当前位置:文档之家› 先进变循环发动机技术研究报告

先进变循环发动机技术研究报告

先进变循环发动机技术研究报告
先进变循环发动机技术研究报告

先进变循环发动机技术研究

黄春峰《航空制造技术》

现代航空发动机技术走过了百年的辉煌历程,已经发展得非常成熟。今天,传统的航空动力技术将面临严峻的挑战,世界航空动力技术呈现出强劲的加速发展态势,将引发第三次动力“革命”。为适应未来新一代先进战机的更高、更强、更狠、更霸的发展需要和对成本、速度、环境和燃料高效利用等方面的高要求,一些主要航空国家持续实施先进航空发动机研究和发展战略计划,加速研发以变循环及组合发动机为特征的第五代航空发动机[1]。

专家一致认为,新一代战斗机的竞争将不再是机械性能和飞行员的素质的较量,而是人工智能的比拼。第五代战机的性能将包括高于5马赫的速度、多光谱隐形能力以及传感器融合能力等,同时还将具备无人驾驶的飞行能力,并且有可能采用核动力航空发动机。第五代战机的动力为超声速、超智能、超隐形、超低成本全新概念的发动机[2-3]。

变循环发动机军事需求与发展背景传统航空涡轮发动机的热力循环特性是固定不变的,一种发动机只能在一种模式下工作,并且仅在有限的飞行范围内具有最好的性能。先进的变循环发动机

机能以多种模式<包括涡轮模式、涡轮风扇模式和冲压模式等)工作,因而在亚声速、跨声速、超声速和高超声速飞行状态下都具有良好的性能。在涡喷/ 涡扇发动机领域,VCE研究的重点是改变涵道比,如发动机在爬升、加速和超声速飞行时涵道比减小,接近涡喷发动机的性能,以增大推力;在起飞和亚声速飞行时,加大涵道比,以涡扇发动机状态工作,降低耗油率和噪声[4]。

在未来陆、海、空、天、电多维力量和多维战场的信息化战争中,配装先进动力系统的航空武器装备是一个重要环节,是夺取制空权和决定战争胜负的决定性因素之一。VCE概念的提出可以追溯到20世纪60年代,随着涡轮风扇发动机的问世,它优越的亚音速性能,高的推进效率,使得发动机设计师不断地追求更大涵道比的发动机。在超音速飞行状态,由于大涵道比的涡扇发动机耗油率明显高于等推力级的小涵道比涡扇发动机,因此限制了超音速飞机发动机涵道比的进一步增加。为了使航空发动机在亚音速和超音速状态下都具有较好的性能,国外航空发动机科学家提出了变几何和VCE 思想[4-5]。

VCE的优点就是在宽广的飞行包线内,都能保持很好的效率和较低的耗油率,可以看作将亚音速性能很好的大涵道比涡扇与超音速性能很好的小涵道比涡扇、涡喷取各自优点,结合成一台发动机。实践证明,VCE 技术以其内在的性能优势,能够满足强大的军事需求,并显示出巨大的应用发展潜力<见图1),已经受到了各航空强国的重视,是目前航空动力主流的研究方向。

特别是在先进战斗机研究方面,自20世纪60年代以来,战斗机一方面朝着多用途方向发展;另一方面,飞机的飞行包线不断扩大,特别是在2O世纪80年代后,人们更加重视飞机机体/推进系统一体化设计。由于VCE在满足上述指标方面的优势尤为明显,于是,对军用战斗机用的VCE研究逐步开展起来。国外最早的VCE是美国20世纪60年代初在SR-71“黑鸟”上投入使用的J58发动机[6],该发动机可在涡喷发动机模式和冲压发动机模式之间转换,是到目前为止投入生产的变循环发动机。

迄今,VCE技术已有50年的探索研究与发展历程<1960~2018 年)。国外各大航空发动机公司,如英国的罗?罗公司、法国的SNECMA 公司、日本的工业科学与技术研究所和美国的GE公司等,均在不断地进行变循环发动机概念设计和方案设计研究,并进行实验验证。从早期的VCE概念提出,到目前具有实际使用功能的VCE F120、F136的研制成功,VCE设计概念和设计方法大致经历了5次大的技术发展,开发出了具有代表性的5代VCE,分别是YJ101、GE21、GE37、可控压比发动机

GE公司的F120是第一台经过飞行实验验证的<双外涵)变循环发动机。现在F120发动机的JSF改型F136发动机作为JSF

变循环发动机技术的新发展1 ADVENT<自适应发动机)计划

自适应发动机是国外正在发展的先进变循环发动机。国外研究的变循环发动机的方案主要有单涵道、双涵道、串联/ 并联式选择放气变循环等类型。目前,国外正在发展带第三个涵道的自适应发动机

点。

ADVENT计划是IHPTET计划后续计划VAATE第二阶段的一个标志性计划,计划发展的技术将使发动机能够独立地改变通过风扇和核心机的空气流量和压比,实现大幅度的变循环功能。国内外普遍认为,自适应发动机将成为是航空涡轮发动机发展史上又一个重大里程碑,其意义相当于涡喷发动机向涡扇发动机的跨越,是真正的“游戏规则改变者”,其发展将引发航空推进领域的一场革命,也将实现航空航天领域的深度融合与跨越式发展[9]。

自适应发动机是在GE公司第四代VCECOPE 基础上发展的,是VCE 的第5个发展阶段。它在COPE布局上又增加了一个部件,即在发动机外围又增设一个涵道,有一个从主风扇出来的单独流道,并且采用一个“Flade”级——接在转子叶片上的风扇 及改装F/A-18E/F和EA-18G飞机。

ADVENT计划瞄准未来战斗机发动机,将发展的技术有:单独可变

流量和压比的辅助风扇;高温多转子机械系统;高剩余功率、流量和压比可变的核心机;可在大流量范围工作的高效涡轮;综合的热管理技术;进/排气综合改进技术。ADVENT 计划中要研究的关键部件是低压系统,以及如何通过风扇流量变化来改变涵道比的技术。通过这种改变使发动机实现变循环特性,从而保证飞机在起飞时具有较大推力,在巡航状态具有低耗油率。

自适应发动机未来的路还很长。按照美国国家航空航天局

目前,国外自适应发动机技术已进入加速发展阶段,欧美在自适应发动机技术研究方面取得了突破性进展。2007年4月,GE公司和美国罗?罗公司各赢得美国空军研究实验室的ADVENT工程第一阶段合同,其中GE公司和罗?罗公司分别获得的2.3亿美元和2.96亿美元合同。主要工作包括概念探索、关键部件技术研发和实验,并开始整机的初步设计和详细设计、分析,以及风险减少研究。其中GE 公司负责核心机设计,罗?罗公司负责低压系统设计,关键部件的实验包括全环燃烧室实验、陶瓷基复合材料部件的研究与实验,并完成一台核心机实验。在ADVENT 计划第一阶

段,技术重点放在使耗油率降低25% 和降低用于热管理的冷却空气温度的开发上。

根据计划安排,美国军方最初希望在第一阶段结束后,最终的VCE 设计由单个的承包商完成。但是,在2009年10月,美国空军决定由罗?

