当前位置:文档之家› 高等代数n 级行列式

高等代数n 级行列式

高等代数作业第二章行列式答案

高等代数作业第二章行列 式答案 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

高等代数第四次作业 第二章 行列式 §1—§4 一、填空题 1.填上适当的数字,使72__43__1为奇排列. 6,5 2.四阶行列式4 4?=ij a D 中,含24a 且带负号的项为_____. 112433421224314313243241,,a a a a a a a a a a a a 3.设 .21 22221 11211 d a a a a a a a a a nn n n n n = 则 ._____1 221 22 211 121=n n nn n n a a a a a a a a a (1) 2(1)n n d -- 4.行列式1 1 1 111 11 ---x 的展开式中, x 的系数是_____. 2 二、判断题 1. 若行列式中有两行对应元素互为相反数,则行列式的值为0 ( )√ 2. 设d = nn n n n n a a a a a a a a a 212222111211 则 12 111222212 1 n n n nn n a a a a a a a a a =d ( )× 3. 设d = nn n n n n a a a a a a a a a 21 2222111211 则d a a a a a a a a a n nn n n n -=11211 2122221 ( )× 4. abcd z z z d y y c x b a =000000 ( ) √ 5. abcd d c x b y x a z y x -=0 000 00 ( )× 6. 00 00000=y x h g f e d c b a ( )√ 7. 如果行列式D 的元素都是整数,则D 的值也是整数。( )√ 8. 如果行列D 的元素都是自然数,则D 的值也是自然数。( )× 9. n n a a a a a a 212 1 = ( )× 10. 0 1000 2000 010 n n -=n ! ( )× 三、选择题

高等代数行列式知识点总结

第一章 行列式( * * * ) 一、复习指导:行列式在高等代数中是十分重要的,它不仅是每年必要的一道大题,而且还是一个基础章节,它与学好后面的章节也有一定的联系,是学习后面重要章节的基础。在首师大真题中,行列式往往会以求数字型n 阶行列式的值作为一道大题出现,分值15分。具体可以参考真题。 二、考点精讲: (一)基本概念 定义1 逆序—设j i ,是一对不等的正整数,若j i >,则称),(j i 为一对逆序。 定义2 逆序数—设n i i i Λ21是n ,,2,1Λ的一个排列,该排列所含逆序总数称为该排列的逆序数,记为)(21n i i i Λτ,逆序数为奇数的排列称为奇排列,逆序数为偶数的排列称为偶排列。 定义3 行列式—称nn n n n n a a a a a a a a a D Λ ΛΛΛΛΛΛ 21 22221112 11 = 称为n 阶行列式,规定 n n n nj j j j j j j j j a a a D ΛΛΛ21212121) ()1(∑-= τ 。 定义4 余子式与代数余子式—把行列式nn n n n n a a a a a a a a a D Λ ΛΛΛΛΛΛ 21 22221112 11 = 中元素ij a 所在的i 行元素和j 列元素去掉,剩下的1-n 行和1-n 列元素按照元素原来的排列次序构成的1-n 阶行列式,称为元素ij a 的余子式,记为ij M ,称ij j i ij M A +-=) 1(为元素ij a 的代数余子式。 (二)、几个特殊的高阶行列式 1、对角行列式—形如 n a a a Λ ΛO ΛΛΛΛ0 00 02 1 称为对角行列式,n n a a a a a a ΛΛ ΛO ΛΛΛΛ21210 00 0=。

高等代数 矩阵练习题参考答案

第四章 矩阵习题参考答案 一、 判断题 1. 对于任意n 阶矩阵A ,B ,有A B A B +=+. 错. 2. 如果20,A =则0A =. 错.如2 11,0,011A A A ??==≠ ?--?? 但. 3. 如果2A A E +=,则A 为可逆矩阵. 正确.2()A A E A E A E +=?+=,因此A 可逆,且1A A E -=+. 4. 设,A B 都是n 阶非零矩阵,且0AB =,则,A B 的秩一个等于n ,一个小于n . 错.由0AB =可得()()r A r B n +≤.若一个秩等于n ,则该矩阵可逆,另一个秩为零,与两个都是非零矩阵矛盾.只可能两个秩都小于n . 5.C B A ,,为n 阶方阵,若,AC AB = 则.C B = 错.如112132,,112132A B C ?????? === ? ? ?------?????? ,有,AC AB =但B C ≠. 6.A 为n m ?矩阵,若,)(s A r =则存在m 阶可逆矩阵P 及n 阶可逆矩阵Q ,使 .00 0??? ? ? ?=s I PAQ 正确.右边为矩阵A 的等价标准形,矩阵A 等价于其标准形. 7.n 阶矩阵A 可逆,则*A 也可逆. 正确.由A 可逆可得||0A ≠,又**||AA A A A E ==.因此*A 也可逆,且11 (*)|| A A A -=. 8.设 B A ,为n 阶可逆矩阵,则.**)*(A B AB = 正确.*()()||||||.AB AB AB E A B E ==又 ()(**)(*)*||*||*||||AB B A A BB A A B EA B AA A B E ====. 因此()()*()(**)AB AB AB B A =.由B A ,为n 阶可逆矩阵可得AB 可逆,两边同时左乘式AB 的逆

