当前位置:文档之家› 抗性淀粉研究进展

抗性淀粉研究进展

抗性淀粉研究进展
抗性淀粉研究进展

抗性淀粉研究进展

摘要:抗性淀粉是膳食纤维的一种,对于人体健康具有重要的食用价值和保健作用。本文就抗性淀粉的分类、制备方法、对人体的生理功能、及其在食品中的应用进行综述。

关键词:抗性淀粉;生理功能;食品应用

抗性淀粉(resistant starch,RS)是膳食纤维的一种,是人类小肠内不能消化吸收,但能在结肠发酵的淀粉及其分解产物[1]。1982年,英国生理学家Englyst 发现并非所有淀粉都能被α-淀粉酶水解,由此提出抗性淀粉这一概念[2]。因为抗性淀粉在小肠内不被消化吸收,而是进入结肠被肠道微生物利用发酵产生短链脂肪酸再被吸收,有利于其能量缓慢释放,此外,还能产生二氧化碳、甲烷等气体维持结肠良好的微生态环境,有研究发现短链脂肪酸还能降低人体的胆固醇,这些功能都改善了人体健康。抗性淀粉的热量较低,热值一般不超过10.0-10.5KJ/g[3],具有膳食纤维的功能特性,但在食品加工能克服膳食纤维的某些缺点,改善食品品质。目前,人们已经将抗性淀粉应用在面条、饼干、酸奶等食品中。本文主要从抗性淀粉的分类、制作方法、健康特性、食品应用方面进行阐述。

1 抗性淀粉的分类

普通淀粉的形状为圆形或椭圆形轮廓,光滑平整;抗性淀粉为不规则的碎石状,表面鳞状起伏[4]。高直连淀粉(如玉米、大麦)是RS的主要来源,一般来说,直链淀粉与支链淀粉的比例比值越大,抗性淀粉的含量越高[5]。此外,抗性淀粉的颗粒大,因其体面积比大,与酶接触机会小,水解速度慢。宾石玉[2]等的研究测定高直连玉米淀粉、玉米、早籼稻糙米、糯米的抗性淀粉的含量分别为44.98%、3.89%、1.52%和0。

1.1 物理包埋淀粉(RS1)

因淀粉包埋在食物基质(蛋白质、细胞壁等)中,这种物理结构阻碍了淀粉与淀粉酶的接触而阻碍淀粉的消化,一般通过碾磨、破碎等手段可破坏包埋体系而转变为易消化淀粉。典型代表:谷粒、种子、豆类。

1.2 抗性淀粉颗粒(RS2)

主要存在水分含量较低的天然淀粉颗粒中,由于淀粉颗粒结构排列规律,晶体结构表面致密使得淀粉酶不易作用,从而对淀粉酶产生抗性,可通过热处理如蒸煮使其糊化失去抗性。典型代表:生的薯类、青香蕉淀粉颗粒。

1.3 回生淀粉(RS3)

食品加工过程中发生回生作用而形成的抗性淀粉。因淀粉颗粒在大量水中加

热膨胀最终崩解,在冷却过程中,淀粉链重新靠近、缠绕折叠,定向排列成的紧密的淀粉晶体结构,而不易与淀粉酶结合。典型代表:加热放冷的马铃薯、红薯以及过夜的米饭。

1.4 化学改性淀粉(RS4)

通过化学改性(酯化、醚化、交联作用)或基因改良而引起淀粉分子结构发生变化而不利于淀粉酶作用的淀粉。典型代表:交联淀粉、基质改良粘大米。1.5 淀粉脂质复合物(RS5)

当淀粉与脂质之间发生相互作用时,直连淀粉和支链淀粉的长链部分与脂肪醇或脂肪酸结合形成的复合物称RS5。脂质存在于RS5淀粉链中的双螺旋中,使得淀粉结构发生改变,不溶于水,且具热稳定性,不易与淀粉酶反应[6]。典型代表:含有淀粉和脂质的谷物和食品。

