当前位置:文档之家› 高等代数考研真题 第二章 行列式

高等代数考研真题 第二章 行列式

高等代数考研真题  第二章 行列式
高等代数考研真题  第二章 行列式

第二章

1.(北师大2003-25)

1.计算行列式87162534的逆序数,并依次将上述排列变成12345678的所有对换

2.设n 个数码的排列121n n i ,i ,...i ,i -的逆序数是k ,那么排列321n n n i ,i ,...i ,i i -的逆序数是多少?请说明理由。

2.计算下列行列式(每小题6分,共12分)

D=

2

132301211432

2

1

1

---的值。

3.(成电科大,2003)计算下列行列式(每小题6分,共12分)

1.32222

3222

2322

2

2

2

3

n ......D ..................=D .= 2.2

3

232

3

122

2

111114441

5

5

5

D =

4.(中科武汉2004-15)计算行列式

1

111111222221223331

2

3

4

111111n n

n

...b a a a ...a a b b a a ...a a D b b b a ...a a .....................b b b b ...

b a =

5(成电科大2004-10分)求证:1

2

123411123211

123211

1431121

1

n n n ...n n ...n n x ...n n D ()x x x ...n n .....................x x x (x)

x

x

...

x

+------==---

6.(北工大,2002-10分)计算行列式0121

110001000100010

n n n

a ...a x ...a x ...D ..................a ...x a ...

x

+-----的值。

7(东北大学,2001-10分)计算下列行列式1

1

1

1

2n n n

n

n

a c a c D (n )d

b d b =

8.(东北大学,2002-10分)11

111n a

a a D a

a

+--+=

--+

9.(北航,2001 10分)已知a>>0,证明n 阶行列式10001

1000100000010

1

a ...a ...a ...D (n ).....................a ...

a --=

≥--

10.(复旦,2002)计算下列行列式的值:(7分)

9500

000950004095000400009540

00

9

4

.......................................

11.(中大,2004 10分)计算下列n 阶行列式:000210001

20

00120

1

2

......D n ........................

=

12.(东北大2003 25分)证明当αβ≠时,

1

1

00000100010

1

n n ...........................

...

αβαβαβαβα

β

αβαβ

αβ

++++-=

+-+

13.(北工大 2001 10分)计算n 阶行列式的值1

1

1

n a b ab a b ab D a b ab a b

++=

++

中a,b 为实数。

14.(北工大,2005 14分)计算n 阶行列式的值.

12323413

45212

1

n ...n ...D ......

...

...

......n

...

a n ααααααααααααααα++++++++=++++++++-

15.(上海交大 2002 14分)计算下列行列

312312

3

1

2

n n n

a a x a a ...a a a x a ..................a x a a a ...

+++,

x a a ...a a

a x a ...a a a a x ...

a

a

..................

a

a

a

...a

x

-------

16.(北航,2004 10分)计算下面行列式的值

12121

2

n n n a a ...a a a ...a ............a a ...

a λ

λλ

+++

17(北航,2002 10分)求下面的行列式的值3123123

1

2

n n n x x x m

x ...x x x x m ..................x x m

x x ...

---

18.(浙大 2004 每小题8分,共16分)计算n 阶行列式:

(1)b b b ...b a b

b b ...a b ..................D n b b a ...b b b a b ...b b a b b ...b

b

=

(2)311232

41354122

1

1

2

...n n ...n ...D n ..................n

...

n n -=

--

19.,(复旦 2001)计算下列行列式:(7分)

12312i n

a x x ...x a x x (x)

a ,x a (i ,,...,n )x x ...x ...............a x

x

x

...

==

20.(北航 2005 10分)计算下列行列式:

3121122121

...n a

...n a a ...n ...............a a a ...a

a

a

...

--

21(北交大 2005 10分)设n 阶方阵2

2220

1110

0110

1......A ....................

??

??????=????????

求A 中所有元素的代数余子式之和。

22(北工大 2003 15分)设n 阶行列式312001

20301

1

n ...n ...D .....................

n

= 求第一行各元素的代数余子式之和11121n A A ...A +++

23.(华东理工 2004)(16分 每小题8分)

计算下列行列式的值:

1,

2

5131913731552

8

7

10

-------;2,12011100

1

001

1

n

...a ...a ..................a ...

,其中12n a ,a ,...,a 都不为0。

24.(北京科大 2005 10分)

计算n (3n ≥)阶行列式1311122322123132331232222n n n n n n n

sin()sin()sin sin()...sin()sin()sin()

sin ...sin()

sin()sin sin().........

...

......sin()

sin()

sin()

sin ...

αααααααααααααααααααααααααααα++++++++++++

25.(南开 2003) 计算下列行列式的值:111

2121121

222

211

22

n n n n

n n n n n

a b c a b c ...a b c a b c a b c ...a b c ............a b c a b c ...

a b c +++++++++

其中3n ≥ (本题20分)

26.(重大,2005 10分)计算行列式:

2

11212

21222

12

1

11

n n n n n x x x ...x x x x x ...x x ............x x x x ...x +++

(北京科大 2004 15分)计算行列式:a b b ...b c

a b ...b c

c a ...b ...............c

c

c

...

a

27.(南开 2004 15分)设n 阶行列式

11

121212221

2

1n n n n nn

a a ...a a a ...a ............a a ...

a =

且满足12ij ji a a ,i ,j ,,...,n =-=。

对任意的b ,求n 阶行列式

111212122212n n n n nn a b

a b ...a b a b a b ...a b ?............a b

a b

...

a b

++++++=+++

28.(复旦 2003 )设D =

11121212221

2

n n n n nn

a a ...a a a ...a ............a a ...

a ,kj A 是kj a 的代数余子式,求证

(1)

1111221211

222

21

1

11

22

n n n

n n n

j

kj j k n n nn n

a x a x ...a x a x a x ...a x D x A ............a x a x ...a x ==++++++=+

+++∑∑

(2)212111

22

12

3121

3222321

2

12

1111111

n

n

n

n n

kj j ,k n n ,nn n ,n

n n ...a a a a a a ...a a a a a a A ...............a a a a a a ,...