行列式测试题(高等代数)

《高等代数》行列式(单元测试) 学院: 班级: 姓名: 学号: 教师: 一、填空题(每小题 3 分,共18 分) 1.填上适当的数字,使72__43__1为奇排列. 2.设 .21 22221 11211 d a a a a a a a a a nn n n n n = 则 ._____1 2 21 22211 121=n n nn n n a a a a a a a a a 3.设123,,x x x 是方程30x px q ++=的三个根,则行列式1 23 2 313 2 1 x x x x x x x x x 的值是-____________. 4.行列式1 1 1 11 1 11 ---x 的展开式中,x 的系数是_____. 5.设ij ij A M ,分别是行列式D 中元素ij a 的余子式,代数余子式,则._____1,1,=+++i i i i A M 6. 行列式 1 234 000 00 000 a a a a 的所有代数余子式之和为__________________________.

二、判断说理(每小题5 分,共15 分) 1.排列 j i 与排列 i j 排列的反序数相差1. ( ) 2.D=0, 则互换D 的任意两行或两列,D 的值仍为零.. ( ) 3.ij ij A a D ,3 3?=为ij a 的代数余子式,则0231322122111=++A a A a A a . ( ) 三、计算题(共47分) 1(16分)、x a a a a x a a a a x a a a a x D ------=

高等代数考研真题 第二章 行列式

第二章 1.(北师大2003-25) 1.计算行列式87162534的逆序数,并依次将上述排列变成12345678的所有对换 2.设n 个数码的排列121n n i ,i ,...i ,i -的逆序数是k ,那么排列321n n n i ,i ,...i ,i i -的逆序数是多少?请说明理由。 2.计算下列行列式(每小题6分,共12分) D= 2 132301211432 2 1 1 ---的值。 3.(成电科大,2003)计算下列行列式(每小题6分,共12分) 1.32222 3222 2322 2 2 2 3 n ......D ..................=D .= 2.2 3 232 3 122 2 111114441 5 5 5 D = 4.(中科武汉2004-15)计算行列式 1 111111222221223331 2 3 4 111111n n n ...b a a a ...a a b b a a ...a a D b b b a ...a a .....................b b b b ... b a =

5(成电科大2004-10分)求证:1 2 123411123211 123211 1431121 1 n n n ...n n ...n n x ...n n D ()x x x ...n n .....................x x x (x) x x ... x +------==--- 6.(北工大,2002-10分)计算行列式0121 110001000100010 n n n a ...a x ...a x ...D ..................a ...x a ... x +-----的值。 7(东北大学,2001-10分)计算下列行列式1 1 1 1 2n n n n n a c a c D (n )d b d b = 8.(东北大学,2002-10分)11 111n a a a D a a +--+= --+ 9.(北航,2001 10分)已知a>>0,证明n 阶行列式10001 1000100000010 1 a ...a ...a ...D (n ).....................a ... a --= ≥--

高等代数作业第二章行列式答案

第二章 行列式 §1—§4 一、填空题 1.填上适当的数字,使72__43__1为奇排列. 6,5 2.四阶行列式4 4?=ij a D 中,含24a 且带负号的项为_____. 112433421224314313243241,,a a a a a a a a a a a a 3.设.21 22221 112 11 d a a a a a a a a a nn n n n n =Λ ΛΛΛΛ ΛΛ 则._____1 2 21 22211 121=n n nn n n a a a a a a a a a Λ Λ ΛΛΛΛ Λ (1) 2(1)n n d -- 4.行列式1 1 1 11 1 11 ---x 的展开式中, x 的系数是_____. 2 二、判断题 1. 若行列式中有两行对应元素互为相反数,则行列式的值为0 ( )√ 2. 设d = nn n n n n a a a a a a a a a ΛΛΛΛΛΛΛ212222111211 则1211122221 21 n n n nn n a a a a a a a a a L L L L L L L =d ( )× 3. 设d = nn n n n n a a a a a a a a a ΛΛΛΛΛΛΛ21 22221 11211 则 d a a a a a a a a a n nn n n n -=11211 2122221ΛΛΛ ΛΛΛ ΛΛ( )× 4. abcd z z z d y y c x b a =000000 ( ) √ 5. abcd d c x b y x a z y x -=0 000 00 ( )× 6. 00 00000=y x h g f e d c b a ( ) √ 7. 如果行列式D 的元素都是整数,则D 的值也是整数。( )√ 8. 如果行列D 的元素都是自然数,则D 的值也是自然数。( )× 9. n n a a a a a a ΛN 212 1 = ( )× 10. 0 10000 2000 010 Λ ΛΛΛΛΛΛ ΛΛn n -=n ! ( )× 三、选择题

