当前位置:文档之家› 新型六自由度并联机器人精度分析

新型六自由度并联机器人精度分析

新型六自由度并联机器人精度分析
新型六自由度并联机器人精度分析

六自由度工业机器人设计

六自由度工业机器人 对于工业机器人的设计与大多数机械设计过程相同;首先要知道为什么要设计机器人机器人能实现哪些功能活动空间(有效工作范围)有多大了解基本的要求后,接下来的工作就好作了。 首先是根据基本要求确定机器人的种类,是行走的提升(举升)机械臂、还是三轴的坐标机器人、还是六轴的机器人等。选定了机器人的种类也就确定了控制方式,也就有了在有限的空间内进行设计的指导方向。 接下来的要做的就是设计任务的确定。这是一个相对复杂的过程,在实现这一复杂过程的第一步是将设计要求明确的规定下来;第二步是按照设计要求制作机械传动简图,分析简图,制定动作流程表(图),初步确定传动功率、控制流程和方式;第三步是明确设计内容,设计步骤、攻克点、设计计算书、草图绘制,材料、加工工艺、控制程序、电路图绘制;第四步是综合审核各方面的内容,确认生产。 下面我将以六轴工业机器人作为设计对象来阐明这一设计过程: 在介绍机器人设计之前我先说一下机器人的应用领域。机器人的应用领域可以说是非常广泛的,在自动化生产线上的就有很多例子,如垛码机器人、包装机器人、转线机器人;在焊接方面也有很例子,如汽车生产线上的焊接机器人等等;现在机器人的发展是非常的迅速,机器人的应用也在民用企业的各个行业得以延伸。机器人的设计人才需求也越来越大。 六轴机器人的应用范筹不同,设计形式也各不相同。现在世界上生产机器人的公司也很多,结构各有特色。在中国应用最多的如:ABB、Panasonic、FANUK、莫托曼等国外进口的机器人。 既然机器人的应用那么广泛,在我国却没有知名的生产公司。对于作为中国机械工程技术人员来说是一个值得思考的问题!有关机器人技术方面探讨太少了从业人员还不能成群体虽然在很多地方可以看到机器的论术,可是却没有真正形成普及的东西。 即然是要说设计,那我就从头一点一点的说起。力求讲的通俗简明一些,讲得不对的地方还请各位指正! 六轴机器人是多关节、多自由度的机器人,动作多,变化灵活;是一种柔性技术较高的工业机器人,应用面也最广泛。那么怎样去从头开始的设计它呢工作范围又怎样去确定动作怎样去编排呢位姿怎样去控制呢各部位的关节又是有怎么样的要求呢等等。。。。。。让我们带着众多的疑问慢慢的往下走吧! 首先我们设定:机器人是六轴多自由度的机器人,手爪夹持二氧气体保护焊标准焊枪;完成点焊、连续焊等不同要求的焊接部件,工艺要求、工艺路线变化快的自动生线上。最大伸长量:1700mm;转动270度;底座与地平线水平固定;全电机驱动。 好了,有了这样的基本要求我们就可以做初步的方案的思考了。 首先是全电机驱动的,那么我们在考虑方案的时候就不要去考虑液压和气压的各种结构了,也就是传动机构只能用齿轮齿条、连杆机构等机械机构了。 机器人是用于焊接方面的,那么我们就去考察有人工行为下的各种焊接手法和方法。这里就有一个很复杂的东西在里面,那就是焊接工艺;即然焊艺定不下来,我们就给它区分一下,在常用焊接里有单点点焊、连续断点点焊、连续平缝焊接、填角焊接、立缝焊接、仰焊、环缝焊等等。。。。。。 搞清了各种焊方法,也就明白了要实现这些复杂的动作就要有一套可行的控制方式才行;在机械没有完全设计出来之前可以不做太多的控制方案思考,有一个大概的轮廓概念就行了,待机械结构做完,各方面的驱动功率确定下来之后再做详细的程序。 焊枪是用常用的标准的焊枪,也就是说焊枪是随时可以更换下来的,也就要求我们要做到对焊枪的夹持部分进行快速锁定与松开。

(整理)Delta并联机器人的机构设计1.

零件的设计与选型 1 定平台的设计 定平台又称基座,在结构中属于固定的,具体的参数见图一,厚度20cm。定 平台的等效圆半径为210mm。材料选用铸铁,铸造加工,开口处磨削加工保证精度。最后进行打孔的工艺。 图一定平台设计图

具体参数为长* 厚* 宽:880mm*10mm*20mm。孔的参数为φ10*10mm。材料用铝合金,设计为杆式,质量小,经济,同时也满足载荷条件。 图二驱动杆的设计图 3 从动杆的设计 具体参数为长* 宽* 高:620*20*10mm。孔参数为φ10*10mm。材料选用铝合金。 图三从动杆的设计图

参数如下图,考虑到重量因素,采用铝合金,切削加工。动平台的等效圆半径为50mm,分布角为21.5°。 图四动平台的设计图 5 链接销的设计 45号钢,为主动杆和定平台的连接销:φ9*66mm。

6 球铰链的选型 目前,大多数的Delta机构的主动杆与从动杆的链接方式为球铰链的链接。球型连接铰链是用于自动控制中的执行器与调节机构的连接附件。它采用了球型轴承结构具有控制灵活、准确、扭转角度大的优点,由于该铰链安装、调整方便、安全可靠。所以,它广泛地应用在电力、石油化工、冶金、矿山、轻纺等工业的自动控制系统中。球铰链由于选用了球型轴承结构,能灵活的承受来自各异面的压力。本文选用球铰链设计,是主要因为球铰链的可控性,以及结构简单,易于装配。且有很好的可维护性。 本文选用了伯纳德的SD 系列球铰链,相对运动角为60°。 7 垫圈的选型 此处我们选用标准件。GB/T 97.1 10‐140HV ,10.5*1.6mm。 8 电机的选型 本设计的Delta 机器人,主要面向工业中轻载的场合,比如封装饼干等。因此,以下做电动机的选型处理。 由于需要对角度的精确控制,因此决定选用伺服电机。交流伺服电机有以下特点:启动转矩大,运行范围广,无自转现象,正常运转的伺服电动机,只要失去控制电压,电机立

