当前位置:文档之家› 定积分的定义和性质

定积分的定义和性质

定积分的定义和性质

定积分是微积分中的重要概念,用以计算曲线下的面积或曲线所围成的图形的面积。在本文中,我们将介绍定积分的定义和性质,并探讨其在数学和实际问题中的应用。

一、定积分的定义

定积分是将曲线下的面积分成无穷多个无穷小的矩形,并对它们进行求和的过程。它可用以下形式进行定义:

设f(x)在区间[a, b]上连续,将[a, b]分成n个小区间,每个小区间的长度为Δx = (b - a)/n。选择每个小区间上的任意一个点ξi,计算出相应的函数值f(ξi),然后将这些函数值与Δx相乘并求和,即可得到定积分的值:

∫[a, b]f(x)dx = lim(n→∞)Σf(ξi)Δx

二、定积分的性质

1. 可加性:对于函数f(x)在区间[a, b]上可积分,并且c位于该区间内,则有∫[a, b]f(x)dx = ∫[a, c]f(x)dx + ∫[c, b]f(x)dx。这意味着可以将区间进行分割,根据不同段的定积分值进行求和。

2. 线性性质:对于函数f(x)和g(x)在区间[a, b]上可积分,以及任意实数k,则有∫[a, b](kf(x) + g(x))dx = k∫[a, b]f(x)dx + ∫[a, b]g(x)dx。这表明可以将函数进行线性组合后再进行积分。

3. 区间可变性:如果函数f(x)在区间[a, b]上可积分,并且在区间[a,

b']上也连续(其中b' > b),则有∫[a, b']f(x)dx = ∫[a, b]f(x)dx + ∫[b,

b']f(x)dx。这意味着可以扩展区间并计算新增部分的定积分值。

三、定积分的应用

定积分在数学和实际问题中具有广泛的应用。下面列举一些典型的

应用场景:

1. 面积计算:通过计算定积分可以求得曲线和坐标轴所围成图形的

面积。例如,可以利用定积分计算圆的面积、椭圆的面积等。

2. 弧长计算:通过计算定积分可以求得曲线的弧长。这在工程学、

物理学和几何学等领域中都有应用。例如,可以利用定积分计算曲线

的弯曲程度、弧线的长度等。

3. 物理学中的质量和能量计算:通过定积分可以计算物体的质量和

能量。在物理学中,通过曲线下面的面积来表示物体的质量或者能量。

4. 统计学中的概率计算:通过计算定积分可以求得概率分布函数的

面积,从而计算出事件发生的概率。

总结起来,定积分的定义和性质提供了计算曲线下面积的方法,并

且在数学、物理学和工程学等领域中有广泛的应用。通过定积分,我

们可以求得曲线的弧长、图形的面积、物体的质量或能量以及概率的

计算等。定积分在各个领域的应用为我们解决问题提供了有力的工具,也为深入研究和理解数学和自然现象提供了重要手段。

定积分的概念和性质公式

1. 曲边梯形的面积 设在区间上,则由直线、、及曲线 所围成的图形称为曲边梯形,下面求这个曲边梯形的面积 分割求近似:在区间中任意插入若干个分点将分成 n 个小区间 ,小区间的长度 在每个小区间上任取一点作乘积, 求和取极限:则面积取极限

其中,即小区间长度最大者趋于零。 2.变速直线运动的路程 设某物体作变速直线运动,速度是上的连续函数,且,求在这段时间内物体所经过的路程。 分割求近似:在内插入若干分点将其分成 n 个小区间,小区间长度,。任取, 做 求和取极限:则路程取极限 定义设函数在上有界,在中任意插入若干个分点 将分成 n 个小区间,其长度为,在每个小区间 上任取一点,作乘积,并求和, 记,如果不论对怎样分法,也不论小区间上的点

怎样取法,只要当时,和总趋于确定的极限,则称这个极限 为函数在区间上的定积分,记作,即 ,(*) 其中叫被积函数,叫被积表达式,叫积分变量,叫积分下限, 叫积分上限,叫积分区间。叫积分和式。 说明: 1.如果(*)式右边极限存在,称在区间可积,下面两类函数在区间 可积,(1)在区间上连续,则在可积。(2)在区间 上有界且只有有限个间断点,则在上可积。 2.由定义可知,定积分的值只与被积函数和积分区间有关,而与积分变量无关,所以 3.规定 时 , 在上时, 表示曲线、两条直线、 与轴所围成的曲边梯形的面积;

