当前位置:文档之家› 并联机器人历史

并联机器人历史

并联机器人历史
并联机器人历史

并联机器人历史

并联机器人历史、应用及发展

浙江理工大学机电研究所李秦川

并联机构英文名为Parallel Mechanism,简称PM,可以定义为动平台和定平台通过

至少两个独立的运动链相连接,机构具有两个或两个以上自由度,且以并联方式驱动的

一种闭环机构,它的出现可以回溯至20世纪30年代。1931年,Gwinnett在其专利中提出了一种基于球面并联机构的娱乐装置,如图1-1所示;1940年,Pollard在其专利中提出了一种空间工业并联机构,用于汽车的喷漆,如图1-2所示;之后,Gough在1962年发明了一种基于并联机构的六自由度轮胎检测装置,如图1-3所示;三年后,Stewart

图1-1 并联娱乐装置图1-2 Pollard的并联机构

Figure 1-1 Parallel amusement device Figure 1-2 Pollard’s PM 首次对Gough发明的这种机构进行了机构学意义上的研究,并将其推广应用为飞行模拟器的运动产生装置,如图1-4所示,这种机构也是目前应用最广的并联机构,被称为

Gough-Stewart机构或Stewart机构。从结构上看,Stewart机构的动平台通过六个相同的

独立分支与定平台相联接,每个分支中含有一个联接动平台的球铰、一个移动副和一个

连接定平台的球铰,为避免绕两个球铰中心连线的自传运动,通常也用一个万向铰来代

替其中一个球铰。

1978年,Hunt首次提出把六自由度并联机构作为机器人操作器,由此拉开并联机

器人研究的序幕,但在随后的近10年里,并联机器人研究似乎停滞不前。直到80年代末90年代初,并联机器人才引起了广泛注意,成为国际研究的热点。

在国内,黄真教授在1991年研制出我国第一台六自由度并联机器人样机(图1-5),在1994年研制出一台柔性铰链并联式六自由度机器人误差补偿器 (图1-6),在1997年出版了我国第一部关于并联机器人理论及技术的专著。

并联机器人和传统工业用串联机器人在哲学上呈对立统一的关系,和串联机器人相

1

[7]比较,并联机器人具有以下特点:

无累积误差,精度较高;

驱动装置可置于定平台上或接近定平台的位置,这样运动部分重量轻,速度高,动

态响应好;

结构紧凑,刚度高,承载能力大;

完全对称的并联机构具有较好的各向同性;

工作空间较小;

根据这些特点,并联机器人在需要高刚度、高精度或者大载荷而无须很大工作空间

的领域内得到了广泛应用。

图1-3 Gough并联机构图1-4 Stewart并联机构

Figure 1-3 Gough PM Figure 1-4 Stewart PM

图1-5 燕山大学研制的我国首台六自由度图1-6 具有弹性球铰的六自由度并联误差

并联样机补偿器

Figure 1-5 First 6-DOF PM developed in Figure 1-6 6-DOF parallel error compensater

Yanshan University in China with plastic joints

[4]Stewart在1965年首次提出把六自由度并联机构作为飞行模拟器,开此应用的先河。目前,国际上有大约67家公司生产基于并联机构的各种运动模拟器。图1-7是Frasca

2

公司生产的波音737-400型客机的六自由度飞行模拟器;图1-8是CAE公司生产的飞行模拟器。

图1-7 波音737-400飞行模拟器图1-8 CAE 飞行模拟器

Figure 1-7 Boeing 737-400 flight simulator Figure 1-8 CAE flight simulator

并联机器人在工业上的一个突出应用是作为数控加工中心,又被称为并联机床或虚

[9-14]拟轴机床,是机器人技术与机床技术结合的产物。和传统的串联式加工中心相比,

并联机床具有结构简单,传动链短,刚度/重量比大,环境适应性强,响应速度快等特点,

特别是很容易实现六轴联动,可用来加工复杂的三维曲面。因此,并联机床又被称为“21世纪的机床”。九十年代初以来,国际学术界和工程界对并联机床的研究和开发非常重

视,投入大量人力物力积极开发,相继推出多种并联机床产品化样机。

图1-9是美国Giddings & Lewis公司1994年在美国芝加哥IMTS’94博览会上推出的VARIAX虚拟轴机床,标志着并联机构正式进入机床领域。1997年在德国汉诺威国际机床博览会(EMO97)和1999年巴黎国际机床博览会(EMO99)上,又推出了多种并联机床样机。图1-10是瑞典Neos Robotics公司生产的Tricept 600型并联机床。图1-11是德国Mikromat公司生产的6X型高速立式加工中心。图1-12是瑞士联邦技术学院研制的HexaGlide并联机床,可以加工长工件。

国内第一台并联机床是清华大学和天津大学在1997年合作研制的大型镗床类并联

样机VAMT1Y(图1-13)。东北大学于1998年研制了五轴联动三杆并联机床

DSX5-70(图1-14),该机床严格说来应属并串联机构,是在一个三自由度移动平台上串联一个两自由

度的串联机构而成。天津大学和天津第一机床总厂合作于1999年研制了三坐标并联机床商品化样机LINAPOD(图1-15),哈尔滨工业大学也研制了一台六自由度并联机床样

机(图1-16)。

应该指出,并联机床在以下几个方面还需要做进一步的工作:

(1)提高加工精度。

(2)减弱运动耦合。

(3)有效地检测位姿误差,实现闭环控制。

(4)提高实现姿态的能力,扩大工作空间。

3

图1-9 VARIAX 并联机床图1-10 Tricpet 600 并联机床 Figure 1-9 VARIAX PKM Figure 1-10 Tricpet 600 PKM

