 的概率分布; (2)(3)P X ≤; (3)(12)P X > 解:(1)1236()P X == , 2336()P X ==, 3436()P X ==, 4536()P X ==, 5636()P X ==, 6736()P X ==, 5836()P X ==, 4 936()P X == 31036()P X ==, 21136()P X ==, 11236 ()P X ==

随机变量及其分布习题解答

第2章随机变量及其分布习题解答 一.选择题 1.若定义分布函数(){}F x P X x =≤,则函数()F x 是某一随机变量X 的分布函数的充要条件是( D ). A .0()1F x ≤≤. B .0()1F x ≤≤,且()0,()1F F -∞=+∞=. C .()F x 单调不减,且()0,()1F F -∞=+∞=. D .()F x 单调不减,函数()F x 右连续,且()0,()1F F -∞=+∞=. 2.函数()0 212021 0 x F x x x <-??? =-≤

5.设X 的分布律为 而(){}F x P X x =≤,则F =( A ). A .0.6. B .0.35. C .0.25. D .0. 6.设连续型变量X 的概率密度为()p x ,分布函数为()F x ,则对于任意x 值有( A ). A .(0)0P X ==. B .()()F x p x '=. C .()()P X x p x ==. D .()()P X x F x ==. 7.任一个连续型的随机变量X 的概率密度为()p x ,则()p x 必满足( C ). A .0( )1p x ≤≤. B .单调不减. C . ()1p x dx +∞ -∞ =?. D .lim ()1x p x →+∞ =. 8 .为使 x 1()0 1p x x ?=??≤? 是随机变量X 的概率密度,则常数c ( B ).

相关主题
文本预览
相关文档 最新文档