当前位置:文档之家› 扫描电镜的结构、原理及其操作使用

扫描电镜的结构、原理及其操作使用

扫描电镜

的结构、原理

及其操作使用

一、实验目的

?了解扫描电镜的工作原理及构造。?初步学习Sirion200场发射扫描电镜的操作方法。

?利用二次电子像对断口形貌进行观察。

二、扫描电镜的构造

优点:

?景深长、图像富有立体感;

?图像的放大倍率可在大范围内连续改变,而且分辨率高;

?样品制备方法简单,可动范围大,便于观察;?样品的辐照损伤及污染程度较小;

?可实现多功能分析。

二、扫描电镜的构造

构成:

?电子光学系统,包括电子枪、电磁透镜和扫描线圈等;

?机械系统,包括支撑部分、样品室;

?真空系统;

?样品所产生信号的收集、处理和显示系统。

二、扫描电镜的构造

图1

Sirion 200

扫描电镜外

观照片

二、扫描电镜的构造

图2

扫描电子显微镜

构造示意图

(a)系统方框图

二、扫描电镜的构造

图2

扫描电子显微镜构

造示意图

(b) 电子光路图

电子光学系统包括:

?电子枪

?电磁聚光镜

?扫描线圈

?光阑组件

二、扫描电镜的构造?电子枪

为了获得较高的信号强度和扫描像,由电子枪发射的扫描电子束应具有较高的亮度和尽可能小的束斑直径。

常用的电子枪有三种:普通热阴极三极电子枪、六硼化镧阴极电子枪和场发射电子枪,其性能如表1所示。

二、扫描电镜的构造

表1 几种类型电子枪性能比较

二、扫描电镜的构造

(a)热电子发射型电子枪(b)热阴极场发射电子枪

图3 电子枪构造示意图

二、扫描电镜的构造?电磁聚光镜

其功能是把电子枪的束斑逐级聚焦缩小,因照射到样品上的电子束光斑越小,其分辨率就愈高。

扫描电镜通常都有三个聚光镜,前两个是强透镜,缩小束斑,第三个透镜是弱透镜,焦距长,便于在样品室和聚光镜之间装入各种信号探测器。

为了降低电子束的发散程度,每级聚光镜都装有光阑。为了消除像散,装有消像散器。

?扫描线圈

其作用是使电子束偏转,并在样品表面作有规则的扫动,电子束在样品上的扫描动作和在显像管上的扫描动作由同一扫描发生器控制,保持严格同步。

当电子束进入偏转线圈时,方向发生转折,随后又由下偏转线圈使它的方向发生第二次转折,再通过末级透镜的光心射到样品表面。在上下偏转线圈的作用下,在样品表面扫描出方形区域,相应地在样品上也画出一副比例图像。

扫描电镜的倍率放大是通过改变电子束偏转角度来实现放大倍率的调节。因为观察用的荧光屏尺寸是一定的,所以电子束偏转角越小,在试样上扫描面积越小,其放大倍率M 越大。

放大倍率一般是20~20×104倍。

()

()

c s A CRT M A 上扫描振幅电子束在样品表面扫描振幅

二、扫描电镜的构造

(a)光栅扫描(b)角光栅扫描

图4

表面

机械系统包括:

?支撑部分

?样品室

样品室中有样品台和信号探测器,样品台除了能夹持一定尺寸的样品,还能使样品作平移、倾斜、转动等运动,同时样品还可在样品台上加热、冷却和进行力学性能实验(如拉伸和疲劳)。

?真空系统

如果真空度不足,除样品被严重污染外,还会出现灯丝寿命下降,极间放电等问题。

对于像Sirion200型这种场发射灯丝扫描电镜而言,样品室的真空一般不得低于1×10-5Pa,它由机械真空泵和分子泵来实现;电镜镜筒和灯丝室的真空不得低于4×10-7Pa,它由离

子泵来实现。

?信号的收集、处理和显示系统样品在入射电子束作用下会产生各种物理信号,有二次电子、背散射电子、特征X射线、阴极荧光和透射电子。

不同的物理信号要用不同类型的检测系统。它大致可分为三大类,即电子检测器、阴

极荧光检测器和X射线检测器。

二、扫描电镜的构造

常用的检测系统为闪烁计数器,它位于样品上侧,由闪烁体,光导

管和光电倍增器所组成,如图5所示。

二、扫描电镜的构造

图5 电子检测器

扫描电镜及其在储层研究中的应用分析

扫描电镜测试技术原理及其在储层研究中的应用 1、扫描电镜的结构和工作原理 扫描电镜的主要构成分为四部分:镜筒、电子信号的显示与记录系统、电子信号的收集与处理系统、真空系统及电源系统(图1)。以下是各部分的简介和工作原理。 1.1扫描电镜结构 1.1.1镜筒 镜筒包括电子枪、聚光镜、物镜及扫描系统,其作用是产生很细的电子束(直径约几个nm),并且使该电子束在样品表面进行扫描,同时激发出各种信号。 1.1.2电子信号的收集与处理系统 在样品室中,扫描电子束与样品发生相互作用后产生多种信号,其中包括二次电子、背散射电子、X射线、吸收电子、俄歇(Auger)电子等。在上述信号中,最主要的是二次电子,它是被入射电子所激发出来的样品原子中的外层电子,产生于样品表面以下几nm 至几十nm 的区域,其产生率主要取决于样品的形貌和成份。通常所说的扫描电镜图像指的就是二次电子像,它是研究样品表面形貌的最有用的电子信号。检测二次电子的检测器的探头是一个闪烁体,当电子打到闪烁体上时,就在其中产生光,这种光被光导管传送到光电倍增管,光信号即被转变成电流信号,再经前置放大及视频放大,将电流信号转变成电压信号,最后被送到显像管的栅极。 1.1.3电子信号的显示与记录系统 扫描电镜的图像显示在阴极射线管(显像管)上,并由照相机拍照记录。显像管有两个,一个用来观察,分辨率较低,是长余辉的管子;另一个用来照相记录,分辨率较高,是短余辉的管子。 1.1.4真空系统及电源系统 扫描电镜的真空系统由机械泵和油扩散泵组成,其作用是使镜筒内达到10 托的真空度。电源系统则供给各部件所需的特定电源。