=---------=

---∑

29(华东理工 2005 )对1212i ,,...,n;j ,,...,n;==令

1i j

ij ij

b ()

a +=-证明:(15分)

ij ij det(a )det(b )=。

30(重大 2003 10分)设12n A (,,...)βββ=是n 阶方阵,4A =求矩阵

112231n n n

B (,,,...)ββββββββ-

=++++的行列式的值。

31.(华东理工 2004 )设A 为任一n 阶方阵,证明 22

0A

A det()A

A ??

= ???

。(12分)

32.(北航,2003 10分) 设行列式ij n n

a ?中对任意i j 有ij ji a a ,=-且n 为奇数,证明ij

n n

a ?=0

33.(成电科大,2004 12分)设A 是三阶非零矩阵且ij ij a A =,计算A 。….

34.(北交大,2002 10分)计算n 阶行列式:

122

2

2

122221212111n n n n n n

n

n

n

n

...x x x ...x x x ......

...

......

x x

x

...x x x ...

---

35.(重大 2002 10分)

1、设12n x ,x ,...,x 是n 个实数,计算下述n 阶行列式D 的值。

1

22

221

2

2221

2

12111n n n n n n

n

n

n

n

...x x x ...x x

x

...D ............

x x x ...x x x ...

---=

当11i n ≤≤-时,D 的第i 行的元素为111

12i i i n x ,x ,...,x ---。

2、设向量组12n A :,,...,ααα。是n 个n 维向量,其中22112n n

i i i i i (,x ,x ...x ,x ),i ,,...,n α-==。

讨论向量组A 的线性相关性。

36.(复旦 2005-7)设12012k k k

k n s x x ...x ,k ,,,...,=++=计算行列式

11121

22

n n n n

n s s ...s s s ...s D ............s s ...

s ---=

37.(北交大,2005 15分)计算n+1阶行列式

11

1112121121

1

1

1n

n

n

n n n n n n (x )(x )(x n )x ...

(x )

(x )

(x n )x

...D ...

............

x x x ...x n ...----??

+++??

+++??

??+=??

+++??

??

??

38.(南开,2005 20分)计算下列行列式

12

2

22

1122

12

1212

1122

111

1

11

2

n

n n

n n

n n n n

n n

...

x

x x...

x x

x x x x?,n

...

............

x x

x x x x...--

----

+

++

+

++=≥

+

++

39.(北工大,2004 -10)计算行列式的值:

12

01

12

01

2

012

123

01

11

12

01

12

000

00

0 n n n

n n

n n n

n

n n n

n n

a x a x a

a x a x...

a b...

a x a x b...

D

..................

a x b

a x a x...

a x a x b

a x a x...

--

-

---

-

--

-=

40.(上海理工,2002)计算行列式:

1221 11111111

1221 22222222

1221 11111111 n n n n n n n n n n n n n n n

n n n n n n n n a a b a b a b b

...

a a

b a b a b b

... ..................

a a

b a b a b b

...

---

---

---++++++++

41.(北工大,2000-10分)设

2

3

4

231

2311

111

0000

1

000

12

3300

1

60

144

1

1

1

n n

n n n

n n

n n n

...x

...x

...x f(X) (x)

.....................

C C C

n (x)

C C C

n (x)

-

-+

+++

=

+

计算1

f(x)f(x)

+-。

42.(北交大,2004-15分)计算n阶行列式

11

1

3

2

22

2

31

4

222

123

111

122 1111

1

1

1

1

n

n

n n n

n n n

n n n

n n n

...

C C

C...

C C

C...

D

...............

C C C

...

C C C

...

+

---

--

---

+-=

43.(华南师大,2003-10分) 证明行列式等式

11121212221

1

12n n

n

n ij i j n n nn a x a x ...a x a x a x ...a x A x A ............a x

a x

...

a x

==++++++=++++∑

其中ij A a ,=ij A 是ij a 在ij a 中的代数余子式。

44.(华南师大,1997-15分) 计算n 阶行列式:

12312n i n

b a a ...a b a a ...a

b D ,b a ,i ,,...,n ,a

a ....a ............

b a

a

a

....