罗公司和GE公司继续参与ADVENT 计划第二阶段工作,罗?罗公司继续承

担其负责部件的实验和整机集成技术,GE公司继续研制核心机。这一阶段的工作将完成达到技术成熟度TRL6 的发动机详细设计,开发一台风扇流

量和压比可变的自适应发动机技术验证。该计划中的全尺寸验

证机预计在2018年进行地面验证,验证成熟的技术有可能用于2018~2020 年间推出的VCE 上[13-14]。2018年9月,美国空军选择了GE和P&W公司参与为其4年的自适应发动机技术发展

2 RTA<革新涡轮加速器)计划

格林公司组合循环发动机技术是在NASA 革新涡轮加速器

Turbine Accelerator ,RTA)计划下发展。组合式发动机结合了各单一发动机的优点,使其能够在宽的马赫数—高度范围内高效率工作。其研究难点主要是发动机各要素之间的匹配性。对于完全一体化的组合循环发动机目前还处于研究实验阶段。

组合循环发动机从结构上分主要有以下2种:基于涡轮的组合循

革新涡轮加速器

RTA计划将在目前涡轮发动机<如J58,最高飞行M数3)的基础上,到2018年使飞行马赫数增加25%,推重比提高250%,部件寿命周期提高2 倍。到2018年,使M数提高35%,推重比提高375%,关键部件寿命提高4倍。RTA 发动机的推重比将为15~20,M4~5。

目前,美国GE公司已经获得了缩尺地面实验用发动机的合同,正在发展一种中等尺寸的<直径89~102cm)的发动机用于地面实验,威廉斯国际公司和艾利逊先进发展中心

中等尺寸的RTA地面实验发动机

在美国引领着先进VCE技术向前发展的同时,近30年来,国外其他航空发动机公司也在不断地进行VCE概念设计和方案设计研究,并进行实验验证,如英国的罗?罗公司、法国的SNECMA 公司、日本的工业科学与技术研究所等,并取得了一定的研究成果[17]。进入20世纪90年代后,美国、欧洲和日本又掀起研究超声速

实,需突破总体性能、总体结构、控制系统和机构学等一系列关键技术,如VCE性能仿真、核心机驱动的风扇级CDFS设计、高效可控涡轮导向器、面积可调涵道导向器、低污染燃烧室、高性能低污染外涵加力燃烧室、反速度场同心环喷管、VABI和多变量智能控制系统( 自适应控制技术>,单级高负荷跨声速高压涡轮和双级无导叶对转低压涡轮等,为VCE 的研制提供技术支持[18-19]。

高负荷跨声速高压涡轮气动设计与双级无导叶对转低压涡轮的优化需要完美的多学科组合,包括气动、传热和结构动力学。从高压涡轮来的跨声速气流的强迫响应需要与低压涡轮的气动性能、冷却和结构响应综合考虑。从变循环发动机涡轮系统计划得到的数据将用来修正设计程序,使低压涡轮设计的重量轻、效率高和抗高周疲劳能力强。结束语在航空发动机的百年发展历程中,航空发达国家持续研究新型动力装置以满足先进飞机的需要,由此先进VCE技术应运而生。VCE 是正在研究发展中的五代机的重要动力特征。VCE技术成功解决了战机对单位推力和低耗油率之间的矛盾,能够在同一台发动机上实现涡喷工作模式和涡扇工作模式,使发动机在超声速和亚声速飞行时都有优良特性。

与涡喷、涡扇发动机相比,变循环发动机在超声速和亚声速混合飞行任务中综合性能优势明显,高单位面积推力的涡喷循环模式工作, 以满足飞行器高速、高机动性飞行;低耗油率的涡扇循环模式工作,以满足长时间续航且对飞行速度无严格要求。因此具有广阔的军事需求,对军机或民机都是非常有用。VCE被誉为是未来飞行器的最佳动力装置之一。

在美国IHPTET等计划的强大支持下,VCE技术得到很大的发展。

目前,美国的VCE已进入工程实用阶段,GE公司研制的配装YF22飞机的F120双涵道VCE的成功研制已经充分证明了VCE 技术的先进性和可行性,其相关技术的成熟度达到了7级左右。目前,我国正在举国家之力,努力突破航空发动机发展的瓶颈。在这种环境下要研制出先进VCE,技术难度相当大。

鉴于VCE优异的技术特性、强大的军事需求和实际应用的重要性,我们应高度重视这项新技术的探索研究。通过分析国外在VCE领域的研究成果,借鉴国外的成功经验,结合国内已有的研究基础,制定顶层研究方案,突破VCE工作原理、结构设计、建模和计算、关键技术<核心机驱动风扇级、变面积涵道引射器、可调涡轮导向器和自适应控制技术等),探索VCE研究的零部件和整机实验条件和技术要求条件,掌握其实验方法,为VCE的验证机与工程研制提供技术储备与支持,最终实现我国先进航空动力的跨越式发展。

发动机部件计算公式

附录1 发动机部件计算公式 1 基础知识 1)空气、燃气的焓、熵公式见附录2。 2)气动函数()q λ、()πλ、τλ() 、()f λ计算公式见附录3。 2 变循环发动机各部件的计算公式 2.1 进气道 2.1.1 已知:发动机飞行高度H 、飞行马赫数Ma 。 2.1.2 计算过程 1)计算标准大气条件下环境压力0p (静压),环境温度0T (静温)。 当高度H km ≤11时: 5.2553 00 1.01325144.308288.15 6.5H p T H ???=?-? ?????=-?? ( 2.1) 其中,高度H 的单位为km ,温度的单位为K ,压力的单位为bar 。 2)进气道进口的总温总压: 2020 T T Ma p p Ma γγγγ*-*?-??=+ ????? ? -???=+ ????? 10 112112 (2.2) γ:气体绝热指数,纯空气=1.4γ,燃气=1.33γ。 3)计算进气道总压恢复系数: i 1.35 i 1 1.0 1 1.00.075(1) H H H M M M σσ≤=??>=--?:: (2.3) 4)计算进气道出口总温总压: i T T p p σ**** ?=?=??1010 (2.4) 2.2 压气机 双涵道变循环发动机中三个压气机部件,分别是风扇、CDFS 和高压压气机,这三个压气机部件采用同一种计算法。