图1 扫描电镜结构图 1.2扫描电镜的基本原理 扫描电镜的电子枪发射出电子束,电子在电场的作用下加速,经过两次电磁透镜的作用后在样品表而聚焦成极细的电子束。该细小的电子束在末透镜的上方的双偏转线圈作用下在样品表而进行扫描,被加速的电子与样品相互作用,激发出各种信号,如二次电子,背散射电子,吸收电子、X射线、俄歇电子、阴极发光等。这些信号被按顺序、成比例的交换成视频信号、检测放大处理成像,从而在荧光屏上观察到样品表而的各种特征图像。 2、扫描电镜在矿物岩石学领域的应用 2.1矿物研究 不同矿物在扫描电镜中会呈现出其特征的形貌,这是在扫描电镜中鉴定矿物的重要依据。如高岭石在扫描电镜中常呈假六方片状、假六方板状、假六方似板状;埃洛石常呈管状、长管状、圆球状;蒙脱石为卷曲的薄片状;绿泥石单晶呈六角板状,集合体呈叶片状堆积或定向排列等。王宗霞等在扫描电镜下观察了硅藻上的形貌,硅藻上多呈圆盘状、板状,根据这一特征即可将它鉴定出来。 矿物特征及残余结构可以推断其成岩环境和搬运演化历史,扫描电镜可对矿 物的结构和成分进行分析,为推断矿物的成岩环境和搬运演化历史提供基础资

扫描电镜的原理及其在材料科学领域的应用

一、扫描电镜的原理 扫描电镜(Scanning Electron Microscope),简写为SEM,是一个复杂的系统,浓缩了电子光学技术、真空技术、精细机械结构以及现代计算机控制技术。 扫描电镜的基本工作过程如图1,用电子束在样品表面扫描,同时,阴极射线管内的电子束与样品表面的电子束同步扫描,将电子束在样品上激发的各种信号用探测器接收,并用它来调制显像管中扫描电子束的强度,在阴极射线管的屏幕上就得到了相应衬度的扫描电子显微像。电子束在样品表面扫描,与样品发生各种不同的相互作用,产生不同信号,获得的相应的显微像的意义也不一样。入射电子与试样相互作用产生图2所示的信息种类[1-4]。 这些信息的二维强度分布随试样表面的特征而变(这些特征有表面形貌、成分、晶体取向、电磁特性等),是将各种探测器收集到的信息按顺序、成比率地转换成视频信号,再传送到同步扫描的显像管并调制其亮度,就可以得到一个反应试样表面状况的扫描图如果将探测器接收到的信号进行数字化处理即转变成数字信号,就可以由计算机做进一步的处理和存储扫描电镜主要是针对具有高低差较大、粗糙不平的厚块试样进行观察,因而在设计上突出了景深效果,一般用来分析断口以及未经人工处理的自然表面。 图1 扫描电子显微镜的工作原理图2 电子束探针照射试样产生的各种信息 扫描电子显微镜(SEM)中的各种信号及其功能如表1所示 表1 扫描电镜中主要信号及其功能 二、扫描电镜的构成

图3给出了电镜的电子光学部分的剖面图。主要包括以下几个部分: 1.电子枪——产生和加速电子。由灯丝系统和加速管两部分组成 2.照明系统——聚集电子使之成为有一定强度的电子束。由两级聚光镜组合而 成。 3.样品室——样品台,交换,倾斜和移动样品的装置。 4.成像系统——像的形成和放大。由物镜、中间镜和投影镜组成的三级放大系 统。调节物镜电流可改变样品成像的离焦量。调节中间镜电流可以改变整个系统的放大倍数。 5.观察室——观察像的空间,由荧光屏组成。 6.照相室——记录像的地方。 7.除了上述的电子光学部分外,还有电气系统和真空系统。提供电镜的各种电 压、电流及完成控制功能[3]。 图3 电镜的电子光学部分剖面图

扫描电镜的基本结构和工作原理

扫描电镜的基本结构和工作原理 扫描电子显微镜利用细聚焦电子束在样品表面逐点扫描,与样品相互作用产行各种物理信号,这些信号经检测器接收、放大并转换成调制信号,最后在荧光屏上显示反映样品表面各种特征的图像。扫描电镜具有景深大、图像立体感强、放大倍数范围大、连续可调、分辨率高、样品室空间大且样品制备简单等特点,是进行样品表面研究的有效分析工具。 扫描电镜所需的加速电压比透射电镜要低得多,一般约在1~30kV,实验时可根据被分析样品的性质适当地选择,最常用的加速电压约在20kV左右。扫描电镜的图像放大倍数在一定范围内(几十倍到几十万倍)可以实现连续调整,放大倍数等于荧光屏上显示的图像横向长度与电子束在样品上横向扫描的实际长度之比。扫描电镜的电子光学系统与透射电镜有所不同,其作用仅仅是为了提供扫描电子束,作为使样品产生各种物理信号的激发源。扫描电镜最常使用的是二次电子信号和背散射电子信号,前者用于显示表面形貌衬度,后者用于显示原子序数衬度。 扫描电镜的基本结构可分为电子光学系统、扫描系统、信号检测放大系统、图像显示和记录系统、真空系统和电源及控制系统六大部分。这一部分的实验内容可参照教材第十二章,并结合实验室现有的扫描电镜进行,在此不作详细介绍。 三、扫描电镜图像衬度观察 1.样品制备 扫描电镜的优点之一是样品制备简单,对于新鲜的金属断口样品不需要做任何处理,可以直接进行观察。但在有些情况下需对样品进行必要的处理。 1) 样品表面附着有灰尘和油污,可用有机溶剂(乙醇或丙酮)在超声波清洗器中清洗。 2) 样品表面锈蚀或严重氧化,采用化学清洗或电解的方法处理。清洗时可能会失去一些表面形貌特征的细节,操作过程中应该注意。 3) 对于不导电的样品,观察前需在表面喷镀一层导电金属或碳,镀膜厚度控制在5-10nm 为宜。 2.表面形貌衬度观察 二次电子信号来自于样品表面层5~l0nm,信号的强度对样品微区表面相对于入射束的取向非常敏感,随着样品表面相对于入射束的倾角增大,二次电子的产额增多。因此,二次电子像适合于显示表面形貌衬度。 二次电子像的分辨率较高,一般约在3~6nm。其分辨率的高低主要取决于束斑直径,而实际上真正达到的分辨率与样品本身的性质、制备方法,以及电镜的操作条件如高匝、扫描速度、光强度、工作距离、样品的倾斜角等因素有关,在最理想的状态下,目前可达的最佳分辩率为lnm。 扫描电镜图像表面形貌衬度几乎可以用于显示任何样品表面的超微信息,其应用已渗透到许多科学研究领域,在失效分析、刑事案件侦破、病理诊断等技术部门也得到广泛应用。在材料科学研究领域,表面形貌衬度在断口分析等方面显示有突出的优越性。下面就以断口分析等方面的研究为例说明表面形貌衬度的应用。 利用试样或构件断口的二次电子像所显示的表面形貌特征,可以获得有关裂纹的起源、裂纹扩展的途径以及断裂方式等信息,根据断口的微观形貌特征可以分析裂纹萌生的原因、裂纹的扩展途径以及断裂机制。图实5-1是比较常见的金属断口形貌二次电子像。较典型的