=>=

45.(华南师大,2002-12)分计算行列式31231

2131

23

1

2

4

n n n n a a a a x ...a a a a x ...D a a ,a a x .....................a a a a ...

x

+=

46.(华南师大,2000-15)分计算行列式

1211

32231121

a (n )a n ...a a a a n ...a a ...............a (n )a (n )a (n )...a n a (n )

a (n )

...

a a n

+-++++++++-+-+-++-+-++

47.(华南师大,1999-15分) 计算行列式11121212221

2

n n n n n n a b x

a b ...a b a b a b x ...a b ............a b a b ...

a b x

+++

48.(华南师大,1998-15)设12n a ,b ,p ,p ,...,p 是实数,且a b ≠,定义

多项式12n f (x )(p x )(p x )...(p x ),=---

证明1231n n n

p a a a ...a a p b

a a ...a a p bf (a )af (

b )

b b a ...a a D b a

.....................p b b b b ...a p b

b

b

b

...

b

--=

=

-

高等代数作业第二章行列式答案

高等代数作业第二章行列 式答案 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

高等代数第四次作业 第二章 行列式 §1—§4 一、填空题 1.填上适当的数字,使72__43__1为奇排列. 6,5 2.四阶行列式4 4?=ij a D 中,含24a 且带负号的项为_____. 112433421224314313243241,,a a a a a a a a a a a a 3.设 .21 22221 11211 d a a a a a a a a a nn n n n n = 则 ._____1 221 22 211 121=n n nn n n a a a a a a a a a (1) 2(1)n n d -- 4.行列式1 1 1 111 11 ---x 的展开式中, x 的系数是_____. 2 二、判断题 1. 若行列式中有两行对应元素互为相反数,则行列式的值为0 ( )√ 2. 设d = nn n n n n a a a a a a a a a 212222111211 则 12 111222212 1 n n n nn n a a a a a a a a a =d ( )× 3. 设d = nn n n n n a a a a a a a a a 21 2222111211 则d a a a a a a a a a n nn n n n -=11211 2122221 ( )× 4. abcd z z z d y y c x b a =000000 ( ) √ 5. abcd d c x b y x a z y x -=0 000 00 ( )× 6. 00 00000=y x h g f e d c b a ( )√ 7. 如果行列式D 的元素都是整数,则D 的值也是整数。( )√ 8. 如果行列D 的元素都是自然数,则D 的值也是自然数。( )× 9. n n a a a a a a 212 1 = ( )× 10. 0 1000 2000 010 n n -=n ! ( )× 三、选择题

高等代数行列式知识点总结

第一章 行列式( * * * ) 一、复习指导:行列式在高等代数中是十分重要的,它不仅是每年必要的一道大题,而且还是一个基础章节,它与学好后面的章节也有一定的联系,是学习后面重要章节的基础。在首师大真题中,行列式往往会以求数字型n 阶行列式的值作为一道大题出现,分值15分。具体可以参考真题。 二、考点精讲: (一)基本概念 定义1 逆序—设j i ,是一对不等的正整数,若j i >,则称),(j i 为一对逆序。 定义2 逆序数—设n i i i Λ21是n ,,2,1Λ的一个排列,该排列所含逆序总数称为该排列的逆序数,记为)(21n i i i Λτ,逆序数为奇数的排列称为奇排列,逆序数为偶数的排列称为偶排列。 定义3 行列式—称nn n n n n a a a a a a a a a D Λ ΛΛΛΛΛΛ 21 22221112 11 = 称为n 阶行列式,规定 n n n nj j j j j j j j j a a a D ΛΛΛ21212121) ()1(∑-= τ 。 定义4 余子式与代数余子式—把行列式nn n n n n a a a a a a a a a D Λ ΛΛΛΛΛΛ 21 22221112 11 = 中元素ij a 所在的i 行元素和j 列元素去掉,剩下的1-n 行和1-n 列元素按照元素原来的排列次序构成的1-n 阶行列式,称为元素ij a 的余子式,记为ij M ,称ij j i ij M A +-=) 1(为元素ij a 的代数余子式。 (二)、几个特殊的高阶行列式 1、对角行列式—形如 n a a a Λ ΛO ΛΛΛΛ0 00 02 1 称为对角行列式,n n a a a a a a ΛΛ ΛO ΛΛΛΛ21210 00 0=。

考研线性代数知识点全面汇总

考研线性代数知识点全面汇总

————————————————————————————————作者:————————————————————————————————日期: 2

《线性代数》复习提纲 第一章、行列式 1.行列式的定义:用2n 个元素ij a 组成的记号称为n 阶行列式。 (1)它表示所有可能的取自不同行不同列的n 个元素乘积的代数和; (2)展开式共有n!项,其中符号正负各半; 2.行列式的计算 一阶|α|=α行列式,二、三阶行列式有对角线法则; N 阶(n ≥3)行列式的计算:降阶法 定理:n 阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。 方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。 特殊情况:上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积; ?行列式值为0的几种情况: Ⅰ 行列式某行(列)元素全为0; Ⅱ 行列式某行(列)的对应元素相同; Ⅲ 行列式某行(列)的元素对应成比例; Ⅳ 奇数阶的反对称行列式。 3.概念:全排列、排列的逆序数、奇排列、偶排列、余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:一个排列中任意两个元素对换,改变排列的奇偶性。 奇排列变为标准排列的对换次数为基数,偶排列为偶数。 n 阶行列式也可定义:n q q q n a a a ?=∑21t 2 1 1-D )(,t 为n q q q ?21的逆序数 4.行列式性质: 1、行列式与其转置行列式相等。 2、互换行列式两行或两列,行列式变号。若有两行(列)相等或成比例,则为行列式0。 3、行列式某行(列)乘数k,等于k 乘此行列式。行列式某行(列)的公因子可提到外面。 4、行列式某行(列)的元素都是两数之和,则此行列式等于两个行列式之和。 5、行列式某行(列)乘一个数加到另一行(列)上,行列式不变。 6、行列式等于他的任一行(列)的各元素与其对应代数余子式的乘积之和。(按行、列展开法则) 7、行列式某一行(列)与另一行(列)的对应元素的代数余子式乘积之和为0. 5.克拉默法则:

2020年考研线性代数重点内容和典型题型总结

XX年考研线性代数重点内容和典型题型总结线性代数在考研数学中占有重要地位,必须予以高度重视.线性代数试题的特点比较突出,以计算题为主,证明题为辅,因此,专家们提醒广大的xx年的考生们必须注重计算能力.线性代数在数学一、二、三中均占22%,所以考生要想取得高分,学好线代也是必要的。下面,就将线代中重点内容和典型题型做了总结,希望对xx年考研的同学 们学习有帮助。 行列式在整张试卷中所占比例不是很大,一般以填空题、选择题 为主,它是必考内容,不只是考察行列式的概念、性质、运算,与行列式有关的考题也不少,例如方阵的行列式、逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、正定二次型与正定矩阵等问题中都会涉及到行列式.如果试卷中没有独立的行列式的试题,必 然会在其他章、节的试题中得以体现.行列式的重点内容是掌握计算 行列式的方法,计算行列式的主要方法是降阶法,用按行、按列展开公式将行列式降阶.但在展开之前往往先用行列式的性质对行列式进 行恒等变形,化简之后再展开.另外,一些特殊的行列式(行和或列和相等的行列式、三对角行列式、爪型行列式等等)的计算方法也应掌握.常见题型有:数字型行列式的计算、抽象行列式的计算、含参数 的行列式的计算.关于每个重要题型的具体方法以及例题见《xx年全国硕士研究生入学统一考试数学120种常考题型精解》。 矩阵是线性代数的核心,是后续各章的基础.矩阵的概念、运算及理论贯穿线性代数的始终.这部分考点较多,重点考点有逆矩阵、伴

随矩阵及矩阵方程.涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题.这几年还经常出现有关初等变换与初等矩阵的命题.常见题型有以下几种:计算方阵的幂、与伴随矩阵相关联的命题、有关初等变换的命题、有关逆矩阵的计算与证明、解矩阵方程。 向量组的线性相关性是线性代数的重点,也是考研的重点。xx年的考生一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,还应与线性表出、向量组的秩及线性方程组等相联系,从各个侧面加强对线性相关性的理解.常见题型有:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。 往年考题中,方程组出现的频率较高,几乎每年都有考题,也是线性代数部分考查的重点内容.本章的重点内容有:齐次线性方程组有非零解和非齐次线性方程组有解的判定及解的结构、齐次线性方程组基础解系的求解与证明、齐次(非齐次)线性方程组的求解(含对参数取值的讨论).主要题型有:线性方程组的求解、方程组解向量的判别及解的性质、齐次线性方程组的基础解系、非齐次线性方程组的通解结构、两个方程组的公共解、同解问题。 特征值、特征向量是线性代数的重点内容,是考研的重点之一,题多分值大,共有三部分重点内容:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化.重点题型有:数

高等代数 矩阵练习题参考答案

第四章 矩阵习题参考答案 一、 判断题 1. 对于任意n 阶矩阵A ,B ,有A B A B +=+. 错. 2. 如果20,A =则0A =. 错.如2 11,0,011A A A ??==≠ ?--?? 但. 3. 如果2A A E +=,则A 为可逆矩阵. 正确.2()A A E A E A E +=?+=,因此A 可逆,且1A A E -=+. 4. 设,A B 都是n 阶非零矩阵,且0AB =,则,A B 的秩一个等于n ,一个小于n . 错.由0AB =可得()()r A r B n +≤.若一个秩等于n ,则该矩阵可逆,另一个秩为零,与两个都是非零矩阵矛盾.只可能两个秩都小于n . 5.C B A ,,为n 阶方阵,若,AC AB = 则.C B = 错.如112132,,112132A B C ?????? === ? ? ?------?????? ,有,AC AB =但B C ≠. 6.A 为n m ?矩阵,若,)(s A r =则存在m 阶可逆矩阵P 及n 阶可逆矩阵Q ,使 .00 0??? ? ? ?=s I PAQ 正确.右边为矩阵A 的等价标准形,矩阵A 等价于其标准形. 7.n 阶矩阵A 可逆,则*A 也可逆. 正确.由A 可逆可得||0A ≠,又**||AA A A A E ==.因此*A 也可逆,且11 (*)|| A A A -=. 8.设 B A ,为n 阶可逆矩阵,则.**)*(A B AB = 正确.*()()||||||.AB AB AB E A B E ==又 ()(**)(*)*||*||*||||AB B A A BB A A B EA B AA A B E ====. 因此()()*()(**)AB AB AB B A =.由B A ,为n 阶可逆矩阵可得AB 可逆,两边同时左乘式AB 的逆

考研数学线性代数行列式的计算方法

考研数学线性代数行列式的计算方法考研数学线性代数行列式的计算方法 一、基本内容及历年大纲要求。 本章内容包括行列式的定义、性质及展开定理。从整体上来看,历年大纲要求了解行列式的概念,掌握行列式的性质,会应用行列 式的性质及展开定理计算行列式。不过要想达到大纲中的要求还需 要考生理解排列、逆序、余子式、代数余子式的概念,以及性质中 的相关推论是如何得到的。 二、行列式在线性代数中的地位。 行列式是线性代数中最基本的运算之一,也是考生复习考研线性 代数必须掌握的基本技能之一(另一项基本技能是求解线性方程组),另外,行列式还是解决后续章节问题的一个重要工具,不论是后续 章节中出现的重要概念还是重要定理、解题方法等都与行列式有着 密切的联系。 三、行列式的计算。 由于行列式的计算贯穿整个学科,这就导致了它不仅计算方法灵活,而且出题方式也比较多变,这也是广大考生在复习线性代数时 面临的第一道关卡。虽然行列式的计算考查形式多变,但是从本质 上来讲可以分为两类:一是数值型行列式的计算;二是抽象型行列式 的计算。 1.数值型行列式的计算 主要方法有: (1)利用行列式的定义来求,这一方法适用任何数值型行列式的 计算,但是它计算量大,而且容易出错;