2.2.1 已知 压气机进口总温T in *、总压P in *、压气机的压比函数值zz 、物理转速n 、压气机导叶角度α。 2.2.2 计算过程 1)计算压气机换算转速: cor n = (2.5) 其中,风扇:*,=288.15in d T ,CDFS :*,=428.56862609in d T ,高压压气机:* , 473.603961in d T =。*in T 为压气机进口总温。 2)计算压气机增压比、效率和换算流量 压气机的增压比c pr 、效率c η和换算流量c W 分别是其换算转速和压比函数值及导叶角α的函数。 (,,)(,,) (,,) c cor c cor c cor pr prc n zz n zz W W n zz αηηαα=?? =??=? (2.6) 压气机增压比、效率和换算流量的求法如下: (1) 附录4分别给出了风扇、CDFS,高压压气机的特性数据。利用线性插值法计算出压气机的换算转速为cor n 、压比函数值为zz 时的特性图上的增压比,c map pr 、效率,c map η和换算流量,c map W 。 (2) 将(1)求的特性图上的增压比,c map pr 、效率,c map η和换算流量,c map W 代入(2.7)修正后得到压气机的增压比、效率和换算流量: ,,2 ,(1)(1)1100(1) 100(1) 100pr c pr c map w c W c map c c map k pr C pr k W C W k C ηηααηηα? =-++?? ? =+?? ?=+?? (2.7) pr w k k k η、、分别是增压比、效率和换算流量的修正系数。风扇、CDFS 、高压压气机 pr w k k k η、、这三个值均分别取1,1,0.01; CDFS 导叶角变化围:-535α≤≤,风 扇和高压压气机的导叶角变化围:-515α≤≤ ;风扇: 2.3894 =0.4950 1.0684pr W C C C η =?? ??=?,CDFS:

变循环发动机性能数值模拟

第25卷第6期2010年6月 航空动力学报 Journal of Aerospace Pow er Vol.25No.6 J un.2010 文章编号:100028055(2010)0621310206 变循环发动机性能数值模拟 刘增文1,王占学1,黄红超1,2,蔡元虎1 (1.西北工业大学动力与能源学院,西安710072; 2.中国航空工业集团公司中国燃气涡轮研究院,成都610500) 摘 要:在常规双轴涡扇发动机性能模拟程序的基础上,添加了模式选择阀门、前可调面积涵道引射器、后可调面积涵道引射器、核心涵道等部件模块,并加入了低压涡轮导向器面积、高压压气机转子叶片角度、风扇转子叶片角度、核心驱动风扇级转子叶片角度等调节变量,编写了双外涵变循环发动机性能数值模拟程序,模拟了一种带核心风扇级的双外涵变循环发动机的高度、速度和节流特性.计算表明:与单外涵模式相比,双外涵模式的单位推力和耗油率低,受飞行条件影响的主要为前涵道比.随着低压转子转速的降低,双外涵模式的总涵道比呈增大的趋势,发动机的耗油率大幅降低.此外,变循环发动机在几何调节参数不变的情况下,对工作条件较敏感,必须特别注意各调节参数与发动机工作条件的匹配.关 键 词:变循环发动机;双外涵;核心风扇级;数值模拟;性能特性中图分类号:V231 文献标识码:A 收稿日期:2009205211;修订日期:2009212214 作者简介:刘增文(1983-),男,山东泰安人,博士生,主要从事航空发动机总体设计方面研究. Numerical simulation on performance of variable cycle engines L IU Zeng 2wen 1,WAN G Zhan 2xue 1,HUAN G Hong 2chao 1,2,CA I Yuan 2hu 1 (11School of Power and Energy , Nort hwestern Polytechnical University ,Xi πan 710072,China ; 21China Gas Turbine Establishment , Aviation Industry Corporation of China ,Chengdu 610500,China ) Abstract :Based on a general gas t urbine performance simulation software ,a double by 2pass VCE (variable cycle engine )performance simulation software was developed wit h intro 2duction of selector valve ,forward VABI (variable area bypass injector )and rear VABI and core bypass duct modules.The cycle operating parameters of VCE were given ,such as low pressure t urbine nozzle area ,co mpressor inlet guide vane angle ,fan inlet guide vane angle and core 2driven fan stage inlet guide vane angle.A double bypass VCE characteristics were calculated and analyzed wit h altit ude velocity and t hrottling in t his https://www.doczj.com/doc/b92384384.html,pared wit h single bypass mode ,t he specific t hrust and specific f uel consumption (SFC )of double bypass mode were low.The total bypass ratio increased and t he SFC decreased wit h t he decline of rotate speed.Under a complicated condition ,it is necessary to match t he engine wit h appro 2priate variable parameters. K ey w ords :variable cycle engines ;double bypass ;core 2driven fan stage ; numerical simulation ;performance 近年来,战斗机正朝多用途、宽包线方向发展,对于超声速、格斗和机动飞行,需要高单位推 力的涡喷循环,对于亚声速巡航、待机和空中巡 逻,需要低耗油率的涡扇循环.这一发展趋势,促

发动机技术的全面介绍

或许你对各种车型了解已经到了出神入化的地步,甭管什么车,只要看一眼车灯,关于这辆车的概念化常识便会像水银泻地一般在记忆里汩汩流出。但这只是肤浅的理解,也许你并未真正懂得汽车的含义。要想真正的理解汽车,你必须向更深的层次探索,譬如发动机。这就好比要看一个人,首先要看他是否有一颗善良的心一样。 如果你承认自己是一个车迷,那么你对发动机就肯定不会陌生。因为它对于汽车而言简直是太重要了,以至于我们无法忽视它的存在。不过,绝大多数人对发动机的了解是很难用“精通”来形容的,其实这也很正常。因为,就连许多被称作“专家”的业内人士也不见得把每一款发动机都说得入木三分。 其实,了解发动机才是了解汽车的充要条件。换句话说,你只有了解了发动机才算真正了解了汽车。我们在“世界”范围内对发动机进行了一次“地毯式的搜索”,之后将各式各样的发动机网罗在一起,形成了这篇“搜索引擎”。我们的目的只有一个——通过对发动机全方位的介绍以及对比,让您可以更系统更全面的了解并掌握有关发动机的知识。 引擎常识简单上讲发动机就是一个能量转换机构,即将汽油(柴油)的热能,通过在密封汽缸内燃烧气体,气体膨胀时推动活塞作功,转变为机械能,这是发动机最基本原理。发动机所有结构都是为能量转换服务的,虽然发动机伴随着汽车走过了100多年的历史,