SEM扫描电镜结构与断口观察

扫描电镜结构与断口观察 一、实验目的: 1、了解扫描电镜的基本结构,成相原理; 2、掌握电子束与固体样品作用时产生的信号和各种信号在测试分析中的作用; 3、了解扫描电镜基本操作规程; 4、掌握扫描电镜样品制备技术; 5、掌握韧性断裂、脆性断裂的典型断口形貌。 二、实验原理: 1、扫描电子显微镜的构造和工作原理: 扫描电子显微镜(Scanning Electronic Microscopy, SEM)。扫描电镜是介于透射电镜和光学显微镜之间的一种微观性貌观察手段,扫描电镜的优点是,①有较高的放大倍数,20-30万倍之间连续可调;②有很大的景深,视野大,成像富有立体感,可直接观察各种试样凹凸不平表面的细微结构;③试样制备简单。目前的扫描电镜都配有X射线能谱仪装置,这样可以同时进行显微组织性貌的观察和微区成分分析,因此它像透射电镜一样是当今十分有用的科学研究仪器。 扫描电子显微镜是由电子光学系统,信号收集处理、图象显示和记录系统,真空系统三个基本部分组成。 其中电子光学系统包括电子枪、电磁透镜、扫描线圈和样品室。扫描电子显微镜中的各个电磁透镜不做成相透镜用,而是起到将电子束逐级缩小的聚光作用。一般有三个聚光镜,前两个是强磁透镜,可把电子束缩小;第三个透镜是弱磁透镜,具有较长的焦距以便使样品和透镜之间留有一定的空间,装入各种信号接收器。扫描电子显微镜中射到样品上的电子束直径越小,就相当于成相单元的尺寸越小,相应的放大倍数就越高。 扫描线圈的作用是使电子束偏转,并在样品表面做有规则的扫动。电子束在样品上的扫描动作和显相管上的扫描动作保持严格同步,因为它们是由同一个扫描发生器控制的。电子束在样品表面有两种扫描方式,进行形貌分析时都采用光栅扫描方式,当电子束进入上偏转线圈时,方向发生转折,随后又有下偏转线圈使它的方向发生第二次转折。发生二次偏转的电子束通过末级透镜的光心射到样品表面。在电子束偏转的同时还带用逐行扫描的动作,电子束在上下偏转线圈的作用下,在样品表面扫描出方形区域,相应地在样品上也画出一帧比例图像。样品上各点受到电子束轰击时发出的信号可由信号探测器收集,并通过显示系统在

简述扫描电镜的构造及成像原理资料讲解

简述扫描电镜的构造及成像原理,试分析其与透射电镜在样品表征方面的异同 1、扫描电镜的构造 扫描电镜由电子光学系统、信号收集和图像显示系统、和真空系统三部分组成。 1.1 电子光学系统(镜筒) 电子光学系统包括电子枪、电磁透镜、扫描线圈和样品室。 1.1.1 电子枪扫描电子显微镜中的电子枪与透射电镜的电子枪相似,只是加速电压比透射电镜低。 1.1.2 电磁透镜扫描电子显微镜中各电磁透镜都不作成像透镜用,而是做聚光镜用,它们的功能只是把电子枪的束斑逐级聚焦缩小,使原来直径约为50um的束斑缩小成一个只有数个纳米的细小斑点,要达到这样的缩小倍数,必须用几个透镜来完成。扫描电子显微镜一般都有三个聚光镜,前两个聚光镜是强磁透镜,可把电子束光斑缩小,第三个聚光镜是弱磁透镜,具有较长的焦距。布置这个末级透镜(习惯上称之物镜)的目的在于使样品室和透镜之间留有一定空间,以便装入各种信号探测器。扫描电子显微镜中照射到样品上的电子束直径越小,就相当于成像单元的尺寸越小,相应的分辨率就越高。采用普通热阴极电子枪时,扫描电子束的束径可达到6nm左右。若采用六硼化镧阴极和场发射电子枪,电子束束径还可进一步缩小。

1.1.3 扫描线圈扫描线圈的作用是使电子束偏转,并在样品表面作有规则的扫动,电子束在样品上的扫描动作和显像管上的扫描动作保持严格同步,因为它们是由同一扫描发生器控制的。 1.1.4 样品室样品室内除放置样品外,还安置信号探测器。各种不同信号的收集和相应检测器的安放位置有很大关系,如果安置不当,则有可能收不到信号或收到的信号很弱,从而影响分析精度。样品台本身是一个复杂而精密的组件,它应能夹持一定尺寸的样品,并能使样品作平移、倾斜和转动等运动,以利于对样品上每一特定位置进行各种分析。新式扫描电子显微镜的样品室实际上是一个微型试验室,它带有许多附件,可使样品在样品台上加热、冷却和进行机械性能试验(如拉伸和疲劳)。 1.2 信号的收集和图像显示系统 二次电子、背散射电子和透射电子的信号都可采用闪烁计数器来检测。信号电子进入闪烁体后即引起电离,当离子和自由电子复合后就产生可见光。可见光信号通过光导管送入光电倍增器,光信号放大,即又转化成电流信号输出,电流信号经视频放大器放大后就成为调制信号。如前所述,由于镜筒中的电子束和显像管中电子束是同步扫描的,而荧光屏上每一点的亮度是根据样品上被激发出来的信号强度来调制的,因此样品上各点的状态各不相同,所以接收到的信号也不相同,于是就可以在显像管上看到一幅反映试样各点状态的扫描电子显微图像。 1.3 真空系统 为保证扫描电子显微镜电子光学系统的正常工作,对镜筒内的真空度有一定的要求。一般情况下,如果真空系统能提供1.33×10-2 -1.33×10-3 Pa的真空度时,就可防止样品的污染。如果真空度不足,除样品被严重污染外,还会出现灯丝寿命下降,极间放电等问题。 2、扫描电镜的成像原理 扫描电镜是由电子枪发射并经过聚焦的电子束在样品表面扫描,激发样品产生各种物理信号,经过检测、视频放大和信号处理,在荧光屏上获得能反映样品表面各种特征的扫描图像。 3、分析扫描电镜与透射电镜在样品表征方面的异同 3.1 结构差异 主要体现在样品在电子束光路中的位置不同,透射电镜的样品在电子束中间,电子源在样品上方发射电子,经过聚光镜,然后穿透样品后,有后续的电磁透镜继续放大电子光束,最后投影在荧光屏幕上;扫描电镜的样品在电子束末端,