在上时, 表示曲线、两条直线、 与轴所围成的曲边梯形的面积(此时,曲边梯形在轴的下方); 例1 利用定积分的几何意义写出下列积分值 (1)(三角形面积)(2)(半圆面积)

设可积 性质1 性质2 性质3 (定积分对区间的可加性)对任何三个不同的数,有 性质4 性质5 如果在区间上,,则 推论 性质6 (定积分的估值)设 M 及 m 分别是函数在区间上的最大值及最小值,则 性质7 (定积分中值定理) 如果函数在区间上连续,则在上至少有一点, 使成立

定积分的概念及性质

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 定积分的概念及性质 图 1 图 2 A B 4.4 定积分的概念及性质课题: 定积分的概念及性质目的要求: 理解定积分的概念及其性质重点: 定积分的概念、定积分的几何意义难点: 定积分的概念教学方法: 讲授为主、讲练结合教学时数: 2 课时教学进程: 定积分是积分学的另一个重要的基本概念,和导数概念一样,它也是在解决各种实际问题中逐渐形成并发展起来的,现已成为解决许多实际问题的有力工具.本节将首先从实际问题出发引出定积分的概念,并介绍定积分的几何意义和性质.随后的两节再介绍定积分与微分的内在联系,定积分的计算及其简单应用.一、定积分的概念 1.两个引例例 1 求曲边梯形的面积.初等数学可以计算多边形、圆形和扇形等图形的面积,但对于较复杂的曲线所围成的图形(图 1)的面积计算则无能为力.如图所示,我们总可以用若干互相垂直的直线将图形分割成如阴影部分所示的基本图形,它是由两条平行线段,一条与之垂直的线段,以及一条曲线弧所围成,这样的图形称为曲边梯形.特别地,当平行线之一缩为一点时,称为曲边三角形.现在求由直线0,,===ybxax和连续曲线)(xfy = ) 0)((xf所围成的曲边梯形 AabB (图 2)的面积 S .如 1 / 7

果曲边梯形的高不变,即Cy =(常数),则根据矩形面积公式面积=底高便可求出它的面积.但如果)(xfy =是一般曲线,则底边上每一点 x 处的高)(xf随 x 变化而变化,上述计算公式就不适用.对于这样一个初等数学无能为力的问题,我们解决的思路是:将曲边梯形分成许多小长条(图 2),每一个长条都用相应的矩形去代替,把这些矩形的面积加起来,就近似得到曲边梯形的面积S .小长条分得越细,近似程度越好,取极限就是面积 S .具体地,分四步来解决. (1) 分割(化整为零) 在区间],[ba内任意添加1n个分点: 将区间],[ba分成 n 个子区间,这些子区间的长度记为 1 i=}?{iixxx ),, 2 , 1=(ni,并用符号i x?= max表示这些子区间的最大长度.过1n个分点作 x 轴的垂线,于是将曲边梯形分割成n 个小曲边梯形,它们的面积记作i S? ),, 2 , 1=(ni.显然=i?=niSS1. (2) 代替(以直代曲)在第 i 个子区间],[1iixx 上任取一点i ,作以)(if 为高,],[1iixx为底的第 i 个小矩形,小矩形的面积为 iixf?)( ),, 2 , 1=(ni第i 个小曲边梯形的面积 iiixfS??)( ),, 2 , 1=(ni. (3) 求和(求曲边梯形面积的近似值)将 n 个小矩形的面积加起来,便得到原曲边梯形面积的近似值 nxfS1(4) 取极限(积零为整)不难想到,当分割越来越细(即 n 越来越大,同时最长的子区间长度越来越小时), n 个矩形的面积和就越来越接近于原曲边梯形的面积.于是

定积分的基本概念

教 学 内 容 方法与手段 定积分的概念 大家好,这节课我们开始学习定积分的概念,主要分 为三个内容: 定积分概念引入 定积分的定义 定积分的几何性质 首先我们来看第一部分 一、定积分概念引入 说起定积分的思想,其萌芽是特别早的,可以追溯至古代,最具有代表人物就是阿基米德(公元前287年—公元前212年),我们比较熟悉的就是他的浮力原理,其实阿基米德还和高斯、牛顿并列为世界三大数学家,是个非常牛的牛人,有兴趣的可以找找这个人的一些资料,当时他就开始思考定积分问题。那么到底定积分问题是什么样子的呢我们先看一个例子。 1曲边梯形的面积问题: 我们知道矩形面积:S ah = 梯形的面积:() 2 a b S h += 曲边梯形的面积:设()y f x =在区间[a,b]上非负连续,由直线x=a,x=b,y=0及曲线()y f x =所围成的面积。 导入 幻灯 幻灯 幻灯 幻灯 详讲 详讲 详讲 幻灯