2 抗性淀粉的制备

从抗性的制备工艺方面, RS3 型抗性淀粉具有生产安全、易于控制及热稳定性好的优点,因此是最具有工业化生产与广阔的应用前景的一类抗性淀粉。抗性淀粉的产率与原料中的直链淀粉含量成正比,随着直链淀粉与支链淀粉的比例增高,抗性淀粉产率由7.61%增大至36.45%[7]。常用的抗性淀粉制备方法有热处理法、酶法、酸法、挤压处、理法、微波法、超声波法[4]。付蕾等[8]对玉米抗性淀粉研究发现,抗性淀粉的生成没有形成新的基团,是物理改良淀粉,RS3的总体粒径变大,而RS2的总体粒径变小,它们的粒度都不均匀,颗粒大小相差很大。

2.1制备RS3原理

淀粉加入一定量的水,在加热的过程中淀粉颗粒逐渐吸水膨胀,结晶区崩解遭到破坏,释放出直链淀粉分子,后在冷却的过程中,一定聚合度的淀粉分子链相互靠近缠绕成双螺旋结构,后通过分子间的氢键作用,双螺旋结构进一步发生折叠,逐渐定向排列成有序的紧密晶体结构。由于该淀粉晶体结构紧密,热稳定性相对较高,淀粉酶难以渗透酶解,从而对淀粉酶产生了抗性。

2.2 酶法和酸法

向淀粉悬浮液加入脱支酶或酸,利用酶的脱支作用或酸的降解效应,将直链淀粉α-1,6糖苷键打断,提高淀粉中直链淀粉的含量,从而实现增加抗性淀粉产量。

2.3 压热法

通过高温、高压、冷却等方法将淀粉悬浮液充分糊化,再经老化处理,制备抗性淀粉。部分糊化淀粉比完全糊化淀粉结晶速率较快,抗性淀粉含量更多[9]。

2.4 微波法

利用微波加热使食品中水分迅速蒸发气化,打断淀粉分子间氢键,在冷却阶段又重新形成氢键形成抗性淀粉。

3 抗性淀粉的功能

3.1 降血糖功能

抗性淀粉的深入研究发现,其能量吸收缓慢但较完全,血糖指数较低,与葡萄糖和普通淀粉相比,具有维持餐后血糖稳态,提高胰岛素敏感性的作用。王竹等[10]研究抗性淀粉的吸收代谢特点及对血糖调节的影响,发现食用抗性淀粉后120分钟后,GI值显著低于葡萄糖组;但30小时的累积转化率却高达94%,证明RS是以发酵后再吸收的途径,且可以缓慢吸收完全。陈云超等[11]研究发现,玉米抗性淀粉、绿豆抗性淀粉、葛根抗性淀粉均能降低糖尿病大鼠的血糖水平,但持续单一饲喂一种抗性淀粉一定时间后,稳定血糖的效果会减弱,而交替饲喂抗性淀粉饲料更有利于降血糖。

3.2 降低血液胆固醇含量

于森等[12]研究甘薯抗性淀粉对高脂血症大鼠的血脂影响,发现抗性淀粉能降低高脂血症大鼠的甘油三酯、胆固醇、低密度脂蛋白含量,增加高密度脂蛋白含量对脂质代谢有明显的调节作用,并且改善肝脏细胞变性和坏死现象。此外,抗性淀粉可减少胰岛素分泌,从而减少肝脏合成胆固醇,起到降低血液胆固醇的作用。

3.3 预防结肠癌

研究表明,抗性淀粉可以促进肠道有益菌群如双歧杆菌、乳酸杆菌的生长繁殖,抑制肠球菌的生长[13]。抗性淀粉到达结肠被肠道益生菌利用发酵产生二氧化碳、甲烷、乙烷和短链脂肪酸(乙酸、丙酸、丁酸等),有效降低肠道pH值,且短链脂肪酸含量随RS2的摄入增加而增加。有报道指出,丁酸可以一直肿瘤细胞分化并诱导其凋亡、一直结肠粘膜细胞的癌变及增殖、抑制诱变因子的潜在毒性而发挥抗癌作用[14]。

3.4 减少肥胖

抗性淀粉在小肠不被消化吸收,在结肠发酵产生短链脂肪酸被吸收,能延长食物的能量的释放,延长人体的饱腹感而不容易产生饥饿感。黄志强等[15]指出在日常膳食中、面包制品添加抗性淀粉都能够增强饱腹感。抗性淀粉减肥的机理还与其在结肠发酵生成的短链脂肪酸的有关,短链脂肪酸被结肠上皮细胞利用并经过肛门静脉进入血液循环,影响肝脏中脂质代谢,促进脂质排泄。