扫描电子显微镜基本原理和应用

扫描电子显微镜的基本原理和结构 下图为扫描电子显微镜的原理结构示意图。由三极电子枪发出的电子束经栅极静电聚焦后成为直径为50mm的电光源。在2-30KV的加速电压下,经过2-3个电磁透镜所组成的电子光学系统,电子束会聚成孔径角较小,束斑为5-10m m的电子束,并在试样表面聚焦。末级透镜上边装有扫描线圈,在它的作用下,电子束在试样表面扫描。高能电子束与样品物质相互作用产生二次电子,背反射电子,X射线等信号。这些信号分别被不同的接收器接收,经放大后用来调制荧光屏的亮度。由于经过扫描线圈上的电流与显象管相应偏转线圈上的电流同步,因此,试样表面任意点发射的信号与显象管荧光屏上相应的亮点一一对应。也就是说,电子束打到试样上一点时,在荧光屏上就有一亮点与之对应,其亮度与激发后的电子能量成正比。换言之,扫描电镜是采用逐点成像的图像分解法进行的。光点成像的顺序是从左上方开始到右下方,直到最後一行右下方的像元扫描完毕就算完成一帧图像。这种扫描方式叫做光栅扫描。 扫描电镜由电子光学系统,信号收集及显示系统,真空系统及电源系统组成。 1 电子光学系统 电子光学系统由电子枪,电磁透镜,扫描线圈和样品室等部件组成。其作用是用来获得扫描电子束,作为产生物理信号的激发源。为了获得较高的信号强度和图像分辨率,扫描电子束应具有较高的亮度和尽可能小的束斑直径。 <1>电子枪: 其作用是利用阴极与阳极灯丝间的高压产生高能量的电子束。目前大多数扫描电镜采用热阴极电子枪。其优点是灯丝价格较便宜,对真空度要求不高,缺点是钨丝热电子发射效率低,发射源直径较大,即使经过二级或三级聚光镜,在样品表面上的电子束斑直径也在5-7nm,因此仪器分辨率受到限制。现在,高等级扫描电镜采用六硼化镧(LaB6)或场发射电子枪,使二次电子像的分辨率达到2nm。但这种电子枪要求很高的真空度。 扫描电子显微镜的原理和结构示意图

扫描电镜的综述及发展

扫描电镜的综述及发展 1 扫描电镜的原理 扫描电镜(Scanning Electron Microscope,简写为SEM)是一个复杂的系统,浓缩了电子光学技术、真空技术、精细机械结构以及现代计算机控制技术。成像是采用二次电子或背散射电子等工作方式,随着扫描电镜的发展和应用的拓展,相继发展了宏观断口学和显微断口学。 扫描电镜是在加速高压作用下将电子枪发射的电子经过多级电磁透镜汇集成细小(直径一般为1~5nm)的电子束(相应束流为10-11~10-12A)。在末级透镜上方扫描线圈的作用下,使电子束在试样表面做光栅扫描(行扫+帧扫)。入射电子与试样相互作用会产生二次电子、背散射电子、X射线等各种信息。这些信息的二维强度分布随着试样表面的特征而变(这些特征有表面形貌、成分、晶体取向、电磁特性等等),将各种探测器收集到的信息按顺序、成比率地转换成视频信号,再传送到同步扫描的显像管并调制其亮度,就可以得到一个反应试样表面状况的扫描图像[1]。如果将探测器接收到的信号进行数字化处理即转变成数字信号,就可以由计算机做进一步的处理和存储。 扫描电镜主要是针对具有高低差较大、粗糙不平的厚块试样进行观察,因而在设计上突出了景深效果,一般用来分析断口以及未经人工处理的自然表面。机构组成 扫描电子显微镜由三大部分组成:真空系统,电子束系统以及成像系统。 真空系统 真空系统主要包括真空泵和真空柱两部分。真空柱是一个密封的柱形容器。 真空泵用来在真空柱内产生真空。有机械泵、油扩散泵以及涡轮分子泵三大类,机械泵加油扩散泵的组合可以满足配置钨枪的SEM的真空要求,但对于装置了场致发射枪或六硼化镧枪的SEM,则需要机械泵加涡轮分子泵的组合。 成像系统和电子束系统均内置在真空柱中。真空柱底端即为右图所示的密封室,用于放置样品。

实验五 扫描电子显微镜的结构原理及图像衬度观察

实验五扫描电子显微镜的结构原理及图像衬度观察 一、实验目的 1.了解扫描电镜的基本结构和工作原理。 2.通过实际样品观察与分析,明确扫描电镜的用途。 二、基本结构与工作原理简介 扫描电镜利用细聚电子束在样品表面逐点扫描,与样品相互作用产生各种物理信号,这些信号经检测器接收、放大并转换成调制信号,最后在荧光屏上显示反映样品表面各种特征的图像扫描电镜具有景深大、图像立体感强、放大倍数范围大且连续可调、分辨率高、样品室空间大且样品制备简单等特点,是进行样品表面研究的有效工具。 扫描电镜所需的加速电压比透射电镜要低得多,一般约在1~30kV,实验时可根据被分析样品的性质适当地选择,最常用的加速电压约在20kV左右。扫描电镜的图像放大倍数在一定范围内(几十倍到几十万倍)可以实现连续调整。放大倍数等于荧光屏上显示的图像横向长度与电子束在样品上横向扫描的实际长度之比。扫描电镜的电子光学系统与透射电镜有所不同,其作用仅仅是为了提供扫描电子束,作为使样品产生各种物理信号的激发源。扫描电镜最常使用的是二次电子信号和背散射电子信号,前者用于显示表面形貌衬度,后者用于显示原子序数衬度。 扫描电镜的基本结构可分为六大部分,电子光学系统、扫描系统、信号检测放大系统、图像显示和记录系统、真空系统和电源及控制系统。图5-1是扫描电镜主机构造示意图。试验时将根据实际设备具体介绍。这一部分的实验内容可参照教材内容,并结合实验室现有的扫描电镜进行,在此不作详细介绍。 三、扫描电镜图像衬度观察 1.样品制备扫描电镜的优点之一是样品制备简单,对于新鲜的金属断口样品不需要做任何处理,可直接进行观察。但在有些情况下需对样品进行必要的处理。 (1) 样品表面附着有灰尘和油污,可用有机溶剂(乙醇或丙酮)在超声波清洗器中清洗。 (2) 样品表面锈蚀或严重氧化,采用化学清洗或电解的方法处理。清洗时可能会失去一些表面形貌特征的细节,操作过程中应该注意。 (3) 对于不导电的样品,观察前需在表面喷镀一层导电金属或碳,镀膜厚度控制在5~10nm 为宜。 2.表面形貌衬度观察二次电子信号来自于样品表面层5~10nm,信号的强度对样品微区表面相对于入射束的取向非常敏感。随着样品表面相对于入射束的倾角增大,二次电子的产额增多。因此,二次电子像适合于显示表面形貌衬度。