那么这样的问题怎么求呢 首先,我们考虑用一个矩形去近似计算其面积。a,b 的区间长度代表其宽,b点的函数值代表其高。我们可以得到一个近似的面积值。 好,现在我们将[a,b] 区间分为两个,同样我们用这两个区间的长度代表其宽,两个区间的右端点代表其高,然后计算这两个矩形的面积求和,作为曲边梯形的面积,可以发现,通过切分,其面积更接近曲边梯形的面积。我们就有这样的思考,是不是切分的越多,其面积越近似我们再将其分为四份,我们发现好像面积越来越接近真实面积。下面就是根据这个思想用计算机对其划分过程进行了模拟,通过观察我们可以发现其面积在分割份数特别多的时候已经非常的接近我们的曲边梯形面积了。 事实上我们如果对其切割的份数取极限,让切割的份数趋于无穷,这个极限值就是我们要求的曲边梯形的面积值。 好,下面,我们把曲边梯形的求解过程用数学的方法描述一下。 解决步骤: 大化小:在区间中任意插入个分点 ,用直线将一个曲边梯形分成个小的曲边梯形;详讲总结

定积分的概念及性质

一、定积分的概念及性质 定积分是研究分布在某区间上的非均匀量的求和问题,必须通过“分割、近似、求和、求极限”四个步骤完成,它表示了一个与积分变量无关的常量。 牛顿—莱布尼兹公式揭示了定积分与原函数的关系,提供了解决定积分的一般方法。要求解定积分,首先要找到被积函数的原函数,而求原函数是不定积分的内容,由此,大家也可以进一步体会上一章内容的重要性。 被积函数在积分区间有界是可积的必要条件,在积分区间连续是可积的充分条件。 定积分具有线性性质、比较性质以及中值定理等,这些性质在定积分的计算和理论研究上具有重要意义,希望大家认真领会。 二、定积分的计算 定积分的计算主要依靠牛顿—莱布尼兹公式进行。在被积函数连续的前提下,要计算定积分一般需要先计算不定积分(因而不定积分的计算方法在定积分的计算中仍然适用),找出被积函数的原函数,但在具体计算时,定积分又有它自身的特点。 定积分计算的特点来自于定积分的性质,来自于被积函数在积分区间上的函数特性,因此有时定积分的计算比不定积分更简洁。尽管定积分在求原函数的指导思想上与不定积分没有差别,但实际上它们又不完全一样。例如用换元法来计算定积分 ? 2 2cos sin π xdx x , 如果计算过程中出现了新的变元:x u sin =,则上下限应同时相应改变,微分同样如此,即 ? 20 2cos sin π xdx x x u sin = 3 13 110 31 2 = =?u du u 。 可以看出,在进行换元时的同时改变了积分的上下限,这样就无须象不定积分那样回代了。但如果计算过程中不采用新变元,则无需换限,即 =?202 cos sin πxdx x 3 1sin 3 1sin sin 20 3 20 2 = =?ππx x xd 。 在前一种方法(也称为定积分的第二换元法)中,一定要注意三个相应的变换:积分上、下限、微分,否则必然出现错误。后一种方法(定积分的第一换元法)可以解决一些相对简单的积分,实际上是换元的过程可以利用凑微分来替代,由于没有出现新的变元,因而也就无须改变积分上下限及微分。

定积分概念与性质(Concept

第五章 定积分 Chapter 5 Definite Integrals 5.1 定积分的概念和性质(Concept of Definite Integral and its Properties ) 一、定积分问题举例(Examples of Definite Integral ) 设在()y f x =区间[],a b 上非负、连续,由x a =,x b =,0y =以及曲线() y f x =所围成的图形称为曲边梯形,其中曲线弧称为曲边。 Let ()f x be continuous and nonnegative on the closed interval [],a b . Then the region bounded by the graph of ()f x , the x -axis, the vertical lines x a =, and x b = is called the trapezoid with curved edge. 黎曼和的定义(Definition of Riemann Sum ) 设()f x 是定义在闭区间[],a b 上的函数,?是[],a b 的任意一个分割, 011n n a x x x x b -=<<<<=, 其中i x ?是第i 个小区间的长度,i c 是第i 个小区间的任意一点,那么和 ()1 n i i i f c x =?∑,1 i i i x c x -≤≤ 称为黎曼和。 Let ()f x be defined on the closed interval [],a b , and let ? be an arbitrary partition of [],a b ,011n n a x x x x b -=<< <<=, where i x ? is the width of the i th subinterval. If i c is any point in the i th subinterval, then the sum ()1 n i i i f c x =?∑,1 i i i x c x -≤≤, Is called a Riemann sum for the partition ?. 二、定积分的定义(Definition of Definite Integral ) 定义 定积分(Definite Integral ) 设函数()f x 在区间[],a b 上有界,在[],a b 中任意插入若干个分点 011n n a x x x x b -=<< <<=,把区间[],a b 分成n 个小区间: [][][]01121,,,,,,,n n x x x x x x - 各个小区间的长度依次为110x x x ?=-,221x x x ?=-,…,1n n n x x x -?=-。在每个小区