4 抗性淀粉在食品中的应用

抗性淀粉以色白、颗粒细、风味淡、持水力温和而成为传统膳食纤维的最佳替代物,可以增加食品的脆性、改善口感、减少食品的膨胀度等。付蕾等[6]研究发现,玉米抗性淀粉的黏度近似为0,在95℃下没有大声吸水溶胀、崩解等过程。

4.1 在面包、面条、饼干中的应用

面包添加膳食纤维,如小麦麸皮,会导致面包形状、色泽、气味品质下降,而添加抗性淀粉的面包不仅膳食纤维成分得到了强化,而且,气孔结构、均匀性、

体积和颜色等感官品质方面均优于添加普通膳食纤维的面包

[7],但不同来源的抗性淀粉的效能并不一样,而且添加过量抗性淀粉会导致面包粘合度、硬度增大而影响口感。张焕新等[16]以低筋小麦粉100%为基准,添加25%抗性淀粉制作饼干,除口感、色泽、形状优良外,发现抗性淀粉饼干的水解指数和血糖指数都显著下降。Srikaeo[17]在大米面条中添加高直连玉米抗性淀粉,发现面条的GI值降低,然而面条的韧度随抗性淀粉的增加而降低。而Wandee[14]用玉米交联抗性淀粉添加到大米面条中,发现面条的韧度和延长性增加。

4.2 在油炸食品中的应用

抗性淀粉可以增加油炸食品的硬度和脆度,还可加深油炸食品的色泽,因为抗性淀粉的低持水性,所以用抗性淀粉油炸成品在空气中不容易失水,保持良好的脆度[7]。

4.3 在饮料及发酵制品中的应用

抗性淀粉因为具有较好的黏度稳定性、流变性及低持水性,因此可作为食品增稠剂使用。白永亮等[18]在发酵后期酸奶中添加3%的香蕉抗性淀粉制作高纤维的保健酸奶。

5 结语

我国大部分地区都栽培有淀粉资源作物,我国充足的淀粉资源与落后的淀粉深加工水平矛盾日益凸显。抗性淀粉在食品中应用的广阔前景,为粮食加工企业,特别是淀粉生产以及淀粉深加工企业指明了方向。

适量添加抗性淀粉到食品中,不仅可以作为膳食纤维的强化剂,还有助于食品品质的改善,对消费者的健康也产生生理调节作用。如何把储量丰富、价格低廉的淀粉开发出具有良好食品加工特性和生理功能的高含量抗性淀粉,并将其应用到食品中,这是今后应逐渐开展的研究。

参考文献:

[1]ENGLYST H.N, TROWEL H, SOUTHGATE DAT, etal. Dietary fibe and resistant starch[J].

Am J Clin Nutr, 1987(46):873-874.

[2]宾石玉. 谷物中抗性淀粉含量的测定[J]. 饲料研究,2006,5(31):30-31.

[3]于子君,纪淑娟. 抗性淀粉的研究进展[J]. 农业科技与装备,2010,5(191):14-17.

[4]吴亨. 抗性淀粉的制备工艺比较及其形成影响因素研究[D]. 广西大学硕士学位论文,

2014.

[5]刘建高,张军,印遇龙,等. 抗性淀粉的功能及影响其含量的因素[J]. 华北农学

报,2006,2(增刊):1-5.

[6]朱平,孔祥礼,包劲松. 抗性淀粉在食品中的应用及功效研究进展[J].核农学

报,2015,29(2):0327-0336.

[7]杨光,杨波,丁霓霖. 直链淀粉和支链淀粉对抗性淀粉形成的影响[J].食品工业技术,

2008,29(6):165-167,171.

[8]付蕾,田纪春,汪浩. 抗性淀粉理化特性研究[J]. 中国粮油学报,2009,24(5):58-62.

[9]金鑫,周裔彬,徐亚元,等. 不同糊化度籼米淀粉在贮藏过程中结晶性和抗性淀粉的变

化[J]. 中国粮油学报,2013,28(11):23-27.

[10]王竹,杨月欣,周瑞华,等. 抗性淀粉的代谢及其对血糖的调节作用[J]. 营养学

报,2003,25(2):190-195.

[11]陈云超,崔武卫,黄赣辉. 抗性淀粉长周期对糖尿病大鼠控制作用的研究[J]. 食品工

业科技,2014,20:374-378,382.