扫描电镜技术原理及应用

扫描电镜技术原理及应用 摘要: 扫描电镜一种新型的多功能的,用途最为广泛的电子光学仪器。数十年来,扫描电镜已广泛地应用在生物学、医学、冶金学等学科的领域中,促进了各有关学科的发展。 关键词:扫描电镜;应用 1938 年德国的阿登纳制成了第一台扫描电子显微镜,1965 年英国制造出第一台作为商品用的扫描电镜,使扫描电镜进入实用阶段。近 20 年来,扫描电镜发展迅速,多功能的分析扫描电镜(即扫描电镜带上能谱仪、波谱仪、荧光仪等)既能做超微结构研究,又能做超微结构分析,既能做定性、定量分析、又能做定位分析,具有景深大,图像富有立体感,分辨率高,图像放大倍数高,显像直观,样品制备过程相对简单,可连接EDAX(X-射线能谱分析仪)进行微区成分分析等特点,被广泛应用于生物学、医学、古生物学、地质学、化学、物理、电子学及林业等学科和领域[1-2]。 1扫描电镜的工作原理与技术特点 1.1 扫描电镜的工作原理 扫描电镜( SEM) 的工作原理是由电子枪发射出来直径为50μm(微米)的电子束,在加速电压的作用下经过磁透镜系统会聚,形成直径为5nm(纳米)的电子束,聚焦在样品表面上,在第二聚光镜和物镜之间偏转线圈的作用下,电子束在样品上做光栅状扫描,同时同步探测入射电子和研究对象相互作用后从样品表面散射出来的电子和光子,获得相应材料的表面形貌和成分分析[3]。从材料表面散射出来的二次电子的能量一般低于50 eV,其大多数的能量约在2 ~ 3 eV。因为二次电子的能量较低,只有样品表面产生的二次电子才能跑出表面,逃逸深度只有几个纳米,这些信号电子经探测器收集并转换为光子,再通过电信号放大器加以放大处理,最终成像在显示系统上。扫描电镜工作原理的特殊之处在于把来自二次电子的图像信号作为时像信号,将一点一点的画面“动态”地形成三维的图像。 1.2 扫描电镜的技术特点[4] 扫描电子显微镜测试技术特点主要有: ( 1) 聚焦景深大。扫描电子显微镜的聚焦景深是实体显微镜聚焦景深的50

扫描电子显微镜及其在材料科学中的应用

扫描电子显微镜及其在材料科学中的应用班级:无机2014-1 姓名:李冬月学号:1461142107 摘要:介绍了目前常被用于固体结构观测及其表征的主要仪器扫描电子显微镜(SEM)的简单概况和基本原理以及其在材料科学中的应用。 关键词:扫描电子显微镜原理材料科学应用 引言 无论是X射线衍射确定晶体的三维结构还是低能电子衍射确定晶体表面的二维结构,都是以原子的周期性排列为前提的。但是近年来学术界对于不具有周期性的局域性原子位置的结构表现出越来越浓厚的兴趣,而且这种局域性结构的线度又往往很小,常在微米以下甚至纳米级。显然,传统的衍射手段对此无能为力,而且光学显微镜由于分辨本领的限制也无法分辨尺度在100纳米数量级的局域性结构细节。至目前为止已发展出各种基于电子的发射和传播的显微方法。本文主要介绍了扫描电子显微镜和扫描隧穿显微镜的工作原理以及对固体材料形貌和结构观察方面的应用。 1.SEM简介 扫描电子显微镜(Scanning Electron Microscope,SEM)是介于透射电镜和光学显微镜之间的一种微观性貌观察手段,可直接利用样品表面材料的物质性能进行微观成像。扫描电镜的优点是,①有较高的放大倍数,20-20万倍之间连续可调;②有很大的景深,视野大,成像富有立体感,可直接观察各种试样凹凸不平表面的细微结构;③试样制备简单。目前的扫描电镜都配有X射线能谱仪装置,这样可以同时进行显微组织性貌的观察和微区成分分析,因此它是当今十分有用的科学研究仪器。扫描电镜如下图1。 图1扫描电子显微镜

2.原理 扫描电镜从原理上讲就是利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息。通过对这些信息的接受、放大和显示成像,获得试样表面性貌的观察。SEM是一个复杂的系统,浓缩了电子光学技术、真空技术、精细机械结构以及现代计算机控制技术.扫描电镜是在加速高压作用下将电子枪发射的电子经过多级电磁透镜汇集成细小的电子束.在试样表面进行扫描,激发出各种信息,通过对这些信息的接收、放大和显示成像,以便对试样表面进行分析.入射电子与试样相互作用产生如图1所示的信息种类。 图2 电子束探针照射试样产生的各种信息 这些信息的二维强度分布随试样表面的特征而变(这些特征有表面形貌、成分、晶体取向、电磁特性等),是将各种探测器收集到的信息按顺序、成比率地转换成视频信号,再传送到同步扫描的显像管并调制其亮度,就可以得到一个反应试样表面状况的扫描图.如果将探测器接收到的信号进行数字化处理即转变成数字信号,就可以由计算机做进一步的处理和存储.各信息如下表1。 收集信号类型功能 二次电子形貌观察 背散射电子成分分析 特征X射线成分分析 俄歇电子成分分析 表1 扫描电镜中主要信号及其功能

扫描电镜成像原理

扫描电镜成像原理:用聚焦电子束在试样表面逐点扫描成像。成像信号可以是二次电子、背散射电子或吸收电子。其中二次电子是最主要的成像信号。由电子枪发射的电子,经过二级聚光镜及物镜的缩小形成具有一定能量、一定束流强度和束斑直径的微细电子束,在扫描线圈驱动下,于试样表面按一定时间、空间顺序作栅网式扫描。聚焦电子束与试样相互作用,产生二次电子发射(以及其他物理信号),二次电子发射量随试样表面形貌而变化。二次电子信号被探测器收集转换成电信号,经视频放大后输入到显像管栅极,调制与入射电子同步扫描的显像管亮度,得到反映试样表面形貌的二次电子像。 四、色质联用技术 优点:结合了色谱分离和定量以及质谱定性分析的优点。近乎通用的响应,低检出限,化合物结构测定。 1、气相色谱质谱联用 气质联用仪是分析仪器中较早实现联用技术的仪器。在所有联用技术中气质联用GC-MS)发展最完善,应用最广泛。目前从事有机物分析的实验室几乎够把GCMS作为主要的定性确认手段之一。 气质联用与气相色谱的区别 ?GC-MS方法的定性参数增加,定性可靠。 ?GC-MS检测灵敏度远高于气相的其他检测器。 ?GC-MS可采用选择离子分离气相上不能分离的化合物,降低噪音提高信噪比。