图1-11 Mikromat并联机床图1-12 HexaGlide 并联机床

Figure 1-9 Mikromat PKM Figure 1-12 HexaGlide PKM

图1-14 DSX5-70并联机床图1-13 VAMT1Y并联机床

Figure 1-14 DSX5-70 PKM Figure 1-13 VAMT1Y PKM

近年来,面向生物工程、医学工程及微加工等领域的微操作机器人技术受到国内外学术界和工程界的广泛关注,发展速度极快,已被应用于实现细胞的注射和分割,微机

4

电产品的加工和装配和微外科手术等。微操作机器人必须具有无摩擦无间隙、响应快、

结构紧凑、刚性好、误差积累和放大小等特点。以柔性铰链代替传统铰链后,并联机构

就正好具备以上特点,适合用作微操作机器人。图1-17是德国PI公司研制的Nonapod六自由度微动并联机器人。

在国内,燕山大学黄真等在1994年首次研制了以柔性铰链代替球副的并联式六自

[7,8]由度机器人误差补偿器,如图1-6所示;

图1-17 Nonapod微动并联机器人图1-18 六维并联力传感器

Figure 1-17 Nonapod micro-motion PM Figure 1-18 6-D parallel force sensor

机器人要实现智能化必须具备“触觉”和“力觉”,这就需要借助力(包括力矩)传感器来实现。二十世纪七十年代以来,机器人用六维力传感器成为国内外研究的热点问题。

在六维力传感器的设计中,核心问题是力敏感元件的结构设计,结构是否合理直接决定

传感器性能的优劣。国内外很多学者把并联机构结构的思想引用到六维力传感器的力敏

感元件结构设计上,燕山大学首次提出用弹性铰链来替代球面副,大大减小了Stewart平台结构的尺寸,从而可设计出可用于机器人手腕和手指上的六维力传感器,如图1-18所示,该设计思想实现了力传感器力敏感元件的一体化,即力敏感元件是非组装结构,

从而提高了力传感器的灵敏度和精度。

并联机器人还广泛应用于其他领域,包括:

军事领域中的潜艇、坦克驾驶运动模拟器,下一代战斗机的矢量喷管、潜艇及空间

飞行器的对接装置、姿态控制器等;

生物医学工程中的细胞操作机器人、可实现细胞的注射和分割;微外科手术机器人

大型射电天文望远镜的姿态调整装置

混联装备等,如SMT公司的Tricept混联机械手模块是基于并联机构单元的模块化

设计的成功典范。

5

6

7

(整理)Delta并联机器人的机构设计1.

零件的设计与选型 1 定平台的设计 定平台又称基座,在结构中属于固定的,具体的参数见图一,厚度20cm。定 平台的等效圆半径为210mm。材料选用铸铁,铸造加工,开口处磨削加工保证精度。最后进行打孔的工艺。 图一定平台设计图

具体参数为长* 厚* 宽:880mm*10mm*20mm。孔的参数为φ10*10mm。材料用铝合金,设计为杆式,质量小,经济,同时也满足载荷条件。 图二驱动杆的设计图 3 从动杆的设计 具体参数为长* 宽* 高:620*20*10mm。孔参数为φ10*10mm。材料选用铝合金。 图三从动杆的设计图

参数如下图,考虑到重量因素,采用铝合金,切削加工。动平台的等效圆半径为50mm,分布角为21.5°。 图四动平台的设计图 5 链接销的设计 45号钢,为主动杆和定平台的连接销:φ9*66mm。

6 球铰链的选型 目前,大多数的Delta机构的主动杆与从动杆的链接方式为球铰链的链接。球型连接铰链是用于自动控制中的执行器与调节机构的连接附件。它采用了球型轴承结构具有控制灵活、准确、扭转角度大的优点,由于该铰链安装、调整方便、安全可靠。所以,它广泛地应用在电力、石油化工、冶金、矿山、轻纺等工业的自动控制系统中。球铰链由于选用了球型轴承结构,能灵活的承受来自各异面的压力。本文选用球铰链设计,是主要因为球铰链的可控性,以及结构简单,易于装配。且有很好的可维护性。 本文选用了伯纳德的SD 系列球铰链,相对运动角为60°。 7 垫圈的选型 此处我们选用标准件。GB/T 97.1 10‐140HV ,10.5*1.6mm。 8 电机的选型 本设计的Delta 机器人,主要面向工业中轻载的场合,比如封装饼干等。因此,以下做电动机的选型处理。 由于需要对角度的精确控制,因此决定选用伺服电机。交流伺服电机有以下特点:启动转矩大,运行范围广,无自转现象,正常运转的伺服电动机,只要失去控制电压,电机立

