当前位置:文档之家› 高等代数教师教学案(北大版)行列式计算方法

高等代数教师教学案(北大版)行列式计算方法

高等代数教师教学案(北大版)行列式计算方法
高等代数教师教学案(北大版)行列式计算方法

行列式计算方法

1. 利用行列式的定义直接计算:适用于行列式中零比较多的情形.

2. 化行列式为三角形行列式——初等变换法

1) 保留某行(列)不动,将其它的行(列)分别乘上常数加到这一行(列)

上。

2) 将某行(列)的倍数分别加到其它各行(列) 3) 逐行(列)相加

4) 加边法——在原行列式的边上增加一行一列,使行列式级数增加1,

但值不变。

例1 计算行列式

12121

2

n n n n a m a a a a m a D a a a m

++=

+L L M M M L

3. 利用行列式展开定理。适用于某行(列)有较多零的行列式.

4. 其他方法

(一)析因子法——利用多项式的性质

例:计算22

1

1231223231

5

2

3

19x D x -=-

解:由行列式定义知D 为x 的4次多项式.

又,当1x =±时,1,2行相同,有0D =,1x ∴=±为D 的根.

当2x =±时,3,4行相同,有0,2D x =∴=±为D 的根. 故D 有4个一次因式,1,1,2,2x x x x +-+- 设 (1)(1)(2)(2),D a x x x x =+-+-

令0,x =则 1123

12231223152319

D =

=-,

即,1(1)2(2)12.a ??-??-=- 3.a ∴=-

3(1)(1)(2)(2)D x x x x ∴=-+-+-

(二)箭形行列式

01211122

00

00,0,1,2,3.00n n i n n

a b b b c a D c a a i n c a +=≠=L

L L L L L L L L L

解:把所有的第1i +列(1,2)i n =L 的i

i

c a -

倍加到第1列,得:11201

()n

i i

n n i i

b c D a a a a a +==-∑

L 可转为箭形行列式的行列式:

121111111)

11

1n

a a a +++L L L L L L

L

122)

n

a x x x a x x x

a L L L L L L

L

(第2至第n 行分别减去第1行,转为箭形行列式)

(三)所有行(列)对应元素相加后相等的行列式

()(1)1(1)11)

(1)(1)1a b b a n b b b b b

b a b a n b a b

a b

a n

b b b a

a n

b b a

b a

+-+-==+-+-L L L

L L

L M M M M M M M M M M M

L

L

L

()111(1,2)00()(1)00

i n b b r r i n a b a b a n b a b

--=-=-+--L L L

M M M M L

12123112312

3411

341(1)

2)

211321132

12221

1221

n

n n n n n n n n c c c n n n n n n n n n n n n --++++---------L L L L M

M M L

M

M

M M M L M

M

L L L L L

1

12

211231

111101111(1)

(1)11112

2

01111

1111

01111

n n n n r r r r r r n n

n n

n n n n n n n n ---------++=

----M L L

L M

M M M M

M M M M M M L L L

L

11

111(2,31)0

0(1)200

i n r r i n n n n n n n --=--+-L L L L L L L L L

112

1

1

100

(1)2

0n n n n n c c c n n

--++++-L L L L L L L L

()

(2)(1)3211(1)12

2

0(1)

(1)(1)(1)

(1)(1)()2

20n n n n n n n

n n n n n n n n n

τ--+-+----++=

--=----L L

L L M L M M L

(2)(#)(1)

11

21

22

(1)(1)(1)

(1)(1)22

n n n n n n n n n n -----++=--=-. (四)加边法(适用于除主对角线上元素外,各行对应的元素分别相同,可转为箭形行列式的行列式——加边法是计算复杂行列式的方法,应多加体会)

1)1121221212

,0n n n n n n a b a a a a b a D b b b a a a b ++=

≠+L L L M M L M L

2)12121

2121200,00

n n

n n n n a a a a a a a a D a a a a a a a ++++=

≠++L L

L M M L

M L

解:

1)1

211

21221

21

100

n n n n n n

n a a a a b a a D a a b a a a a b ++=++L L L M M M L M L

121121

100(2,31)

100100n i n

a a a

b r r i n b b --=+--L L L L M M M L M L

11

1211

111(1).00(1,21)0

0n

i n

i i

n

i n i i i

i

n

a a a

b a

b b b b

c b c i n b b =+=+=++

=+∑

∑L L L L M M M M L

2)

2112

12111

11222122121

1

110

10

(2,31)

100100n

n n i n n

n n n n n n n a a a a a a a a a a a a a r r i n D a a a a a a a a a a a a a a ++++---=+=--++--++L L L

L L L L

M M M L M M M M L M

L

L

1212111

11

1

22222212

2

10

0010

1

1101011120011

020(3,42)1

1

2n n i n

n

n

n

n

n

n n a a a a a a a a a a a a a a a a a a c c i n a a a a a a ++-------=

-----=+----L L L L L

L L L

L M M

M M L M M M

M M L M L

L

12(3,42)1(1,2)

2i j j

c c i n c c j n a +=+-=L L 1121

121111112

21122

00200000200

00

2n i i n

i n i n

n a n a a a a a a a ==--------∑∑L L L L

M M M M L M L

12

2

112,11

11

122(2)(2)

[(2)]1122

n n

i i n n i

n n n

i j j

i i n a a a a a a a n a n a =-==-=

-=----∑∑

∑L L

(五)三角型行列式——递推公式法

1)9500

49

5004

900095004

9n D =L L L L L

解:11121

5004

9594920,54

9

n

n n n n c D D D D -----=-L L L L L

O O O L L L O O L

L

L

按展开

即有 11254(5)n n n n D D D D ----=-,or 11245(4)n n n n D D D D ----=-

于是有 2221232154(5)4(5)4n n n n n n D D D D D D ------=-==-=L (6145)4,n -= 同理有 2221232145(4)5(4)5(6136)5n n n n n n n D D D D D D ------=-==-=-=L

即 111

1545445n n n n n n n

n n D D D D D -++-?-=??=-?-=??

