当前位置:文档之家› 随机变量及其分布习题解答

随机变量及其分布习题解答

随机变量及其分布习题解答
随机变量及其分布习题解答

第2章随机变量及其分布习题解答

一.选择题

1.若定义分布函数(){}F x P X x =≤,则函数()F x 是某一随机变量X 的分布函数的充要条件是( D ).

A .0()1F x ≤≤.

B .0()1F x ≤≤,且()0,()1F F -∞=+∞=.

C .()F x 单调不减,且()0,()1F F -∞=+∞=.

D .()F x 单调不减,函数()F x 右连续,且()0,()1F F -∞=+∞=.

2.函数()0 212021 0

x F x x x <-???

=-≤

A .某一离散型随机变量X 的分布函数.

B .某一连续型随机变量X 的分布函数.

C .既不是连续型也不是离散型随机变量的分布函数.

D .不可能为某一随机变量的分布函数.

3.函数()0 0sin 01 x F x x x x ππ

=≤

( D ).

A .是某一离散型随机变量的分布函数.

B .是某一连续型随机变量的分布函数.

C .既不是连续型也不是离散型随机变量的分布函数.

D .不可能为某一随机变量的分布函数.

4.设X 的分布函数为1()F x ,Y 的分布函数为2()F x ,而12()()()F x aF x bF x =-是某随机变量Z 的分布函数,则, a b 可取( A ).

A .32, 55a b =

=-. B .2 3a b ==.C .13 , 22a b =-=. D .13 , 22

a b ==-.

5.设X 的分布律为

而(){}F x P X x =≤,则F =( A ).

A .0.6.

B .0.35.

C .0.25.

D .0.

6.设连续型变量X 的概率密度为()p x ,分布函数为()F x ,则对于任意x 值有( A ). A .(0)0P X ==. B .()()F x p x '=. C .()()P X x p x ==.

D .()()P X x F x ==.

7.任一个连续型的随机变量X 的概率密度为()p x ,则()p x 必满足( C ).

A .0(

)1p x ≤≤. B .单调不减. C .

()1p x dx +∞

-∞

=?.

D .lim ()1x p x →+∞

=.

8

.为使 x 1()0 1p x x ?

成为某个随机变量X 的概率密度,则c 应满足

( B ).

A .

1+∞

=?

B .

1

1

-=?

C .

1

1=. D .

1+∞

-=?

9.设随机变量X 的概率密度为2

()x p x Ae -=,则A = ( D ).

A .2.

B .1.

C .1

2

. D .14

10.设X 的概率密度函数为1() ,2

x

p x e x -=

-∞<<+∞,又{}()F x P X x =≤,则0x <时,()F x =( D ).

A .112

-

e x

. B .112x e --. C .12x e -.

D .1

2

e x .

11.设2

20()00

x c

x e x p x c

x -??>=??≤?

是随机变量X 的概率密度,则常数c ( B ).

A .可以是任意非零常数.

B .只能是任意正常数.

C .仅取1.

D .仅取- 1. 12.设连续型随机变量X 的分布函数为()F x ,则1

12

Y X =-分布函数为( D ). A .(22)F y -. B .

1(1)22

y

F -. C .2(22)F y -. D .1(22)F y --. 13.设随机变量X 的概率密度为()p x ,12Y X =-,则Y 的分布密度为( A ).

A .

1

12

2y p -?? ???. B .112y p -??- ??? C .12y p -??- ???

. D .2(12)p y -. 14.设随机变量X 的密度函数()p x 是连续的偶函数(即()()p x p x =-),而()F x 是X 的分布函数,则对任意实数a 有( C ).

A .()()F a F a =-.

B .0

()1()a

F a p x dx -=-

?

C .0

1()()2a

F a p x dx -=-? . D .()()F a F a -=. 二.填空题

15.欲使210

3

()10

3x

x e x F x A e x -?

?-≥??

为某随机变量的分布函数,则要求A =____1_____.

16.若随机变量X 的分布函数2

()0616

x F x Ax

x x

,则必有A =____1/36______. 17.从装有4件合格品及1件次品的口袋中连取两次,每次取一件,取出后不放回,求取出次品数X 的分布律为

{0}3/5,{1}2/5

P X P X ==== .

18.独立重复地掷一枚均匀硬币,直到出现正面为止,设X 表示首次出现正面的试验次数,则X 的分布列{}P X k ==

1

111{},1,2,222k k

P X k k -??

??

==?== ?

???

??

L .

19.设某离散型随机变量X 的分布列是{},1,2,,10k

P X k k C

==

=???,则C =____55_____.

20.设离散型随机变量X 的分布函数是(){}F x P X x =≤,用()F x 表示概率

{}0P X x ==

00()(0)

F x F x --.

21.设X 是连续型随机变量,则{3}P X ==___0____.

22. 设随机变量X 的分布函数为2

0,

2()(2),231,3x F x x x x

(2.54)P X <≤=

(4)(2.5)0.75

F F -=.

23.设随机变量X 的分布函数102

()1102x

x e x F x e x -?≤??=??->??,则

{}1P X <=

1

1e --.

24.设连续型随机变量X

的分布函数为20

()021

x x

F x x x

??≥?X 的概率密度()p x

=

00 ()

x x ?≤≤?

?

??其它.

25.设随机变量X 的分布密度为2(1),(0,1)

()0,

(0,1)Ax x x p x x ?-∈=???,则常数A =__12____.

26.若X

的概率密度为

()p x ,则31Y X =+的概率密度

()Y p y =

1133y p -??

???

27.设电子管使用寿命的密度函数()2

1001000

100

x p x x x ?>?

=??≤?(单位:小时),则在150

小时内独立使用的三只管子中恰有一个损坏的概率为_____4/9_____. 三.应用计算题

28. 设随机变量X 的分布律为

求(1){14}P X <≤;(2)X 的分布函数()F x .

解:(1){14}{2}{3}{4}0.30.30.10.7P X P X P X P X <≤==+=+==++=

(2)X 的分布函数()F x 为0,0

0.1,010.3,12

()0.6,230.9,341,4

x x x F x x x x

?≤<=?≤

?≤

≥?