(2)利用公式,主要适用二阶、三阶行列式的计算; (3)利用展开定理,主要适用出现零元较多的行列式计算; (4)利用范德蒙行列式,主要适用于与它具有类似结构或形式的行列式计算; (5)利用三角化的思想,主要适用于高阶行列式的计算,其主要思想是找1,化0,展开。 2.抽象型行列式的计算 主要计算方法有: (1)利用行列式的性质,主要适用于矩阵或者行列式是以列向量的形式给出的; (2)利用矩阵的运算,主要适用于能分解成两个矩阵相乘的'行列式的计算; (3)利用矩阵的特征值,主要适用于已知或可以间接求出矩阵特征值的行列式的计算; (4)利用相关公式,主要适用于两个矩阵相乘或者是可以转化为两个矩阵相乘的行列式计算; (5)利用单位阵进行变形,主要适用于既不能不能利用行列式的性质又不能进行合并两个矩阵加和的行列式计算。 我们究竟该做多少年的真题? 建议大家在刚开始复习的时候,不要去做真题,因为以你刚开始复习的程度还不足以支撑起真题的难度和深度。我们做真题的时间是在我们的强化阶段结束之后,也就是提高阶段和冲刺模考去做真题。 应该怎么样去做真题? 第一:练习重质不重量

考研线性代数知识点归纳

1、行列式 1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1(1) n n D D -=-; 将D 顺时针或逆时针旋转90o ,所得行列式为2D ,则(1)2 2(1)n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、 (1)m n C A O A A B B O B C ==-g ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1(1)n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 7. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 1. A 是n 阶可逆矩阵: ?0A ≠(是非奇异矩阵); ?()r A n =(是满秩矩阵) ?A 的行(列)向量组线性无关; ?齐次方程组0Ax =有非零解; ?n b R ?∈,Ax b =总有唯一解;

行列式测试题(高等代数)

《高等代数》行列式(单元测试) 学院: 班级: 姓名: 学号: 教师: 一、填空题(每小题 3 分,共18 分) 1.填上适当的数字,使72__43__1为奇排列. 2.设 .21 22221 11211 d a a a a a a a a a nn n n n n = 则 ._____1 2 21 22211 121=n n nn n n a a a a a a a a a 3.设123,,x x x 是方程30x px q ++=的三个根,则行列式1 23 2 313 2 1 x x x x x x x x x 的值是-____________. 4.行列式1 1 1 11 1 11 ---x 的展开式中,x 的系数是_____. 5.设ij ij A M ,分别是行列式D 中元素ij a 的余子式,代数余子式,则._____1,1,=+++i i i i A M 6. 行列式 1 234 000 00 000 a a a a 的所有代数余子式之和为__________________________.

二、判断说理(每小题5 分,共15 分) 1.排列 j i 与排列 i j 排列的反序数相差1. ( ) 2.D=0, 则互换D 的任意两行或两列,D 的值仍为零.. ( ) 3.ij ij A a D ,3 3?=为ij a 的代数余子式,则0231322122111=++A a A a A a . ( ) 三、计算题(共47分) 1(16分)、x a a a a x a a a a x a a a a x D ------=

2020年考研数学一大纲:线性代数

2020年考研数学一大纲:线性代数 出国留学考研网为大家提供2018年考研数学一大纲:线性代数,更多考研资讯请关注我们网站的更新! 2018年考研数学一大纲:线性代数 线性代数 一、行列式考试内容 行列式的概念和基本性质行列式按行(列)展开定理 考试要求 1.了解行列式的概念,掌握行列式的性质. 2.会应用行列式的性质和行列式按行(列)展开定理计算行列式. 二、矩阵考试内容 矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩 阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求 1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质. 2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质. 3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵. 4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵 的方法.

5.了解分块矩阵及其运算. 三、向量 考试内容 向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与 矩阵的秩之间的关系向量空间及其相关概念维向量空间的基变换和 坐标变换过渡矩阵向量的内积线性无关向量组的正交规范化方法规 范正交基正交矩阵及其性质 考试要求 1.理解n维向量、向量的线性组合与线性表示的概念. 2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法. 3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩. 4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系. 5.了解n维向量空间、子空间、基底、维数、坐标等概念. 6.了解基变换和坐标变换公式,会求过渡矩阵. 7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法. 8.了解规范正交基、正交矩阵的概念以及它们的性质. 四、线性方程组 考试内容 线性方程组的克拉默(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的

高等代数考研真题 第二章 行列式

第二章 1.(北师大2003-25) 1.计算行列式87162534的逆序数,并依次将上述排列变成12345678的所有对换 2.设n 个数码的排列121n n i ,i ,...i ,i -的逆序数是k ,那么排列321n n n i ,i ,...i ,i i -的逆序数是多少?请说明理由。 2.计算下列行列式(每小题6分,共12分) D= 2 132301211432 2 1 1 ---的值。 3.(成电科大,2003)计算下列行列式(每小题6分,共12分) 1.32222 3222 2322 2 2 2 3 n ......D ..................=D .= 2.2 3 232 3 122 2 111114441 5 5 5 D = 4.(中科武汉2004-15)计算行列式 1 111111222221223331 2 3 4 111111n n n ...b a a a ...a a b b a a ...a a D b b b a ...a a .....................b b b b ... b a =