无论是在设计上、制造上、工艺上还是在性能上、控制上都有很大的提高,其基本原理仍然未变,这是一个富于创造的时代,那些发动机设计者们,不断地将最新科技与发动机融为一体,把发动机变成一个复杂的机电一体化产品,使发动机性能达到近乎完善的程度。 现代高科技在发动机上得到完美的体现,一些新技术、新结构广泛应用在发动机上。如V12、V8、V6发动机:它们均指气缸排列成V型,这种发动机充分利用动力学原理,具有良好的平稳性,增大发动机排量,降低发动机高度。如:Audi A8 6.0使用W12-12缸V型排列发动机,BENZS600使用V12-12缸IV型排列发动机等。 一般情况下,按照排量大小的不同发动机分为3缸、4缸、6缸、8缸几种类型。目前1.3L-2.3L排量的车大多采用直列四缸发动机,其特点是体积小、结构简单、维修方便;2.5L以上的排量一般采用多缸设计,其中有直列6缸,如宝马;也有呈一定角度分两边排列的V型6缸发动机,可有效果降低震动和噪音,如别克车系;一般来说排量越大,发动机的功率就越高。但现在也有些小排量的

变循环发动机重量预估方法研究_张韬_王占学_刘增文_张晓博

变循环发动机重量预估方法研究 张韬,王占学,刘增文,张晓博 (西北工业大学动力与能源学院, 陕西西安710072)来稿日期: 2014-01-10作者简介:张韬,(1988-),男,江西人,硕士生,主要研究方向:推进系统气动热力学; 王占学,(1969-),男,陕西西安人,博士后,博士生导师,主要研究方向:推进系统气动热力学 1引言 重量是航空发动机最重要的性能指标之一, 同时在飞机研制发展的方案论证阶段,发动机重量预估是关键和不可少的工作[1]。20世纪七十年代末,美国刘易斯研究中心在其总体性能程序的基础上建立了涡喷发动机的重量预估方法[2-3],文献[4]也形成了常规的涡扇发动机独特的重量预估方法,但是对于新型的变循环发动机的重量预估,这个方面的工作还不够。变循环发动机可以在同一台发动机上通过改变某些部件的几何形状、尺寸或位置,从而改变发动机的热力循环参数,使发动机在各种工作状态下都具有良好的性能,变循环发动机是未来航空发动机发展的一个重要趋势[5-6]。介绍了一种变循环发动机重量预估方法,根据变循环发动机部件法的思想,利用基于统计的变循环发动机各部件气动—结构经验关系模型,如增压比与相应轴转速关系模型、轮盘载荷与轮盘几何分布关系模型、承力系统中机匣几何结构与总重量关系模型,结合变循环发动机结构设计关键尺寸,建立了变循环发动机重量尺寸预估方法。 2变循环发动机重量预估方法 变循环发动机有多种形式,其中受到高度重视的是带有核 心机驱动风扇级(core driven fan stage ,简称CDFS )的双外涵变循 环发动机(double bypass engine ,简称DBE ) [5-6] ,DBE 与传统的发动机在结构上的主要差异就是增加了CDFS ,风扇分成前两部分,如图1所示。 内涵道 外涵道前段风扇 核心机驱动风扇级 高压压气机高压涡轮低压涡轮 图1CDFS 示意图 Fig.1CDFS Schematic 发动机重量的预估方法主要有两种: (1)利用统计数据拟合的经验公式计算法;(2)根据初始构形设计结果计算重量。第一种分析方法,基于现有的发动机设计数据,通过回归分析,拟合某些重要设计参数与重量之间的函数关系。这种方法速度快,算法简 摘 要:重量是航空发动机设计必须控制的一个重要指标,重量预估在航空发动机结构方案设计阶段不可或缺。根据 发动机部件法的思想,建立了基于统计的各部件气动—结构经验关系模型,结合变循环发动机结构设计关键几何参数和部件气动热力参数,发展了变循环发动机重量预估方法,采用C++语言开发了变循环发动机重量预估程序,计算了双外涵变循环发动机重量和尺寸。结果表明此方法能够预估双外涵变循环发动机重量,重量尺寸误差满足飞机和发动机工程需求。 关键词:变循环;双外涵;涡扇发动机;部件法;重量预估中图分类号:TH16 文献标识码:A 文章编号:1001-3997(2014)08-0015-04 Method Research of Variable Cycle Engine Weight Estimate ZHANG Tao , WANG Zhan-xue ,LIU Zeng-wen ,ZHANG Xiao-bo (School of Power and Energy , Northwestern Polytechnical University ,Shannxi Xi ’an 710072,China )Abstract :Weight is an important control indicator of aircraft engine design ,and weight estimate is unavoidable in the initial design phase of aeroengine.According to the idea of engine element -method ,statistic -based aerodynamic and structure empirical relationship of every assembly models were https://www.doczj.com/doc/b92384384.html,bined with the key geometric parameters and aerothermodynamics parameters of assembly of variable cycle engine structure design ,variable cycle engine weight estimate method was developed.Based on C++program language variable cycle engine weight forecast program was developed and the weight and size of a double bypass variable cycle engine was calculated.Results show that the method could estimate the double bypass variable cycle engine weight and error could satisfy the plane and engine engineering demands.Key Words :Variable Cycle ;Double Bypass ;Turbofan Engine ;Element-Method ;Weight Estimate Machinery Design &Manufacture 机械设计与制造 第8期 2014年8月 15

三涵道变循环发动机的发展前景

十一的悠闲这么快就走了,紧张的学习生活又要到来了,小瓜在此又要开始推送发动机知识了。航空发动机是飞机的心脏,一个优秀的航空发动机是飞机可以拥有优秀性能的前提,这次要向大家介绍一个比现役最强发动机还要强大的发动机,他就是第六代战斗机迫切需要的,三涵道变循环发动机。 美军早在2006年就开始了第六代发动机的论证工作。根据美国空军研究实验室的研制计划,第六代发动机共分两个阶段进行技术研发。 第一阶段开发“自适应通用发动机技术”(ADVENT)项目。由罗尔斯·罗伊斯公司和通用电气公司承担,共耗资5.24亿美元,目的是演示第六代战斗机的动力装置技术,该技术的主要用途是为下一代亚声速轰炸机提供动力。 这个项目分两步进行:第一步,在2007~2008年,进行为期一年的概念探索研究,初步设计出发动机并进行关键部件试验;第二步,从2009年9月开始,进行为期3年的研制。要在风扇、压气机和涡轮等核心部件上取得重大突破。 如今,第一阶段的项目任务已基本完成,通用电气公司已经完成自适应风扇技术的演示实验工作,并进行了首台核心机的测试,发动机的核心机已实现变流量工作,并进行了技术验证,2013年还将进行整机试车。 第二阶段是“自适应发动机技术开发”(AETD)项目。由通用电气公司和普惠公司承担,重点是为超声速战斗机提供动力。该项目从2013年开始,为期4年,计划2015年前进行环形燃烧室和高压压气机装置试验,2016年进行自适应风扇和核心机验证机试验,并完成地面演示验证,2017年进行整机地面试验。 美军认为,这两个项目对于保持美国在发动机技术领域的优势地位十分重要,其意义如同由涡轮喷气发动机到涡轮风扇发动机的进步,对于全面提升飞机的性能具有里程碑意义。据美国《航宇日报》报道,美国通用电气和普惠公司获得了价值超过6.8亿美元的演示验证变循环战斗机发动机合同。美国空军希望这两家公司继续完善“自适应发动机技术开发”项目,通过大幅度提高发动机的燃烧效率、大幅度增加发动机推力和飞机航程,生产出第六代作战飞机所需的发动机。 正当人们惊叹第四代、第五代飞机及其发动机的卓越性能时,美国第六代发动机即将面世。第六代发动机对于全面提升飞机性能具有里程碑意义。长期以来,美国坚信先进武器装备是战争胜负的“决定性”因素,因而十分注重先进军事技术的研发。近年来, 由于俄罗斯等国大力开发第五代战机和先进防空系统,美军预测,到本世纪20年代中期,美国将会失去对俄罗斯的空战优势。出于这种考虑,美国军方下定决心:停止第五代战机F-22的生产,把资金用于第六代战机的研制。目的是使自己始终处于航空技术的最前沿,保持对潜在敌人