29. 设连续随机变量X 的概率密度

,10(),010,||1c x x p x c x x x +-≤

=-≤≤??>?

试求: (1)常数c ; (2) 概率{||0.5}P X ≤;(3) X 的分布函数()F x . 解:(1)由01

1

1()()()21p x dx c x dx c x dx c +∞

-∞

-=

=++-=-?

??,得1c =

(2){||0.5}{0.50.5}P X P X ≤=-≤≤0

0.5

0.5

(1)(1)0.75x dx x dx -=++-=?

?

(3)X 的分布函数为

1

01

0,1

(1),10()(1)(1),011,1x

x

x t dt x F x t dt t dt x x --<-??+-≤

21,1x x x x x x <-???+-≤

30.设顾客到某银行窗口等待服务的时间X (单位:分钟)的概率密度函数为

5

1,0

()50,0x

e x p x x -?>?=??≤?

某顾客在窗口等待,如超过10分钟,他就离开,求他离开的概率. 解:他离开的概率为/5

210

1{10}5

x P X e dx e +∞

--≥=

=?

31.已知随机变量X 的分布函数为()1,

x 0211

, 02241,

2x

e F x x x x ?

?=+≤

≥???

,求其分布密度()p x .

解:()1 021

()024

0 2x

e x p x F x x x ?

32. 设X 是离散型随机变量,其分布律为

(1)求常数a ;(2)23Y X =+的分布律.

解:(1)由0.330.10.21a a ++++=得0.1a = (2)由于

所以,23Y X =+的分布律为

33.设随机变量X 的密度函数为,0()0,0

x X e x p x x λλ-?>=?≤?,0λ>,求X

Y e =的密度函

数()Y p y .

解:(1)X

Y e =的分布函数为

(ln ),0()()(ln )0,0X X

Y F y y F y P e y P X y y >?=≤=≤=?≤?

(2)X

Y e =的密度函数()Y p y 为

ln 1,ln 0,1

(ln )(ln ),01()()0,ln 00,0

0,1

0,0

y X Y Y e y y p y y y y p y F y y y y y y λλλλ

-+?>?'>?>???'===?≤=?

??≤???≤≤??

随机变量及其分布列概念公式总结

随机变量及其分布总结 1、定义:随着试验结果变化而变化的变量称为随机变量 .随机变量常用字母 X , Y ,ξ,η,… 表示. 2、定义:所有取值可以一一列出的随机变量,称为离散型随机变量 3、分布列:设离散型随机变量ξ可能取得值为 x 1,x 2,…,x 3,…, ξ取每一个值x i (i =1,2,…)的概率为()i i P x p ξ==,则称表 为随机变量ξ的概率分布,简称ξ的分布列 4. 分布列的两个性质: (1)P i ≥0,i =1,2,…; (2)P 1+P 2+…=1. 5.求离散型随机变量ξ的概率分布的步骤: (1)确定随机变量的所有可能的值x i (2)求出各取值的概率p(ξ=x i )=p i (3)画出表格 6.两点分布列: 7超几何分布列: 一般地,在含有M 件次品的 N 件产品中,任取 n 件,其中恰有X 件次品 数,则事件 {X=k }发生的概率为(),0,1,2,,k n k M N M n N C C P X k k m C --=== ,其中mi n {,} m M n =,且,,,,n N M N n M N N *≤≤∈.称分布列 为超几何分布列.如果随机变量 X 的分布列为超几何分布列,则称随机变量 X

服从超几何分布 8.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是 k n k k n n q p C k P -==)(ξ,(k =0,1,2,…,n ,p q -=1). 于是得到随机变量ξ的概率分布如下: ξ 1 … k … n P n n q p C 00 111-n n q p C … k n k k n q p C - … q p C n n n 称这样的随机变量ξ服从二项分布,记作ξ~B (n ,p ),其中n ,p 为参数。 9.离散型随机变量的均值或数学期望: 一般地,若离散型随机变量ξ的概率分布为 则称 =ξE +11p x +22p x …++n n p x … 为ξ的均值或数学期望,简称期望. 10.离散型随机变量的均值或数学期望的性质: (1)若ξ服从两点分布,则=ξE p . (2)若ξ~B (n ,p ),则=ξE np . (3)()c c E =,c 为常数 (4)ξ~N (μ,2σ),则=ξE μ (5)b aE b a E +=+ξξ)( 11.方差: 对于离散型随机变量ξ,如果它所有可能取的值是1x ,2x ,…,n x ,…, 且取这些值的概率分别是1p ,2p ,…,n p ,…,那么, ξD =121)(p E x ?-ξ+222)(p E x ?-ξ+…+n n p E x ?-2)(ξ+…

高中数学 随机变量及其分布列 版块一 离散型随机变量及其分布列1完整讲义(学生版)

学而思高中完整讲义:随机变量及其分布列.版块一.离散型随机变量 及其分布列1.学生版 1. 离散型随机变量及其分布列 ⑴离散型随机变量 如果在试验中,试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化的,我们把这样的变量X 叫做一个随机变量.随机变量常用大写字母,,X Y L 表示. 如果随机变量X 的所有可能的取值都能一一列举出来,则称X 为离散型随机变量. ⑵离散型随机变量的分布列 将离散型随机变量X 所有可能的取值x 与该取值对应的概率p ,)n L 列表表示: X 1x 2x … i x … n x P 1p 2p … i p … n p X 的分布列. 2.几类典型的随机分布 ⑴两点分布 如果随机变量X 的分布列为 X 1 0 P p q 其中01p <<,1q p =-X 服从参数为p 的二点分布. 二点分布举例:某次抽查活动中,一件产品合格记为1,不合格记为0,已知产品的合格率为80%,随机变量X X 的分布列满足二点分布. X 1 P 0.8 0.2 两点分布又称01-布又称为伯努利分布. ⑵超几何分布 一般地,设有总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n 件()n N ≤,这n 件中所含这类物品件数X 是一个离散型随机变量,它取值为m 时的概率为 C C ()C m n m M N M n N P X m --==(0m l ≤≤,l 为n 和M 中较小的一个). 我们称离散型随机变量X 的这种形式的概率分布为超几何分布,也称X 服从参数为N ,M , n 的超几何分布.在超几何分布中,只要知道N ,M 和n ,就可以根据公式求出X 取不同值时的概率()P X m =,从而列出X 的分布列. ⑶二项分布 1.独立重复试验 如果每次试验,只考虑有两个可能的结果A 及A ,并且事件A 发生的概率相同.在相同的条件下,重复地做n 次试验,各次试验的结果相互独立,那么一般就称它们为n 次独立重复试验.n 次独立重复试验中,事件A 恰好发生k 次的概率为 ()C (1) k k n k n n P k p p -=-(0,1,2,,)k n =L . 知识内容