并联机器人的研究现状与展望

并联机器人的研究现状与展望 刘阳,冯宝富,蔡光起 (东北大学机械工程与自动化学院,辽宁沈阳110004) 摘要:本文对并联机器人进行系统地分类,介绍了并联机器人运动学分析、动力学、奇异结构分析的方法及研究现状,最后,提出了为适应机械工业的发展,根据敏捷制造提出的策略,展望了其发展趋势)))模块化设计。 关键词:并联机器人;奇异结构;模块化设计 中图分类号:TP24212文献标识码:A文章编号:1001-3881(2004)3-007-3 State and Future Trend of Parallel Manipulator LI U Yang,FENG Bao-fu,CAI Guang-qi (School of Mechanical Engineering&Automation,Northeastern University,Shenyang110004,China) Abstract:Parallel manipulators were categorized systematically.The analysis method of positi on kinetics,dynamics and singular con-fi guration in parallel manipulators were described.Finally,in order to adap t to machine industry development and agility manufacture,the develop ment trend of parallel manip ulators,modular design,was presented. Keywords:Parallel manipulators;Singular configuration;Modular desi gn 在1965年,由Ste wart提出并联机构,原是作为飞行模拟器用于训练飞行员的[1]。后来由澳大利亚著名机构学教授Hunt在1978年提出,可将Ste wart平台机构应用到并联机器人机构中[2]。从此,并联机器人的研制与开发工作开始了。经过数十年的探索,并联机器人的研究已从基础理论工作逐渐地过渡到实践应用中。并联机器人在机械工业、航空业以及矿山开采的应用十分广泛。 并联机器人凭借其结构刚性好、承载能力强、累积误差小、部件简单等优势,逐渐在国内外机床行业占领市场,并将成为21世纪高速轻型数控加工的主力装备。 1并联机器人分类 自1993年,第一台并联机器人在美国德州自动化与机器人研究所诞生以来,并联机器人无论在结构和外型都得到了充分的发展,但就其类别可分为以下几类: (1)按自由度的数目分类,并联机器人可做F自由度(DOF)操作,则称其为F自由度并联机器人。例如:一并联机器人有6个自由度,称其为6-D OF 并联机器人。冗余并联机器人,即其自由度大于6的并联机构。欠秩并联机器人,即机构的自由度小于其阶的并联机构。 (2)按并联机构的输入形式分类,可将并联机器人分为:线性驱动输入并联机器人和旋转驱动输入并联机器人。研究较多的是线性驱动输入的并联机器人,这种类型的机器人位置逆解非常简单,且具有唯一性。旋转驱动输入型并联机器人与线性驱动输入并联机器人相比,具有结构更紧凑、惯量更小、承载能力相对更强等优点;但它的旋转输入运动形式决定了位置逆解的多解性和复杂性。 (3)按支柱的长度变化分类,可将并联机器人分为:一种为采用可变化的支柱进行支撑上下平台的并联机器人。例如:这种六杆的并联机器人称为Hexa-pod,运动平台和基座由6个长度可变化的支柱连接的,每个支柱的两端分别由铰链连接在运动平台上和基座上,通过调节支柱的长度来改变运动平台的位姿。另一种为采用固定长度的支柱进行支撑上、下平台的并联机器人。例如:这种六杆的并联机器人称为Hexaglide,运动平台和基座是由6个长度固定的支柱连接的,每个支柱一端由铰链连接在运动平台上,另一端通过铰链连接在基座上,该端铰链可沿着基座上固定的滑道上进行移动,由此,来改变运动平台的位姿。 2并联机器人的运动学分析 在并联机器人的运动学分析包括两方面:已知活动平台位姿、速度,求解各驱动副的长度或转角、速度,称为逆解;已知各驱动副的长度或转角、速度,求解各驱动副的长度或转角、速度。最为普遍的研究方法有两种:数值解法、封闭解法。 数值解法是指求解一组非线性方程,非线性方程是矢量环方程经过一些具体结构的代数处理后,直接导出的,从而求得与输入位移对应的动平台的位置和姿态,数值解法的优点是其数学模型比较简单,并且省去了烦琐的数学推导。但这种方法的计算速度比较慢,不能求得机构的所有位置解,并且最终的结果与初值的选取有直接的关系。但这种方法可求解任何并联机构,建立数学模型相对容易,可以立即进行位置 1基金项目:国家863项目资助(863-512-30-07)

精密并联机器人控制算法及控制系统研究概要

第40卷第4期2004年4月 机械工程学报 V01.40No.4CHINESEJOURNAL0F MECHANICAL ENGINEERING Apr. 2004 精密并联机器人控制算法及控制系统研究木 张秀峰孙立宁 (哈尔滨工业大学机器人研究所哈尔滨 150001) 摘要:首次把数字PID算法应用到面向光纤作业的精密并联机器人控制中,介绍了这种高速、高精度小型并联机构控制系统的新控制算法及系统研究情况。另外控制系统采用了DSP新技术,解决了并联机构运动学逆解的实时在线计算问题,使系统运行更加稳定。试验结果表明这种新算法在小型精密并联机构控制系统中,完全可以满足光纤对接等作业的高技术要求,同时也为同类高精度、大行程小型定位系统的控制与设计提供了一种新的实用方 法。 关键词:并联机构运动学逆解PID控制算法中图分类号:TP24 0前言

在高速、高精度、大行程小型并联机器人控制领域,所知文献介绍的实用控制算法还未见到。在实际工程控制中PID控制算法不需要系统确切的数学模型,参数易调整,且具有很强的灵活性、适应性,其中数字PID控制算法在计算机上易修正,比模拟PID控制器性能更加完善。首次将数字PID控制算法引进到高精度并联机构的控制中,并借助高速数字信号处理器DSP解决了逆解的在线计算问 题,试验结果表明可以满足高速、高精度等技术要 求。另外还介绍了系统的组成、性能、技术指标及一些关键参数的调整方法和经验公式,为小型精密定位系统的设计与控制提供了有价值的借鉴。1 PID控制算法 1.1模拟PID控制器 所谓PID控制器是指把偏差按比例、积分和微分进行的控制器,其中模拟PID控制器是用硬件来 实现的。设l,为系统给定,Y为系统输出,萨砷 为系统偏差,u为系统控制规律…¨,则 “=K,[P+寺J::酣r+%詈]+“。 式中 K,——比例系数正——积分常数毛——微分常数 =三——偏差微分 df 在控制过程中系统有偏差产生,调节器产生控制作用使偏差不断减小,这种控制作用的强弱取决