高等代数行列式计算方法

第2章 n 级行列式的计算方法 2.1 定义法 对于含非零元素较少的行列式,用定义计算非常方便。由定义可知, n 级行列式共有!n 项,每一项的一般形式为 1212()12(1),n n r j j j j j nj a a a - 若每一项n 个元素的乘积中有零因子,则该 项的值为零。若零元素较多,则值为零的项就越多,此时找出那些不为零的项就可求出行列式的值。 例1 计算n 级行列式 000010002001000 0000 D n n =- 2.2 利用行列式的性质 例2 计算n 级行列式 11 12 121 2221 2n n n n n n x y x y x y x y x y x y D x y x y x y ------= --- . 解 当1n =时,11D x y =-; 当2n =时,1212()()D x x y y =--;

当3n ≥时,把第一行的1-倍分别加到第i 行,2,3,,,i n = 行列式的值不变,得 11 12121 2121 1 11 n n n n x y x y x y x x x x x x D x x x x x x ------= =--- 综上可得 111212(1)()()(2) 0(3)x y n D x x y y n n -=?? =--=??≥? 2.3 三角化法 由于上三角行列式或下三角行列式的值都等于主对角线上的元素的积。故可利用行列式的性质,采用“化零”的方法。充分利用行列式中元素间具有某些特点及行列式性质,化为三角形行列式。 例4 计算n 级行列式 n x b b b b x b b D b b x b b b b x = 解 这行列式的特点是每行和相等,根据行列式的性质,把

高等代数 第四章 矩阵练习题参考答案,DOC

第四章矩阵习题参考答案 一、 判断题 1. 对于任意n 阶矩阵A ,B ,有A B A B +=+. 错.如112132,,112132A B C ?????? === ? ? ?------?????? , 有,AC AB =但B C ≠. 6.A 为n m ?矩阵,若,)(s A r =则存在m 阶可逆矩阵P 及n 阶可逆矩阵Q ,使.00 0??? ? ??=s I PAQ

正确.右边为矩阵A的等价标准形,矩阵A等价于其标准形. 7.n阶矩阵A可逆,则*A也可逆. 正确.由A可逆可得||0 A≠,又**|| AA A A A E ==.因此*A也可逆, 11 - 2.设A是任意一个n阶矩阵,那么(A)是对称矩阵. (A)T A A(B)T A A -(C)2A(D)T A A - 3.以下结论不正确的是(C). (A)如果A是上三角矩阵,则2A也是上三角矩阵; 2

(B)如果A是对称矩阵,则2A也是对称矩阵; (C)如果A是反对称矩阵,则2A也是反对称矩阵; (D)如果A是对角阵,则2A也是对角阵. 4.A是m k ?矩阵,B是k t?矩阵,若B的第j列元素全为零,则下 7.A是m n ?矩阵,则(B). ?矩阵,B是n m (A)当m n AB≠; >时,必有行列式0 (B)当m n AB= >时,必有行列式0

4 (C) 当n m >时,必有行列式0AB ≠; (D) 当n m >时,必有行列式0AB =. AB 为m 阶方阵,当m n >时,(),(),r A n r B n ≤≤因此()r AB n m ≤<, 所以0AB =. 12341320 ? ??? 因此(A ),(B )中向量组均为线性相关的,而(D )显然为线性相关的,因此答案为(C ).由

(精选)高等代数作业 第二章行列式答案

高等代数第四次作业 第二章 行列式 §1—§4 一、填空题 1.填上适当的数字,使72__43__1为奇排列. 6,5 2.四阶行列式4 4?=ij a D 中,含24a 且带负号的项为_____. 112433421224314313243241,,a a a a a a a a a a a a 3.设.21 22221 112 11 d a a a a a a a a a nn n n n n =Λ ΛΛΛΛ ΛΛ 则._____1 2 21 22211 121=n n nn n n a a a a a a a a a Λ Λ ΛΛΛΛ Λ (1) 2(1)n n d -- 4.行列式1 1 1 11 1 11 ---x 的展开式中, x 的系数是_____. 2 二、判断题 1. 若行列式中有两行对应元素互为相反数,则行列式的值为0 ( )√ 2. 设d = nn n n n n a a a a a a a a a ΛΛΛΛ ΛΛΛ2122221 11211 则1211122221 21 n n n nn n a a a a a a a a a L L L L L L L =d ( )× 3. 设d = nn n n n n a a a a a a a a a ΛΛΛΛΛΛΛ21 22221 11211 则 d a a a a a a a a a n nn n n n -=11211 2122221ΛΛΛ ΛΛΛ ΛΛ( )× 4. abcd z z z d y y c x b a =000000 ( ) √ 5. abcd d c x b y x a z y x -=0 000 00 ( )× 6. 00 00000=y x h g f e d c b a ( ) √ 7. 如果行列式D 的元素都是整数,则D 的值也是整数。( )√ 8. 如果行列D 的元素都是自然数,则D 的值也是自然数。( )× 9. n n a a a a a a ΛN 212 1 = ( )× 10. 0 10000 2000 010 Λ ΛΛΛΛΛΛ ΛΛn n -=n ! ( )×