多维随机变量及其分布试题答案

第3章 多维随机变量及其分布试题答案 一、选择(每小题2分) 1、设二维随机变量),(Y X 的分布律为 则{0}P X Y +≠=( C ) (A) (B) (C) (D) 2、设二维随机变量(X ,Y )的概率密度为???<<-<<-=other y x c y x f ,01 1,11,),(,则常数c = (A ) (A) 41 (B) 2 1 (C) 2 (D)4 3、设二维随机变量),(Y X 的分布律为 设1,0,},,{====j i j Y i X P p ij ,则下列各式中错误的是( D ) (A) 0100p p < (B) 1110p p < (C) 1100p p < (D) 0110p p < 4、设二维随机变量),(Y X 的分布律为 则}{Y X P ==(A ) (A) (B) (C) (D) 5、设二维随机变量(X ,Y )的概率密度为???>>=--other y x e Ae y x f y x , 00 ,0,),(2,则常数A = (D )

(A) 21 (B) 1 (C) 2 3 (D)2 6、设二维随机变量),(Y X 的分布律为 则}0{=XY P =(C ) (A) 41 (B) 125 (C) 4 3 (D)1 7、设二维随机变量),(Y X 的分布律为 ),(y x F 为其联合分布函数,则)3 ,3(F =(D ) (A) 0 (B) 121 (C) 61 (D) 4 1 8、设二维随机变量(X ,Y )的概率密度为???>>=--other y x e e y x f y x , 00 ,0,),(,则}{Y X P ≥= (B ) (A) 41 (B) 21 (C) 32 (D) 4 3 9、设随机变量X 与Y 独立同分布,它们取-1,1两个值的概率分别41,4 3 ,则}1{-=XY P =( D ) (A) 161 (B) 163 (C) 41 (D) 8 3 10、设二维随机变量(X ,Y )的分布函数为),(y x F ,则),(+∞x F =( B ) (A) 0 (B) )(x F X (C) )(y F Y (D) 1

随机变量及其分布知识点汇总

随机变量及其分布知识点汇总 知识点一 离散型随机变量及其分布列 (一)、离散型随机变量的分布列 一般地,设离散型随机变量X 可能取的值为12,,,,,i n x x x x ??????,X 取每一个值 (1,2,,)i x i n =???的概率()i i P X x p ==,则称以下表格 为随机变量X 的概率分布列,简称X 的分布列. 离散型随机变量的分布列具有下述两个性质: (1)0,1,2,,i P i n =???≥ (2)121n p p p ++???+= 1.两点分布 如果随机变量X 的分布列为 则称X 服从两点分布,并称=P(X=1)p 为成功概率. 2.超几何分布 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{}X k =发生的概率为: (),0,1,2,3,...,k n k M N M n N C C P X k k m C --=== 则随机变量X 的概率分布列如下: {}*min ,,,,,,m M n n N M N n M N N =≤≤∈其中且。 注意:超几何分布的模型是不放回抽样

知识点二 条件概率与事件的独立性 (一)、条件概率 一般地,设A,B 为两个事件,且()0P A >,称() (|)() P AB P B A P A =为在事件A 发生的条件下,事件B 发生的条件概率. 0(|)1P B A ≤≤ 如果B 和C 互斥,那么[()|](|)(|)P B C A P B A P C A =+ (二)、相互独立事件 设A ,B 两个事件,如果事件A 是否发生对事件B 发生的概率没有影响(即 ()()()P AB P A P B =),则称事件A 与事件B 相互独立。 ()()()A B P AB P A P B ?=即、相互独立 一般地,如果事件A 1,A 2,…,A n 两两相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积,即1212(...)()()...()n n P A A A P A P A P A =. 注意:(1)互斥事件:指同一次试验中的两个事件不可能同时发生; (2)相互独立事件:指在不同试验下的两个事件互不影响. (三)、n 次独立重复试验 1.一般地,在相同条件下,重复做的n 次试验称为n 次独立重复试验. 在n 次独立重复试验中,记i A 是“第i 次试验的结果”,显然, 1212()()()()n n P A A A P A P A P A ???=??? “相同条件下”等价于各次试验的结果不会受其他试验的影响 注意: 独立重复试验模型满足以下三方面特征 第一:每次试验是在同样条件下进行; 第二:各次试验中的事件是相互独立的; 第三:每次试验都只有两种结果,即事件要么发生,要么不发生. 2.n 次独立重复试验的公式: n A X A p n A k 一般地,在次独立重复试验中,设事件发生的次数为,在每次试验中事件发生的概率为,那么在次独立重复试验中,事件恰好发生次的概率为 ()(1),0,1,2,...,.(1)k k n k k k n k n n P X k C p p C p q k n q p --==-===-其中,而称p 为成功