?一般经验来说质谱仪器定量不如气相色谱。但是采用同位素稀释和内标等技术GC-MS可以达到较高精度的定量分析。 谱库检索技术 随着计算机的发展,人们将标准电离条件下(EI源,70eV)大量纯化合物的标准质谱图存在计算机内生成质谱谱库。实际工作中得到的未知物的质谱图可以和谱库中的质谱图按照一定的程序进行比较,将相似度高化合物检出。这大大优化和减少了人工的工作量。 2、液相色谱质谱联用 ?真空度匹配:现有商品化的液质联用仪器都设计增加了真空泵的抽速,并采用分段多级抽真空的方法来满足质谱的要求。 ?接口技术:HPLC的质量流量比常规质谱所能处理的流量高2-3个数量级如何在不分解的情况下蒸发非挥发性及热不稳定性的物质 3、色质联用技术的应用 气质联用(GC-MS)的应用领域:气质联用已经成为有机化合物常规检测中的必备工具。环保领域的有机污染物检测,特别是低浓度的有机污染物;药物研究生产质控的进出口环节;法庭科学中对燃烧爆炸现场调查,残留物检验;石油化工,食品安全领域;竞技体育中兴奋剂检测等领域。 质联用(LC-MS)的应用领域 液质联用技术已经在药物、化工、临床医学、分子生物学等许多领域得到了广泛的应用。对于有机合成中间体、药物代谢物、基因工程产品的大量分析结果为生产和科研提供了许多有价值的数据。液质联用

扫描电镜在材料表面形貌观察及成分分析中的应用

扫描电镜在材料表面形貌观察及成分分析中的应用 一、实验目的 1)了解扫描电镜的基本结构和工作原理,掌握扫描电镜的功能和用途; 2)了解能谱仪的基本结构、原理和用途; 3)了解扫描电镜对样品的要求以及如何制备样品。 二、实验原理 (一)扫描电镜的工作原理和结构 1. 扫描电镜的工作原理 扫描电镜是对样品表面形态进行测试的一种大型仪器。当具有一定能量的入射电子束轰击样品表面时,电子与元素的原子核及外层电子发生单次或多次弹性与非弹性碰撞,一些电子被反射出样品表面,而其余的电子则渗入样品中,逐渐失去其动能,最后停止运动,并被样品吸收。在此过程中有99%以上的入射电子能量转变成样品热能,而其余约1%的入射电子能量从样品中激发出各种信号。如图1所示,这些信号主要包括二次电子、背散射电子、吸收电子、透射电子、俄歇电子、电子电动势、阴极发光、X射线等。扫描电镜设备就是通过这些信号得到讯息,从而对样品进行分析的。 图1 入射电子束轰击样品产生的信息示意图

从结构上看,扫描电镜主要由七大系统组成,即电子光学系统、探测、信号处理、显示系统、图像记录系统、样品室、真空系统、冷却循环水系统、电源供给系统。 由图2我们可以看出,从灯丝发射出来的热电子,受2-30KV电压加速,经两个聚光镜和一个物镜聚焦后,形成一个具有一定能量,强度和斑点直径的入射电子束,在扫描线圈产生的磁场作用下,入射电子束按一定时间、空间顺序做光栅式扫描。由于入射电子与样品之间的相互作用,从样品中激发出的二次电子通过收集极的收集,可将向各个方向发射的二次电子收集起来。这些二次电子经加速并射到闪烁体上,使二次电子信息转变成光信号,经过光导管进入光电倍增管,使光信号再转变成电信号。这个电信号又经视频放大器放大,并将其输入到显像管的栅极中,调制荧光屏的亮度,在荧光屏上就会出现与试样上一一对应的相同图像。入射电子束在样品表面上扫描时,因二次电子发射量随样品表面起伏程度(形貌)变化而变化。 故视频放大器放大的二次电子信号是一个交流信号,用这个交流信号调制显像管栅极电,其结果在显像管荧光屏上呈现的是一幅亮暗程度不同的,并反映样品表面起伏程度(形貌)的二次电子像。应该特别指出的是:入射电子束在样品表面上扫描和在荧光屏上的扫描必须是“同步”,即必须用同一个扫描发生器来控制,这样就能保证样品上任一“物点”样品A点,在显像管荧光屏上的电子束恰好在A’点即“物点”A与“像点” A’在时间上和空间上一一对应。通常称“像点”A’为图像单元。显然,一幅图像是由很多图像单元构成的。 扫描电镜除能检测二次电子图像以外,还能检测背散射电子、透射电子、特征x射线、阴极发光等信号图像。其成像原理与二次电子像相同。 在进行扫描电镜观察前,要对样品作相应的处理。扫描电镜样品制备的主要要求是:尽可能使样品的表面结构保存好,没有变形和污染,样品干燥并且有良好导电性能。

扫描电镜原理、方法及操作

一、分析测试步骤 开机 1、接通循环水(流速1.5~2.0L/min ) 2、打开主电源开关。 3、在主机上插入钥匙,旋至“Start ”位置。 松手后钥匙自动回到“on ”的位置,真空系统开始工作。 4、等待10秒钟,打开计算机运行。 5、点击桌面的开始程序。 6、点击[JEOL ·SEM ]及[JSM-5000主菜单]。 7、约20分钟仪器自动抽高真空,真空度达到后,电子枪自动加高压,进入工作状态。 8、通过计算机可以进行样品台的移动,改变放大倍数、聚焦、象散的调整, 直到获得满意的图像 9、对于满意的图像可以进行拍照、存盘和打印。 10、若需进行能谱分析,要提前1小时加入液氮,并使探测器进入工作状态。 11、打开能谱部分的计算机进行谱收集和相应的分析。 12、需观察背散射电子像时,工作距离调整为15mm ,然后插入背散射电子探测器,用完后 随时拔出。 更换样品 1、点击“HT on ”,出现“HT Ready ”。 2、点击“Sample ”,再点击“Vent ”。 3、50秒后拉出样品台,从样品台架上取出样品台. 4、更换样品后,关上样品室门,再点击“EVAC ”,真空系统开始工作,重复开机10.1.8、 10.1.9。 关机 1、点击[EXIT ],再点击[OK ],扫描电镜窗口关闭,回到视窗桌面上. 2、电击桌面上的[Start ]。 3、退出视窗,关闭计算机. 4、关闭控制面板上的电源开关. 5、等待15分钟后关掉循环水. 6、关掉总电源. 二. 方法原理 1、扫描电镜近况及其进展 扫描电子显微镜的设计思想和工作原理,早在1935年已经被提出来了,直到1956年才开始生产商品扫描电镜。商品扫描电镜的分辨率从第一台的25nm 提高到现在的0.8nm ,已经接近于透射电镜的分辨率,现在大多数扫描电镜都能同X 射线波谱仪、X 射线能谱仪和自动图像分析仪等组合,使得它是一种对表面微观世界能够进行全面分析的多功能的电子光学仪器。数十年来,扫描电镜已广泛地应用在材料学、冶金学、地矿学、生物学、医学以及地质勘探,机械制造、生产工艺控制、产品质量控制等学科和领域中,促进了各有关学科的发展。