并联机器人的研究现状与展望

并联机器人的研究现状与展望 刘阳,冯宝富,蔡光起 (东北大学机械工程与自动化学院,辽宁沈阳110004) 摘要:本文对并联机器人进行系统地分类,介绍了并联机器人运动学分析、动力学、奇异结构分析的方法及研究现状,最后,提出了为适应机械工业的发展,根据敏捷制造提出的策略,展望了其发展趋势)))模块化设计。 关键词:并联机器人;奇异结构;模块化设计 中图分类号:TP24212文献标识码:A文章编号:1001-3881(2004)3-007-3 State and Future Trend of Parallel Manipulator LI U Yang,FENG Bao-fu,CAI Guang-qi (School of Mechanical Engineering&Automation,Northeastern University,Shenyang110004,China) Abstract:Parallel manipulators were categorized systematically.The analysis method of positi on kinetics,dynamics and singular con-fi guration in parallel manipulators were described.Finally,in order to adap t to machine industry development and agility manufacture,the develop ment trend of parallel manip ulators,modular design,was presented. Keywords:Parallel manipulators;Singular configuration;Modular desi gn 在1965年,由Ste wart提出并联机构,原是作为飞行模拟器用于训练飞行员的[1]。后来由澳大利亚著名机构学教授Hunt在1978年提出,可将Ste wart平台机构应用到并联机器人机构中[2]。从此,并联机器人的研制与开发工作开始了。经过数十年的探索,并联机器人的研究已从基础理论工作逐渐地过渡到实践应用中。并联机器人在机械工业、航空业以及矿山开采的应用十分广泛。 并联机器人凭借其结构刚性好、承载能力强、累积误差小、部件简单等优势,逐渐在国内外机床行业占领市场,并将成为21世纪高速轻型数控加工的主力装备。 1并联机器人分类 自1993年,第一台并联机器人在美国德州自动化与机器人研究所诞生以来,并联机器人无论在结构和外型都得到了充分的发展,但就其类别可分为以下几类: (1)按自由度的数目分类,并联机器人可做F自由度(DOF)操作,则称其为F自由度并联机器人。例如:一并联机器人有6个自由度,称其为6-D OF 并联机器人。冗余并联机器人,即其自由度大于6的并联机构。欠秩并联机器人,即机构的自由度小于其阶的并联机构。 (2)按并联机构的输入形式分类,可将并联机器人分为:线性驱动输入并联机器人和旋转驱动输入并联机器人。研究较多的是线性驱动输入的并联机器人,这种类型的机器人位置逆解非常简单,且具有唯一性。旋转驱动输入型并联机器人与线性驱动输入并联机器人相比,具有结构更紧凑、惯量更小、承载能力相对更强等优点;但它的旋转输入运动形式决定了位置逆解的多解性和复杂性。 (3)按支柱的长度变化分类,可将并联机器人分为:一种为采用可变化的支柱进行支撑上下平台的并联机器人。例如:这种六杆的并联机器人称为Hexa-pod,运动平台和基座由6个长度可变化的支柱连接的,每个支柱的两端分别由铰链连接在运动平台上和基座上,通过调节支柱的长度来改变运动平台的位姿。另一种为采用固定长度的支柱进行支撑上、下平台的并联机器人。例如:这种六杆的并联机器人称为Hexaglide,运动平台和基座是由6个长度固定的支柱连接的,每个支柱一端由铰链连接在运动平台上,另一端通过铰链连接在基座上,该端铰链可沿着基座上固定的滑道上进行移动,由此,来改变运动平台的位姿。 2并联机器人的运动学分析 在并联机器人的运动学分析包括两方面:已知活动平台位姿、速度,求解各驱动副的长度或转角、速度,称为逆解;已知各驱动副的长度或转角、速度,求解各驱动副的长度或转角、速度。最为普遍的研究方法有两种:数值解法、封闭解法。 数值解法是指求解一组非线性方程,非线性方程是矢量环方程经过一些具体结构的代数处理后,直接导出的,从而求得与输入位移对应的动平台的位置和姿态,数值解法的优点是其数学模型比较简单,并且省去了烦琐的数学推导。但这种方法的计算速度比较慢,不能求得机构的所有位置解,并且最终的结果与初值的选取有直接的关系。但这种方法可求解任何并联机构,建立数学模型相对容易,可以立即进行位置 1基金项目:国家863项目资助(863-512-30-07)

六轴运动机器人运动学求解分析_第九讲

六轴联动机械臂运动学及动力学求解分析 V0.9版 随着版本的不断更新,旧版本文档中的一些笔误得到了修正,同时文档内容更丰富,仿真程序更完善。 作者朱森光 Email zsgsoft@https://www.doczj.com/doc/b82992017.html, 完成时间 2016-02-28