并联机器人技术方案

并联机器人方案 一、并联机器人用途: 并联机器人作为一种新型的机器人形式得到了越来越多的应用,与串联机器人相比该型机器人具有结构简单、刚度大、承载能力强、误差小等特点,与串联机器人形成了良好的互补关系。可用于六自由度数控加工中心、航天器对接机构、汽车装配线、运动模拟器、岩土挖掘、光学调整、医疗机械等领域。 二、系统特点: 1、机构采用并联式结构,按工业标准要求设计,结构简单、速度快; 2、控制系统采用Windows系列操作系统,二次开发方便、快捷,适于教学实验; 3、提供教材、实验指导书等,内容涵盖机器人运动学、动力学、控制系统的设计、机器人轨迹规划等。 三、系统配置: 1、机器人本体、控制柜、电机控制卡、控制软件、理论教材及实验指导书。附属件配置有钻铣刀头、电主轴、绘图笔架、加工平台、手动夹具,另赠送一套加工所需原材料。 2、并联机器人加工装置(用电主轴本体、夹持器及钻铣刀)。 3、绘图装置(绘图笔架及绘图笔)。 4、并联机器人加工平台及工件夹持装置。 5、部分加工演示原材料(石蜡、尼龙等)。

1.并联机器人系统照片 2.并联机器人技术参数: 3.机器人型号:RBT-6T01P(全步进电机驱动) 机器人报价:175000.00元机器人型号:RBT-6S01P(全伺服电机驱动) 机器人报价:195000.00元

1.并联机器人系统照片 2.并联机器人技术参数: 3.机器人型号:RBT-6T02P(全步进电机驱动) 机器人报价:155000.00元机器人型号:RBT-6S02P(全伺服电机驱动) 机器人报价:175000.00元

六自由度桌面型并联机器人 1.并联机器人系统图片 2.并联机器人技术参数 3.机器人型号:RBT-6T03P(全步进电机驱动) 机器人报价:135000.00元机器人型号:RBT-6S03P(全伺服电机驱动) 机器人报价:155000.00元

一种Delta型并联机器人设计-实习报告

毕业实习报告 学院:机械工程学院 专业:机械设计制造及其自动化班级:机自XXX班 学号:1108030454 学生姓名:XXXXXX 指导教师:XXXXXX 2015年5月25日

目录 一、实习目的及意义 (1) 二、实习时间和地点 (1) 三、实习内容 (1) 3.1 Delta型并联机器人简介 (1) 3.2 并联机器人公司及产品 (2) 3.3 Delta型并联机器人工作原理 (8) 3.4 Delta型并联机器人组成 (9) 3.4.1硬件结构 (9) 3.4.2驱动控制系统 (10) 3.4.3视觉识别系统 (11) 3.4.4软件控制系统 (12) 四、实习体会与总结 (13)

一、实习目的及意义 本次实习在毕业设计过程中进行,目的是为了更加进一步的了解Delta型并联机器人,以便对本次设计有更多的了解,帮助解决设计遇到的一些方案、结构设计上的一些问题。本次实习的意义是对并联机构有了足够的认识,了解到了当前Delta型并联机器人技术的发展状况,机器人的应用领域及其给工业上带来的益处。通过这些了解使我对机器人技术更加痴迷,愿意研究该型机器人的一些相关技术使该技术更加成熟能够更广泛应用于生产实践当中。 二、实习时间和地点 因为本次实习条件的限制,本地区内无Delta型并联机器人实物可供实习,故本次实习的地点可选择为网上调研的形式,一方面通过大量查阅相关机器人公司的产品简介和说明书了解机器人的研究状况;另外,通过观看Delta型并联机器人的工作视频,深入了解其工作原理。最终选择了以下十家公司的产品进行了解。 本次实习时间不限定,具体的时间从3月初至四月月底。实习进度随设计进度而定。

并联机器人设计论文设计

并联机器人设计论文 摘要:并联机器人是一类全新的机器人,它具有刚度大、承载能力强、误差小、精度高、自重负荷比小、动力性能好、控制容易等一系列优点,在21世纪将有广阔的发展前景。文中从运动副分析入手,对一种运动解耦的三自由度并联机构进行了构型研究,该机构由三个正交分布的支链组成,且机构的运动副均为转动副,构成了机构动平台x、y、z三个方向的平动解耦;在机构构型研究的基础上,对其进行了运动学分析,推导出了该并联机构的运动学正反解,分析了机构输入/输出的速度和加速度等,验证了该机构运动解耦的特性。这对该机构的动力学分析、控制策略、机构设计和轨迹规划等方面的研究,具有一定的理论意义。 关键词:三自由度并联机构;并联机器人;设计;

1.课题国外现状及研究的主要成果 少自由度并联机器人由于其驱动元件少、造价低、结构紧凑而有较高的实用价值,更具有较好的应用前景,因此少自由度的并联机器人的设计理论的研究和应用领域的拓展成为并联机器人的研究热点之一。研究少自由度并联机构最早的学者应属澳大利亚著名机构学教授Hunt ,在1983年,他就列举了平面并联机构、空间三自由度3-rps并联机构,但对四,五自由度并联机构未作详细阐述。在Hunt之后,不断有学者提出新的少自由度并联机构机型。在少自由度并联机构机型的研究中,三维平移并联机构得到广泛的重视。clavel提出了一种可实现纯平运动三自由度Delta 并联机器人,在Delta机构的支链中采用平行四边形机构约束动平台的3个转动自由度。Tsai提出的Delta机构完全采用回转副,并通过转轴的偏移扩大了Delta机构的工作空间。在Tricept并联机床上采用的构型是由Neumann发明的一种具有3个可控位置自由度的并联机构,该机构的突出特点是带有导向装置,采用3个副驱动支链并由导向装置约束动平台。Tsai通过自由度分析提取支链的运动学特征,系统研究了并联机构的综合问题,特别研究了一类实现三自由度平动的并联机构。Rasim Alizade于2004年提出基于平台类型和联接平台的形式和类型进行分类的一种并联机构的结构综合和分类的新方法和公式,并综合出具有单平台和多平台的纯并联和串并联复联机构.我国燕山大学的黄真教授及其团队除了研制出解耦微型6维力传感器和微动机械,设计出一种新的