[12]于淼,邬应龙. 甘薯抗性淀粉对高脂血症大鼠降脂利肝作用研究[J]. 食品科

学,2012,3(01):244-247.

[13]何梅,洪洁,杨月欣,等. 抗性淀粉对大鼠肠道菌群的影响[J]. 卫生研究,2005,

34(1):85-87.

[14]Wandee Yuree, Uttapap Dudsadee, Puncha-arnon Santhanee, et al. Quality

assessment of rice noodles made from blends of rice flour and canna starch[J].

Food Chemistry, 2015,179:85-93.

[15]黄志强,唐健,白永亮. 抗性淀粉及其防治肥胖症的研究进展[J]. 食品与机

械,2012,28(4):250-253.

[16]张焕新,张伟,金征宇. 抗性淀粉饼干的研制及血糖指数评价[J]. 中国粮油学

报,20013,28(9):32-37,43.

[17]Srikaeo Khongsak, Sangkhiaw Janya. Effect of amylose and resistant starch on

glycaemic index of rice noodles[J]. LWT-Food Science and Technology,2014,59:1129-1135.

[18]白永亮,陈庆发,杜冰,等. 香蕉抗性淀粉保健酸奶的研制[J]. 食品科

学,2012,33(16):318-323.

(注:可编辑下载,若有不当之处,请指正,谢谢!)

可降解塑料的研究利用现状

可降解塑料的研究利用现状 摘要:本文简介了白色污染的现状、危害及目前处理废旧塑料的方法,重点介绍了可降解塑料的研究现状,并分析了可降解塑料存在问题、发展方向及前景。关键词:可降解塑料白色污染现状前景 1.白色污染的现状、危害及目前处理废旧塑料的方法 塑料自问世以来,以其优异的性能和低廉的成本,在各个领域得到广泛的应用。随着经济的发展,人民生活水平的提高,塑料制品的需求量也日益增加,而塑料带来的“白色污染”也越来越严重。开发降解塑料是治理城乡废弃物对环境污染的一个重要途径。当前各国都急切需要降解塑料及分解材料,因此降解塑料及分解材料将成为一种最具有巨大市场潜力和生态效益的环保新型材料。 1.1“白色污染”的现状 塑料作为一种新型材料,以质轻、防水、耐用、生产技术成熟、成本低的优点,需求量呈逐年增长趋势。仅就中国而言,塑料产量从1975年的1.4万t 激增到2001年的1401万t,预计2005年将达到2500万t。随着塑料产量的不断增加,废弃塑料制品也同比例增多。近年来,在国民经济高速发展的同时,人们的生活方式也由“节俭型”向“消费型”转变,一次性塑料制品的使用量更是大幅增加,以杭州为例,600万人口每月仅一次性塑料包装袋的使用量就达800t。由于最初人们对废旧塑料引起的环境危害缺乏认识,将大量的废旧塑料制品随意抛弃,从而引发了严重的“白色污染”问题。 1.2“白色污染”的危害 1.2.1破坏臭氧层 在生产一次性发泡塑料餐具的过程中,所使用的发泡齐会严重破坏大气臭氧层。. 1.2.2破坏土壤结构 残留在土壤中的不可降解塑料制品会使土壤板结成块,阻碍农作物吸收营养和水分,导致农产品产量下降。 1.2.3危害人体健康