随机变量及其分布考点总结

第二章 随机变量及其分布 复习 一、随机变量. 1. 随机试验的结构应该是不确定的.试验如果满足下述条件: ①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果. 它就被称为一个随机试验. 2. 离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是一个随机变量,a ,b 是常数.则b a +=ξη也是一个随机变量.一般地,若ξ是随机变量,)(x f 是连续函数或单调函数,则)(ξf 也是随机变量.也就是说,随机变量的某些函数也是随机变量. 3、分布列:设离散型随机变量ξ可能取的值为:ΛΛ,,,,21i x x x ξ取每一个值),2,1(Λ=i x 的概率p x P ==)(,则表称为随机变量ξ的概率分布,简称ξ的分布列. 121i 注意:若随机变量可以取某一区间内的一切值,这样的变量叫做连续型随机变量.例如:]5,0[∈ξ即ξ可以取0~5之间的一切数,包括整数、小数、无理数. 典型例题: 1、随机变量ξ的分布列为(),1,2,3(1) c P k k k k ξ== =+……,则P(13)____ξ≤≤= 2、袋中装有黑球和白球共7个,从中任取两个球都是白球的概率为1 7 ,现在甲乙两人从袋中轮流摸去一 球,甲先取,乙后取,然后甲再取……,取后不放回,直到两人中有一人取到白球时终止,用ξ表示取球的次数。(1)求ξ的分布列(2)求甲取到白球的的概率 3、5封不同的信,放入三个不同的信箱,且每封信投入每个信箱的机会均等,X 表示三哥信箱中放有信件树木的最大值,求X 的分布列。 4 已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为5 . (1)请将上面的列联表补充完整; (2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由; (3)已知喜爱打篮球的10位女生中,12345,,A A A A A ,,还喜欢打羽毛球,123B B B ,,还喜欢打乒乓球,12C C ,还喜欢踢足球,现再从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的女生中各选出1名进行其他方面的调查,求1B 和1C 不全被选中的概率. (参考公式:2 ()()()()() n ad bc K a b c d a c b d -=++++,其中n a b c d =+++)

随机变量及其分布小结与复习

复习课: 随机变量及其分布列 教学目标 重点:理解随机变量及其分布的概念,期望与方差等的概念;超几何分布,二项分布,正态分布等的特点;会求条件概率,相互独立事件的概率,独立重复试验的概率等. 难点:理清事件之间的关系,并用其解决一些具体的实际问题. 能力点:分类整合的能力,运算求解能力,分析问题解决问题的能力. 教育点:提高学生的认知水平,为学生塑造良好的数学认识结构. 自主探究点:例题及变式的解题思路的探寻. 易错点:容易出现事件之间的关系混乱,没能理解问题的实际意义. 学法与教具 1.学法:讲授法、讨论法. 2.教具:投影仪. 一、【知识结构】 二、【知识梳理】 1.随机变量 ⑴随机变量定义:在随机试验中,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化.像这种随着试验结果变化而变化的变量称为随机变量.简单说,随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量.常用希腊字母x、y、ξ、η等表示. ⑵如果随机变量可能取的值可以按次序一一列出(可以是无限个)这样的随机变量叫做离散型随机变量.

⑶如果随机变量可能取的值是某个区间的一切值,这样的随机变量叫做连续型随机变量. 2.概率分布定义(分布列) 设离散型随机变量ξ可能取的值为123,,,,i x x x x L L ,ξ取每一个值(1,2,)i x i =L 的概率 ()i i P x p ξ==,则称表 ξ 1x 2x L i x L P 1P 2P L i P L 称为随机变量ξ的概率分布列,简称ξ的分布列. 注:1.离散型随机变量的分布列具有下述两个性质: (1)0,123≥,,,i p i =L ;123(2)1p p p +++=L 3.常见的分布列 ⑴二项分布:在一次试验中某事件发生的概率是p ,那么在n 次独立重复试验中这个事件恰发生k 次的概 率为()(1)k k n k n p X k C p p -==-,显然x 是一个随机变量.随机变量x 的概率分布如下: x 1 L k L n P 00n n C p q 111 n n C p q - L k k n k n C p q - L n n n C p q 我们称这样的随机变量x 服从二项分布,记作~(,)X B n p ⑵两点分布列:如果随机变量ξ的分布列为: ξ 0 1 P 1P - P 这样的分布列称为两点分布列,称随机变量服从两点分布,而称(1)p P ξ==为成功概率.两点分布是特殊的二项分布(1)p ξ~B , ⑶超几何分布:一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有x 件次品数,则事件{} x k =发生的概率为(),0,1,2,3,,k N k M N M n N C C P X k k m C --===L .其中{}min ,m M n =,且*,,,,n N M N n M N N ≤≤∈,则称分布列

【免费下载】概率论与数理统计 第三章 二维随机变量及其概率分布 例题

概率论与数理统计 第三章 二维随机变量及其概率分布 例题1.甲乙两人独立地进行两次射击,命中率分别为0.2、0.5,把X 、Y 分别表示甲乙命中的次数,求(X,Y )联合分布律。2.袋中有两只白球,两只红球,从中任取两只以X 、Y 表示其中黑球、白球的数目,求(X,Y )联合分布律。3.设,且P{}=1,求()的X 1=(?1011/41/21/4) X 2=(011/21/2)X 1X 2=0X 1,X 2联合分布律,并指出是否独立。 X 1,X 24.设随机变量X 的分布律为Y=,求(X,Y )联合分布律。X 2X Y 01

概率论与数理统计 第三章 二维随机变量及其概率分布 例题 5.设(X,Y )的概率分布为 且事件{X=0}与{X+Y=1}独立求a ,b 。6. 设某班车起点上车人数X 服从参数λ(λ>0)的泊松分布,每位乘客中途下车的概率为P (0

概率论与数理统计 第三章 二维随机变量及其概率分布 例题 (1)C 的值 (2), (3)P{X+Y ≤1}并判别X 与Y 是否独立。f z (x)f Y (y)9.设f(x,y)= 为(X,Y )的密度函数,求{10 |y |1/2|Y>0}(2) f Y|X (y|x ), f X|Y (x|y )10. 设f(x,y)= 为(X,Y )的密度函数,求 {12x 2y 0 1x ≤y ≤x,x ≥1 其它 f X|Y (x|y )11. 设f(x,y)= 为(X,Y )的密度函数,求的联合分布 {4xy 0 0≤x ≤1,0≤y ≤1 其它 (X,Y )