定积分的概念

定积分与微积分定理 1.定积分的概念 一般地,设函数()f x 在区间[,]a b 上连续,用分点 将区间[,]a b 等分成n 个小区间,每个小区间长度为x ?(b a x n -?=),在每个小区间[]1,i i x x -上取一点()1,2,,i i n ξ=L ,作和式:1 1 ()()n n n i i i i b a S f x f n ξξ==-=?=∑∑ 如果x ?无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分。记为:()b a S f x dx = ? 其中()f x 成为被积函数,x 叫做积分变量,[,]a b 为积分区间,b 积分上限,a 积分下限。 说明:(1)定积分()b a f x dx ? 是一个常数,即n S 无限趋近的常数S (n →+∞时)称为()b a f x dx ?, 而不是n S . (2)用定义求定积分的一般方法是:①分割:n 等分区间 [],a b ;②近似代替:取点[]1,i i i x x ξ-∈; ③求和:1 ()n i i b a f n ξ=-∑;④取极限:()1()lim n b i a n i b a f x dx f n ξ→∞=-=∑? (3)曲边图形面积:()b a S f x dx =?;变速运动路程2 1 ()t t S v t dt =?; 变力做功 ()b a W F r dr =? 2.定积分的几何意义 说明:一般情况下,定积分 ()b a f x dx ? 的几何意义是介于x 轴、函数()f x 的图形以及直线,x a x b ==之间各部分面积的代数和,在x 轴上方的面积取正号,在x 轴下方的面积去负号.(可以先不给学生讲). 分析:一般的,设被积函数()y f x =,若()y f x =在[,]a b 上可取负值。 考察和式 ()()()12()i n f x x f x x f x x f x x ?+?++?++?L L

高等数学-第5章 5.1 定积分的概念与性质

第5章 定积分及其应用 定积分起源于求图形的面积和体积等实际问题,这类问题往往归结为计算“和式的极限”.定积分与不定积分是两个不同的概念,微积分基本定理揭示了这两个概念之间的关系,解决了定积分的计算问题.本章将从两个实例出发引出定积分的概念,然后讨论定积分的性质和计算方法,介绍定积分在几何上和物理学上的一些应用. §5.1 定积分的概念与性质 一、引例 1. 曲边梯形的面积 在中学,我们学过求三角形、矩形等以直线为边的图形的面积。但在实际应用中,有时需要求以曲线为边的图形的面积(图5.1),这种图形可以分割为若干个一条边为曲线,而其余边为直线的图形(图5.2)。 现考虑求由连续曲线()(()0)y f x f x =≥以及直线0===y b x a x 、、所围成图形(图 5.3)的面积,这种图形称为曲 边梯形,曲线()y f x =叫做曲边梯形的曲边。 怎样计算曲边梯形的面积呢?不妨回顾一下我们是怎样求函数在某点的瞬时变化率(切线的斜率、瞬时速度)的,都是先求某一区间内的平均变化率(割线的斜率、平均速度),得到某点变化率的近似值,再 取极限由近似变化率过渡到精确变化率(切线的斜率、瞬时速度)。简言之,就 图 5.3 图5.1 图5.2