5(成电科大2004-10分)求证:1 2 123411123211 123211 1431121 1 n n n ...n n ...n n x ...n n D ()x x x ...n n .....................x x x (x) x x ... x +------==--- 6.(北工大,2002-10分)计算行列式0121 110001000100010 n n n a ...a x ...a x ...D ..................a ...x a ... x +-----的值。 7(东北大学,2001-10分)计算下列行列式1 1 1 1 2n n n n n a c a c D (n )d b d b = 8.(东北大学,2002-10分)11 111n a a a D a a +--+= --+ 9.(北航,2001 10分)已知a>>0,证明n 阶行列式10001 1000100000010 1 a ...a ...a ...D (n ).....................a ... a --= ≥--

2020考研 线性代数_常用公式

考研数学线性代数常用公式 数学考研考前必背常考公式集锦。希望对考生在暑期的复习中有所帮助。本文内容为线性代数的常考公式汇总。 1、行列式的展开定理 行列式的值等于其任何一行(或列)所有元素与其对应的代数余子式乘积之 和,即 C 的 3、设A 为n 阶方阵,*A 为它的伴随矩阵则有**==AA A A A E . 设A 为n 阶方阵,那么当AB =E 或BA =E 时,有1-B =A 4、 对单位矩阵实施一次初等变换得到的矩阵称之为初等矩阵.由于初等变换有三种,初等矩阵也就有三种: 第一种:交换单位矩阵的第i 行和第j 行得到的初等矩阵记作ij E ,该矩阵也

可以看做交换单位矩阵的第i 列和第j 列得到的.如1,3001010100?? ?= ? ?? ?E . 第二种:将一个非零数k 乘到单位矩阵的第i 行得到的初等矩阵记作()i k E ;该矩阵也可以看做将单位矩阵第i 列乘以非零数k 得到的.如 2100(5)050001?? ?-=- ? ?? ?E . 第三种:将单位矩阵的第i 行的k 倍加到第j 行上得到的初等矩阵记作()ij k E ;该矩阵也可以看做将单位矩阵的第j 列的k 倍加到第i 列上得到的.如 3,2100(2)012001?? ?-=- ? ??? E . 注: 1)初等矩阵都只能是单位矩阵一次初等变换之后得到的. 2)对每个初等矩阵,都要从行和列的两个角度来理解它,这在上面的定义中已经说明了.尤其需要注意初等矩阵()ij k E 看做列变换是将单位矩阵第j 列的k 倍加到第i 列,这一点考生比较容易犯错. 5、矩阵A 最高阶非零子式的阶数称之为矩阵A 的秩,记为()r A . 1)()()(),0r r r k k ==≠T A A A ; 2)()1r ≠?≥A O A ; 3)()1r =?≠A A O 且A 各行元素成比例; 4)设A 为n 阶矩阵,则()0r n =?≠A A . 6、线性表出 设12,,...,m ααα是m 个n 维向量,12,,...m k k k 是m 个常数,则称1122...m m k k k ααα+++为向量组12,,...,m ααα的一个线性组合. 设12,,...,m ααα是m 个n 维向量,β是一个n 维向量,如果β为向量组

高等代数作业第二章行列式答案

第二章 行列式 §1—§4 一、填空题 1.填上适当的数字,使72__43__1为奇排列. 6,5 2.四阶行列式4 4?=ij a D 中,含24a 且带负号的项为_____. 112433421224314313243241,,a a a a a a a a a a a a 3.设.21 22221 112 11 d a a a a a a a a a nn n n n n =Λ ΛΛΛΛ ΛΛ 则._____1 2 21 22211 121=n n nn n n a a a a a a a a a Λ Λ ΛΛΛΛ Λ (1) 2(1)n n d -- 4.行列式1 1 1 11 1 11 ---x 的展开式中, x 的系数是_____. 2 二、判断题 1. 若行列式中有两行对应元素互为相反数,则行列式的值为0 ( )√ 2. 设d = nn n n n n a a a a a a a a a ΛΛΛΛΛΛΛ212222111211 则1211122221 21 n n n nn n a a a a a a a a a L L L L L L L =d ( )× 3. 设d = nn n n n n a a a a a a a a a ΛΛΛΛΛΛΛ21 22221 11211 则 d a a a a a a a a a n nn n n n -=11211 2122221ΛΛΛ ΛΛΛ ΛΛ( )× 4. abcd z z z d y y c x b a =000000 ( ) √ 5. abcd d c x b y x a z y x -=0 000 00 ( )× 6. 00 00000=y x h g f e d c b a ( ) √ 7. 如果行列式D 的元素都是整数,则D 的值也是整数。( )√ 8. 如果行列D 的元素都是自然数,则D 的值也是自然数。( )× 9. n n a a a a a a ΛN 212 1 = ( )× 10. 0 10000 2000 010 Λ ΛΛΛΛΛΛ ΛΛn n -=n ! ( )× 三、选择题

高等代数行列式计算方法

第2章 n 级行列式的计算方法 2.1 定义法 对于含非零元素较少的行列式,用定义计算非常方便。由定义可知, n 级行列式共有!n 项,每一项的一般形式为 1212()12(1),n n r j j j j j nj a a a - 若每一项n 个元素的乘积中有零因子,则该 项的值为零。若零元素较多,则值为零的项就越多,此时找出那些不为零的项就可求出行列式的值。 例1 计算n 级行列式 000010002001000 0000 D n n =- 2.2 利用行列式的性质 例2 计算n 级行列式 11 12 121 2221 2n n n n n n x y x y x y x y x y x y D x y x y x y ------= --- . 解 当1n =时,11D x y =-; 当2n =时,1212()()D x x y y =--;