并联机器人发展概述

并联机器人发展概述 随着先进制造技术的发展,并联机器人已从简单的上下料装置发展成数字化制造中的重要单元。在查阅了大量国内外相关文献的基础上,介绍了并联机器人的特点、分类、应用,从运动学、动力学、控制策略三方面总结了近年来并联机器人的主要研究成果,并指出面临的问题。 1895年,数学家Cauchy研究一种“用关节连接的八面体”,开始人类历史上并联机器的研究。1938年Pollard提出采用并联机构来给汽车喷漆。1949年Caough提出用一种并联机构的机器检测轮胎,这是真正得到运用的并联机构。而并联结构的提出和应用研究则开始于70年代。1965年,德国人Stewart发明了六自由度并联机构,并作为飞行模拟器用于训练飞行员。1978年澳大利亚人Hunttichu把六自由度的Stewart平台机构作为机器人机构,自此,并联机器人技术得到了广泛推广。 自工业机器人问世以来,采用串联机构的机器人占主导位置。串联机器人具有结构简单、操作空间大,因而获得广泛应用。由于串联机器人自身的限制,研究人员逐渐把研究方向转向并联机器人。和串联机器人相比并联结构其末端件上同时由6根杆支撑,与串联的悬臂梁相比刚度大,结构稳定。由于刚度大,并联结构较串联结构在相同的自重或体积下,有高的多的承载能力大。串联机构末端件上的误差是各个关节误差的积累和放大,因而误差大、精度低,并联式则没有那样的误差积累和放大关系,微动精度高。串联机器人的驱动电机及传动系统大都放在运动着的大小臂上,增加了系统的惯量,恶化了动力性能,而并联机器人将电机置于机座上,减小了运动负荷。在位置求解上,串联机构正解容易,但反解困难。而并联机构正解困难,反解非常容易,而机器人在线实时计算是要计算反解的。 根据并联机器人的自由度数,可以分为:2自由度并联机构。2自由度并联机构,如5-R,3-R-2-P(R表示旋转,P表示平移)。平面5杆机构是最典型的2自由度并联机构,这类机构一般具有2个平移自由度。3自由度并联机构。3自由度并联机构种类较多,形式复杂,一般有以下形式,平面3自由度并联机构,如3-RRP机构、3-RPR机构、它们具有2个旋转自由度和1个平移自由度;3维纯平移机构,如Star Like并联机构、Tsai 并联机构,该类机构的运动学正反解都很简单,是一种应用很广泛的3维平移空间机构;空间3自由度并联机构,如典型的3-RPS机构、这类机构属于欠秩机构,在工作空间不同的点,其运动形式不同是其最显著的特点,由于这种特殊的运动特性,阻碍了该类机构在实际的广泛应用;4自由度并联机构。4自由度并联机构大多不是完全的并联机构,如2-UPS-1-RRRR机构,运动平台通过3个支链与顶平台相连,有2个运动链是相同的,各具有一个虎克铰U,1个平移副P,其中P和1个R是驱动副,因此这种机构不是完全并联机构。5自由度并联机构。现有的5自由度并联机构结构复杂,如韩国的Lee的5自由度并联机构具有双层结构。6自由度并联机构。该类并联机器人是国内外学者研究的最多的并联机构,一般情况下,该类机构具有6个运动链。随着6自由度并联机构研

全转动副三自由度并联机器人设计说明书资料

河北工业大学城市学院 毕业论文 作者:周** 学号:***** 系(专业):机械系 专业:机械设计与制造及其自动化 题目:全转动副三自由度并联机器人 指导者:李** 教授 (姓名) (专业技术职务) 评阅者: (姓名) (专业技术职务) 2015 年6月11 日

目录 1 绪论 ........................................................................................................................ - 4 - 1.1 引言 .............................................................................................................. - 4 - 1.2 此次课题研究背景和意义 ........................................................................ - 4 - 1.3 串并联机器人的国内外研究现状、使用范围及发展趋势 ...................... - 5 - 1. 4 本次毕业设计主要完成工作 ..................................................................... - 6 - 1.4.1 基本内容 ............................................................................................ - 6 - 1.4.2 课题研究拟采用的手段和工作路线 ................................................ - 6 - 2 总体方案的设计 .................................................................................................... - 7 - 2.1 总体布局的设计 ....................................................................................... - 7 - 3 由基本参数选定标准件的型号 .......................................................................... - 10 - 3.1 减速机的选择 .......................................................................................... - 10 - 3.2 选择伺服电机并对其检验 ...................................................................... - 12 - 3.3 轴承的选择及校核 .................................................................................... - 15 - 3.4 联轴器的选择 .......................................................................................... - 17 - 4.1 支链尺寸的确定 ........................................................................................ - 19 - 4.2 对主动轴尺寸的确定及校核 .................................................................... - 20 - 4.3 对支链上转动副的设计 ............................................................................ - 22 - 4.4 支链末端设计 ............................................................................................ - 25 - 5 机构的整体布局设计及机架设计 ...................................................................... - 2 6 - 结论 ...................................................................................................................... - 29 - 参考文献 .................................................................................................................... - 31 - 致谢 ............................................................................................................................ - 32 -