先进航空发动机关键制造技术研究

ARTICLES 学术论文 引言 航空发动机的设计、材料与制造技术对于航空工业的发展起着关键性的作用,先进的航空动力是体现一个国家科技水平、军事实力和综合国力的重要标志之一。随着航空科技的迅速发展,面对不断提高的国防建设要求,航空发动机必须满足超高速、高空、长航时、超远航程的新一代飞机的需求。 近年来,航空工业发达国家都在研制高性能航空发动机上投入了大量的资金和人力,实施一系列技术开发和验证计划,如“先进战术战斗机发动机计划(ATFE )”、“综合高性能涡轮发动机技术(IHPTET )计划”及后续的VAATE 计划、英法合作军用发动机技术计划(AMET )等。在这些计划的支持下,美国的F119、欧洲的 EJ200、法国的M88和俄罗斯的AL-41F 等推重比10 一级发动机陆续问世。 为了提高发动机的可靠性和推力,先进高性能发动机采用了大量新材料,且结构越来越复杂,加工精度要求越来越高,对制造工艺提出了更高的要求。而且,在新一代航空发动机性能的提高中,制造技术与材料的贡献率为 50%~70%,在发动机减重方面,制造技术和材料的贡献率占70%~80%,这也充分表明先进的材料和工艺是航空发动机实现减重、增效、改善性能的关键。 1 航空发动机的材料、结构及工艺特点 在提高发动机可靠性和维护性的同时,为了提高发动机的推力和推重比,航空发动机普遍采用轻量化、整体化结构,如整体叶盘、叶环结构。钛合金、镍基高温合金,以及比强度高、比模量大、抗疲劳性能好的树脂基复合材 先进航空发动机关键制造技术研究 黄维,黄春峰,王永明,陈建民 (中国燃气涡轮研究院,四川 江油 621703) Key manufacturing technology research of advanced aero-engine HUANG Wei ,HUANG Chun-feng ,WANG Yong-ming ,CHEN Jian-min (China Gas Turbine Establishment ,Jiangyou 621703,China ) Abstract :This paper describes the features of aero-engine material ,structure and technology ,and then ,development status and trend of key manufacturing technology for advanced aero-engine was analyzed. Finally ,the development of advanced aero-engine manufacturing technology in China is introduced and some proposals are put forward. Key Words : aero-engine ,manufacturing ,summarization 作者简介: 黄维(1982—),男,四川仁寿人,中国燃气涡轮研究院助理工程师,主要从事工艺技术研究。E-mail :huangwei611@https://www.doczj.com/doc/b92384384.html,

变循环与自适应循环发动机技术发展

54 航空制造技术·2014 年第 1/2 期 NEW VIEWPOINT MBD。 北京航空航天大学能源与动力工程学院?李?斌中航工业沈阳发动机设计研究所?赵成伟 变循环与自适应循环发动机 技术发展 Consider on Variable Cycle Engine and Adaptive Cycle Engine Technology De-velopment 动机(Adaptive Cycle Engine, 简称 ACE)。其独特之处在于它是在典型的类似YF120发动机的双外涵变循环发动机布局基础上又增加了一个外涵道而构成,即在双外涵变循环发动机风扇上采用一个“Flade”(风扇叶尖风扇)级延伸出第3外涵道,见图1。Flade 是接在风扇外围的一排短的转子叶片,有单独可调静子。因为采用Flade 和多个外涵道,自适应循环发动机能够实现更大幅度的变循环能力,是变循环发动机技术发展重要的前沿方向。 变循环发动机技术进化分析 变循环发动机(Variable Cycle Engine,简称VCE)的研究由来已久。从20世纪60年代开始,国外各大航空发动机公司均在不断地进行VCE 的概念和方案设计以及相关技术的 本文所论及的变循环发动机是指实际使用中能通过(但不限于)控 制调整发动机相关部件的几何形状、尺寸或者位置等手段,改变流路结构和相应热力循环参数(流量、压比、涵道比等)、获得预期性能的航空燃气涡轮发动机。广义上看,能够通过再燃、电功转换等途径实现工作循环过 程中能量的可控“迁移”的发动机,也可以归为变循环发动机的范畴。与常规循环发动机相比,变循环发动机在配装飞行包线宽广、任务剖面复杂多样的飞机时,可以有针对性地采用不同的工作模式,最大限度地兼顾超声速飞行的高推力性能和亚声速巡航低耗油率的矛盾性要求,适应多用途飞机的各种任务需求。并且与 进气道的流量匹配性能好,减小飞机在低速飞行时因发动机深度节流而产生的溢流阻力,从而降低推进系统 的安装损失, 提高飞行器性能。现役发动机中,变循环技术的应用还不广泛, 早期的黑鸟侦察机用的J58发动机 (具有连续放气模式)和美第五代F-35B 用带升力风扇的F135发动机可认为具有一定的变循环技术特征。 变循环发动机家族中构型最为新颖的最新一代是自适应循环 发 李?斌 自然科学研究员,工学硕士,从事航空发动机规划论证和总体设计研究 工作。