简述扫描电镜的构造及成像原理

试分析其简述扫描电镜的构造及成像原理,与透射电镜在样品表征方面的异同 1、扫描电镜的构造和真空系统三部分组扫描电镜由电子光学系统、信号收集和图像显示系统、成。 电子光学系统(镜筒)1.1 电子光学系统包括电子枪、电磁透镜、扫描线圈和样品室。 1.1.1 电子枪扫描电子显微镜中的电子枪与透射电镜的电子枪相似,只是加速电压比透射电镜低。 1.1.2 电磁透镜扫描电子显微镜中各电磁透镜都不作成像透镜用,而是做聚光镜用,它们的功能只是把电子枪的束斑逐级聚焦缩小,使原来直径约为50um的束斑缩小成一个只有数个纳米的细小斑点,要达到这样的缩小倍数,必须用几个透镜来完成。扫描电子显微镜一般都有三个聚光镜,前两个聚光镜是强磁透镜,可把电子束光斑缩小,第三个聚光镜是弱磁透镜,具有较长的焦距。布置这个末级透镜(习惯上称之物镜)的目的在于使样品室和透镜之间留有一定空间,以便装入各种信号探测器。扫描电子显微镜中照射到样品上的电子束直径越小,就相当于成像单元的尺寸越小,相应的分辨率就越高。采用普通热阴极电子枪时,扫描电子束的束径可达到6nm左右。若采用六硼化镧阴极和场发射电子枪,电子束束径还可进一步缩小。. 1.1.3 扫描线圈扫描线圈的作用是使电子束偏转,并在样品表面作有规则的扫动,电子束在样品上的扫描动作和显像管上的扫描动作保持严格同步,因为它们是由同一扫描发生器控制的。 1.1.4 样品室样品室内除放置样品外,还安置信号探测器。各种不同信号的收集和相应检测器的安放位置有很大关系,如果安置不当,则有可能收不到信号或收到的信号很弱,从而影响分析精度。样品台本身是一个复杂而精密的组件,它

应能夹持一定尺寸的样品,并能使样品作平移、倾斜和转动等运动,以利于对样品上每一特定位置进行各种分析。新式扫描电子显微镜的样品室实际上是一个微型试验室,它带有许多附件,可使样品在样品台上加热、冷却和进行机械性能试验(如拉伸和疲劳)。 1.2 信号的收集和图像显示系统 二次电子、背散射电子和透射电子的信号都可采用闪烁计数器来检测。信号电子进入闪烁体后即引起电离,当离子和自由电子复合后就产生可见光。可见光信号通过光导管送入光电倍增器,光信号放大,即又转化成电流信号输出,电流信号经视频放大器放大后就成为调制信号。如前所述,由于镜筒中的电子束和显像管中电子束是同步扫描的,而荧光屏上每一点的亮度是根据样品上被激发出来的信号强度来调制的,因此样品上各点的状态各不相同,所以接收到的信号也不相同,于是就可以在显像管上看到一幅反映试样各点状态的扫描电子显微图像。 1.3 真空系统 为保证扫描电子显微镜电子光学系统的正常工作,对镜筒内的真空度有一定-2 -3 Pa10-1.33×的要求。一般情况下,如果真空系统能提供1.33×10的真空度时,就可防止样品的污染。如果真空度不足,除样品被严重污染外,还会出现灯丝寿命下降,极间放电等问题。 2、扫描电镜的成像原理 扫描电镜是由电子枪发射并经过聚焦的电子束在样品表面扫描,激发样品产生各种物理信号,经过检测、视频放大和信号处理,在荧光屏上获得能反映样品表面各种特征的扫描图像。 3、分析扫描电镜与透射电镜在样品表征方面的异同 3.1 结构差异 主要体现在样品在电子束光路中的位置不同,透射电镜的样品在电子束中间,电子源在样品上方发射电子,经过聚光镜,然后穿透样品后,有后续的电磁扫描电镜的样品在电子束末端,最后投影在荧光屏幕上;透镜继续放大电子光束, 电子源在样品上方发射的电子束,经过几级电磁透镜缩小,到达样品。当然后续的信号探测处理系统的结构也会不同,但从基本物理原理上讲没什么实质性差别。 相同之处:都是电真空设备,使用绝大部分部件原理相同,例如电子枪,磁透镜,各种控制原理,消象散,合轴等。 3.2 基本工作原理 透射电镜:电子束在穿过样品时,会和样品中的原子发生散射,样品上某一点同时穿过的电子方向是不同,这样品上的这一点在物镜1-2倍焦距之间,这些电子通过过物镜放大后重新汇聚,形成该点一个放大的实像,这个和凸透镜成像原理相同。这里边有个反差形成机制理论比较深就不讲,但可以这么想象,如果样品内部是绝对均匀的物质,没有晶界,没有原子晶格结构,那么放大的图像也不会有任何反差,事实上这种物质不存在,所以才会有这种牛逼仪器存在的理由。经过物镜放大的像进一步经过几级中间磁透镜的放大,最后投影在荧光屏上成像。

扫描电镜的结构及原理

扫描电镜的结构及原理 一、简介 1特点:扫描电子显微镜主要特点是电子束在样品上进行逐点扫描,获得三维立体图像,图像观察视野大、景深长、富有立体感。在观察样品表面形貌的同时,进行晶体学分析及成分分析。常规的扫描电镜分辨本领通常为7~10nm,加速电压在1~50 kV范围。生物样品一般用10~20kV,成像放大率几十倍至几十万倍。 2用途:扫描电镜可对样品进行综合分析,已成为重要分析工具,纤维、纸张、钢铁质量等,观察矿石结构、检测催化剂微观结构、观看癌细胞与正常细胞差异等。 3日本日立公司产品S-5200型为超高分辨率(ultra-highresolution)扫描电镜,加速电压为1kV时,分辨率可达1.8nm,加速电压为30kV时,分辨率高达0.5nm。此外,还具有独特的电子信号探测系统,不但能观察样品三维形态结构甚至能看到样品的原子或分子结构,在使用性能方面已超越任何一种常规扫描电镜。 二、扫描电镜的结构 扫描电镜的组成 : (1)、电子光学系统: 组成:①电子枪与透镜系统;②电子探针扫描偏转系统 作用:产生直径为几十埃的扫描电子束,即电子探针,使样品表面作光栅状扫描。