当3n ≥时,把第一行的1-倍分别加到第i 行,2,3,,,i n = 行列式的值不变,得 11 12121 2121 1 11 n n n n x y x y x y x x x x x x D x x x x x x ------= =--- 综上可得 111212(1)()()(2) 0(3)x y n D x x y y n n -=?? =--=??≥? 2.3 三角化法 由于上三角行列式或下三角行列式的值都等于主对角线上的元素的积。故可利用行列式的性质,采用“化零”的方法。充分利用行列式中元素间具有某些特点及行列式性质,化为三角形行列式。 例4 计算n 级行列式 n x b b b b x b b D b b x b b b b x = 解 这行列式的特点是每行和相等,根据行列式的性质,把

线性代数公式大全

线性代数公式大全——最新修订 1、行列式 1. n 行列式共有2n 个元素..,展开后有!n 项.,可分解为2n 行列式... ; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1(1) n n D D -=-; 将D 顺时针或逆时针旋转90 ,所得行列式为2D ,则(1)2 2(1) n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、(1)m n C A O A A B B O B C ==- ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1(1)n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 7. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解(即有无穷多个解); ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 1. A 是n 阶可逆矩阵: ?0A ≠(是非奇异矩阵); ?()r A n =(是满秩矩阵) ?A 的行(列)向量组线性无关; ?齐次方程组0Ax =只有有零解; ?n b R ?∈,Ax b =总有唯一解;

高等代数 第四章 矩阵练习题参考答案,DOC

第四章矩阵习题参考答案 一、 判断题 1. 对于任意n 阶矩阵A ,B ,有A B A B +=+. 错.如112132,,112132A B C ?????? === ? ? ?------?????? , 有,AC AB =但B C ≠. 6.A 为n m ?矩阵,若,)(s A r =则存在m 阶可逆矩阵P 及n 阶可逆矩阵Q ,使.00 0??? ? ??=s I PAQ

正确.右边为矩阵A的等价标准形,矩阵A等价于其标准形. 7.n阶矩阵A可逆,则*A也可逆. 正确.由A可逆可得||0 A≠,又**|| AA A A A E ==.因此*A也可逆, 11 - 2.设A是任意一个n阶矩阵,那么(A)是对称矩阵. (A)T A A(B)T A A -(C)2A(D)T A A - 3.以下结论不正确的是(C). (A)如果A是上三角矩阵,则2A也是上三角矩阵; 2

(B)如果A是对称矩阵,则2A也是对称矩阵; (C)如果A是反对称矩阵,则2A也是反对称矩阵; (D)如果A是对角阵,则2A也是对角阵. 4.A是m k ?矩阵,B是k t?矩阵,若B的第j列元素全为零,则下 7.A是m n ?矩阵,则(B). ?矩阵,B是n m (A)当m n AB≠; >时,必有行列式0 (B)当m n AB= >时,必有行列式0

4 (C) 当n m >时,必有行列式0AB ≠; (D) 当n m >时,必有行列式0AB =. AB 为m 阶方阵,当m n >时,(),(),r A n r B n ≤≤因此()r AB n m ≤<, 所以0AB =. 12341320 ? ??? 因此(A ),(B )中向量组均为线性相关的,而(D )显然为线性相关的,因此答案为(C ).由

(精选)高等代数作业 第二章行列式答案

高等代数第四次作业 第二章 行列式 §1—§4 一、填空题 1.填上适当的数字,使72__43__1为奇排列. 6,5 2.四阶行列式4 4?=ij a D 中,含24a 且带负号的项为_____. 112433421224314313243241,,a a a a a a a a a a a a 3.设.21 22221 112 11 d a a a a a a a a a nn n n n n =Λ ΛΛΛΛ ΛΛ 则._____1 2 21 22211 121=n n nn n n a a a a a a a a a Λ Λ ΛΛΛΛ Λ (1) 2(1)n n d -- 4.行列式1 1 1 11 1 11 ---x 的展开式中, x 的系数是_____. 2 二、判断题 1. 若行列式中有两行对应元素互为相反数,则行列式的值为0 ( )√ 2. 设d = nn n n n n a a a a a a a a a ΛΛΛΛ ΛΛΛ2122221 11211 则1211122221 21 n n n nn n a a a a a a a a a L L L L L L L =d ( )× 3. 设d = nn n n n n a a a a a a a a a ΛΛΛΛΛΛΛ21 22221 11211 则 d a a a a a a a a a n nn n n n -=11211 2122221ΛΛΛ ΛΛΛ ΛΛ( )× 4. abcd z z z d y y c x b a =000000 ( ) √ 5. abcd d c x b y x a z y x -=0 000 00 ( )× 6. 00 00000=y x h g f e d c b a ( ) √ 7. 如果行列式D 的元素都是整数,则D 的值也是整数。( )√ 8. 如果行列D 的元素都是自然数,则D 的值也是自然数。( )× 9. n n a a a a a a ΛN 212 1 = ( )× 10. 0 10000 2000 010 Λ ΛΛΛΛΛΛ ΛΛn n -=n ! ( )×

考研线性代数大总结

1、行列式 1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1(1)n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)2 2(1)n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1)n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、(1)m n C A O A A B B O B C ==- ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1 (1)n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 7. 证明0A =的方法: ①、 A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 1. A 是n 阶可逆矩阵: ?0A ≠(是非奇异矩阵);