《高等代数与解析几何》第二章 行列式专题练习

第二章 行列式专题练习 一、选择题 1、行列式1 02211 3 21的代数余子式13A 的值是( ) (A )3 (B )1- (C )1 (D )2- 2.行列式01 1102 1 2=-k k 的充分必要条件是 ( ) (A )2=k (B )2-=k (C )3=k (D )2-=k or 3 3.方程09 3 142 112 =x x 根的个数是( ) (A )0 (B )1 (C )2 (D )3 4.下列构成六阶行列式展开式的各项中,取“+”的有 ( ) (A )665144322315a a a a a a (B )655344322611a a a a a a (C )346542165321a a a a a a (D )266544133251a a a a a a 5. n 阶行列式的展开式中,取“–”号的项有( )项 (A )2!n (B )22n (C )2 n (D )2) 1(-n n 6.若55443211) 541() 1(a a a a a l k l k N -是五阶行列式的一项,则l k ,的值及该项的符号为( ) (A )3,2==l k ,符号为正; (B )3,2==l k ,符号为负; (C )2,3==l k ,符号为正; (D )2,3==l k ,符号为负 7.下列n (n >2)阶行列式的值必为零的是 ( ) A 行列式主对角线上的元素全为零 B 三角形行列式主对角线上有一个元素为零 C 行列式零的元素的个数多于n 个 D 行列式非零元素的个数小于n 个 8.如果033 32 31 232221 131211 ≠==M a a a a a a a a a D ,则33 32 31 232221 13 12111222222222a a a a a a a a a D = = ( ) (A )2 M (B )-2 M (C )8 M (D )-8 M

高等代数教师教学案(北大版)行列式计算方法

行列式计算方法 1. 利用行列式的定义直接计算:适用于行列式中零比较多的情形. 2. 化行列式为三角形行列式——初等变换法 1) 保留某行(列)不动,将其它的行(列)分别乘上常数加到这一行(列) 上。 2) 将某行(列)的倍数分别加到其它各行(列) 3) 逐行(列)相加 4) 加边法——在原行列式的边上增加一行一列,使行列式级数增加1, 但值不变。 例1 计算行列式 12121 2 n n n n a m a a a a m a D a a a m ++= +L L M M M L 3. 利用行列式展开定理。适用于某行(列)有较多零的行列式. 4. 其他方法 (一)析因子法——利用多项式的性质 例:计算22 1 1231223231 5 2 3 19x D x -=- 解:由行列式定义知D 为x 的4次多项式. 又,当1x =±时,1,2行相同,有0D =,1x ∴=±为D 的根. 当2x =±时,3,4行相同,有0,2D x =∴=±为D 的根. 故D 有4个一次因式,1,1,2,2x x x x +-+- 设 (1)(1)(2)(2),D a x x x x =+-+- 令0,x =则 1123 12231223152319 D = =-, 即,1(1)2(2)12.a ??-??-=- 3.a ∴=- 3(1)(1)(2)(2)D x x x x ∴=-+-+-

(二)箭形行列式 01211122 00 00,0,1,2,3.00n n i n n a b b b c a D c a a i n c a +=≠=L L L L L L L L L L 解:把所有的第1i +列(1,2)i n =L 的i i c a - 倍加到第1列,得:11201 ()n i i n n i i b c D a a a a a +==-∑ L 可转为箭形行列式的行列式: 121111111) 11 1n a a a +++L L L L L L L 122) n a x x x a x x x a L L L L L L L (第2至第n 行分别减去第1行,转为箭形行列式) (三)所有行(列)对应元素相加后相等的行列式 ()(1)1(1)11) (1)(1)1a b b a n b b b b b b a b a n b a b a b a n b b b a a n b b a b a +-+-==+-+-L L L L L L M M M M M M M M M M M L L L ()111(1,2)00()(1)00 i n b b r r i n a b a b a n b a b --=-=-+--L L L M M M M L 12123112312 3411 341(1) 2) 211321132 12221 1221 n n n n n n n n n c c c n n n n n n n n n n n n --++++---------L L L L M M M L M M M M M L M M L L L L L

相关主题
文本预览
相关文档 最新文档