是先求近似值,再取极限由近似值过渡到精确值。我们也采取这种方法来求曲边梯形的面积,先将曲边梯形分割成若干个小的曲边梯形,每个小曲边梯形都用一个小矩形近似代替,则所有小矩形面积之和就是曲边梯形面积的近似值,当把曲边梯形无限细分时,所有小矩形面积之和的极限就是曲边梯形的面积. 为了便于表述,按下面四个步骤求曲边梯形的面积A : (1)分割 用1n +个分点 01211i i n n a x x x x x x x b --=<<<<<<<<= , 把区间],[b a 分成n 个小区间 011211[,],[,],,[,],,[,]i i n n x x x x x x x x -- , 它们的长度依次为 11022111,,,,,i i i n n n x x x x x x x x x x x x --?=-?=-?=-?=- , 经过每一个分点作平行于y 轴的直线段, 把曲边梯形分成n 个小曲边梯形,第i 个小曲边梯形的面积记为(1,2,,)i A i n ?= ,则所求曲边梯形的面积可表示为 121n n i i A A A A A ==?+?+???+?=?∑。 (2) 近似代替 在每个小区间1[,]i i x x -上任取一点1()i i i i x x ξξ-≤≤,以1[,]i i x x -为底、()i f ξ为高的小矩形的面积为()i i f x ξ?(图5.4),它近似等于第i 个小曲边梯形的面积, 图5.4

定积分的基本概念与可积函数类

定积分的基本概念与可 积函数类 黎曼积分 一,摘要:本文先是从微积分的发展史开始讨论,从开普特第二定律到牛顿的变化量累积量再到莱布尼茨的特征三角,研究微积分思想的形成过程包括牛顿和莱布尼茨的积分思想与方法进而引出完整的以柯西,威尔斯特拉斯的极限ε-δ语言定义的定积分基本概念。再着重分析了在黎曼积分定义前提下的可积函数类。在讨论可积函数类的过程中主要分析了原函数(不定积分)与可积的关系,两类间断点与可积函数的关系以及间断点的个数与可积的关系。在讨论的过程中我主要是通过举例说明,比如前者是通过证明连续函数有原函数,再证明教材中的牛顿莱布尼茨公式,引出了原函数存在是个比连续还强的条件。即原函数存在一定可积,但可积不一定有原函数,比如黎曼函数。再通过单调函数的(第一类间断点)可积性与黎曼函数(第一类间断点)的可积性与的函数f(x)=sin(1/x)(第二类间断点)的比较得出可积性对间断点的类别提出的要求。即第一类间断点和第二类有穷间断点可能可积,对于无限间断点,无界肯定不可积。再通过狄利克函数说明间断点的个数与可积性的关系,有限个间断点可积无限个间断点不可积。当然上面说的所有的前提是在有界这个必要条件下的最后再补述了勒贝克积分与黎曼积分的关系,扩充可积条件。

在此处键入公式。二,关于牛顿和莱姆尼茨的积分思想 讲到定积分的基本概念就不得不说到微积分的发展历程,淡到微积分大家一定会想到两位数学界的伟人--------他们是英国的牛顿和德国的莱姆尼茨。他们两分别独立从不同的角度思考终于发明了微积分,牛顿是从力学的运动的角度(物理学方面的求变化过程中的积累量。例如,变速运动在一段时间【α,b】内行进的路程,变力使物体运动一段路程【α,b】所作的功等等。),而莱姆尼茨则是从几何图形的角度着入研究的(主要是利用“特征三角形”从作曲线上任一点的切线进而求面积)。虽然他们的积分思想有所差别,但他们的最终问题的根源却殊途同归回到了同一个问题上来了即蕴含在定积分概念中的基本思想----------有限逼近无限,以致促进了以后的极限方法的发展。所以极限方法就成为建立积分学严格理论的基本方法。下面我们来分别介绍他们的积分思想 1牛顿与他的微积分 (艾萨克·牛顿(Isaac Newton)是英国伟大的数学家、物理学家、天文学家和自然哲学家,其研究领域包括了物理学、数学、天文学、神学、自然哲学和炼金术。牛顿的主要贡献有发明了微积分,发现了万有引力定律和经典力学,设计并实际制造了第一架反射式望远镜等等,被誉为人类历史上最伟大,最有影响力的科学家。为了纪念牛顿在经典力学方面的杰出成就,“牛顿”后来成为衡量力的大小的物理单位。) 说到牛顿人们可能会想到他的三大发明:微积分,万有引力,和光的分析。他不仅是个伟大的数学家而且还是物理学家,这就是为什么他的微积分思想的起源于力学的原因,牛顿对物理学的深刻思考而导致了他在数学方面的成就,他都嫌思考的是开普勒第二定律:对于每一个行星而言,太阳和行星的连线在相等的时间内扫过相等的面积。 由于万有引力的作用,在离太阳不同距离的地方受力不一样,所以加速度也在在变化,也就是说速度V(t)是个变化的,求这个变化过程的积累量即面积。牛顿让速度这个变化过程量为一个连续的函数,行驶的路程就是该函数下面的面