1引言 笔者研究六轴联动机械臂源于当前的机器人产业热,平时比较关注当前热门产业的发展方向。笔者从事的工作是软件开发,工作内容跟机器人无关,但不妨碍研究机器人运动学及动力学,因为机器人运动学及动力学用到的纯粹是数学和计算机编程知识,学过线性代数和计算机编程技术的人都能研究它。利用业余时间翻阅了机器人运动学相关资料后撰写此文,希望能够起到抛砖引玉的作用引发更多的人发表有关机器人技术的原创性技术文章。本文内容的正确性经过笔者编程仿真验证可以信赖。 2机器建模 既然要研究机器人,那么首先要建立一个机械模型,本文将以典型的六轴联动机器臂为例进行介绍,图2-1为笔者使用3D技术建立的一个简单模型。首先建立一个大地坐标系,一般教科书上都是以大地为XY平面,垂直于大地向上方向为Z轴,本文为了跟教科书上有所区别同时不失一般性,将以水平向右方向为X轴,垂直于大地向上方向为Y轴,背离机器人面向人眼的方向为Z轴,移到电脑屏幕上那就是屏幕水平向右方向为X轴,屏幕竖直向上方向为Y轴,垂直于屏幕向外为Z轴,之所以建立这样不合常规的坐标系是希望能够突破常规的思维定势训练在任意空间建立任意坐标系的能力。 图2-1 图2-1中的机械臂,底部灰色立方体示意机械臂底座,定义为关节1,它能绕图中Y轴旋转;青色长方体示意关节2,它能绕图中的Z1轴旋转;蓝色长方体示意关节3,它能绕图中的Z2轴旋转;绿色长方体示意关节4,它能绕图中的X3轴旋转;深灰色长方体示意关节5,它能绕图中的Z4轴旋转;末端浅灰色机构示意关节6即最终要控制的机械手,机器人代替人的工作就是通过这只手完成的,它能绕图中的X5轴旋转。这儿采用关节这个词可能有点不够精确,先这么意会着理解吧。 3运动学分析 3.1齐次变换矩阵 齐次变换矩阵是机器人技术里最重要的数学分析工具之一,关于齐次变换矩阵的原理很多教科书中已经描述在此不再详述,这里仅针对图2-1的机械臂写出齐次变换矩阵的生成过程。首先定义一些变量符号,关节1绕图中Y轴旋转的角度定义为θ0,当θ0=0时,O1点在OXYZ坐标系内的坐标是(x0,y0,0);关节2绕图中的Z1轴旋转的角度定义为θ1,图中的θ1当前位置值为+90度;定义O1O2两点距离为x1,关节3绕图中的Z2轴旋转的角度定义为θ2,图中的θ2当前位置值为-90度;O2O3两点距离为x2,关节4绕图中的X3轴旋转的角度定义为θ3, 图中的θ3当前位置值为0度;O3O4两点距离为x3,关节5绕图中的Z4轴旋转的角度定义为θ4, 图中的θ4当前位置值为-60度;O4O5两点距离为x4,关节6绕图中的X5轴旋转的角度定义为θ5, 图中的θ5当前位置值为0度。以上定义中角度正负值定义符合右手法则,所有角度定义值均为本关节坐标系相对前一关节坐标系的相对旋转角度值(一些资料上将O4O5两点重合在一起即O4O5两点的距离x4退化为零,本文定义x4大于零使得讨论时更加不失一般性)。符号定义好了,接下来描述齐次变换矩阵。 定义R0为关节1绕Y轴的旋转矩阵 =cosθ0 s0 = sinθ0 //c0 R0 =[c0 0 s0 0 0 1 0 0 0 c0 0 -s0 0 0 0 1] 定义T0为坐标系O1X1Y1Z1相对坐标系OXYZ的平移矩阵 T0=[1 0 0 x0 0 1 0 y0 00 1 0 0 0 0 1] 定义R1为关节2绕Z1轴的旋转矩阵 R1=[c1 –s1 0 0 s1 c1 0 0

精密并联机器人控制算法及控制系统研究概要

第40卷第4期2004年4月 机械工程学报 V01.40No.4CHINESEJOURNAL0F MECHANICAL ENGINEERING Apr. 2004 精密并联机器人控制算法及控制系统研究木 张秀峰孙立宁 (哈尔滨工业大学机器人研究所哈尔滨 150001) 摘要:首次把数字PID算法应用到面向光纤作业的精密并联机器人控制中,介绍了这种高速、高精度小型并联机构控制系统的新控制算法及系统研究情况。另外控制系统采用了DSP新技术,解决了并联机构运动学逆解的实时在线计算问题,使系统运行更加稳定。试验结果表明这种新算法在小型精密并联机构控制系统中,完全可以满足光纤对接等作业的高技术要求,同时也为同类高精度、大行程小型定位系统的控制与设计提供了一种新的实用方 法。 关键词:并联机构运动学逆解PID控制算法中图分类号:TP24 0前言

在高速、高精度、大行程小型并联机器人控制领域,所知文献介绍的实用控制算法还未见到。在实际工程控制中PID控制算法不需要系统确切的数学模型,参数易调整,且具有很强的灵活性、适应性,其中数字PID控制算法在计算机上易修正,比模拟PID控制器性能更加完善。首次将数字PID控制算法引进到高精度并联机构的控制中,并借助高速数字信号处理器DSP解决了逆解的在线计算问 题,试验结果表明可以满足高速、高精度等技术要 求。另外还介绍了系统的组成、性能、技术指标及一些关键参数的调整方法和经验公式,为小型精密定位系统的设计与控制提供了有价值的借鉴。1 PID控制算法 1.1模拟PID控制器 所谓PID控制器是指把偏差按比例、积分和微分进行的控制器,其中模拟PID控制器是用硬件来 实现的。设l,为系统给定,Y为系统输出,萨砷 为系统偏差,u为系统控制规律…¨,则 “=K,[P+寺J::酣r+%詈]+“。 式中 K,——比例系数正——积分常数毛——微分常数 =三——偏差微分 df 在控制过程中系统有偏差产生,调节器产生控制作用使偏差不断减小,这种控制作用的强弱取决

六自由度机械手重载搬运机器人本体结构设计(全套CAD图纸)