变循环发动机简介

F120是美国空军F-22先进战术战斗机的候选发动机,GE公司编号为GE37,加力推力15880千克,涵道比是0~0.35。它是美国空军和海军在1983~1990年主持的SCR、ATEGG、JTDE 和ManTech等一系列计划的产物。F120是一种能满足先进战术战斗机的高单位推力和部分功率状态低耗油率相互矛盾要求的双涵VCE,其基本结构是一台对转涡轮的双转子涡扇发动机。低压涡轮驱动两级风扇,高压涡轮驱动5级压气机(含CDFS)。两个涡轮对转,都是单级设计,无级间导向器。控制系统为三余度多变量FADEC。它能够以单涵和双涵模式工作。在亚声速巡航的低功率状态,发动机以双涵(涡扇)模式工作。被动作动旁路系统由第二级风扇和CDFS涵道之间的压差打开,使更多的空气进入外涵道,同时使风扇具有大的喘振裕度。此时,后VABI也打开,更多的外涵空气引射进入主排气流,使推力增大。在超声速巡航的高功率状态,发动机以单涵(涡喷)模式工作。在此模式下,后VABI关小到使涡轮框架、加力燃烧室内衬和尾喷管内衬前后保持正的风扇冷却气流压差。当后VABI关小时,外涵中的压力增加,直到超过第二级风扇排气压力为止。在反压作用下,旁路系统模式选择活门关闭,迫使空气进入核心机。有少量空气从CDFS后引出,供加力燃烧室和喷管冷却以及飞机引气用。发动机顺利进入涡喷模式。F120的最终结构经过三个阶段的发展。第一阶段用XF120进行地面试验,验证了基本循环的灵活性、性能特性、涡轮温度能力和失速裕度以及FADEC和二元矢量喷管的工作。第二阶段用YF120进行飞行试验。第三阶段的F120吸取了XF120和YF120计划的所有经验教训。YF120的流量比XF120的大,以满足不断增加的机体需求和喷管冷却要求。重量和复杂性被减到最小,而保障性始终作为一个关键设计目标。在F-22的原型机试验计划中,YF120成功地在YF-22和YF-23上飞行。它达到了重量、寿命、适用性和性能目标。它还达到或超过严格的最大不加力超声速巡航推力目标。F120自然是从XF120地面试验和YF120飞行试验成功的基础上发展起来的。在F120上,用一个被动旁路系统代替了可调模式选择活门。对叶轮机作了改进,以改善匹配特性和效率。控制系统简化到了常规涡扇发动机的水平。因此,F120在比目前战斗机发动机更低的复杂性的条件下具有固有的灵活性和优良的保障性。它为飞机提供了优良的速度、加速性、机动性和航程能力。总的来说,F120与GE公司成功的F110系列相比,结构简单得多,零件数少40%。虽然F120在第四代战斗机的竞争中败给常规的F119,但仍作为替换发动机继续研制。VCE也仍是IHPTET 计划的一项重要技术目标。

航空发动机先进材料高性能零部件制造技术进展

过去10多年中,IHPTET 等研究计划将低涵道比涡扇发动机的推重比逐步提高了60%以上,达到了10:1,而ADVENT 计划还在进一步实现变循环发动机技术的跨越;商用大推力大涵道比航空发动机也在控制油耗、改进效率、降低噪声、提高安全可靠性、削减研制生产成本等多个方面取得了重要进步。主要的航空发动机制造商——通用电气(GE)、罗尔斯·罗伊斯、普惠和赛峰等所取得的这些重大成就都与其在航空发动机先进加工制造技术中的不断进步密不可分。GE9X、GEnx、LEAP、Trent 1000 及PW8000 等新型航空发动机的试验研究和研制经历都表明,具有很高机械物理性能的新材料零部件的可加工性、可生产性的改善及其工程化应用,是航空发动机从机体结构减重和涡轮工作温度增高两方面提升性能,改进效率,取得持续进步的重要推动力。 新型复合材料风扇的加工制造技术 1 碳纤维增强环氧树脂复合材料风扇 大涵道比涡扇发动机的碳纤维增强环氧树脂复合材料(CFRP) 风扇叶片加工制造技术已经日益成熟。如图1 所示,GE90 系列的大型CFRP 风扇叶片约有1.2m 长,经过超声切割技术精确加工的数百层碳纤维预浸料布,进行铺设后进行热压制成。风扇叶形经过先进的计算机三元流优化设计,榫头到叶尖的厚度逐步从10cm 降低到0.6cm,并采用钛合金(后改为合金钢提高强度)包边增强的方式,重量也仅有22.7kg。此类经过气动优化、大尺寸、少叶数的风扇已经显示了突出优势,GE90-115B的风扇叶片有22 个,GEnx降低到18 个,而GE9X 又降低到了16 个,既扩大了涵道比、增大了空气流量,又减少了风扇系统的重量。由于通过外涵道排出空气所形成的推力占据了商用发动机总推力的70%~90%,因此,增大空气流量、减少风扇系统的重量,会带来更好的燃油效率。例如,GE公司指出GE90-115B 仅此就提高了约1.5% 的燃油效率[1]。CFM 公司LEAP 发动机的直径约3m,共用了18 个总重量为76kg 的CFRP 叶片,相比之下,CFM56 则有36 个总重高达150kg的钛合金叶片。新的碳纤维三维编织/ 树脂传递模塑成形(RTM)制造工艺可以进一步提高风扇叶片的强度,因此,新一代GEnx及LEAP 发动机上都将采用这一技术制造风扇叶片。斯奈克玛公司为LEAP 发动机CFRP 风扇叶片开发的碳纤维三维编织/RTM 制造工艺中,长度以千米计的碳纤维进行三维编织后经超声加工方法制成预制体,再在专门开发的RTM 模具中注射树脂并进行热压固化制成叶片(图2)。叶片的成型过程需要24h,然后再进行钛合金包边并完成LEAP 发动机风扇叶片的最终加工[2]。不过,普惠等公司开展的一些试验也表明,为保证零件强度——例如防鸟撞,CFRP 材料风扇叶片要做的比传统钛合金叶片相对厚一些,这会降低发动机的气动性能。因此,在直径较小的发动机上采用超塑成形/ 扩散连接(SFP/DB)工艺制成风扇叶片的优势仍然存在。这样,风扇叶片可以做的较薄、强度够、气动性能也好。CFM 也在进一步将碳纤维增强环氧树脂复合材料(CFRP)制作的风扇机匣在LEAP 发动机上进行测试。 2 金属基/ 陶瓷基复合材料风扇 金属基/ 陶瓷基复合材料(MMC/CMC)风扇的研发也一直在深入开展。MMC/CMC 材料比CFRP 具有更好的强度、刚度以及高温性能,因此,在发动机上多种类型的零件都有较好的应用前景。GE 公司在GE9X 的技术验证评估中认定,CMC 材料轻质高强的特点使得他们能够在与现有GE90 的CFRP 风扇叶片相同强度的情况下,可以做得更薄,并减少到16 个风扇叶片,这有望将发动机效率提高10%。罗尔斯·罗伊斯公司也在一个名为UltraFanTM的项目中对新型C/Ti 复合材料叶片进行验证,计划在未来一代大型发动机上替换SPF/DB 钛合金风扇叶片。他们预期,如果未来将风扇及机匣都替换为此类C/Ti 复合材料,将有望使发动机减重700kg。