(先将行列式表示两个低阶同型的行列式的线性关系式,再用递推关系及某些低阶(2阶,1阶)行列式的值求出D 的值)

000

1

0001002.0000

1

n a b ab a b ab

a b D a b ab a b

+++=

++L L

L L L L L L L L L

) 解:

21211221c ()()()n n

n n n n n n D a b D abD D aD b D aD b D aD ------+--=-==-L 1按展开

同理 211221()().n n n n n D bD a D bD a D bD -----=-==-L 而 2221,D a ab b D a b =++=+

22221();n n n n D aD b a ab b a ab b --∴-=++--=

22221().n n n n D bD a a ab b a ab a ---=++--=

由以上两式解得11(1)n n n n a b a b D a b

n a a b

++?-≠?

=-??+=?

(六)拆项法(主对角线上,下元素相同)

121)n n

a x a a a a x a D a

a

a x ++=

+L L L L O L L

解:

1

11

22211000000000

0n n n n n

x a

a x a a

a x a a

x a

a a x a a a x a

D x D x a a a

a

x a

a

a

a

--++++=

+=+L L L L L

L M M M M L L L L L L L O L

L L

L L

1211n n n x x x a x D --=+L 11221212323.n n n n n n n D x x x a x D x x x a x D -------=+=+L L

继续下去,可得

111221*********.n n n n n n n n n D x x a x x x ax x x x ax x x ax x x x x D -----=+++++L L L L L L

(21212D ax ax x x =++)

121211221323()n n n n n n x x x a x x x x x x x x x x x x x --=+++++L L L L L L

12121

10(1)n

n n n i i

x x x D x x x a x =≠=+∑

L L 当时, 1)也可以用加边法做:

11110100

10n n

n a a a a a x a x D a

a x x +-=

=

+-L L L L M M M M M M L

L

1

11101,2,000n

i i

i n n

a a a x x i n D x x =+≠==

L

L L M M M L L

当时, 2)n a

b b b c

a b b D c

c a b c

c c

a =L L L L L L L L L 解:

1101

()01

01n n n

c b b b a c b b b b b b c a b b

a b b a b b

D c a c D c

c a b c a b c

a b c c

c

a c

c

a

c

c

a

--=+=+-L L L L L L L L L L L L L L L L L L L L L L L L L L

L

1100

0()000

n n

b b b a b

c a c D c b a b c b

c b a b --=+------L L

L

L L L L L L

11()()n n c a b a c D --=-+-①

000n b

b b b a b c

a b b c a b b D c

c a b c c a b c c c a

c

c

c

a

-=+L L L L L L L O O O L L O O O L L L

又11111

()n c a b b

b a b D

c c a b c

c

c

a

-=+-L L L L O O O L L

11()()n n b a c a b D --=-+-②

a b a c ?-?-①()-②(),得 ()()n n n c b D c a b b a c -=---().

1

[()()]/[(1)]()

n n n n n c b D c a b b a c c b c b D a n b a b -≠=----==+--当时,当时,

(七) 数学归纳法(第一数学归纳法,第二数学归纳法)

1)(用数学归纳法)证明:

12121111111(1)1

1

1n n i

n

a a D a a a a a ++=

=++∑

L

L L L L L L L

证:当1n =时,1111

1

1(1)D a a a =+=+

,结论成立. 假设n k =时结论成立,即121

1

(1)k

k n i i

D a a a a ==+∑

L ,对1n k =+,将1k D +按最后一列拆开,得

1

1

2211

111

0111111101

111

01111011111

1111

1

1111

k k

k k a a a a D a a a ++++++=+++L L L L L L O L L

L O L L 121110

110

011101

1

1

1

1

k k k a a a D a +=+L L L L O L 121k k k a a a a D +=+L 121121211111

(1)(1)k

k

k k k k i i i i

a a a a a a a a a a a a ++===+?+=+∑∑L L L

所以1n k =+时结论成立,故原命题得证.

2)证明:cos 1001

2cos cos 2cos 11

2cos n D n ααααα

==L

O L L

L

O O L L L O O L

L

L

证: 1n =时,1cos .D α=,结论成立. 假设n k ≤时,结论成立.

当1n k =+时,1k D +按第1k +行展开得

111

cos 10012cos 2cos (1)2cos 2cos 11

2cos k k

k k k k D D D D α

ααααα

+++-=+-=-L O L L L O O L L L O O L

L

L

由归纳假设12cos cos cos(1)2cos cos cos k D k k k k αααααα+=--=-

2cos cos cos cos sin sin k k k αααααβ=-+ cos cos sin sin k k αααβ=+

cos(1)k α=+

于是1n k =+时结论亦成立,原命题得证.

(八) 范德蒙行列式

1)12222122221212

111n n n n n n n n

n n n

x x x x x x D x x x x x x ---=

L L L L L

O L

L

L

解:考察1n +阶范德蒙行列式

1

222221************

1111()()()()

()n n n i j j i n

n n n n n n

n n n

n

x x x x x x x x f x x x x x x x x x x x x x x x x x ≤<≤----=

=----∏

L L L L L

O L

L L

L

显然D 就是行列式()f x 中元素1n x -的余子式.1n n M +,即

,1,1n n n n n D M A ++==- (,1n n A +为代数余子式)

又由()f x 的表达式(及根与系数的关系)知,()f x 中1n x -的系数为

121()

().n i j j i n

x x x x x ≤<≤-+++-∏

L

即, ,1121()

()

n n n i j j i n

A x x x x x +≤<≤=-+++-∏

L

121()