全套设计通过答辩优秀CAD图纸QQ 36396305 XX学院 毕业设计说明书(论文) 作者: 学号: 学院(系): 专业: 题目: 重载搬运机器人本体结构设计【六自由 度机械手】 2015 年5月

全套设计通过答辩优秀CAD图纸QQ 36396305 毕业设计说明书(论文)中文摘要 机械手是一种典型的机电一体化产品,搬运机械手是机械手研究领域的热点。研究搬运机械手需要结合机械、电子、信息论、人工智能、生物学以及计算机等诸多学科知识,同时其自身的发展也促进了这些学科的发展。 本文对一种使用在搬运机械手的结构进行设计,并完成总装配图和零件图的绘制。要求对机械手模型进行力学分析,估算各关节所需转矩和功率,完成电机和减速器的选型。其次从电机和减速器的连接和固定出发,设计关节结构,并对机构中的重要连接件进行强度校核。 关键词:结构设计,机器臂,关节型机械手,结构分析

毕业设计说明书(论文)外文摘要

目录 1 绪论 (1) 1.1 引言 (2) 1.2 搬运机械手研究概况 (3) 1.2.1 国外研究现状 (3) 1.2.2 国内研究现状 (4) 1.4 搬运机械手的总体结构 (5) 1.5 主要内容 (5) 2 总体方案设计 (6) 2.1 机械手工程概述 (6) 2.2 工业机械手总体设计方案论述 (7) 2.3 机械手机械传动原理 (8) 2.4 机械手总体方案设计 (8) 2.5 本章小结 (10) 3 机械手大臂结构设计 (1) 3.1 大臂部结构设计的基本要求 (1) 3.2 大臂部结构设计 (2) 3.3 大臂电机及减速器选型 (2) 3.4 减速器参数的计算 (3) 3.5承载能力的计算 (7) 3.5.1 柔轮齿面的接触强度的计算 (7) 3.5.2 柔轮疲劳强度的计算 (7) 3.6 轴的计算校核 (8) 3.7 大臂的平衡设计 (11) 3.7.1 弹簧的受力分析 (11) 3.7.2 弹簧的设计计算 (14) 4机械手小臂结构设计 (18) 4.1 腕部设计 (18) 4.2 小臂部结构设计 (31)

六自由度机器人说明书

六自由度机器人说明书 专业:机械制造与自动化 班级: 成员:

目录 一、打开气源 二、机器人的快速操作入门 1、坐标系的选择 2、手动速度调整 3、伺服电源接通 4、接通主电源 5、接通伺服电源 三、伺服电源切断 1、切断伺服电源 2、切断主电源 四、轴操作

一、打开气源 请确认系统进气气源已进行供气,未供气或气压不足将会导致系统无法正常工作,系统运行中如断开气源,可能导致设备损坏,甚至造成人员伤害。 打开下图气泵,将开关拨到“I”,再打开气阀

拨到“开”,即 “Ⅰ” 往上拨,打开气阀

二、机器人的快速操作入门 1、坐标系的选择 在示教模式下,选择机器人运动坐标系:按手持操作示教器上的【坐标系】键,每按一次此键,坐标系按以下顺序变化,通过状态区的显示来确认。 2、手动速度调整 示教模式下,选择机器人运动速度:按手持操作示教器上【高速】键或【低速】键,每按一次,手动速度按以下顺序变化,通过状态区的速度显示来确认。 ?按手动速度【高速】键,每按一次,手动速度按以下顺序变化:微动1%→微动2%→低5%→低10%→中25%→中50%→高75%→高100%。 ?按手动速度【低速】键,每按一次,手动速度按以下顺序变化:高100%→高75%→中50%→中25%→低10%→低5%→微动2%→微动1%。 3、伺服电源接通 打开上电控柜上的主电源开关时,应确认在机器人动作 范围内无任何人员。

忽视此提示可能会发生与机器人的意外接触而造成人身伤害。如有任何问题发生,应立即按动急停键,急停键位于 电控柜前门的右上方。 4、接通主电源 ●把电控柜侧板上的主电源开关扳转到接通(ON) 的位置,此 时主电源接通。 ●按下电控柜面板上的绿色伺服启动按钮。

并联机器人设计论文设计

并联机器人设计论文 摘要:并联机器人是一类全新的机器人,它具有刚度大、承载能力强、误差小、精度高、自重负荷比小、动力性能好、控制容易等一系列优点,在21世纪将有广阔的发展前景。文中从运动副分析入手,对一种运动解耦的三自由度并联机构进行了构型研究,该机构由三个正交分布的支链组成,且机构的运动副均为转动副,构成了机构动平台x、y、z三个方向的平动解耦;在机构构型研究的基础上,对其进行了运动学分析,推导出了该并联机构的运动学正反解,分析了机构输入/输出的速度和加速度等,验证了该机构运动解耦的特性。这对该机构的动力学分析、控制策略、机构设计和轨迹规划等方面的研究,具有一定的理论意义。 关键词:三自由度并联机构;并联机器人;设计;