“随机变量及其分布”简介

“随机变量及其分布”简介 北京师范大学数学科学院李勇 随机变量是研究随机现象的重要工具之一,他建立了连接随机现象和实数空间的一座桥梁,使得我们可以借助于有关实数的数学工具来研究随机现象的本质,从而可以建立起应用到不同领域的概率模型,如二项分布模型、超几何分布模型、正态分布模型等。 在本章中将通过具体实例,帮助学生理解取有限值的离散型随机变量及其分布列、均值、方差的概念,理解超几何分布和二项分布的模型并能解决简单的实际问题,使学生认识分布列对于刻画随机现象的重要性,认识正态分布曲线的特点及曲线所表示的意义。 一、内容与要求 1. 随机变量及其分布的概念。 通过具体实例使学生理解随机变量及其分布列的概念,认识随机变量及其分布对于刻画随机现象的重要性。要求学生会用随机变量表达简单的随机事件,并会用分布列来计算这类事件的概率。 2.超几何分布模型及其应用。 通过实例,理解超几何分布及其导出过程,并能进行简单的应用。 3. 二项分布模型及其应用。 通过具体实例使学生了解条件概率和两个事件相互独立的概念,理解n次独立重复试验和二项分布模型,并能解决一些简单的实际问题。 4.离散随机变量的均值与方差。 通过实例使学生理解离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题。 5.正态分布模型。 借助直观使学生认识正态分布曲线的特点及含义。 二、内容安排及说明 1.全章共安排了4个小节,教学约需12课时,具体内容和课时分配如下(仅供参考): 2.1 离散型随机变量及其分布列约3课时 2.2 二项分布及其应用约4课时

2.3 离散型随机变量的均值与方差约3课时 2.4 正态分布约1课时 小结约1课时 2. 本章知识框图 3.对内容安排的说明。 研究一个随机现象,可以借助于随机变量,而分布描述了随机变量取值的概率分布规律。二项分布和超几何分布是两个应用广泛的概率模型.为了使学生能够更好地理解它们,并能用来解决一些实际问题,教科书在内容安排上作了如下考虑: (1) 为学生把注意力集中在随机变量的基本概念和方法的理解上,通过取有限个不同 值的随机变量为载体介绍这些概念,以便他们能更好的应用这些概念解决实际问 题。例如,如何定义随机变量来描述所感兴趣的随机事件;一个具体的随机变量都 能表达什么样的事件,如何表达这些事件;如何用分布列来表达随机事件发生的概 率等。 (2) 介绍超几何分布模型及其应用,其目的是 i. 让学生了解它的广泛应用背景,并使学生能够应用该分布设计一些能够丰富学生课外

随机变量及其分布函数

随机变量及其分布函数 将随机事件以数量来标识,即用随机变量描述随机现象的研究方法,它是定义在样本空间上具有某种可预测性的实值函数。 分布函数则完整的表述了随机变量。 一、 随机变量与分布函数 (1) 随机变量: 取值依赖于某个随机试验的结果(样本空间),并随着试验结果不同而变化的变量,称之为随机变量。 分布函数: [1] 定义: 设X 是一个随机变量,对任意实数x ,记作 (){}F x P X x ≤=,称()F x 为随机变量X 的分 布函数,又称随机变量X 服从分布()F x ,显然,函数 ()F x 的定义域为(),-∞+∞,值域为[0,1]。 [2] 性质: ?()F x 单调非降。 ?()0F -∞=、()1F +∞=。 ?()(0)F x F x =+,即()F x 一定是右连续的。 ?对于任意两个实数a b <, {}()()P a X b F b F a <≤=- ?对于任意实数0x ,

00 0{}()()P X x F x F x ==-- ?000{}1{}1()P X x P X x F x >=-≤=- ?000{}{)lim }(x x P X x P X x x F →- =≤<=- ?000{}1{}1()P X x P X x F x ≥=-<=-- 二、 离散型随机变量与连续型随机变量 (1) 离散型随机变量 [1] 概念:设X 是一个随机变量,如果X 的取值是有限个或者 无穷可列个,则称X 为离散型随机变量。其相应的概率()i i P X x p ==(12)i =、……称为X 的概率分布或分布律,表格表示形式如下: [2] 性质: ?0i p ≥ ? 1 1n i i p ==∑ ?分布函数()i i x x F x p ==∑ ?1{}()()i i i P X x F x F x -==- (2) 连续型随机变量 [1] 概念:如果对于随机变量的分布函数()F x ,存在非 负的函数 ()f x ,使得对于任意实数x ,均有:

选修2-3随机变量及其分布知识点总结典型例题

2-3随机变量及其分布 -- HW) T数字特征11 …. --- L-W Array「(两点分布〕 5店殊分布列)--憊几何分祠 -(二项分利 十[并件相互独立性)一価立重复试劇 5J ~(条件概率) ”、r<正态分布密度曲绚 f正态分布)一 要点归纳 一、离散型随机变量及其分布列 1.⑴随机变量:在随机试验中,我们确定了一个对应关 系,使得每一个试验结果都用一个确定的数字表示?在这个对应关系下,数字随着试验结果的变化而变化.像这种随着试验结果变化而变化的变量称为随机变量?通常用字母X, Y, E, n等表示. (2) 离散型随机变量:所有取值可以一一列出的随机变量称为离散型随 机变量. (3) 离散型随机变量的分布列: 一般地,若离散型随机变量 X可能取的不同值为X i, X2…,X i,…X n,X取每一个值X i(i = 1,2,…,n)的概率 P(X= X)= p i,以表格的形式表示如下: X的分布列.有时为了简单起见,也用等式P(X = X i) = p i, i = 1,2,…,n表示X的分布列. (4)离散型随机变量的分布列的性质: ①P i>0,i = 1,2,…,n; n ②P i = 1. i = 1