()n n i j j i n

D x x x x x ≤<≤∴=+++-∏

L

2)2

221212111

n

n n n

n n

x x x D x x x =

L L

L L L

L

L

解:考虑1n +级范德蒙行列式

12222

2

12111

1

12121111()n n n n n n n n n n

n n x x x x

x x x x g x x x x x x x x x ----=L L L L L O L L L L 121()()()()n i j j i n

x x x x x x x x ≤<≤=----∏

显然n D 就是行列式()g x 中元素的余子式2,1n M +,即

32,12,1(1)n n n n D M A +++==-, 由()f x 的表达式知,x 的系数为

23121211()

()n n n i j j i n

x x x x x x x x x x x -≤<≤-+++-∏

L L L L

2,123121211()()()

n n n n i j j i n

A f x x x x x x x x x x x x x +-≤<≤-++++-∏

L L L L 2312121(1)()

()n n n n n i j j i n

D x x x x x x x x x x x ≤<≤∴=-+++-∏

L L L L

关于行列式的计算方法8页word文档

行列式的计算方法综述 目录 1.定义法(线性代数释疑解难参考) 2.化三角形法(线性代数释疑解难参考) 3.逐行(列)相减法(线性代数释疑解难参考) 4.升降法(加边法)(线性代数释疑解难参考) 5.利用范德蒙德行列式(线性代数释疑解难参考) 6.递推法(线性代数释疑解难参考) 7.数学归纳法(线性代数释疑解难参考) 8.拆项法(课外辅导书上参考) 9.换元方法(课外辅导书上参考) 10.拆因法(课外辅导书上参考) 线性代数主要内容就是求解多元线性方程组,行列式的计算其中起重要作用。下面由我介绍几种常见的计算行列式的方法: 1.定义法 由定义看出,n级行列式有!n个项。n较大时,!n是一个很大的数字。直接用定义来计算行列式是几乎不可能的事。但在n级行列式中的等于零的项的个数较多时,它展开式中的不等于零的项就会少一些,这时利用行列式的定义来计算行列式较方便。 例1.算上三角行列式 解:展开式的一般项为 同样,可以计算下三角行列式的值。 2.化三角形法 画三角形法是先利用行列式的性质将原行列式作某种保值变形,化为上

第 1 页 (下)三角形行列式,再利用上(下)三角形行列式的特点(主对角线上元素的乘积)求出值。 例2.计算 解:各行加到第一行中 把第二列到第n 列都分别加上第一列的()1-倍,有 3.逐行(列)相减法 有这样一类行列式,每相邻两行(列)之间有许多元素相同,且这些相同元素都集中在某个角上。因此可以逐行(列)相减的方法化出许多零元素来。 例3.计算n 级行列式 解:从第二行起,每一行的()1-倍都加上上一行,有 上式还不是特殊三角形,但每相邻两行之间有许多相同元素()10或,且最后一行有()1n -元素都是x 。因此可再用两列逐列相减的方法:第()1n -列起,每一列的()1-倍加到后一列上 4.升降法(加边法) 升降法是在原行列式中再添加一列一行,是原来的n 阶成为()1n +阶,且往往让()1n +阶行列式的值与原n 阶行列式的值相等。一般说,阶数高的比阶数低的计算更复杂些。但是如果合理的选择所添加的行,列元素,是新的行列式更便于“消零”的话,则升降后有利于计算行列式的值。 例4.计算n 级行列式

n阶行列式的计算方法

n 阶行列式的计算方法 徐亮 (西北师大学数信学院数学系 , 730070 ) 摘 要:本文归纳总结了n 阶行列式的几种常用的行之有效的计算方法,并举列说明了它们的应运. 关键词:行列式,三角行列式,递推法,升降阶法,得蒙行列式 The Calculating Method of the N-order Determinant Xu Liang (College o f M athematics and Information Scien ce ,North west Normal Uni versit y , Lanzhou 730070,Gansu ,Chin a ) Abstract:This paper introduces some common and effective calculating methods of the n-order determinant by means of examples. Key words: determinant; triangulaire determinant; up and down order; vandermonde determinant 行列式是讨论线形方程组理论的一个有力工具,在数学的许多分支中都有这极为广泛的应用,是一种不可缺少的运算工具,它是研究线性方程组,矩阵,特征多项式等问题的基础,熟练掌握行列式的计算是非常必要的.行列式的计算问题多种多样,灵活多变,需要有较强的技巧.现介绍总结的计算n 阶行列式的几种常用方法. 1. 定义法 应用n 阶行列式的定义计算其值的方法,称为定义法. 根据定义,我们知道n 阶行列式 12121211 12121222() 1212(1)n n n n n j j j j j nj j j j n n nn a a a a a a a a a a a a π= -∑ L L L L L M M L M L .

四阶行列式的一种展开法1解读

四阶行列式的一种展开法正文 四阶行列式的一种展开法 笔者通过学习与使用行列式的运算,从中悟出四阶行列式的一种展开法,此法只适宜对四阶行列式展开而言。 四阶行列式的计算,通常是在讲授了行列式的性质后,采取降阶的方法进行计算,难免计算的繁杂,有时,按以下介绍的方法,仍能达到快而准的效果。具体方法如下: 四阶行列式: a11 D4 a21a31a41 a12a22a32a42 a13a23a33a43 a14a24a34a44 第一次将该行列式前三列重复书写在该行列式的右边,可在前四列中作出两条对角线,然后在此七列中作出相应的平行线,可得(图表一): a11a12a21a31a41a42a13a43 a14 44 a11a12224142a13a23a33(图表一) 作乘积关系,可得如下八项: a11a22a33a44,a12a23a34a41,a13a24a31a42,a14a21a32a43,a41a32a23a14,a42a33a24a 11,a43a34a21a12,a44a31a22a13, 这八项的符号可由它们的下标排列的逆序数确定,不难知道,此八项的符号是正负相间的。 a11a12a21a31a41a42aa43 (图表二) a44a11a12224142a13a23a3343 同前理可得如下八项: a11a23a34a42,a13a24a32a41,a14a22a31a43,a12a21a33a44,a41a33a24a12,a43a34a22a 11,a14a32a21a13,a42a31a23a14, 这八项的符号可由它们的下标排列的逆序数确定,不难知道,此八项的符号仍是正负相间的。 第三次先将图表二中的第2、3、4列作一个轮换,即第2列变到第4列上去,第3列变到第2列上去,第4列变到第3列上去,这样可得到一个新的四列关系,尔后参照第一次的作法,可得图表三: a21a313241a42a43a1444a11a12224142a13a23a33 1 四阶行列式的一种展开法正文