1.课题国外现状及研究的主要成果 少自由度并联机器人由于其驱动元件少、造价低、结构紧凑而有较高的实用价值,更具有较好的应用前景,因此少自由度的并联机器人的设计理论的研究和应用领域的拓展成为并联机器人的研究热点之一。研究少自由度并联机构最早的学者应属澳大利亚著名机构学教授Hunt ,在1983年,他就列举了平面并联机构、空间三自由度3-rps并联机构,但对四,五自由度并联机构未作详细阐述。在Hunt之后,不断有学者提出新的少自由度并联机构机型。在少自由度并联机构机型的研究中,三维平移并联机构得到广泛的重视。clavel提出了一种可实现纯平运动三自由度Delta 并联机器人,在Delta机构的支链中采用平行四边形机构约束动平台的3个转动自由度。Tsai提出的Delta机构完全采用回转副,并通过转轴的偏移扩大了Delta机构的工作空间。在Tricept并联机床上采用的构型是由Neumann发明的一种具有3个可控位置自由度的并联机构,该机构的突出特点是带有导向装置,采用3个副驱动支链并由导向装置约束动平台。Tsai通过自由度分析提取支链的运动学特征,系统研究了并联机构的综合问题,特别研究了一类实现三自由度平动的并联机构。Rasim Alizade于2004年提出基于平台类型和联接平台的形式和类型进行分类的一种并联机构的结构综合和分类的新方法和公式,并综合出具有单平台和多平台的纯并联和串并联复联机构.我国燕山大学的黄真教授及其团队除了研制出解耦微型6维力传感器和微动机械,设计出一种新的

并联机器人技术方案

并联机器人方案 一、并联机器人用途: 并联机器人作为一种新型的机器人形式得到了越来越多的应用,与串联机器人相比该型机器人具有结构简单、刚度大、承载能力强、误差小等特点,与串联机器人形成了良好的互补关系。可用于六自由度数控加工中心、航天器对接机构、汽车装配线、运动模拟器、岩土挖掘、光学调整、医疗机械等领域。 二、系统特点: 1、机构采用并联式结构,按工业标准要求设计,结构简单、速度快; 2、控制系统采用Windows系列操作系统,二次开发方便、快捷,适于教学实验; 3、提供教材、实验指导书等,内容涵盖机器人运动学、动力学、控制系统的设计、机器人轨迹规划等。 三、系统配置: 1、机器人本体、控制柜、电机控制卡、控制软件、理论教材及实验指导书。附属件配置有钻铣刀头、电主轴、绘图笔架、加工平台、手动夹具,另赠送一套加工所需原材料。 2、并联机器人加工装置(用电主轴本体、夹持器及钻铣刀)。 3、绘图装置(绘图笔架及绘图笔)。 4、并联机器人加工平台及工件夹持装置。 5、部分加工演示原材料(石蜡、尼龙等)。

1.并联机器人系统照片 2.并联机器人技术参数: 3.机器人型号:RBT-6T01P(全步进电机驱动) 机器人报价:175000.00元机器人型号:RBT-6S01P(全伺服电机驱动) 机器人报价:195000.00元

1.并联机器人系统照片 2.并联机器人技术参数: 3.机器人型号:RBT-6T02P(全步进电机驱动) 机器人报价:155000.00元机器人型号:RBT-6S02P(全伺服电机驱动) 机器人报价:175000.00元

六自由度桌面型并联机器人 1.并联机器人系统图片 2.并联机器人技术参数 3.机器人型号:RBT-6T03P(全步进电机驱动) 机器人报价:135000.00元机器人型号:RBT-6S03P(全伺服电机驱动) 机器人报价:155000.00元

六自由度机器人结构设计

六自由度机器人结构设计、 运动学分析及仿真 学科:机电一体化 姓名:袁杰 指导老师:鹿毅 答辩日期: 2012.6 摘要 近二十年来,机器人技术发展非常迅速,各种用途的机器人在各个领域广泛获 得应用。我国在机器人的研究和应用方面与工业化国家相比还有一定的差距,因此 研究和设计各种用途的机器人特别是工业机器人、推广机器人的应用是有现实意义 的。 典型的工业机器人例如焊接机器人、喷漆机器人、装配机器人等大多是固定在 生产线或加工设备旁边作业的,本论文作者在参考大量文献资料的基础上,结合项 目的要求,设计了一种小型的、固定在AGV 上以实现移动的六自由度串联机器人。 首先,作者针对机器人的设计要求提出了多个方案,对其进行分析比较,选择

其中最优的方案进行了结构设计;同时进行了运动学分析,用D-H 方法建立了坐标变换矩阵,推算了运动方程的正、逆解;用矢量积法推导了速度雅可比矩阵,并计算了包括腕点在内的一些点的位移和速度;然后借助坐标变换矩阵进行工作空间分析,作出了实际工作空间的轴剖面。这些工作为移动式机器人的结构设计、动力学分析和运动控制提供了依据。最后用ADAMS 软件进行了机器人手臂的运动学仿真,并对其结果进行了分析,对在机械设计中使用虚拟样机技术做了尝试,积累了 经验。 第1 章绪论 1.1 我国机器人研究现状 机器人是一种能够进行编程,并在自动控制下执行某种操作或移动 作业任务的机械装置。 机器人技术综合了机械工程、电子工程、计算机技术、自动控制及 人工智能等多种科学的最新研究成果,是机电一体化技术的典型代表,是当代科技发展最活跃的领域。机器人的研究、制造和应用正受到越来越多的国家的重视。近十几年来,机器人技术发展非常迅速,各种用途的机器人在各个领域广泛获得应用。 我国是从 20 世纪80 年代开始涉足机器人领域的研究和应用的。1986年,我国开展了“七五”机器人攻关计划。1987 年,我国的“863”计划将机器人方面的研究列入其中。目前,我国从事机器人的应用开发的主要是高校和有关科研院所。最初我国在机器人技术方面的主要