定积分的概念及性质

51定积分的概念及性质 摘要:(3)定积分是一个数,不定积分是一个函数的原函数的全体.因此,定积分和不定积分是两个完全不同的概念.4.布置作业(略)5.2微积分基本定理... 关键词:积分,微积分 类别:专题技术 来源:牛档搜索(https://www.doczj.com/doc/ba19132625.html,) 本文系牛档搜索(https://www.doczj.com/doc/ba19132625.html,)根据用户的指令自动搜索的结果,文中内涉及到的资料均来自互联网,用于学习交流经验,作品其著作权归原作者所有。不代表牛档搜索(https://www.doczj.com/doc/ba19132625.html,)赞成本文的内容或立场,牛档搜索(https://www.doczj.com/doc/ba19132625.html,)不对其付相应的法律责任!

5.1定积分的概念及性质 教学目的 理解定积分的概念和性质,了解定积分的几何意义 教学重点 定积分的概念 教学难点 定积分概念的理解 教学内容 1.复习 不定积分的概念. 2.讲授新课 2.1两个引例 引例1 曲边梯形的面积 由连续曲线)(x f y =(()0≥x f )和b x a x ==,及0=y 围成的平面图形AabB 称为曲边梯形(如图5-1). 由于曲边梯形在底边上各点处的高()f x 在区间[]b a ,上是不断变化的,因而它的面积不能由公式 底×高 求得.为了计算曲边梯形的面积,我们可以先将它分割成若干个小曲边梯形,在小曲边梯形中)(x f 的变化很小,可以用相应的小矩形近似代替,用所有小矩形的面积之和近似代替整个曲边梯形的面积.显然,分割的越细,近似程度就越高,当无限细分时,所有小矩形面积之和的极限就是曲边梯形面积的精确值. 根据以上分析,我们按下面的方法求曲边梯形的面积. 设函数)(x f 在区间[]b a ,上连续,且()0≥x f . 在],[b a 上任取1-n 个内分点: b x x x x x a n n =<<<<<=-1210 ,将区间[]b a , 分割为个小区间: 图1 01121[,],[,],,[,]n n x x x x x x - 记每一小区间长度为1--=∆i i i x x x ,过分点(1,2,,)i x i n =⋅⋅⋅作轴的垂线,将曲边梯形 AabB 分割为个小曲边梯形;设i A ∆表示第个小曲边梯形的面积,则曲边梯形AabB AabB

定积分计算公式和性质~定积分计算公式大全

第二节定积分计算公式和性质 一、变上限函数 设函数在区间上连续,并且设x为上的任一点,于是,在区间上的定积分为 这里x既是积分上限,又是积分变量,由于定积分与积分变量无关,故可将此改为 如果上限x在区间上任意变动,则对于每一个取定的x值,定积分有一个确定值与之对应,所以定积分在上定义了一个以x为自变量的函数,我们把称为函数在区间上变上限函数记为 图 5-10 从几何上看,也很显然。因为X是上一个动点,从而以线段为底的曲边梯形的面积,必然随着底数端点的变化而变化,所以阴影部分的面积是端点x的函数(见图5-10)定积分计算公式 利用定义计算定积分的值是十分麻烦的,有时甚至无法计算。因此,必须寻求计算定积分的简便方法。 我们知道:如果物体以速度作直线运动,那么在时间区间上所经过的路程s为 图5-11

另一方面,如果物体经过的路程s是时间t的函数,那么物体从t=a到t=b所经过的路程应该是(见图5-11) 即 由导数的物理意义可知:即是一个原函数,因此,为了求出定积分,应先求出被积函数的原函数,再求在区间上的增量即可。 如果抛开上面物理意义,便可得出计算定积分的一般方法: 设函数在闭区间上连续,是的一个原函数,即,则 这个公式叫做牛顿-莱布尼兹公式。 为了使用方便,将公式写成 牛顿-莱布尼兹公式通常也叫做微积分基本公式。它表示一个函数定积分等于这个函数的原函数在积分上、下限处函数值之差。它揭示了定积分和不定积分的在联系,提供了计算定积分有效而简便的方法,从而使定积分得到了广泛的应用。 例1 计算 因为是的一个原函数所以 例2 求曲线和直线x=0、x= 及y=0所围成图形面积A(5-12)