(5)常见的分布列: 两点分布:如果随机变量X 的分布列具有下表的形式,则 称X 服从两点分布,并称p = P(X = 1)为成功概率. 两点分布又称 0- 1分布,伯努利分布. 超几何分布:一般地,在含有 M 件次品的N 件产品中,任取 X 件次品,则事件{X = k }发生的概率为 P(X = 其中 m= min { M , n },且 n W N , M < N , n , M , N € N *.如 果随机变量X 的分布列具有上表的形式,则称随机变量 X 服从超几何分布. 2 .二项分布及其应用 (1)条件概率:一般地,设 A 和B 是两个事件,且 P(A)>0, p / AB) 称P(BA) = P ((A )为在事件A 发生的条件下,事件B 发生 的条件概率.P(B|A)读作A 发生的条件下B 发生的概率. ⑵条件概率的性质: ① 0 < P(BA)< 1; ② 必然事件的条件概率为1,不可能事件的条件概率为0; ③ 如果 B 和C 是两个互斥事件,则 P(B U C|A)= P(B|A) + P(C|A). (3) 事件的相互独立性:设 A, B 为两个事件,如果 P(AB)= P(A)P(B),则 称事件 A 与事件B 相互独立?如果事件 A 与B 相互独立,那么 A 与-,-与B ,-与-也都相互独立. (4) 独立重复试验:一般地,在相同条件下重复做的 n 次试 验称为n 次独立重复试验. c M c N-/i c N k = 0, 1, 2, ,m,即 n 件,其中恰有 k)=

随机变量及其分布知识点总结

圆梦教育中心 随机变量及其分布知识点整理 一、离散型随机变量的分布列 一般地,设离散型随机变量X 可能取的值为12,,,,,i n x x x x ??????,X 取每一个值(1,2,,)i x i n =???的概率 ()i i P X x p ==,则称以下表格 为随机变量X 的概率分布列,简称X 的分布列. 离散型随机变量的分布列具有下述两个性质: (1)0,1,2,,i P i n =???≥ (2)121n p p p ++???+= 1.两点分布 则称X 服从两点分布,并称=P(X=1)p 为成功概率. 2.超几何分布 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{}X k =发生的概率为: (),0,1,2,3,...,k n k M N M n N C C P X k k m C --=== {}*min ,,,,,,m M n n N M N n M N N =≤≤∈其中且。 注:超几何分布的模型是不放回抽样 二、条件概率 一般地,设A,B 为两个事件,且()0P A >,称() (|)() P AB P B A P A = 为在事件A 发生的条件下,事件B 发生的条件概率. 0(|)1P B A ≤≤ 如果B 和C 互斥,那么[()|](|)(|)P B C A P B A P C A =+U 三、相互独立事件 设A ,B 两个事件,如果事件A 是否发生对事件B 发生的概率没有影响(即()()()P AB P A P B =),则称事件A 与事件B 相互独立。()()()A B P AB P A P B ?=即、相互独立 一般地,如果事件A 1,A 2,…,A n 两两相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积,即1212(...)()()...()n n P A A A P A P A P A =.

第五节 离散型随机变量及其分布列 复习讲义

第五节离散型随机变量及其分布列 一、离散型随机变量 随着试验结果变化而变化的变量称为随机变量,所有取值可以一一列出的随机变量,称为离散型随机变量. 二、离散型随机变量的分布列及性质 1.一般地,若离散型随机变量X可能取的不同值为 x1,x2,…,x i,…,x n,X取每一个值x i(i=1,2,…,n)的概率P(X=x i)=p i,则表

称为离散型随机变量X的概率分布列,简称为X的分布列. 2.离散型随机变量的分布列的性质 (1)p i≥0,i=1,2,…,n. (2)p1+p2+…+p n=1. 三、相互独立事件 一般地,对两个事件A,B,如果P(AB)=P(A)P(B),则称A,B相互独立. 四、两点分布 若随机变量X的分布列为 则称X服从两点分布,并称p=P(X=1)为成功概率. 五、独立重复试验与二项分布 1.独立重复试验 一般地,在相同条件下重复做的n次试验称为n次独立重复试验. 2.二项分布 一般地,在n次独立重复试验中,设事件A发生的次数为X,在每次试验中事件A发生的概率为p,事件A恰好发生k次的概率为 P(X=k)=C k p k(1-p)n-k(k=0,1,2,…,n). n 此时称随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率.

1.概念理解 (1)随机变量是将随机试验的结果数量化. (2)离散型随机变量的分布列从整体上反映了随机变量取各个值的可能性的大小,反映了随机变量取值的规律性. (3)因为一次试验的各种结果是互斥的,而全部结果之和为一个必然事件,所以离散型随机变量的分布列具有性质p 1+p 2+…+p i +…+p n =1. (4)由事件A 和B 同时发生所构成的事件称为事件A 与B 的交(或积),记作A ∩B(或AB). (5)相互独立的两个事件实质上是一个事件的发生对另一个事件的发生没有影响. (6)独立重复试验必须满足三个特征:①每次试验的条件都完全相同,即每次试验事件发生的概率相等;②各次试验互相独立;③每次试验只有两种结果,即事件要么发生,要么不发生. (7)P(X=k)=C k n p k (1-p)n-k 恰好是[(1-p)+p]n 展开式的第k+1项 1k T =C k n (1-p) n-k p k . (8)独立重复试验的实际原型是有放回的抽样问题,但在实际中,从大批产品中抽取少量样品的不放回检验,也可以近似地看作此类型. (9)独立重复试验中的概率公式P n (k)=C k n p k (1-p)n-k 中的p 与(1-p)的位 置不能互换,否则式子表示为事件A 有k 次不发生的概率. 2.与独立事件有关的结论 (1)若A 与B 相互独立,则A 与B ,A 与B,A 与B 也都相互独立.