并联机器人的雅可比,可操作性,条件数和精度

并联机器人的雅可比,可操作性,条件数和精度 (翻译论文) 虽然在最早的机器人研究中就已经有了雅可比矩阵的概念、可操纵性、条件数的概念,但是它们的真正意义并不是很好理解。在本文中,我们重新审视这些作为并联机器人优化设计精度指标的概念。首先,我们指出,通常的雅可比矩阵的输入—输入方程可能不足以分析平台的定位误差。然后我们检验可操纵性的概念,表明其经典的解释是错误的。我们考虑各种常见的局部灵巧指数,其中大部分是基于雅可比矩阵的条件数。值得注意的是,即使对于一个给定的机器人,在一个特定的姿态也会有各种各样的条件数,这些条件数之间都不一致,和我们想得到的精度指标也不一致。然后考虑了全局调节指数。除了存在基于错误的局部准确性指数的问题外,还有一个忽略了大部分时间而进行计算的计算问题。最后,我们检验了其他哪些指标可用于优化设计,并且介绍了计算它们的难度。 1 引言 我们将使用一个相对通用的非冗余并联机构的定义。当一个机构用至少两个运动链来控制自由度n<6的末端执行器时,我们定义它为并联机构,而其他的6-n 个自由度是一个恒定值通过单自由度驱动关节控制。此外,如果将驱动器锁定,则末端执行器的自由度为0,非驱动关节有一个单自由度。这样的定义涵盖了经典的六自由度机器人,比如Gough 和Hexa 平台,还有少于六自由度的机构,如Delta 和3-UPU 机构。 如今,并联机构的应用领域越来越广,如望远镜、精定位装置、包装速度快、机床、医疗。对尺寸非常的敏感是并联机构优化设计的一个关键问题。最优设计的方法有静力学性能指标。精度显然是许多应用中的一个关键问题。并联机构也有串联机构的一些关键问题,因此,针对这些问题做了很多广泛的研究,定义除了很多准确性指标,这些结果已经应用到并联机构上。本文的目的是检验这些指标是否适用于并联机构。雅可比矩阵和逆雅可比矩阵用于研究末端执行器的定位精度的,为了这个目的,很有必要研究它们的概念。 2 雅可比矩阵和逆雅可比矩阵 让X a 表示末端执行器的广义坐标,由末端执行器的N 个自由度参数组成。而让X 表示末端执行器的所有广义坐标,即,一组参数完全描述末端执行器的移动和方向。对于参数X 的选择,我们不考虑任何限制(如:一个Gough 机器人平台的姿势可能用末端执行器上三个不相关联的三个点的九个坐标来表示)。 末端执行器的扭转W 由平移速度V 和角速度Ω组成,将受限制的转动定义为W a 。众所周知,机器人拥有至少两个旋转自由度。W 不是X 对时间的导数,因为这里没有表示方向的衍生品对应的角速率。不过,通常存在矩阵H 、K 使得 W HX X KW == 机器人的内部几何形状可以用一系列参数进行描述,这些参数可以描述大多数或者全部的关节,包括被动的非驱动关节。这些变量是关节变量矢量Θ组成的。 通常定义的雅可比矩阵K J 涉及到关节变量矢量Θ,关节变量矢量Θ受到驱动关节的限制,并且基于驱动关节速度a Θ和受限制扭转a W 之间的线性关系 a k a W J =Θ

(完整版)并联机器人发展现状与展望

并联机器人发展现状与展望 引言 并联机器人是一类全新的机器人,它具有刚度大、承载能力强、误差小、精度高、自重负荷比小、动力性能好、控制容易等一系列优点,在21世纪将有广阔的发展前景。本文根据掌握的大量并联机器人文献,对其分类和应用做了简要分析和概括,并对其在运动学、动力学、机构性能分析等方面的主要研究成果、进展以及尚未解决的问题进行了阐述。 1并联机构的发展概况 (一)并联机构的特点 并联机构是一种闭环机构,其动平台或称末端执行器通过至少2个独立的运动链与机架相联接,必备的要素如下:①末端执行器必须具有运动自由度;②这种末端执行器通过几个相互关联的运动链或分支与机架相联接;③每个分支或运动链由惟一的移动副或转动副驱动。 与传统的串联机构相比,并联机构的零部件数目较串联构造平台大幅减少,主要由滚珠丝杠、伸缩杆件、滑块构件、虎克铰、球铰、伺服电机等通用组件组成。这些通用组件可由专门厂家生产,因而其制造和库存备件成本比相同功能的传统机构低得多,容易组装和模块化。 除了在结构上的优点,并联机构在实际应用中更是有串联机构不可比拟的优势。其主要优点如下: (1)刚度质量比大。因采用并联闭环杆系,杆系理论上只承受拉、压载荷,是典型的二力杆,并且多杆受力,使得传动机构具有很高的承载强度。 (2)动态性能优越。运动部件质量轻,惯性低,可有效改善伺服控制器的动态性能,使动平台获得很高的进给速度与加速度,适于高速数控作业。 (3)运动精度高。这是与传统串联机构相比而言的,传统串联机构的加工误差是各个关节的误差积累,而并联机构各个关节的误差可以相互抵消、相互弥补,因此,并联机构是未来机床的发展方向。 (4)多功能灵活性强。可构成形式多样的布局和自由度组合,在动平台上安装刀具进行多坐标铣、磨、钻、特种曲面加工等,也可安装夹具进行复杂的空间装配,适应性强,是柔性化的理想机构。 (5)使用寿命长。由于受力结构合理,运动部件磨损小,且没有导轨,不存在铁屑或冷却液进入导轨内部而导致其划伤、磨损或锈蚀现象。 并联机构作为一种新型机构,也有其自身的不足,由于结构的原因,它的运动空间较小,而串并联机构则弥补了并联机构的不足,它既有质量轻,刚度大,精度高的特点,又增大了机构的工作空间,因此具有很好的应用前景,尤其是少自由度串并联机构,适应能力强,且易于控制,是当前应用研究中的一个新热点。 (二)并联机构的分类 从运动形式来看,并联机构可分为平面机构和空间机构;细分可分为平面移动机构、平面移动转动机构、空间纯移动机构、空间纯转动机构和空间混合运动机构, 另可按并联机构的自由度数分类:

六自由度机器人

本科毕业设计(论文) FINAL PROJECT/THESIS OF UNDERGRADUATE (2014届) 六自由度机器人机械机构设计 学院机械工程学院 专业机械设计制造及其自动化学生姓名** 学号 指导教师*** 完成日期2014年5月

承诺书 本人郑重承诺:所呈交的毕业论文“六自由度机器人机械结构设计”是在导师的指导下,严格按照学校和学院的有关规定由本人独立完成。文中所引用的观点和参考资料均已标注并加以注释。论文研究过程中不存在抄袭他人研究成果和伪造相关数据等行为。如若出现任何侵犯他人知识产权等问题,本人愿意承担相关法律责任。 承诺人(签名):______________________ 日期:年月日

六自由度机器人机械结构设计 摘要 机械手是模仿人手的部分动作,按给定程序、轨迹和要求实现自动抓取、搬运或操作的自动机械装置,其主要由执行机构、驱动机构、控制机构以及位置检测装置等所组成。本论文围绕机器人本体结构设计,进行机器人静力学分析及研究极限位置下关节力矩情况,并以此为依据为机器人机构改进奠定理论基础,主要设计内容如下:(1)阐述六自由度工业机器人当前发展现状,对比现有机械手传动方式及空间布局,分析其技术特点。 (2)根据预期假定机器人工作运动范围及有效负载,参考目前应用较广泛的本体结构,在solidworks环境下先设计简单机器人初期模型。通过静力学分析得出关节所受负载,进行伺服电机、减速机选型以及确定同步齿形带相关参数,完成机械手内部空间整体布局,确定传动方式并能达到相关目标要求完成理论作业。 (3)建立考虑约束及质量等效转换的机械手模型,分析典型工况下各关节的运动情况。对关键零件及手部轴承通过施加约束、负载完成相应应力分析,验证不同电机、减速机选型的合理性,完成机器人结构校核与优化。 关键词:六自由度传动方式静力学分析 i

并联机器人发展概述

并联机器人发展概述 随着先进制造技术的发展,并联机器人已从简单的上下料装置发展成数字化制造中的重要单元。在查阅了大量国内外相关文献的基础上,介绍了并联机器人的特点、分类、应用,从运动学、动力学、控制策略三方面总结了近年来并联机器人的主要研究成果,并指出面临的问题。 1895年,数学家Cauchy研究一种“用关节连接的八面体”,开始人类历史上并联机器的研究。1938年Pollard提出采用并联机构来给汽车喷漆。1949年Caough提出用一种并联机构的机器检测轮胎,这是真正得到运用的并联机构。而并联结构的提出和应用研究则开始于70年代。1965年,德国人Stewart发明了六自由度并联机构,并作为飞行模拟器用于训练飞行员。1978年澳大利亚人Hunttichu把六自由度的Stewart平台机构作为机器人机构,自此,并联机器人技术得到了广泛推广。 自工业机器人问世以来,采用串联机构的机器人占主导位置。串联机器人具有结构简单、操作空间大,因而获得广泛应用。由于串联机器人自身的限制,研究人员逐渐把研究方向转向并联机器人。和串联机器人相比并联结构其末端件上同时由6根杆支撑,与串联的悬臂梁相比刚度大,结构稳定。由于刚度大,并联结构较串联结构在相同的自重或体积下,有高的多的承载能力大。串联机构末端件上的误差是各个关节误差的积累和放大,因而误差大、精度低,并联式则没有那样的误差积累和放大关系,微动精度高。串联机器人的驱动电机及传动系统大都放在运动着的大小臂上,增加了系统的惯量,恶化了动力性能,而并联机器人将电机置于机座上,减小了运动负荷。在位置求解上,串联机构正解容易,但反解困难。而并联机构正解困难,反解非常容易,而机器人在线实时计算是要计算反解的。 根据并联机器人的自由度数,可以分为:2自由度并联机构。2自由度并联机构,如5-R,3-R-2-P(R表示旋转,P表示平移)。平面5杆机构是最典型的2自由度并联机构,这类机构一般具有2个平移自由度。3自由度并联机构。3自由度并联机构种类较多,形式复杂,一般有以下形式,平面3自由度并联机构,如3-RRP机构、3-RPR机构、它们具有2个旋转自由度和1个平移自由度;3维纯平移机构,如Star Like并联机构、Tsai 并联机构,该类机构的运动学正反解都很简单,是一种应用很广泛的3维平移空间机构;空间3自由度并联机构,如典型的3-RPS机构、这类机构属于欠秩机构,在工作空间不同的点,其运动形式不同是其最显著的特点,由于这种特殊的运动特性,阻碍了该类机构在实际的广泛应用;4自由度并联机构。4自由度并联机构大多不是完全的并联机构,如2-UPS-1-RRRR机构,运动平台通过3个支链与顶平台相连,有2个运动链是相同的,各具有一个虎克铰U,1个平移副P,其中P和1个R是驱动副,因此这种机构不是完全并联机构。5自由度并联机构。现有的5自由度并联机构结构复杂,如韩国的Lee的5自由度并联机构具有双层结构。6自由度并联机构。该类并联机器人是国内外学者研究的最多的并联机构,一般情况下,该类机构具有6个运动链。随着6自由度并联机构研

六自由度机器人运动分析及优化

本科毕业论文(设计) 题目(中文)六自由度机器人运动分析及优化 (英文) Motionanalysis and optimization of 6-DOF robot 学院信息与机电工程学院院 年级专业 2013级汽车服务工程(中德)) 学生姓名吴子璇正 学号 130154494 7 指导教师安康安 完成日期 2017 年 3 月