《高等代数与解析几何》第二章 行列式专题练习

第二章 行列式专题练习 一、选择题 1、行列式1 02211 3 21的代数余子式13A 的值是( ) (A )3 (B )1- (C )1 (D )2- 2.行列式01 1102 1 2=-k k 的充分必要条件是 ( ) (A )2=k (B )2-=k (C )3=k (D )2-=k or 3 3.方程09 3 142 112 =x x 根的个数是( ) (A )0 (B )1 (C )2 (D )3 4.下列构成六阶行列式展开式的各项中,取“+”的有 ( ) (A )665144322315a a a a a a (B )655344322611a a a a a a (C )346542165321a a a a a a (D )266544133251a a a a a a 5. n 阶行列式的展开式中,取“–”号的项有( )项 (A )2!n (B )22n (C )2 n (D )2) 1(-n n 6.若55443211) 541() 1(a a a a a l k l k N -是五阶行列式的一项,则l k ,的值及该项的符号为( ) (A )3,2==l k ,符号为正; (B )3,2==l k ,符号为负; (C )2,3==l k ,符号为正; (D )2,3==l k ,符号为负 7.下列n (n >2)阶行列式的值必为零的是 ( ) A 行列式主对角线上的元素全为零 B 三角形行列式主对角线上有一个元素为零 C 行列式零的元素的个数多于n 个 D 行列式非零元素的个数小于n 个 8.如果033 32 31 232221 131211 ≠==M a a a a a a a a a D ,则33 32 31 232221 13 12111222222222a a a a a a a a a D = = ( ) (A )2 M (B )-2 M (C )8 M (D )-8 M

2020考研农学门类联考数学大纲:线性代数

2020考研农学门类联考数学大纲:线性代数 出国留学考研网为大家提供2017考研农学门类联考数学大纲:线性代数,更多考研资讯请关注我们网站的更新! 2017考研农学门类联考数学大纲:线性代数 一、行列式 考试内容 行列式的概念和基本性质行列式按行(列)展开定理 考试要求 1.了解行列式的概念,掌握行列式的性质. 2.会应用行列式的性质和行列式按行(列)展开定理计算行列式. 二、矩阵 考试内容 矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价 考试要求 1.理解矩阵的概念,了解单位矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质. 2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质. 3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,了解伴随矩阵的概念,会用伴随矩阵求逆矩阵.

4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法. 三、向量 考试内容 向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系 考试要求 1.了解向量的概念,掌握向量的加法和数乘运算法则. 2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法. 3.理解向量组的极大线性无关组和秩的概念,会求向量组的极大线性无关组及秩. 4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩之间的关系. 四、线性方程组 考试内容 线性方程组的克拉默(Cramer)法则线性方程组有解和无解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线性方程组的解之间的关系非齐次线性方程组的通解 考试要求 1.会用克拉默法则解线性方程组. 2.掌握非齐次线性方程组有解和无解的判定方法. 3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.

高等代数教师教学案(北大版)行列式计算方法

行列式计算方法 1. 利用行列式的定义直接计算:适用于行列式中零比较多的情形. 2. 化行列式为三角形行列式——初等变换法 1) 保留某行(列)不动,将其它的行(列)分别乘上常数加到这一行(列) 上。 2) 将某行(列)的倍数分别加到其它各行(列) 3) 逐行(列)相加 4) 加边法——在原行列式的边上增加一行一列,使行列式级数增加1, 但值不变。 例1 计算行列式 12121 2 n n n n a m a a a a m a D a a a m ++= +L L M M M L 3. 利用行列式展开定理。适用于某行(列)有较多零的行列式. 4. 其他方法 (一)析因子法——利用多项式的性质 例:计算22 1 1231223231 5 2 3 19x D x -=- 解:由行列式定义知D 为x 的4次多项式. 又,当1x =±时,1,2行相同,有0D =,1x ∴=±为D 的根. 当2x =±时,3,4行相同,有0,2D x =∴=±为D 的根. 故D 有4个一次因式,1,1,2,2x x x x +-+- 设 (1)(1)(2)(2),D a x x x x =+-+- 令0,x =则 1123 12231223152319 D = =-, 即,1(1)2(2)12.a ??-??-=- 3.a ∴=- 3(1)(1)(2)(2)D x x x x ∴=-+-+-

(二)箭形行列式 01211122 00 00,0,1,2,3.00n n i n n a b b b c a D c a a i n c a +=≠=L L L L L L L L L L 解:把所有的第1i +列(1,2)i n =L 的i i c a - 倍加到第1列,得:11201 ()n i i n n i i b c D a a a a a +==-∑ L 可转为箭形行列式的行列式: 121111111) 11 1n a a a +++L L L L L L L 122) n a x x x a x x x a L L L L L L L (第2至第n 行分别减去第1行,转为箭形行列式) (三)所有行(列)对应元素相加后相等的行列式 ()(1)1(1)11) (1)(1)1a b b a n b b b b b b a b a n b a b a b a n b b b a a n b b a b a +-+-==+-+-L L L L L L M M M M M M M M M M M L L L ()111(1,2)00()(1)00 i n b b r r i n a b a b a n b a b --=-=-+--L L L M M M M L 12123112312 3411 341(1) 2) 211321132 12221 1221 n n n n n n n n n c c c n n n n n n n n n n n n --++++---------L L L L M M M L M M M M M L M M L L L L L

相关主题
文本预览
相关文档 最新文档