先进航空发动机关键制造技术发展现状与趋势

先进航空发动机关键制造技术发展现状与趋势 一、轻量化、整体化新型冷却结构件制造技术1 整体叶盘制造技术整体叶盘是新一代航空发动机实现结构创新与 技术跨越的关键部件,通过将传统结构的叶片和轮盘设计成整体结构,省去传统连接方式采用的榫头、榫槽和锁紧装置,结构重量减轻、零件数减少,避免了榫头的气流损失,使发动机整体结构大为简化,推重比和可靠性明显提高。在第四代战斗机的动力装置推重比10 发动机F119 和EJ200上,风扇、压气机和涡轮采用整体叶盘结构,使发动机重量减轻20%~30%,效率提高5%~10%,零件数量减少50% 以上。目前,整体叶盘的制造方法主要有:电子束焊接法;扩散连接法;线性摩擦焊接法;五坐标数控铣削加工或电解加工法;锻接法;热等静压法等。在未来推重比15~20 的高性能发动机上,如欧洲未来推重比15~20 的发动机和美国的IHPTET 计划中的推重比20的发动机,将采用效果更好的SiC 陶瓷基复合材料或抗氧化的C/C 复合材料制造整体涡轮叶盘。2 整体叶环(无盘转子)制造技术如果将整体叶盘中的轮盘部分去掉,就成为整体叶环,零件的重量将进一步降低。在推重比15~20 高性能发动机上的压气机拟采用整体叶环,由于采用密度较小的复合材料制造,叶片减轻,可以直接固定在承力环上,从而取消了轮盘,使结构质量减轻70%。目前正

在研制的整体叶环是用连续单根碳化硅长纤维增强的钛基复合材料制造的。推重比15~20 高性能发动机,如美国XTX16/1A 变循环发动机的核心机第3、4 级压气机为整体叶环转子结构。该整体叶环转子及其间的隔环采用TiMC 金属基复合材料制造。英、法、德研制了TiMMC 叶环,用于改进EJ200的3级风扇、高压压气机和涡轮。3 大小叶片转子制造技术大小叶片转子技术是整体叶盘的特例,即在整体叶盘全弦长叶片通道后部中间增加一组分流小叶片,此分流小叶片具有大大提高轴流压气机叶片级增压比和减少气流引起的振动等特点,是使轴流压气机级增压比达到3 或3 以上的有发展潜力的技术。4 发动机机匣制造技术在新一代航空发动机上有很多机匣,如进气道机匣、外涵机匣、风扇机匣、压气机机匣、燃烧室机匣、涡轮机匣等,由于各机匣在发动机上的部位不同,其工作温度差别很大,各机匣的选材也不同,分别为树脂基复合材料、铁合金、高温合金。树脂基复合材料已广泛用于高性能发动机的低温部件,如F119 发动机的进气道机匣、外涵道筒体、中介机匣。至今成功应用的树脂基复合材料有PMR-15(热固性聚酰亚胺)及其发展型、Avimid(热固性聚酰亚胺)AFR700 等,最高耐热温度为290℃~371℃,2020 年前的目标是研制出在425℃温度下仍具有热稳定性的新型树脂基复合材料。树脂基复合材料构件的制造技术是集自动铺带技术(ATL)、自动纤维铺放

发动机技术的发展共11页

动力汹涌澎湃,回顾汽车发动机技术发展史 来源:汽车中国作者:老猫发布时间:2009-02-13 汽车整体技术日新月异,而作为汽车的心脏——发动机技术的进步显得更受关注。如今介绍一辆汽车的发动机时:可变气门正时技术,双顶置凸轮轴技术,缸内直喷技术,VCM汽缸管理技术,涡轮增压技术,等等都已经运用的相当广泛;在用料上也是往轻量化的方向发展:全铝发动机目前的应用已经非常广泛;汽车的污染也是不可避免,于是新能源技术,包括柴油机的高压共轨,燃料电池,混合动力,纯电动,生物燃料技术也已经有普及的趋向,但回顾一下发动机的历史或许更能理解这一百多年来汽车技术所发生的巨大变革。 十佳发动机VQ35 汽车技术的迅猛发展从我国的汽车教材也能看出端倪:新技术的发展已经让汽车教材难以跟上步伐!如今大部分汽车教材还是以东风汽车的发动机来作为范例,而东风发动机还是带化油器的老式发动机,与如今全电子化的发动机简直就隔了几个世纪。 回到汽车的起步阶段,那时的汽车被马车嘲笑,污染严重,但起步的意义却非同寻常。 汽油机之前的摸索阶段

18世纪中叶,瓦特发明了蒸气机,此后人们开始设想把蒸汽机装到车子上载人。法国的居纽(N.J.Cugnot)是第一个将蒸汽机装到车子上的人。1770年,居纽制作了一辆三轮蒸汽机车。这辆车全长7.23米,时速为3.5公里,是世界上第一辆蒸汽机车。1771年古诺改进了蒸汽汽车,时速可达9.5千米,牵引4-5吨的货物。 蒸汽机汽车 1858年,定居在法国巴黎的里诺发明了煤气发动机,并于1860年申请了专利。发动机用煤气和空气的混合气体取代往复式蒸汽机的蒸汽,使用电池和感应线圈产生电火花,用电火花将混合气点燃爆发。这种发动机有气缸、活塞、连杆、飞轮等。煤气机是内燃机的初级产品,因为煤气发动机的压缩比为零。 N.J.Cugnot 1867年,德国人奥托(Nicolaus August Otto)受里诺研制煤气发动机的启发,对煤气发动机进行了大量的研究,制作了一台卧式气压煤气发动机,后经过改进,于1878年在法国举办的国际展览会上展出了他制作的样品。由于该发动机工作效率高,引起了参观者极大的兴趣。在长期的研究过程中,奥托提出了内燃机的四冲程理论,为内燃机的发明奠定了理论基础。德国人奥姆勒和卡尔·本茨根据奥托发动机的原理,各自研制出具有现代意义的汽油发动机,为汽车的发展铺平了道路。