摘要 当今世界,工业化日趋成熟,机器人被广泛的应用于各行各业,最常用到的有四自由度,六自由度机器人。其中,自动化水平较高的汽车制造业和电子装配业经常常常要使用到六自由度机器人。因此对其实施运动学分析,是进行科学设计的基础,也是降低机器人生产成本,优化机器人运动轨迹的前提。此外,运动分析过程有效的模拟了机器人运动的真实情况,有助于提供有效可行的优化方案。本文主要探讨六自由度机器人的运动分析,基于经典运动学以及动力学的研究方法概念,首先通过solidworks做出机械臂各部分零件的三维图,然后通过SolidWorks装配出六自由度机器人机械臂的三维模型。通过该模型,选取其中一个关节和底座,并用SolidWorks进行运动学分析,对六自由度机器人的运动学和动力学计算方法进行了仿真验证。最后得到六自由度机器人的其中一个自由度的运动仿真实例。通过对该运动仿真实例的分析,得出最佳优化方案,优化机器人的运动轨迹提高机器人的工作效率,降低机器人生产成本。 关键词:六自由度机器人;运动分析;运动学;动力学;

目录 摘要................................................. I Abstract ............................... 错误!未定义书签。 1 绪论 (1) 1.1 课题背景及研究的目的和意义 (1) 1.2机器人国内外发展现状及前景展望--------------------------1 2 六自由度机器人运动学分析 (4) 2.1六自由度机器人的结构-------------------------------------1 2.2运动学分析----------------------------------------------1 3 六自由度机器人动力学分析 (6) 3.1综述----------------------------------------------------3 3.2机器人动力学研究方法------------------------------------3 3.2.1几项假设-------------------------------------------3 3.2.2目标-----------------------------------------------4 3.2.3数学工具-------------------------------------------5 3.3动力学原理----------------------------------------------3

并联机器人操作细则

运动控制开发平台操作细则: 一、步进电机平台 1.上电计算机电源、驱动器电源、端子板电源。 2.运行GTCmdPCI_CH。 3.在菜单栏选择出现“基础参数设置”界面。 4.在“运控卡型号选择”栏,打开下拉菜单,选择所安装的运控卡型号。 设置“行程开关触发电平” 设置“编码器方向”,默认值0 设置控制周期,运控卡缺省的控制周期是200 μs。 5.点击“打开运控卡”按钮。 6.点击“确定”按钮。 7.在GTCmdISA_CH主菜单下选择打开“基于轴的控制”界面。 8.打开轴选下拉菜单,如下图,选择当前轴(操作轴)。 9.选择“清状态”,如右图,清除当前轴不正确的状态。 10、设置控制输出,驱动使能(轴开启) 在系统初始化完成后,在轴选框选择当前轴,按照根据系统要求设定控制输出。注意应与当 前轴的驱动器和电机的设置相统一。 SV卡: 可以选择输出模拟量,即0; 亦可选择输出脉冲量,即1。 SV卡: 选择“伺服打开/伺服关闭”选项(如右图,打勾为打开,不选为关闭)。此时驱动器使能,轴应该静止状态

11.点击“位置清零”按钮,观察“轴当前位置”为0。 4.在“运动控制模式”栏设置运动参数 5.点击“参数更新”按钮, 二、直流伺服电机平台 1~6步同步进电机一样 7、在轴的控制窗口中选中第4轴。 8、在“伺服滤波器参数设置”框中设置“比例增益”为10。 9、在梯形曲线页中“目标位置”为300000,“速度”为10,“加速度”为1。 10、点击“伺服打开”(SV卡时)/“轴开启”(SG卡时)选项,使控制器的第4轴进入伺服(开启)状态。 11、点击“清状态”键,使控制器的第四轴事件状态清除。 12、点击“参数更新”键,使第四轴开始运动 补充: 1、当某个轴选定并打开伺服后,在开发面板上会亮起相应的灯,分别是ENA1、ENA 2、ENA 3、ENA4. 2、在运动启动前应保证在控制软件的右侧的轴系状态或者坐标系状态正确,如:

全转动副三自由度并联机器人设计说明书资料

河北工业大学城市学院 毕业论文 作者:周** 学号:***** 系(专业):机械系 专业:机械设计与制造及其自动化 题目:全转动副三自由度并联机器人 指导者:李** 教授 (姓名) (专业技术职务) 评阅者: (姓名) (专业技术职务) 2015 年6月11 日

目录 1 绪论 ........................................................................................................................ - 4 - 1.1 引言 .............................................................................................................. - 4 - 1.2 此次课题研究背景和意义 ........................................................................ - 4 - 1.3 串并联机器人的国内外研究现状、使用范围及发展趋势 ...................... - 5 - 1. 4 本次毕业设计主要完成工作 ..................................................................... - 6 - 1.4.1 基本内容 ............................................................................................ - 6 - 1.4.2 课题研究拟采用的手段和工作路线 ................................................ - 6 - 2 总体方案的设计 .................................................................................................... - 7 - 2.1 总体布局的设计 ....................................................................................... - 7 - 3 由基本参数选定标准件的型号 .......................................................................... - 10 - 3.1 减速机的选择 .......................................................................................... - 10 - 3.2 选择伺服电机并对其检验 ...................................................................... - 12 - 3.3 轴承的选择及校核 .................................................................................... - 15 - 3.4 联轴器的选择 .......................................................................................... - 17 - 4.1 支链尺寸的确定 ........................................................................................ - 19 - 4.2 对主动轴尺寸的确定及校核 .................................................................... - 20 - 4.3 对支链上转动副的设计 ............................................................................ - 22 - 4.4 支链末端设计 ............................................................................................ - 25 - 5 机构的整体布局设计及机架设计 ...................................................................... - 2 6 - 结论 ...................................................................................................................... - 29 - 参考文献 .................................................................................................................... - 31 - 致谢 ............................................................................................................................ - 32 -

相关主题
文本预览
相关文档 最新文档