概率与数理统计第3章多维随机变量及其分布习题及答案

第三章 多维随机变量及其分布 一、填空题 1、随机点),(Y X 落在矩形域],[2121y y y x x x ≤<≤<的概率为 ),(),(),(),(21111222y x F y x F y x F y x F -+-. 2、),(Y X 的分布函数为),(y x F ,则=-∞),(y F 0 . 3、),(Y X 的分布函数为),(y x F ,则=+),0(y x F ),(y x F 4、),(Y X 的分布函数为),(y x F ,则=+∞),(x F )(x F X 5、设随机变量),(Y X 的概率密度为 ? ? ?<<<<--=其它 04 2,20) 6(),(y x y x k y x f ,则=k 8 1 . 6、随机变量),(Y X 的分布如下,写出其边缘分布. 7、设),(y x f 是Y X ,的联合分布密度,)(x f X 是X 的边缘分布密度,则 =? ∞+∞ -)(x f X 1 . 8、二维正态随机变量),(Y X ,X 和Y 相互独立的充要条件是参数=ρ 0 . X Y 0 1 2 3 j P ? 1 0 8 3 8 3 0 86 3 81 0 8 1 8 2 ?i P 81 83 83 8 1

9、如果随机变量),(Y X 的联合概率分布为 Y X 1 2 3 1 61 91 181 2 3 1 α β 则βα,应满足的条件是 186= +βα ;若X 与Y 相互独立,则=α 184 ,=β 18 2 . 10、设Y X ,相互独立,)1.0(~),1,0(~N Y N X ,则),(Y X 的联合概率密度 =),(y x f 2 2221 y x e +- π ,Y X Z +=的概率密度=)(Z f Z 4 22 21x e - π . 12、 设 ( ξ 、 η ) 的 联 合 分 布 函 数 为 ()()()() ?? ??? ≥≥+-+-+++= y x y x y x A y x F 00,0111111,2 22则 A =__1___。 二、证明和计算题 1、袋中有三个球,分别标着数字1,2,2,从袋中任取一球,不放回,再取一球,设第一次取的球 上标的数字为X ,第二次取的球上标的数字Y ,求),(Y X 的联合分布律. 解:031 }1,1{?= ==Y X P 31 131}2,1{=?===Y X P 31 2132}1,2{=?===Y X P 3 1 2132}2,2{=?===Y X P 2、三封信随机地投入编号为1,2,3的三个信箱中,设X 为投入1号信箱的信数,Y 为投入2 号信箱的信数,求),(Y X 的联合分布律. 解:X 的可能取值为0,1,2,3 Y 的可能取值为0,1,2,3 33 1 }0,0{===Y X P 333}1,0{===Y X P 33233 3 3}2,0{====C Y X P X Y 1 2 1 0 31 2 3 1 3 1

高考数学讲义随机变量及其分布列.版块二.几类典型的随机分布2.教师版

1. 离散型随机变量及其分布列 ⑴离散型随机变量 如果在试验中,试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化的,我们把这样的变量X 叫做一个随机变量.随机变量常用大写字母,,X Y L 表示. 如果随机变量X 的所有可能的取值都能一一列举出来,则称X 为离散型随机变量. ⑵离散型随机变量的分布列 将离散型随机变量X 所有可能的取值x 与该取值对应的概率,)n L 列表表示: X 1x 2x … i x … n x P 1p 2p … i p … n p X 的分布列. 2.几类典型的随机分布 ⑴两点分布 如果随机变量X 的分布列为 X 1 0 P p q 其中01p <<,1q p =-X 服从参数为p 的二点分布. 二点分布举例:某次抽查活动中,一件产品合格记为1,不合格记为0,已知产品的合格率为80%,随机变量X X 的分布列满足二点分布. X 1 P 0.8 0.2 两点分布又称01-布又称为伯努利分布. ⑵超几何分布 一般地,设有总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n 件()n N ≤,这n 件中所含这类物品件数X 是一个离散型随机变量,它取值为m 时的概率为 C C ()C m n m M N M n N P X m --==(0m l ≤≤,l 为n 和M 中较小的一个). 我们称离散型随机变量X 的这种形式的概率分布为超几何分布,也称X 服从参数为N , 知识内容 超几何分布

M ,n 的超几何分布.在超几何分布中,只要知道N ,M 和n ,就可以根据公式求出X 取不同值时的概率()P X m =,从而列出X 的分布列. ⑶二项分布 1.独立重复试验 如果每次试验,只考虑有两个可能的结果A 及A ,并且事件A 发生的概率相同.在相同的条件下,重复地做n 次试验,各次试验的结果相互独立,那么一般就称它们为n 次独立重复试验.n 次独立重复试验中,事件A 恰好发生k 次的概率为 ()C (1)k k n k n n P k p p -=-(0,1,2,,)k n =L . 2.二项分布 若将事件A 发生的次数设为X ,事件A 不发生的概率为1q p =-,那么在n 次独立重复 试验中,事件A 恰好发生k 次的概率是()C k k n k n P X k p q -==,其中0,1,2,,k n =L .于是得到X 0 1 … k … n P 00C n n p q 111 C n n p q - … C k k n k n p q - 0 C n n n p q 由式 001110 ()C C C C n n n k k n k n n n n n n q p p q p q p q p q --+=++++L L 各对应项的值,所以称这样的散型随机变量X 服从参数为n ,p 的二项分布, 记作~(,)X B n p . 二项分布的均值与方差: 若离散型随机变量X 服从参数为n 和p 的二项分布,则 ()E X np =,()D x npq =(1)q p =-. ⑷正态分布 1. 概率密度曲线:样本数据的频率分布直方图,在样本容量越来越大时, 直方图上面的折线所接近的曲线.在随机变量中,如果把样本中的任一数据看作随机变量X ,则这条曲线称为X 的概率密度曲线. 曲线位于横轴的上方,它与横轴一起所围成的面积是1,而随机变量X 落在指定的两个数a b ,之间的概率就是对应的曲边梯形的面积. 2.正态分布 ⑴定义:如果随机现象是由一些互相独立的偶然因素所引起的,而且每一个偶然因素在总体的变化中都只是起着均匀、微小的作用,则表示这样的随机现象的随机变量的概率分布近似服从正态分布. 服从正态分布的随机变量叫做正态随机变量,简称正态变量. 正态变量概率密度曲线的函数表达式为22 ()2()2πx f x μσσ --= ?, x ∈R ,其中μ,σ是参数,且0σ>,μ-∞<<+∞. 式中的参数μ和σ分别为正态变量的数学期望和标准差.期望 为μ、标准差为σ的正态分布通常记作2(,)N μσ. 正态变量的概率密度函数的图象叫做正态曲线. ⑵标准正态分布:我们把数学期望为0,标准差为1的正态分布叫做标准正态分布. ⑶重要结论: ①正态变量在区间(,)μσμσ-+,(2,2)μσμσ-+,(3,3)μσμσ-+内,取值的概率分别是68.3%,95.4%,99.7%. ②正态变量在()-∞+∞,内的取值的概率为1, 在区间(33)μσμσ-+,之外的取值的概率x=μO y x