①电子枪组成:阴极、阳极、栅极。直径约为0.1mm钨丝制成,加热后发射的电子在栅极和阳极作用下,在阳极孔附近形成交叉点光斑,其直径约几十微米。 扫描电镜没有成像电镜,成像原理与透射电镜截然不同。所有透镜皆为缩小透镜,起缩小光斑的作用。缩小透几十镜将电子枪发射的直径约为30μm电子束缩小成几十埃,由两个聚光镜和一个末透镜完成三个透镜的总缩小率为2000~3000倍。 两个聚光镜分别是第一聚光镜和第二聚光镜,可将在阳极孔附近形成的交叉点缩小。 聚光镜可动光阑位于第二聚光镜和物镜之间,用于控制选区衍射时电子书的发散角。提高角分辨率。 被聚光镜缩小的光斑再由物镜进一步缩小,使光斑直径为几十埃。然后汇聚在样品上。 物镜有两个极靴,分别为上级靴和下级靴。上下级靴的形状不对称,极靴孔径也不同,以适应不同需要。为在物镜上级靴孔内装扫描线圈、消像散器,也为降低球差和色差,上级靴孔径稍大些。为避免透镜磁场对二次电子图像及磁性材料观察的影响,下级靴孔径稍小些。 物镜可动光栅用于调整电子探针孔径角,缩小电子束斑直径,以获得最大探针电流。在观察二次电子图像时,调整物镜可动光栅可获得焦深大的电子显微图像。 ②电子探针扫描偏转系统

扫描电镜的结构及使用

扫描电镜的结构及使用实验指导 史秋月 扫描电子显微镜是利用细聚焦电子束在样品表面逐点扫描,与样品相互作用产生各种物理信号,这些信号经检测器接收、放大并转换成调制信号,最后在荧光屏上显示反映样品表面各种特征的图像。扫描电镜具有景深大、图像立体感强、放大倍数范围大、连续可调、分辨率高、样品室空间大且样品制备简单等特点,是进行样品表面研究的有效分析工具。通过本实验学习,了解扫描电镜基本机构,掌握扫描电镜的基本使用方法和使用过程中的注意事项。 一、实验目的 1、了解扫描电镜基本机构和工作原理; 2、掌握扫描电镜的基本使用方法和使用过程中的注意事项; 3、掌握扫描电镜图像衬度观察的原理。 二、实验所用设备及仪表 JSM-6510LV扫描电镜 三、实验内容 1、扫描电镜基本结构 扫描电镜的基本结构可分为电子光学系统、信号检测放大系统、图像显示和记录系统、真空系统和电源及控制系统六大部分。 光学系统是由电子枪、磁透镜、扫描线圈以及样品室组成(图3-1)。电子枪由灯丝阴极、栅极 (或称韦氏圆筒)和加速阳极组成,提供稳定的电子束,一般在1~30kV。磁透镜有第一、二聚光镜和物镜,其作用缩小电子束的直径,把来自电子枪的约30μm大小的电子束经过第一、二聚光镜和物镜的作用,缩小成直径约为几十埃的狭窄电子束。这是由于扫描电镜的分辨率主要取决于电子束的直径,所以要尽可能缩小它,为此,物镜还装备有物镜可动光栏和消散器。一个带有扫描电路的偏转线圈通以锯齿波的电流,产生的磁场作用于电子束使它在样品上扫描。样品室位于镜筒的底部。显示系统包括信号的收集、放大、处理、显示与记录部分。显示和记录部分包括两个显像管和照相机。一个显像管是长余辉的,用于观察;另一显像管是高分辨率的、短余辉的,用于照相。扫描电镜的真空系统由机械泵、扩散泵、检测系统、管道及阀门等组成。

扫描电镜的结构和工作原理

一、扫描电子显微镜的工作原理 扫描电镜(Scanning Electron Microscope)是用聚焦电子束在试样表面逐点扫描成像。试样为块状或粉末颗粒,成像信号可以是二次电子、背散射电子或吸收电子。其中二次电子是最主要的成像信号。由电子枪发射的能量为 5 ~35keV 的电子,以其交叉斑作为电子源,经二级聚光镜及物镜的缩小形成具有一定能量、一定束流强度和束斑直径的微细电子束,在扫描线圈驱动下,于试样表面按一定时间、空间顺序作栅网式扫描。聚焦电子束与试样相互作用,产生二次电子发射(以及其它物理信号),二次电子发射量随试样表面形貌而变化。二次电子信号被探测器收集转换成电讯号,经视频放大后输入到显像管栅极,调制与入射电子束同步扫描的显像管亮度,得到反映试样表面形貌的二次电子像。 二、扫描电镜具有以下的特点 (1) 可以观察直径为0 ~30mm的大块试样(在半导体工业可以观察更大直径),制样方

法简单。 (2) 场深大、三百倍于光学显微镜,适用于粗糙表面和断口的分析观察;图像富有立体感、真实感、易于识别和解释。 (3) 放大倍数变化范围大,一般为15 ~200000 倍,对于多相、多组成的非均匀材料便于低倍下的普查和高倍下的观察分析。 (4) 具有相当高的分辨率,一般为3.5 ~6nm。 (5) 可以通过电子学方法有效地控制和改善图像的质量,如通过调制可改善图像反差的宽容度,使图像各部分亮暗适中。采用双放大倍数装置或图像选择器,可在荧光屏上同时观察不同放大倍数的图像或不同形式的图像。 (6) 可进行多种功能的分析。与X 射线谱仪配接,可在观察形貌的同时进行微区成分分析;配有光学显微镜和单色仪等附件时,可观察阴极荧光图像和进行阴极荧光光谱分析等。 (7) 可使用加热、冷却和拉伸等样品台进行动态试验,观察在不同环境条件下的相变及形态变化等。 三、扫描电镜的主要结构 1.电子光学系统:电子枪;聚光镜(第一、第二聚光镜和物镜);物镜光阑。 2.扫描系统:扫描信号发生器;扫描放大控制器;扫描偏转线圈。 3.信号探测放大系统:探测二次电子、背散射电子等电子信号。 4.图象显示和记录系统:早期SEM采用显象管、照相机等。数字式SEM采用电脑系统进行图象显示和记录管理。 5.真空系统:真空度高于10 -4 Torr 。常用:机械真空泵、扩散泵、涡轮分子泵 6.电源系统:高压发生装置、高压油箱。 四、扫描电镜主要指标 1.放大倍数M=L/l 2.分辨率(本领) 影响分辨本领的主要因素:入射电子束斑的大小,成像信号(二次电子、背散射电子等)。 3.扫描电镜的场深 扫描电镜的场深是指电子束在试样上扫描时,可获得清晰图像的深度范围。当一束微细的电子束照射在表面粗糙的试样上时,由于电子束有一定发散度,除了焦平面处,电子束将展宽,场深与放大倍数及孔径光阑有关。 五、试样制备 1 .对试样的要求:试样可以是块状或粉末颗粒,在真空中能保持稳定,含有水分的试样应先烘干除去水分,或使用临界点干燥设备进行处理。表面受到污染的试样,要在不破坏试样表面结构的前提下进行适当清洗,然后烘干。新断开的断口或断面,一般不需

相关主题
文本预览
相关文档 最新文档