定积分知识点

定积分知识点 1.定积分的概念:一般地,设函数()f x 在区间[ ,]a b 上连续,用分点 0121 i i n a x x x x x x b 将区间[,]a b 等分成n 个小区间,每个小区间长度为 x 〔b a x n 〕,在每个小区间 1,i i x x 上任取一点()1,2,,i i n ξ=,作和式:1 1 ()()n n n i i i i b a S f x f n ξξ==-=∆=∑∑ 如果 x 无限接近于0〔亦即n →+∞〕时,上述和式n S 无限趋近于常数S ,那么称该常 数S 为函数()f x 在区间[,]a b 上的定积分。记为:()b a S f x dx = ⎰ , 其中-⎰ 积分号,b -积分上限,a -积分下限,()f x -被积函数,x -积分变量,[,]a b -积分区间,()f x dx -被积式。说明:〔1〕定积分()b a f x dx ⎰ 是一个常数,即n S 无限趋 近的常数S 〔n →+∞时〕记为()b a f x dx ⎰ ,而不是n S . 〔2〕用定义求定积分的一般方法是:①分割:n 等分区间 ,a b ;②近似代替:取点[]1,i i i x x ξ-∈;③求和:1 ()n i i b a f n ξ=-∑ ;④取极限: ()1 ()lim n b i a n i b a f x dx f n ξ→∞ =-=∑ ⎰ ;〔3〕曲边图形面积:()b a S f x dx =⎰;变速运 动路程2 1 ()t t S v t dt = ⎰ ;变力做功()b a W F r dr =⎰ 2.定积分的几何意义 从几何上看,如果在区间, a b 上函数()f x 连续且恒有()0f x ≥,那么定积分()b a f x dx ⎰表示由直线 ,(),0x a x b a b y ==≠=和曲线()y f x 所围成的曲边梯 形(如图中的阴影局部)的面积,这就是定积分()b a f x dx ⎰的几何意义。 说明:一般情况下,定积分 ()b a f x dx ⎰ 的几何意义是介于x 轴、函数()f x 的图形以及直线 ,x a x b 之间各局部面积的代数和,在x 轴上方的面积取正号,在x 轴下方的面积去 负号。

定积分的概念

定积分与微积分定理 1.定积分的概念一般地,设函数()f x 在区间[,]a b 上连续,用分点 将区间[,]a b 等分成n 个小区间,每个小区间长度为x ∆〔b a x n -∆= 〕,在每个小区间[]1,i i x x -上取一点()1,2, ,i i n ξ=,作和式:1 1 ()()n n n i i i i b a S f x f n ξξ==-=∆=∑∑ 如果x ∆无限接近于0〔亦即n →+∞〕时,上述和式n S 无限趋近于常数S ,则称该常数S 为函数()f x 在区间[,]a b 上的定积分。记为:()b a S f x dx = ⎰ 其中()f x 成为被积函数,x 叫做积分变量,[,]a b 为积分区间,b 积分上限,a 积分下限。 说明:〔1〕定积分 ()b a f x dx ⎰ 是一个常数,即n S 无限趋近的常数S 〔n →+∞时〕称为 ()b a f x dx ⎰ ,而不是n S . 〔2〕用定义求定积分的一般方法是:①分割:n 等分区间[],a b ;②近似代替:取点 []1,i i i x x ξ-∈;③求和:1 ()n i i b a f n ξ=-∑;④取极限:()1()lim n b i a n i b a f x dx f n ξ→∞=-=∑⎰ 〔3〕曲边图形面积:()b a S f x dx = ⎰ ;变速运动路程21 ()t t S v t dt =⎰; 变力做功()b a W F r dr = ⎰ 2.定积分的几何意义 说明:一般情况下,定积 分 ()b a f x dx ⎰ 的几何意义是介于x 轴、函数()f x 的图形以及直线,x a x b ==之间各局部面 积的代数和,在x 轴上方的面积取正号,在x 轴下方的面积去负号.〔可以先不给学生讲〕. 分析:一般的,设被积函数()y f x =,假设()y f x =在[,]a b 上可取负值。 考察和式()()()12()i n f x x f x x f x x f x x ∆+∆++∆+ +∆ 不妨设1(),(), ,()0i i n f x f x f x +<