随机变量及其分布知识点整理

随机变量及其分布知识点整理 一、离散型随机变量的分布列 一般地,设离散型随机变量X 可能取的值为12,,,,,i n x x x x ??????,X取每一个值(1,2,,)i x i n =???的概率()i i P X x p ==,则称以下表格 为随机变量X 的概率分布列,简称X 的分布列、 离散型随机变量的分布列具有下述两个性质: (1)0,1,2,,i P i n =???≥ (2)121n p p p ++???+= 1、两点分布 则称X服从两点分布,并称=P(X=1)p 为成功概率、 2、超几何分布 一般地,在含有M件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{}X k =发生的概率为: (),0,1,2,3,...,k n k M N M n N C C P X k k m C --=== {}*min ,,,,,,m M n n N M N n M N N =≤≤∈其中且。 注:超几何分布的模型就是不放回抽样 二、条件概率 一般地,设A,B为两个事件,且()0P A >,称()(|)() P AB P B A P A =为在事件A 发生的条件下,事件B 发生的条件概率、 0(|)1P B A ≤≤ 如果B 与C 互斥,那么[()|](|)(|)P B C A P B A P C A =+ 三、相互独立事件 设A,B两个事件,如果事件A 就是否发生对事件B 发生的概率没有影响(即()()()P AB P A P B =),则称事

件A 与事件B 相互独立。()()()A B P AB P A P B ?=即、相互独立 一般地,如果事件A1,A 2,…,A n 两两相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积,即1212(...)()()...()n n P A A A P A P A P A =. 注:(1)互斥事件:指同一次试验中的两个事件不可能同时发生; (2)相互独立事件:指在不同试验下的两个事件互不影响、 四、n 次独立重复试验 一般地,在相同条件下,重复做的n 次试验称为n次独立重复试验、 在n 次独立重复试验中,记i A 就是“第i 次试验的结果”,显然,1212()()()()n n P A A A P A P A P A ???=??? “相同条件下”等价于各次试验的结果不会受其她试验的影响 注: 独立重复试验模型满足以下三方面特征 第一:每次试验就是在同样条件下进行; 第二:各次试验中的事件就是相互独立的; 第三:每次试验都只有两种结果,即事件要么发生,要么不发生、 n 次独立重复试验的公式: n A X A p n A k 一般地,在次独立重复试验中,设事件发生的次数为,在每次试验中事件发生的概率为,那么在次独立重复试验中,事件恰好发生次的概率为 ()(1),0,1,2,...,.(1)k k n k k k n k n n P X k C p p C p q k n q p --==-===-其中,而称p 为成功概率、 五、二项分布 一般地,在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则 ()(1)0,1,2,,k k n k n P X k C p p k n -==-=???, 此时称随机变量X服从二项分布,记作~(,)X B n p ,并称p为成功概率、 六、离散随机变量的均值(数学期望) 则称1122()i i n n E X x p x p x p x p =+++++ 为X 的数学期望或均值,简称为期望.它反映了离散型随机变量取值的平均水平. 则()EY aE X b =+,即()()E aX b aE X b +=+ 2.一般地,如果随机变量X 服从两点分布,那么

第二章-随机变量的分布及数字特征

第二章 随机变量及其数字特征 一、教学要求 1. 理解随机变量的概念,掌握离散型和连续型随机变量的描述方法,理解概率分布列和概率密度函数的概念和性质; 2. 理解分布函数的概念和性质,会利用概率分布计算有关事件的概率; 3. 会利用分布函数计算离散和连续随机变量函数的数字特征; 4. 熟练掌握退化分布、两点分布、二项分布、几何分布、超几何分布、泊松分布和正态分布、指数分布、均匀分布等常用概率分布及其数字特征的计算和相关概率的求解; 5. 应用公式会求简单随机变量函数的概率分布及数字特征。 二、重点与难点 本章的重点是随机变量概率分布及其性质,常见的几种分布,随机变量函数的分布、数学期望和方差的计算;难点是随机变量函数的分布及数学期望的计算。 §2.1 随机变量及其分布 一、 随机变量 1.引入随机变量的必要性 1)在随机现象中,有很大一部分问题与数值发生关系。如:产品检验问题中,抽样中 出现的废品数;在车间供电问题中某时刻正在工作的车床数;在电讯中,某段时间的话务量等等。 2)有些初看起来与数值无关的随机现象,也常常能联系数值来描述。如: 掷硬币问题中,记出现正面时为“1”,出现反面时为“0”。 注:这些例子中,试验的 结果能用一个数字X 来表示,这个数X 是随着试验的结果的不同而变化的,也即它是样本点的一个函数,这种量以后称为随机变量。 2.引例 先看一个具体的例子: 例1 袋中有3只黑球,2只白球,从中任意取出3只球,观察取出的3只球中的黑球的个数. 我们将3只黑球分别记作1,2,3号,2只白球分别记作4,5号,则该试验的样本空间为 ()()()()()()()()()()123124125134135145234235245345?? ? ??? Ω=? ??? ??? ? ,,,,,,,,,,,,,,,,,,,, 我们记取出的黑球数为 X ,则 X 的可能取值为1,2,3.因此, X 是一个变量. 但是, X 取什么值依赖于试验结果,即 X 的取值带有随机性,所以,我们称 X 为随机变量.

相关主题
文本预览
相关文档 最新文档