并联机器人操作细则

运动控制开发平台操作细则: 一、步进电机平台 1.上电计算机电源、驱动器电源、端子板电源。 2.运行GTCmdPCI_CH。 3.在菜单栏选择出现“基础参数设置”界面。 4.在“运控卡型号选择”栏,打开下拉菜单,选择所安装的运控卡型号。 设置“行程开关触发电平” 设置“编码器方向”,默认值0 设置控制周期,运控卡缺省的控制周期是200 μs。 5.点击“打开运控卡”按钮。 6.点击“确定”按钮。 7.在GTCmdISA_CH主菜单下选择打开“基于轴的控制”界面。 8.打开轴选下拉菜单,如下图,选择当前轴(操作轴)。 9.选择“清状态”,如右图,清除当前轴不正确的状态。 10、设置控制输出,驱动使能(轴开启) 在系统初始化完成后,在轴选框选择当前轴,按照根据系统要求设定控制输出。注意应与当 前轴的驱动器和电机的设置相统一。 SV卡: 可以选择输出模拟量,即0; 亦可选择输出脉冲量,即1。 SV卡: 选择“伺服打开/伺服关闭”选项(如右图,打勾为打开,不选为关闭)。此时驱动器使能,轴应该静止状态

11.点击“位置清零”按钮,观察“轴当前位置”为0。 4.在“运动控制模式”栏设置运动参数 5.点击“参数更新”按钮, 二、直流伺服电机平台 1~6步同步进电机一样 7、在轴的控制窗口中选中第4轴。 8、在“伺服滤波器参数设置”框中设置“比例增益”为10。 9、在梯形曲线页中“目标位置”为300000,“速度”为10,“加速度”为1。 10、点击“伺服打开”(SV卡时)/“轴开启”(SG卡时)选项,使控制器的第4轴进入伺服(开启)状态。 11、点击“清状态”键,使控制器的第四轴事件状态清除。 12、点击“参数更新”键,使第四轴开始运动 补充: 1、当某个轴选定并打开伺服后,在开发面板上会亮起相应的灯,分别是ENA1、ENA 2、ENA 3、ENA4. 2、在运动启动前应保证在控制软件的右侧的轴系状态或者坐标系状态正确,如:

Delta并联机器人系统总体设计

摘要 近些年,delta机器人越来越得到大多数人的关注,并逐渐开始在工业上得到成熟的应用。与串联机器人相比,并联机器人有很大优势。其中之一就是可以把电机固定在基座上,这样就可以减轻机器机构上的重量。当需要直接驱动时,把电机固定在基座上是一个必要的田间。因此,并联机器人非常适合直接驱动的情况。并联机器人的另一个优点就是他的刚度很高,这些特征可以得到更多的精准度和更快的操作。Delta机器人是其中非常重要的一种。 在本书中,介绍了并联机器人的产生特点及应用。计算了机器人的自由度,位置正反解,并分析了它的空间奇异形位。还通过分析比较几种控制器和方案,选择其中最适合的方案。并设计了delta机器人的控制电路,并详细介绍它的控制器功能。 关键词:并联机构位置反解步进电机结构设计

燕山大学本科生毕业设计(论文) Abstract In recent years ,increased interest in parallel robots has been observed..Parallel robots possess a number of advantages when compored to serial arms, The most importantone is certainly the possibility to keep the motors fixed into the base ,thus allowing a large reduction of the robot structure’s active mobile mass.keeping the motors on the robot base is a requairment when direct-drive is used ,thus ,parallel robots are well suited to direct-drive actuation.Another advantage of parallel robots is their high rigiditg.these features allow more precise and much faster mani pulations. The delta parallel robot is very famous among them. In this paper,the historyapplication character of the parallel robots are introduced .And I compted the degree of free of the parallel robot,analysis the singular position. The position solution and position inverse solution too. At last, there are several methords of controlling. And I choice one of then which is better suited to this robot. This method will be introduced latter. Key word:parallel delta, position inverse solution , singular position

(完整版)并联机器人发展现状与展望

并联机器人发展现状与展望 引言 并联机器人是一类全新的机器人,它具有刚度大、承载能力强、误差小、精度高、自重负荷比小、动力性能好、控制容易等一系列优点,在21世纪将有广阔的发展前景。本文根据掌握的大量并联机器人文献,对其分类和应用做了简要分析和概括,并对其在运动学、动力学、机构性能分析等方面的主要研究成果、进展以及尚未解决的问题进行了阐述。 1并联机构的发展概况 (一)并联机构的特点 并联机构是一种闭环机构,其动平台或称末端执行器通过至少2个独立的运动链与机架相联接,必备的要素如下:①末端执行器必须具有运动自由度;②这种末端执行器通过几个相互关联的运动链或分支与机架相联接;③每个分支或运动链由惟一的移动副或转动副驱动。 与传统的串联机构相比,并联机构的零部件数目较串联构造平台大幅减少,主要由滚珠丝杠、伸缩杆件、滑块构件、虎克铰、球铰、伺服电机等通用组件组成。这些通用组件可由专门厂家生产,因而其制造和库存备件成本比相同功能的传统机构低得多,容易组装和模块化。 除了在结构上的优点,并联机构在实际应用中更是有串联机构不可比拟的优势。其主要优点如下: (1)刚度质量比大。因采用并联闭环杆系,杆系理论上只承受拉、压载荷,是典型的二力杆,并且多杆受力,使得传动机构具有很高的承载强度。 (2)动态性能优越。运动部件质量轻,惯性低,可有效改善伺服控制器的动态性能,使动平台获得很高的进给速度与加速度,适于高速数控作业。 (3)运动精度高。这是与传统串联机构相比而言的,传统串联机构的加工误差是各个关节的误差积累,而并联机构各个关节的误差可以相互抵消、相互弥补,因此,并联机构是未来机床的发展方向。 (4)多功能灵活性强。可构成形式多样的布局和自由度组合,在动平台上安装刀具进行多坐标铣、磨、钻、特种曲面加工等,也可安装夹具进行复杂的空间装配,适应性强,是柔性化的理想机构。 (5)使用寿命长。由于受力结构合理,运动部件磨损小,且没有导轨,不存在铁屑或冷却液进入导轨内部而导致其划伤、磨损或锈蚀现象。 并联机构作为一种新型机构,也有其自身的不足,由于结构的原因,它的运动空间较小,而串并联机构则弥补了并联机构的不足,它既有质量轻,刚度大,精度高的特点,又增大了机构的工作空间,因此具有很好的应用前景,尤其是少自由度串并联机构,适应能力强,且易于控制,是当前应用研究中的一个新热点。 (二)并联机构的分类 从运动形式来看,并联机构可分为平面机构和空间机构;细分可分为平面移动机构、平面移动转动机构、空间纯移动机构、空间纯转动机构和空间混合运动机构, 另可按并联机构的自由度数分类:

全转动副三自由度并联机器人设计说明书

全转动副三自由度并联机器人设计说明书河北工业大学城市学院 毕业论文 作者: 周** 学号: ***** 系(专业): 机械系专业: 机械设计与制造及其自动化题目: 全转动副三自由度并联机器人 指导者: 李** 教授 (姓名) (专业技术职务) 评阅者: (姓名) (专业技术职务) 2015 年 6月 11 日 - 1 - 毕业设计,论文,中文摘要 题目:全转动三自由度并联机器人 摘要: 本设计中,对全转动副三自由度并联机器人的结构进行了全新的设计,对以前关于此方面机器人设计成果仅仅作为一个参考,通过对机器人支链的全新设计成功使机器人完成解耦,并且不会出现奇点,该全转动副三自由度并联机器人由动平台和静平台组成,静平台为机架底端,而动平台则是由完全相同的三个支链组成,即,三个支链相互垂直,支链末端位于同一水平面上,三个支链末端组成动平台,并且所有的运动副均为转动副。该机构的重复定位精度:<+/-0.025mm(平动);动平台三个方向平动范围:>220mm,最打平动速度:>0.4m/s;最大负载:1.5kg(包括末端机械手)。在设计中,规划设计出了一套精致的机构方案使机器人结构紧凑并具有

简单实用的功效,由于此机构具有高度的对称,所以可以承受各个方向的动载荷,机器人的运动是一个重点难点,本次设计在机构运动小巧灵活方面做出了很大的改进使其性能更加优越,因此对扩大并联机器人的应用领域具有现实意义。 本次毕业设计的基本顺序同本科期间进行的课程设计一样,均是先根据任务书提出方案,验证方案的可行性,方案通过则进行具体的结构设计并且对机构运动经过了正反解论证,选择了正确实用的设计路线。最后,采用绘图软件制作装配图,零件图,利用三维软件绘制三维模型并进行组装得到机器人三维模型。 关键词: 自由度串并联机器人三自由度 - 1 - 河北工业大学城市学院2015届本科毕业论文 毕业设计,论文,外文摘要 Title All three rotational degrees of freedom parallel robot,Deputy. Abstract: Designed a new mobile with three degrees of freedom decouple from the body of the robot, singularity does not occur, the parallel robot platform and static platforms distributed between the three branches of orthogonal connected, and all transmission Vice are the rotation pair. Repeat positioning accuracy of the agency :<+/- 0.025mm (translation); Moving platform, the scope of translation in three directions:> 220mm, the maximum translation speed:> 0.4m/s; maximum load:> 1.5Kg (including end manipulator). Institutions are given a set of sophisticated programs with simple and practical effect. As the high symmetry directions on the can withstand the amount of load. Compact and

并联机器人控制系统方案设计书与实验研究

学校代码:10151 _______ 论文成绩:________ 学生学号:2220063653 大连海事大学 毕业论文 二O—O年六月

并联机器人控制系统设计与实验研究 专业班级:机械设计制造及其自动化 姓名:___________________________ 指导教师:___________________ 交通与物流工程学院

内容摘要 本论文主要研究六自由度平台的位置反解,通过仿真实验和在xPC环境下的实时控制实 验来验证算法的可行性。 首先,采用矩阵分析方法,推出了体坐标系与静坐标系之间的变换矩阵及其液压缸上下铰支点的坐标向量矩阵,由此确立了转台液压缸长度变换与上台面位置的关系,从而解决了 六自由度转台机构的位置反解。其次,通过MATLAB /Simuli nk将方程搭建出来进行系统仿 真。运用Simulink中的模块将位置反解方程搭建出来,通过计算机模拟仿真,由用户给定的位姿求解出缸长变换。并且通过仿真初步验证反解方程的正确性。同时考虑到一定得实际 情况,为使信号平稳的输入,使平台平稳的升到中位,加入渐缩渐放模块,以达到预期的效 果。最后,运用MATLAB/xPC进行实时控制。以Simulink搭建出来的模型为基础,生成能够进行实时控制的目标应用程序。运用此目标应用程序进行实时仿真和实时控制实验,并在此 实验的基础上记录分析实验数据,通过对比实时控制实验数据与仿真实验数据,数据重合度 高,从而验证算法的可行性。 论文研究了控制并联机器人的核心算法。通过对比实时控制实验数据与仿真实验数据,由数据重合度高可得到该算法以及此算法上搭建的控制系统能够用于实际的并联机器人的控制。 关键词:六自由度平台位置反解仿真模型实时控制