高数学习资料含讲义及全部内容定积分的概念

第五章 定积分的概念 教学目的与要求: 1. 解变上限定积分定义的函数,及其求导数定理,掌握牛顿—莱布尼 茨公式。 2. 解广义积分的概念并会计算广义积分。 3.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、变力做功、引力、压力和函数的平均值等)。 5.1定积分概念 一. 定积分的定义 不考虑上述二例的几何意义,下面从数学的角度来定义定积分 定义 设函数f(x)在[a,b]上有界,在[a,b]中任意插入若干个分点 , 把区间[a,b]分成n 个小区间,记 },......,,max{,,......2,1,211n i i i x x x n i x x x ∆∆∆==-=∆-λ在 [i i x x ,1-]上任意取一点i ξ,作和式: )1.......( )(1 i n i i x f ∆∑=ξ 如果无论[a,b]作怎样分割,也无论i ξ在[i i x x ,1-]怎样选取,只要 0→λ有→∆∑=i n i i x f 1 )(ξI (I 为一个确定的常数),则称极限I 是 f(x)在[a,b]上的定积分,简称积分,记做 ⎰ b a dx x f )(即I=⎰b a dx x f )(其

中f(x)为被积函数,f(x)dx 为积分表达式,a 为积分下限,b 为积分上限,x 称为积分变量,[a,b]称为积分区间。 注 1. 定积分还可以用δε-语言定义 2由此定义,以上二例的结果可以表示为A= ⎰ b a dx x f )(和S=⎰2 1 )(T T dt t v 3有定义知道 ⎰ b a dx x f )(表示一个具体的书, 与函数f(x)以及区间[a,b]有关,而与积分变量x 无关,即 ⎰ b a dx x f )(=⎰b a du u f )(=⎰b a dt t f )( 4定义中的0→λ不能用∞→n 代替 5如果i n i i x f Lim ∆∑=→1 )(ξλ存在,则它就是f(x)在[a,b]上的定积分,那 么f(x)必须在[a,b]上满足什么条件f(x)在[a,b]上才可积分呢? 经典反例:⎩⎨ ⎧=中的无理点, 为,中的有理点, 为]10[0]10[,1)(x x x f 在[0,1]上不可积。 可见函数f(x)在什么情况下可积分并不是一件容易的事情。 以下给出两个充分条件。 定理1 设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。 定理2 设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在 [a,b]上可积。 定理3 设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。 6几何意义

数学《定积分》讲义

第九章 定 积 分 1 定积分的定义 一、背景 1、曲边梯形的面积 1()n i i i S f x ξ=≈∆∑ 2、变力所做的功 1()n i i i W F x ξ=≈∆∑ 上述问题均可归结为一个特定形式的和式逼近,思想方法:分割、近似求和、取极限. 二、定积分的定义 定义 1 设闭区间[],a b 内有1n -个点,依次为0121n n a x x x x x b -=<<<⋅⋅⋅<<=,其把[],a b 分成n 个小区间[]1,,1,i i i x x i n -∆==⋅⋅⋅.称这些点或小闭子区间构成 [],a b 的一个分割,记为{}01,,n T x x x =⋅⋅⋅或{}12,,n ∆∆⋅⋅⋅∆,小区间i ∆的长度为 1i i i x x x -∆=-,同时记{}1max i i n T x ≤≤=∆,称为分割T 的模(或细度).

注1 ||||,1,i x T i n ∆≤=⋅⋅⋅. 因而,||||T 可用来刻画[],a b 被分割的细密程度,同时,若T 给定,则||||T 确定,而对同一细度(模), 相应的分割却有无穷多个. 定义 2 设f 为[],a b 上的函数,对[],a b 上的分割{}12,,n T =∆∆⋅⋅⋅∆,任取点,i i ξ∈∆ 1,i n =⋅⋅⋅,作和式 1 ()n i i i f x ξ=∆∑, 称为函数f 在[],a b 上的一个积分和,也称为Riemann 和. 注2. Riemann 和与分割T 及i ξ的取法有关. 对同一个分割T ,相应的Riemann 和有无穷多个. 定义 3 设f 是[],a b 上的函数,J 为一个确定的数. 若对任给正数0ε>,存在正数0δ>,使得对[],a b 上的任何分割T ,以及其上任选的i ξ,只要T δ<,就有 1 ()n i i i f x J ξε=∆-<∑,则称f 在[],a b 上可积(或Riemann 可积) ,数J 称为f 在 [],a b 上的定积分(或Riemann 积分) ,记作()b a J f x dx =⎰. 其中f 称为被积函数, x 称为积分变量,[],a b 称为积分区间,,a b 分别称为积分的下限、上限. 注. 1 ()lim ()n b i i a T i f x dx f x ξ→==∆∑⎰ ⇔0,0,,,,i i T T εδδξ∀>∃>∀<∀∈∆ 1 ()()n b i i a i f x f x dx ξε=∆-<∑⎰

相关主题
文本预览
相关文档 最新文档