#行列式的计算方法 (1)

计算n 阶行列式的若干方法举例 1.利用行列式的性质计算 例: 一个n 阶行列式n ij D a =的元素满足,,1,2,,,ij ji a a i j n =-= 则称D n 为反对称 行列式, 证明:奇数阶反对称行列式为零. 证明:由ij ji a a =-知ii ii a a =-,即0,1,2, ,ii a i n == 故行列式D n 可表示为1213112 23213 233123000 n n n n n n n a a a a a a D a a a a a a -=-----,由行列式的性质A A '=,1213112 23213 23312300 00 n n n n n n n a a a a a a D a a a a a a -----=-12131122321323312300( 1)0 n n n n n n n a a a a a a a a a a a a -=------(1)n n D =- 当n 为奇数时,得D n =-D n ,因而得D n = 0. 2.化为三角形行列式 例2 计算n 阶行列式123123 1 23 1 2 3 1111n n n n a a a a a a a a D a a a a a a a a ++=++. 解 这个行列式每一列的元素,除了主对角线上的外,都是相同的,且各列的结构相似,因此n 列之和全同.将第2,3,…,n 列都加到第一列上,就可以提出公因子且使第一列的元素全是1. [][]()()()()()()122323122 3231223231122 3 2 3 211 12, ,2,,11 111 1 1111 1111 11 1n n n n n n n n n i n i n n n n i i i i i n i n a a a a a a a a a a a a a a a a a a D a a a a a a a a a a a a a a a a a a a a a a ==+-==+++ +++++++??+++++=++ ??? +++ +++?? + ??? ∑∑3110100 111 . 00100 1 n n n i i i i a a a ==?? =+=+ ??? ∑∑

(完整版)行列式的计算方法(课堂讲解版)

计算n 阶行列式的若干方法举例 n 阶行列式的计算方法很多,除非零元素较少时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。下面介绍几种常用的方法,并举例说明。 1.利用行列式定义直接计算 例 计算行列式 0 0100200 1000000n D n n =-L L M M M M L L 解 D n 中不为零的项用一般形式表示为 112211!n n n nn a a a a n ---=L . 该项列标排列的逆序数t (n -1 n -2…1n )等于(1)(2) 2 n n --, 故(1)(2) 2 (1) !.n n n D n --=- 2.利用行列式的性质计算 例: 一个n 阶行列式n ij D a =的元素满足,,1,2,,,ij ji a a i j n =-=L 则称D n 为反对称 行列式, 证明:奇数阶反对称行列式为零. 证明:由ij ji a a =-知ii ii a a =-,即0,1,2,,ii a i n ==L 故行列式D n 可表示为1213112 23213 2331230000 n n n n n n n a a a a a a D a a a a a a -=-----L L L L L L L L L ,由行列式的性质A A '=,1213112 23213 2331230000 n n n n n n n a a a a a a D a a a a a a -----=-L L L L L L L L L 12131122321323312300(1)00 n n n n n n n a a a a a a a a a a a a -=------L L L L L L L L L (1)n n D =- 当n 为奇数时,得D n =-D n ,因而得D n = 0.

行列式的计算技巧与方法总结

行列式的几种常见计算技巧和方法 2.1 定义法 适用于任何类型行列式的计算,但当阶数较多、数字较大时,计算量大,有一定的局限性. 例1 计算行列式 00400300200 1000. 解析:这是一个四级行列式,在展开式中应该有244=! 项,但由于出现很多的零,所以不等于零的项数就大大减少.具体的说,展开式中的项的一般形式是43214321j j j j a a a a .显然,如果41≠j ,那么011=j a ,从而这个项就等于零.因此只须考虑41=j 的项,同理只须考虑 1,2,3432===j j j 的这些项,这就是说,行列式中不为零的项只有 41322314a a a a ,而()64321 =τ,所以此项取正号.故 0 04003002001000 =()()241413223144321=-a a a a τ. 2.2 利用行列式的性质 即把已知行列式通过行列式的性质化为上三角形或下三角形.该方法适用于低阶行列式. 2.2.1 化三角形法 上、下三角形行列式的形式及其值分别如下:

nn n n n a a a a a a a a a a a a a 2211nn 333223221131211000000=,nn nn n n n a a a a a a a a a a a a a 221132 1 33323122211100 00 00=. 例2 计算行列式n n n n b a a a a a b a a a a ++= + 21 211211n 1 11 D . 解析:观察行列式的特点,主对角线下方的元素与第一行元素对应相同,故用第一行的()1-倍加到下面各行便可使主对角线下方的元素全部变为零.即:化为上三角形. 解:将该行列式第一行的()1-倍分别加到第2,3…(1n +)行上去,可得 1 21n 11210000D 0 n n n a a a b b b b b += = . 2.2.2 连加法 这类行列式的特征是行列式某行(或列)加上其余各行(或列)后,使该行(或列)元素均相等或出现较多零,从而简化行列式的计算.这类计算行列式的方法称为连加法.