涡轮基组合循环发动机技术发展趋势和应用前景

涡轮基组合循环发动机技术发展趋势和应用前景 王占学1,刘增文1,2,王 鸣2,李斌2 (1.西北工业大学动力与能源学院,西安710072;2.中航工业沈阳发动机设计研究所,沈阳110015) 摘要:涡轮基组合循环发动机将是未来高超声速飞行器的主要动力装置,针对空间运载、高速运输、远程快速打击等任务需求,总结了国内外关于涡轮基组合循环发动机的研究现状,分析了开展涡轮基组合循环发动机技术研究必须解决涵盖了耐温、性能、匹配性、飞发一体化等诸多方面的关键技术,并阐述了涡轮基组合循环发动机潜在的技术优势和可能的应用方向。结合未来军民用领域对高速飞行器的需求,分析了中国开展涡轮基组合循环发动机技术研究的必要性。 关键词:涡轮基组合循环发动机;高超声速推进技术;亚/超燃冲压发动机 Future Development and Application Prospect of Turbine Based Combined Cycle Engine WANG Zhan-xue 1,LIU Zeng-wen 1,2,WANG Ming 2,LI Bin 2 (1.College of Power and Energy,Northwestern Polytechnical University,Xi'an 710072, China;2.AVIC Shenyang Engine Design and Research Institution,Shenyang 110015,China ) Abstract:Turbine Based Combined Cycle (TBCC )engine is the main power plant of future hypersonic vehicle.Aiming at the necessity for spatial loadings,high-speed transportation,and long-range fast attack,the present development status of TBCC engine was analyzed in the world.Some key technologies including the temperature resistance,performance,compatibility,and aircraft and engine integration were studied in the process of developing TBCC engine.The potential technical advantages and possible application direction of TBCC engine were discussed in https://www.doczj.com/doc/b92384384.html,bined with the requirement of future military and civil hypersonic vehicles,the necessity for making further research of TBCC engine technology was analyzed in China. Key words:Turbine Based Combined Cycle (TBCC )Engine;hypersonic propulsion technology;ramjet/scramjet engine 航空发动机 Aeroengine 图1吸气式发动机性能随马赫数的变化 王占学(1969),男,博士,教授,研究方向为航空发动机气动热力学及新概念喷气推进技术。 收稿日期:2013-04-22 第39卷第3期2013年6月 Vol.39No.3Jun.2013 0引言 空间载荷的快速低成本投送、对超远距离目标的 快速打击以及全球范围的高速运输等诸如此类的应用目标,使得世界各航空航天技术发达国家对远程、高速飞行器的需求日益膨胀。21世纪以来,各国在20世纪高超声速技术研究的基础上,开展了数目繁多的高超声速飞行器发展计划,在这些研究中,吸气式高超声速推进技术始终是核心技术,并已成为高超声速飞行技术能否取得突破性进展的关键。 本文重点针对TBCC发动机的研究现状、关键技术特征、应用前景和中国开展TBCC发动机研究的可行性和必要性进行分析。 1国内外TBCC发动机技术发展现状 从当前的推进技术水平来看,尚未有1种吸气式 发动机能够满足高超声速飞行器的宽广工作范围(亚声速、跨声速、超声速和高超声速),如图1所示。因此,为实现高超声速飞行,必须结合各类型发动机有效工作范围的特点,采用以涡轮、火箭、冲压等发动机为基础的不同形式组合循环发动机。考虑到组合循环发动机的结构复杂性和技术成熟性, 目前比较常用的

现代内燃机的先进技术

*CBR技术(Controlled Burn Rate可控燃烧速率) 可以使发动机在怠速和低负荷工况下, 增强涡流强度, 燃料混合更均匀, 动力经济性更好, 排放更加清洁。 *GDI(Gasoline Direct Injection汽油高压缸直喷) 它将喷油嘴安装在燃烧室喷注高压燃油,与通过进气门进入燃烧室的洁净空气混合,点燃做功。它具有高充气效率、电子控制精确配油、提高发动机的压缩比和热效率等优点,以获得更高的功率、更经济的油耗、更清洁的排放。 *TCI (Turbo Charger with Inter-cooler废气涡轮增压中冷) 用发动机排放的高速废气推动涡轮增压机带VNT的主动叶轮转动,主叶轮带动从动叶轮转动,从动叶轮在转动中增加来自空滤的空气的动能和压力,并通过中冷器冷却增压后的洁净空气,提高气缸的进气量,进一步提高了发动机的有效功率。 *VVT (Variable Value Time可变气门正时) 在发动机高速运转的时候,需要较大的气门叠开角来达到充气充分的目的。而在发动机怠速的时候,气门叠开角应该相应变小,达到降低排放的目的。传统的固定相位角的凸轮轴由于相位角已经固定所以不能满足这种要求。而VVT技术可以通过螺旋槽式VVT -i控制器调节凸轮轴调节气门开闭,满足不同工况需求,达到增加功率、减少油耗,改善排放的目的。*EGR(Exhaust Gas Recirculation废气再循环) 由于废气的存在,混合气的含氧量比空气的含氧量要少,燃烧时,由于含氧量的降低,缸最高燃烧温度也随之降低,于是NOx 的生成受到抑制。同时改善了燃烧过程,使燃烧以一种更平稳的方式进行,促使CO、PM有更多机会被充分氧化,从而降低了CO、PM等的生成,抑制碳烟的产生。 *CR(Common Rail高压共轨) 共轨式喷油系统主要由高压供油系统、高压油轨、每缸一个的喷油器、高压油泵和电控单元(ECU)组成,高压油泵和输油泵集成为一个整体,以节省空间。高压油泵可提供高达1600bar以上压力的燃油,高压燃油先进入油轨中,实际上油轨是一个蓄压器,它有一定容积,并能承受高压。来自高压油泵的燃油压力是脉动的,经过油轨的缓冲作用,油轨的压力可保持在1600bar,然后经高压油管分配到四个喷油器中。为了使发动机工作更加平稳,整个喷油系统采取了预喷、主喷和后喷的工作方式,实现了燃烧过程中燃油再喷射,降低缸燃烧气体的温度,从而有效降低了NOx 的生成,同时发动机的工作变得更平稳,噪音也得到有效的控制。 *DMF(Dual-mass Fly wheel双质量飞轮) 双质量飞轮可以在动力从曲轴传到变速箱的过程中,将振动和噪声隔离;提高换档和驾驶的舒适性;减小曲轴的扭转和弯曲载荷;由于较多使用发动机经济区域而使油耗降低,同时能在发动机过载时保护传动链零件; *TVD (Torsional Vibration Damper扭振减震器) 水泵、空调压缩机等由发动机曲轴驱动,汽油机的TCI技术获得了很高的升功率和升扭矩,同时也对曲轴提出了苛刻的要求,TVD技术将曲轴结构分为、中间、外三层。、外两层均为金属结构,中间层是有一定弹性胶圈,经过特殊工艺使三者结合成一个整体,调整胶的成分就能改变其固有频率,减轻附件系统对曲轴带来的扭振影响,保证曲轴的寿命。 *HCCI(汽油机) (Homogeneous Charge Compression Ignition)均质混合气压燃烧技术 HCCI发动机和传统的汽油发动机一样,都是向汽缸里面注入比例非常均匀的空气和燃料混合气。传统的汽油发动机通过火花塞打火,点燃空气和燃料混合气产生能量。但HCCI发动机则不同,它的点火过程同柴油发动机相类似,通过活塞压缩混合气使之温度升高至一定程

相关主题
文本预览
相关文档 最新文档