并联机器人的研究现状与发展趋势

并联机器人的研究现状与发展趋势 并联机器人的研究现状与发展趋势 1、关联机构的提出及特点 1965年,德国Stewart发明了六自由度并联机构,并作为飞行模拟器用于训练飞行员[1]。澳大利亚著名机构学教授Hunt于1978年提出将并联机构用于机器人手臂[2]。随后,Maccallion和Pham.D.J首次将该机构按操作器设计,成功的将Stewart机构用于装配生产线,标志着真正意义上的并联机器人的诞生,从此推动了并联机器人发展的历史。典型的Stewart并联机器人如图1所示。 相对于串联机器人来说,并联机器人具有[3]以下优点: ①与串联机构相比,刚度大,结构稳定; ②承载能力强; ③精度高; ④运动惯性小; ⑤在位置求解上,串联机构正解容易,反解困难,而并联机器人正解困难,反解容易。 由于并联机器人的在线实时计算是要求计算反解的,这对串联机构十分不利,而并联机构却容易实现,由于这一系列优点,因而扩大了整个机器人的应用领域。 2、并联机器人的研究现状 自1987年Hunt提出并联机器人结构模型以来,并联机器人的研究受到许多学者的关注。美国、日本先后有Roney、Ficher 、Duffy 、Sugimoto等一批学者从事研究,英国、德国、俄罗斯等一些欧洲国家也在研究。国内燕山大学的黄真教授自1982年以来在美国参加了此项内容的研究,并于1983年取得了突破性进展。迄今为止,并联机构的样机各种各样,包括平面的、空间不同自由度的、不同布置方式的、以及超多自由度并串联机构。大致来说,60年代曾用来开发飞行模拟器,70年代提出并联机器手的概念,80年代来开始研制并联机器人机床,90年代利用并联机构开发起重机,日本的田和雄、内山胜等则用串联机构开发宇宙飞船空间的对接器。 此后,日本、俄罗斯、意大利、德国以及欧洲的各大公司相继推出并联机器人作为加工工具的应用机构。我国也非常重视并联机器人及并联机床的研究与开发工作,中国科学院沈阳自动化研究所、哈尔滨工业大学、清华大学、北京航空航天大学、东北大学、浙江大学、燕山大学等许多单位也在开展这方面研究工作,并取得了一定的成果。 3、并联机器人分类 自1993年,第一台并联机器人在美国德州自动化与机器人研究所诞生以来,并联机器人无论在结构和外型都得到了充分的发展,其可分为以下几类: (1)按自由度的数目分类,并联机器人可做F自由度(DOF)操作,则称其为F自由度并联机器人。例如:一并联机器人有六个自由度,称其为6-DOF并联机器人。冗余并联机器人,即其自由度大于六的并联机构。欠秩并联机器人,即机构的自由度小于其阶的并联机构。 (2)按并联机构的输入形式分类,可将并联机器人分为:线性驱动输入并联机器人和旋转驱动输入并联机器人。研究较多的是线性驱动输入的并联机器人,这种类型的机器人位置逆解非常简单,且具有唯一性。旋转驱动输入型并联机器人与线性驱动输入并联机器人相比,具有结构更紧凑、惯量更小、承载能力相对更强等优点;但它的旋转输入形式决定了位置逆解的多解性和复杂性。 (3)按支柱的长度是否变化分类,可将并联机器人分为:一种为采用可变化的支柱进行支撑上下平台的并联机器人。例如:这种六杆的并联机器人称为Hexapod,运动平台和基座由六个长度可变化的支柱连接的,每个支柱的两端分别由铰链连接在运动平台和基座上,通过调节支柱的长度来改变运动平台的位姿。另一种为采用固定长度的支柱进行支撑上下平台的并联机器人。例如:这种六杆的并联机器人称为Hexaglide,运动平台和基座是由六个长度固定的支柱连接的,每个支柱一端由铰链连接在运动平台上,另一端通过铰链连接在基座上,该端铰链可沿着基座上固定的滑道上下进行移动,由此来改变运动平台的位姿。 4、并联机器人的运动学分析

并联机器人文献综述

并联机器人文献综述 1、引言 人类千百年来对器械自动化的追求,促使了机器人的产生和发展。自从 1961 年美国推出第一台工业机器人以来,机器人得到了迅速的发展。广泛应用于工业各部门以及服务、医疗、卫生、娱乐等许多方面,对人类的生活产生了深远的影响。现代所说的机器人多指工业机器人,大都是由基座、腰部(肩部)、大臂、小臂、腕部和手部构成,大臂小臂以串联形式连接,因而也称为串联机器人,目前关于机器人的研究大部分集中于这一领域。就在串联机器人蓬勃发展的时候,又出现了一类全新的机器人——并联机器人。它作为串联式机器人强有力的补充,扩大了整个机器人的应用范围,引起机器人学理论界和工程界的广泛关注,成为机器人研究的主要研究热点之一。 并联机器人作为一种全新的机器人,它具有刚度大、承载能力强、误差小、精度高、动力性能好等一系列优点,并联六自由度机器人在许多行业有着非常好的应用前景,其特殊结构给机器人带来许多其它机器人不具备的优点。并联机器人是一种闭环机构,导致了其运动学和工作空间分析较为困难,同时也让机器人的精确控制变得特别困难。机器人运动时每个液压缸上分配的负载是变化的,因此每个液压伺服回路的受力、频率等系统参数也是变化的,常用的控制算法很难实现系统的精确控制。因此,对并联机器人的理论控制的研究对并联机器人的控制精度和应用推广有着重要的意义。 2、国内研究现状 最近几十年,国内外学者对并联机器人的特点、机构学、运动学方面进行了广泛、深入的研究,并且对这方面取得的成果进行了详细的概括和总结。但是,并联机器人作为一个结构复杂、多变量、多自由度、多参数耦合的非线性系统,其控制策略、控制方法的研究极其复杂。最初设计控制系统时,大多把并联机器人的各个分支当作完全独立的系统来进行控制,控制策略为传统的PID控制,控制效果很不理想。随着控制理论的发展,新的控制方法不断涌现,如智能控制"鲁棒控制"自适应控制等,并联机器人的控制也得到了迅速发展。 并联机器人作为一种结构复杂、多变量、多自由度、多参数耦合的非线性系

相关主题
文本预览
相关文档 最新文档