行列式的计算方法

专题讲座五行列式的计算方法 1.递推法 例1求行列式的值: (1) 的构造是:主对角线元全为;主对角线上方第一条次对角线的元全为,下方 第一条次对角线的元全为1,其余元全为0;即为三对角线型。又右下角的(n)表示行列式为n阶。 解把类似于,但为k阶的三对角线型行列式记为。 把(1)的行列式按第一列展开,有两项,一项是 另一项是 上面的行列式再按第一行展开,得乘一个n– 2 阶行列式,这个n– 2 阶行列式和原行列式的构造相同,于是有递推关系: (2) 移项,提取公因子β: 类似地: (递推计算) 直接计算

若;否则,除以后移项: 再一次用递推计算: ∴,当β≠α(3) 当β = α,从 从而。 由(3)式,若。 ∴ 注递推式(2)通常称为常系数齐次二阶线性差分方程. 注1仿照例1的讨论,三对角线型的n阶行列式

(3) 和三对角线型行列式 (4) 有相同的递推关系式 (5) (6) 注意 两个序列 和 的起始值相同,递推关系式(5)和(6)的构造也相同,故必有 由(4)式,的每一行都能提出一个因子a,故等于乘一个n阶行列式,这一个行列式就是例1的。前面算出,故 例2 计算n阶范德蒙行列式行列式 解:

即n阶范德蒙行列式等于这n个数的所有可能的差的乘积 2.拆元法 例3:计算行列式 解

①×(x + a) ②×(x – a)

3.加边法 例4计算行列式 分析:这个行列式的特点是除对角线外,各列元素分别相同.根据这一特点,可采用加边法. 解 4.数学归结法 例5计算行列式 解: 猜测: 证明 (1)n = 1, 2, 3 时,命题成立。假设n≤k– 1 时命题成立,考察n=k的情形:

计算N阶行列式若干方法

网上搜集的计算行列式方法总结, 还算可以. 计算n 阶行列式的若干方法举例 闵 兰 摘 要:《线性代数》是理工科大学学生的一门必修基础数学课程。行列式的计算是线性代数中的难点、重点,特别是n 阶行列式的计算,学生在学习过程中,普遍存在很多困难,难于掌握。计算n 阶行列式的方法很多,但具体到一个题,要针对其特征,选取适当的方法求解。 关键词:n 阶行列式 计算方法 n 阶行列式的计算方法很多,除非零元素较少时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。下面介绍几种常用的方法,并举例说明。 1.利用行列式定义直接计算 例1 计算行列式 00100200 10 000 00n D n n = - 解 D n 中不为零的项用一般形式表示为 1122 11!n n n nn a a a a n ---=. 该项列标排列的逆序数t (n -1 n -2…1n )等于 (1)(2) 2 n n --,故 (1)(2) 2 (1) !.n n n D n --=- 2.利用行列式的性质计算 例2 一个n 阶行列式n ij D a =的元素满足

,,1,2, ,,ij ji a a i j n =-= 则称D n 为反对称行列式,证明:奇数阶反对称行列式为零. 证明 由ij ji a a =-知ii ii a a =-,即 0,1,2, ,ii a i n == 故行列式D n 可表示为 1213112 23213 233123000 n n n n n n n a a a a a a D a a a a a a -=----- 由行列式的性质A A '= 1213112 23213 2331230000 n n n n n n n a a a a a a D a a a a a a -----=- 1213112 23213 23312300(1)0 n n n n n n n a a a a a a a a a a a a -=------ (1)n n D =- 当n 为奇数时,得D n =-D n ,因而得D n = 0. 3.化为三角形行列式 若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。因此化三角形是行列式计算中的一个重要方法。 例3 计算n 阶行列式 a b b b b a b b D b b a b b b b a =

【对应线代】行列式计算7种技巧7种手段

行列式计算7种技巧7种手段 【说明】行列式是线性代数的一个重要研究对象,是线性代数中的一个最基本,最常用的工具,记为det(A).本质上,行列式描述的是在n 维空间中,一个线性变换所形成的平行多面体的体积,它被广泛应用于解线性方程组,矩阵运算,计算微积分等.鉴于行列式在数学各领域的重要性,其计算的重要性也不言而喻,因此,本人结合自己的学习心得,将几种常见的行列式计算技巧和手段归纳于此,供已具有行列式学习基础的读者阅读 一7种技巧: 【技巧】所谓行列式计算的技巧,即在计算行列式时,对已给出的原始行列式进行化简,使之转化成能够直接计算的行列式,由此可知,运用技巧只能化简行列式,而不能直接计算出行列式 技巧1:行列式与它的转置行列式的值相等,即D=D T 111211121121222122221 2 12n n n n n n nn n n nn a a a a a a a a a a a a a a a a a a = 技巧2:互换行列式的任意两行(列),行列式的值将改变正负号 111212122221222111211 2 1 2 n n n n n n nn n n nn a a a a a a a a a a a a a a a a a a =- 技巧3:行列式中某一行(列)的所有元素的公因子可以提到行列式记号的外面 1111121111121221 222 22212221 1 2 1 2 n n n n n n i n n n n n nn n n nn b a b a b a a a a b a b a b a a a a b b a b a b a a a a ==∏ 技巧4:行列式具有分行(列)相加性 11121111211112111 22 1 2121 2 1 2 1 2 n n n t t t t tn tn t t tn t t tn n n nn n n nn n n nn a a a a a a a a a b c b c b c b b b c c c a a a a a a a a a +++=+ 技巧5:将行列式的某一行(列)的各元素乘以同一数k 后加到另一行(列)对应的元素上,行列式的值不变

四阶行列式的一种展开法1

四阶行列式的一种展开法 笔者通过学习与使用行列式的运算,从中悟出四阶行列式的一种展开法,此法只适宜对四阶行列式展开而言。 四阶行列式的计算,通常是在讲授了行列式的性质后,采取降阶的方法进行计算,难免计算的繁杂,有时,按以下介绍的方法,仍能达到快而准的效果。具体方法如下: 四阶行列式: 44 43 42 413433323124 23222114131211 4a a a a a a a a a a a a a a a a D 第一次将该行列式前三列重复书写在该行列式的右边,可在前四列中作出两条对角线,然后在此七列中作出相应的平行线,可得(图表一): (图表一) 作乘积关系,可得如下八项: a 11a 22a 33a 44,a 12a 23a 34a 41,a 13a 24a 31a 42,a 14a 21a 32a 43,a 41a 32a 23a 14,a 42a 33a 24a 11,a 43a 34a 21a 12,a 44a 31a 22a 13, 这八项的符号可由它们的下标排列的逆序数确定,不难知道,此八项的符号是正负相间的。 (图表二) 同前理可得如下八项: a 11a 23a 34a 42,a 13a 24a 32a 41,a 14a 22a 31a 43,a 12a 21a 33a 44,a 41a 33a 24a 12,a 43a 34a 22a 11,a 14a 32a 21a 13,a 42a 31a 23a 14, 这八项的符号可由它们的下标排列的逆序数确定,不难知道,此八项的符号仍是正负相间的。 第三次先将图表二中的第2、3、4列作一个轮换,即第2列变到第4列上去,第3列变到第2列上去,第4列变到第3列上去,这样可得到一个新的四列关系,尔后参照第一次的作法,可得图表三: 43 42 4144 43 42 413332 31 343332 312322212423222113121114131211 a a a a a a a a a a a a a a a a a a a a a a a a a a a a 43 42 4144 43 42 413332 31 343332 31 2322212423222113121114131211a a a a a a a a a a a a a a a a a a a a a a a a a a a a 42 4144 43 42 413332 31 343332 31 2322212423222113121114131211a a a a a a a a a a a a a a a a a a a a a a a a a a a a

行列式的计算方法课堂讲解版

计算n 阶行列式的若干方法举例 n 阶行列式的计算方法很多,除非零元素较少时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。下面介绍几种常用的方法,并举例说明。 1.利用行列式定义直接计算 例 计算行列式 00100 200 1 0000 00n D n n = - 解 D n 中不为零的项用一般形式表示为 112211!n n n nn a a a a n ---=. 该项列标排列的逆序数t (n -1 n -2…1n )等于(1)(2) 2 n n --, 故(1)(2) 2 (1) !.n n n D n --=- 2.利用行列式的性质计算 例: 一个n 阶行列式n ij D a =的元素满足,,1,2, ,,ij ji a a i j n =-= 则称D n 为反对称 行列式, 证明:奇数阶反对称行列式为零. 证明:由ij ji a a =-知ii ii a a =-,即0,1,2, ,ii a i n == 故行列式D n 可表示为1213112 23213 233123000 n n n n n n n a a a a a a D a a a a a a -=-----,由行列式的性质A A '=,1213112 23213 233123000 n n n n n n n a a a a a a D a a a a a a -----=-12131122321323312300(1)0 n n n n n n n a a a a a a a a a a a a -=------(1)n n D =- 当n 为奇数时,得D n =-D n ,因而得D n = 0. 3.化为三角形行列式

【原创】行列式计算7种技巧7种手段

行列式计算7种技巧7种手段 编者:Castelu 【编写说明】行列式是线性代数的一个重要研究对象,是线性代数中的一个最基本,最常用的工具,记为det(A).本质上,行列式描述的是在n 维空间中,一个线性变换所形成的平行多面体的体积,它被广泛应用于解线性方程组,矩阵运算,计算微积分等.鉴于行列式在数学各领域的重要性,其计算的重要性也不言而喻,因此,本人结合自己的学习心得,将几种常见的行列式计算技巧和手段归纳于此,供已具有行列式学习基础的读者阅读 一.7种技巧: 【技巧】所谓行列式计算的技巧,即在计算行列式时,对已给出的原始行列式进行化简,使之转化成能够直接计算的行列式,由此可知,运用技巧只能化简行列式,而不能直接计算出行列式 技巧1:行列式与它的转置行列式的值相等,即D=D T 111211121121222122221 212n n n n n n nn n n nn a a a a a a a a a a a a a a a a a a = 技巧2:互换行列式的任意两行(列),行列式的值将改变正负号 111212122221222111211 21 2n n n n n n nn n n nn a a a a a a a a a a a a a a a a a a =- 技巧3:行列式中某一行(列)的所有元素的公因子可以提到行列式记号的外面 111112111112122122222212221 121 2n n n n n n i n n n n n nn n n nn b a b a b a a a a b a b a b a a a a b b a b a b a a a a == ∏ 技巧4:行列式具有分行(列)相加性 11121111211112111221 21 21 2 1 21 2n n n t t t t tn tn t t tn t t tn n n nn n n nn n n nn a a a a a a a a a b c b c b c b b b c c c a a a a a a a a a +++=+ 技巧5:将行列式的某一行(列)的各元素乘以同一数k 后加到另一行(列)对应的元素上,行列式的值不变

n阶行列式的计算方法

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 引言 (1) 1定义法 (1) 2利用行列式的性质 (23) 化三角形行列式 (3) 4行列式按一行(列)展开 (4) 5 升阶法 (5) 6 递推法 (6) 7 范德蒙德行列式 (7) 8 拉普拉斯定理 (7) 9 析因法 (8) 小结 (10) 参考文献 (11)

n阶行列式的计算方法 学生姓名:孙中文学号:20120401217 数学与计算机科学系数学与应用数学专业 指导老师:王改霞职称:讲师 摘要:行列式是高等代数中最基本也是最重要的内容之一,是高等代数学习中的一个难点.本文主要探讨一般n阶行列式的计算方法和一些特殊的行列式求值方法.如:化三角形法、拉普拉斯定理法、升阶法等.总结了每种方法的行列式特征. 关键词:行列式;定义;计算方法 Abstract: Determinant is one of higher algebra the most fundamental and important content, is a difficult point in Higher Algebra Learning. This paper mainly discusses the general order determinant of calculation method and some special determinant evaluation method. Such as: triangle method, method of Laplace theorem, ascending order method. This paper summarizes the determinant of the characteristics of each method. Keywords: Determinant ;Definition ;Calculation method 引言 行列式是高等代数的一个非常重要的内容,同时它也是非常复杂的.它的计算方法多种多样.在我们本科学习中只解决了一些基本的有规律的行列式.当遇到低阶行列式时,我们可以根据行列式的性质及其定义便能计算得出结果.但对于一些阶数较大的n阶行列式来说,用定义法就行不通了,本文根据各行列式的特征总结了一些对应方法. 1定义法 n阶行列式计算的定义:

(完整版)行列式的计算方法总结

行列式的计算方法总结: 1. 利用行列式性质把行列式化为上、下三角形行列式. 2. 行列式按一行(一列)展开,或按多行(多列)展开(Laplace 定理). 几个特别的行列式: B A B C A B C A == 0021 , B A B A D D B A mn )1(0 021 -== ,其中B A ,分别是n m ,阶的方阵. 例子: n n a b a b a b b a b a b a D 22O N N O = , 利用Laplace 定理,按第1,+n n 行展开,除2级子式 a b b a 外其余由第1,+n n 行所得的2级子式均为零. 故222222112)()1(--+++++-=-= n n n n n n n D b a D a b b a D ,此为递推公式,应用可得 n n n n b a D b a D b a D )()()(224222222222-==-=-=--Λ. 3. 箭头形行列式或者可以化为箭头形的行列式. 例:n n n n n n n a x x a a x x a a x x a a a a x x a a a a x a a a a x a a a a x ------=Λ ΛΛΛΛΛΛΛΛΛ ΛΛΛΛΛΛΛΛ00 000 01 133112 2113213 21321 321321 -----(倍加到其余各行第一行的1-) 100 101010 011)(3 332 221 111 Λ ΛΛΛΛΛΛΛΛ-------? -=∏=n n n n i i i a x a a x a a x a a x x a x --------(每一列提出相应的公因子i i a x -) 1 001000 010)(3 332 222111 1 Λ ΛΛΛΛΛΛΛΛn n n n i i i i n i i i a x a a x a a x a a x a a x x a x ----+-? -=∑∏== --------(将第n ,,3,2Λ列加到第一列)

最新几种特殊类型行列式及其计算

1 行列式的定义及性质 1.1 定义[3] n 级行列式 1112121 22 212 n n n n nn a a a a a a a a a 等于所有取自不同行不同列的个n 元素的乘积12 12n j j nj a a a (1)的代数和,这里12 n j j j 是 1,2, ,n 的一个排列,每一项(1)都按下列规则带有符号:当12n j j j 是偶排列时,(1)带正号,当 12n j j j 是奇排列时,(1)带有负号.这一定义可写成 () () 121212 1112121 22 21212 1n n n n j j j n j j nj j j j n n nn a a a a a a a a a a a a τ= -∑ 这里 12 n j j j ∑ 表示对所有n 级排列求和. 1.2 性质[4] 性质1.2.1 行列互换,行列式的值不变. 性质1.2.2 某行(列)的公因子可以提到行列式的符号外. 性质1.2.3 如果某行(列)的所有元素都可以写成两项的和,则该行列式可以写成两行列式的和;这两个行列式的这一行(列)的元素分别为对应的两个加数之一,其余各行(列)与原行列式相同. 性质1.2.4 两行(列)对应元素相同,行列式的值为零. 性质1.2.5 两行(列)对应元素成比例,行列式的值为零. 性质1.2.6 某行(列)的倍数加到另一行(列)对应的元素上,行列式的值不变. 性质1.2.7 交换两行(列)的位置,行列式的值变号.

2 行列式的分类及其计算方法 2.1 箭形(爪形)行列式 这类行列式的特征是除了第1行(列)或第n 行(列)及主(次)对角线上元素外的其他元素均为零,对这类行列式可以直接利用行列式性质将其化为上(下)三角形行列式来计算.即利用对角元素或次对角元素将一条边消为零. 例1 计算n 阶行列式 ()1 2323111100 1 0001 n n n a a D a a a a a =≠. 解 将第一列减去第二列的 21a 倍,第三列的3 1a 倍第n 列的 1 n a 倍,得 1 223 111110 000 000 n n n a a a a D a a ?? -- - ?? ? = 1221n n i i i i a a a ==?? =- ?? ? ∑ ∏. 2.2 两三角型行列式 这类行列式的特征是对角线上方的元素都是c ,对角线下方的元素都是b 的行列式,初看,这一类型似乎并不具普遍性,但很多行列式均是由这类行列式变换而来,对这类行列式,当 b c =时可以化为上面列举的爪形来计算,当b c ≠时则用拆行(列)法[9]来计算. 例2 计算行列式

n阶行列式的计算方法

n阶行列式的计算方法 姓名: 学号: 学院: 专业: 指导老师: 完成时间:

n阶行列式的计算方法 【摘要】 本文主要针对行列式的特点,应用行列式的性质,提供了几种计算行列式的常用方法。例如:利用行列式定义直接计算法,根据行列式性质化为三角形列式法,按一行(列)展开以及利用已知公式法,数学归纳法与递推法,加边法,利用多项式性质法,拉普拉斯定理的应用。但这几种方法之间不是相互独立,而是相互联系的.一个行列式可能有几种解法,或者在同一个行列式的计算中将同时用到几种方法以简便计算。这就要求我们在掌握了行列式的解法之后,灵活运用,找到一种最简便的方法,使复杂问题简单化。 【关键词】 n阶行列式行列式的性质数学归纳法递推法加边法

Some methods of an n-order determinant calculation 【Abstract】In this paper, considering the characteristics of determinant, it provides several commonly used methods to calculate the determinant by applying the properties of the determinant . For example :The direct method of calculation by using the determinant definition . The method of changing the determinant into a triangular determinant According to the properties of the determinant. The method of expanding the determinant by line (column) .using the known formula , the mathematical induction, recursive Method , adding the edge method, using the properties of polynomial , the application of Laplace theorem. These methods are not independent of each other ,but interrelated. There is probably that a determinant has several solutions, or in the calculation of the same determinant there will be used several methods to calculate simply. This requires us to grasp several solution of the determinant,and to find the easiest ways after, so simplify complex issues . 【Key words】n-order determinant the property of the determinant the mathematical induction adding the edge method

特殊行列式与行列式计算方法总结

特殊行列式及行列式计算方法总结 一、 几类特殊行列式 1. 上(下)三角行列式、对角行列式(教材P7例5、例6) 2. 以副对角线为标准的行列式 11112112,1 221222,11,21,1 1,11 2 ,1 (1)2 12,11 000000 0000 0000 (1) n n n n n n n n n n n nn n n n n n nn n n n n n a a a a a a a a a a a a a a a a a a a a a a ---------===-L L L L L L M M M M M M M M M N L L L L 3. 分块行列式(教材P14例10) 一般化结果: 00n n m n n m n m m n m m n m A C A A B B C B ????= =? 0(1)0n m n n m n mn n m m m n m m n A C A A B B C B ????= =-? 4. 范德蒙行列式(教材P18例12) 注:4种特殊行列式的结果需牢记! 以下几种行列式的特殊解法必须熟练掌握!!! 二、 低阶行列式计算 二阶、三阶行列式——对角线法则 (教材P2、P3) 三、 高阶行列式的计算 【五种解题方法】 1) 利用行列式定义直接计算特殊行列式; 2) 利用行列式的性质将高阶行列式化成已知结果的特殊行列式; 3) 利用行列式的行(列)扩展定理以及行列式的性质,将行列式降阶进行计算 ——适用于行列式的某一行或某一列中有很多零元素,并且非零元素的代数余子式很容易计算; 4) 递推法或数学归纳法; 5) 升阶法(又称加边法)

行列式计算的若干种方法讲解

中南民族大学 毕业论文(设计) 学院: 数学与统计学学院 专业: 统计学年级:2008 题目: 行列式计算的若干方法 学生姓名: 曹金金学号:08067005

指导教师姓名: 汪宝彬职称:讲师 2012年4月30日

中南民族大学本科毕业论文(设计)原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果.除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品.本人完全意识到本声明的法律后果由本人承担. 作者签名: 年月日

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 1 引言 (2) 2.1排列 (2) 2.2行列式的定义 (2) 2.2.1 二阶、三阶行列式 (2) 2.2.2 n阶行列式的定义 (3) 2.2.3 几种特殊的行列式的定义 (3) 2.3 行列式的基本性质 (5) 3几种常见的行列式的计算方法 (6) 3.1利用行列式定义直接计算 (6) 3.2 利用行列式的性质计算 (6) 3.3 三角化法 (7) 3.4 降阶法 (8) 3.5利用范德蒙德行列式求解 (10) 3.6 数学归纳法 (11) 3.7 拆项法 (12) 3.8析因子法 (13) 3.9 加边法(升阶法) (13) 3.10递推公式法 (14) 3.11超范德蒙行列式法 (15) 3.12利用分块计算行列式 (16) 4 结论 (16) 致谢 (17) 参考文献 (17)

行列式计算的若干方法 摘要:在线性代数中,行列式的求解是非常重要的. 本文首先介绍行列式的定义与性质;然后通 过实例给出了计算行列式的几种方法.从文中可以看出,选择合适的计算方法可有效的计算行列式. 关键词:行列式;性质;计算方法 Some Methods of Determinant Calculation Abstract: Determinant plays an important role in the linear algebra. In this paper we first introduce the definition and properties of determinant. Then several methods of the calculation are given by some examples. It can be seen from the paper that choose the appropriate calculation method can efficiently compute the determinant. Key words: determinant; property; the calculation methods

n阶行列式的计算方法

n 阶行列式的计算方法 1.利用对角线法则 “对角线法则”: (1)二、三阶行列式适用“对角线法则”;(2)二阶行列式每项含 2 项,三阶行列式每项含 3 项,每项均为不同行、不同列的元素 的乘积;(3)平行于主对角线的项为正号,平行于副对角线的项为负号。 例 1 计算二阶行列式 D = 1 3 。 2 4 解: D = 1 3 = 1? 4 ? 3 ? 2 = ?2 2 4 例 2 计算三阶行列式 D = 1 2 0 4 ? 3 8 。 0 ?1 2 解: D = 1 2 0 4 ? 3 8 = 1? (?3) ? 2 + 2 ? 8 ? 0 + 0 ? 4 ? (?1) ? 0 ? (?3) ? 0 ? 2 ? 4 ? 2 ?1? 8 ? (?1) 0 ?1 2 = ?14 2.利用 n 阶行列式的定义 a 11 a 12 ? a 1 n n 阶行列式 D = a 21 a 22 ? a 2 n =∑ (?1) τ a 1 p 1 a 2 p 2 ? a np n ? ? ? ( p 1 p 2 ? p n ) a n 1 a n 2 ?a nn 其中 τ = τ( p 1 p 2 ? p n ) , 求和式中共有 n ! 项。 显然有 a 11 a 12 ? a 1 n 上三角形行列式 D = a 22 ?a 2 n = a 11 a 22 ? a nn ? ? a nn a 11 下三角形行列式 D = a 21 a 22 ? = a 11 a 22 ? a nn ? ? a n 1 a n 2 ?a nn

相关主题
文本预览
相关文档 最新文档