淀粉的研究进展

淀粉精细化学品 课题名称:淀粉衍生物絮凝剂的研究进展 姓名:马玉林 学号:P102014101 专业年级:10级化学工程与工艺一班 2012年10月22日

淀粉衍生物絮凝剂的研究进展 马玉林 (西北民族大学,甘肃兰州730100) 【摘要】近年来,全世界对淀粉衍生物絮凝剂的研究、开发、应用方面取得了显著进展。文章对淀粉衍生物絮凝剂的研究进行了综述,指出淀粉絮凝剂在研究中存在的问题和发展趋势,认为改性淀粉絮凝剂是最有发展前景的绿色絮凝剂之一。 【关键词】絮凝剂;改性淀粉;废水处理 近年来,合成有机高分子絮凝剂由于具有相对分子质量大、分子链官能团多的结构特点,在市场占绝对的优势。但随着石油产品价格不断上涨,其使用成本也相应增加,并且合成类有机高分子絮凝剂由于残留单体的毒性,也限制了其在水处理方面的应用。20世纪70年代以来,美、英、日和印度等国结合本国天然高分子资源,开展了化学改性有机高分子絮凝剂的研制工作。经改性后的天然高分子絮凝剂与合成有机高分子絮凝剂相比,具有选择性大、无毒、廉价等显著特点。 在众多天然改性高分子絮凝剂中,淀粉改性絮凝剂的研究、开发尤为引人注目。因为淀粉来源广。价格低廉。并且产物完全可被生物降解,因此,进入20世纪80年代以来,改性淀粉絮凝剂的研制开发呈现出明显的增长趋势,美、日、英等国家在废水处理中已开始使用淀粉生物絮凝剂,进几年,我国研究淀粉衍生物作为水处理絮凝剂也已取得了较大的进展。 1 淀粉类絮凝剂 淀粉的资源十分丰富,自然界中淀粉的含量远远超过其他有机物,是人类可以采用的最丰富的有机资源,也是开发最早、最多的一类天然高分子絮凝剂。淀粉分子带有许多羟基,通过这些羟基的酯化、醚化、氧化和交联等反应,可改变淀粉的性质。淀粉还能与屏息脂、丙烯酸、丙烯酰胺等人工合成高分子单体起连枝共聚反应,分子链上接有人工合成高分子链,使共聚物具有天然高分子和人工合成高分子两者的性质。 目前,改性淀粉已广泛用于食品、石油、造纸、电镀、印染和皮革等工业废水处理、污泥脱水,饮用水净化,重金属离子去除和矿物冶炼。淀粉衍生物絮凝剂主要有以下4种。 1.1阳离子型淀粉衍生物絮凝剂 阳离子型淀粉衍生物絮凝剂可以与水中微粒起电荷中和及吸附架桥作用,从而使体系中的微粒脱稳、絮凝而有助于沉降和过滤脱水。它对无机物质悬浮或有机物质悬浮液都有很好的净化作用,使用的pH范围宽,用量少,成本低。 阳离子淀粉是在碱性介质中,由胺类化合物与淀粉的羟基直接发生亲核取代

抗性淀粉研究进展

抗性淀粉研究进展 摘要:抗性淀粉是膳食纤维的一种,对于人体健康具有重要的食用价值和保健作用。本文就抗性淀粉的分类、制备方法、对人体的生理功能、及其在食品中的应用进行综述。 关键词:抗性淀粉;生理功能;食品应用 抗性淀粉(resistant starch,RS)是膳食纤维的一种,是人类小肠内不能消化吸收,但能在结肠发酵的淀粉及其分解产物[1]。1982年,英国生理学家Englyst发现并非所有淀粉都能被α-淀粉酶水解,由此提出抗性淀粉这一概念[2]。因为抗性淀粉在小肠内不被消化吸收,而是进入结肠被肠道微生物利用发酵产生短链脂肪酸再被吸收,有利于其能量缓慢释放,此外,还能产生二氧化碳、甲烷等气体维持结肠良好的微生态环境,有研究发现短链脂肪酸还能降低人体的胆固醇,这些功能都改善了人体健康。抗性淀粉的热量较低,热值一般不超过10.0-10.5KJ/g[3],具有膳食纤维的功能特性,但在食品加工能克服膳食纤维的某些缺点,改善食品品质。目前,人们已经将抗性淀粉应用在面条、饼干、酸奶等食品中。本文主要从抗性淀粉的分类、制作方法、健康特性、食品应用方面进行阐述。 1 抗性淀粉的分类 普通淀粉的形状为圆形或椭圆形轮廓,光滑平整;抗性淀粉为不规则的碎石状,表面鳞状起伏[4]。高直连淀粉(如玉米、大麦)是RS的主要来源,一般来说,直链淀粉与支链淀粉的比例比值越大,抗性淀粉的含量越高[5]。此外,抗性淀粉的颗粒大,因其体面积比大,与酶接触机会小,水解速度慢。宾石玉[2]等的研究测定高直连玉米淀粉、玉米、早籼稻糙米、糯米的抗性淀粉的含量分别为44.98%、3.89%、1.52%和0。 1.1 物理包埋淀粉(RS1) 因淀粉包埋在食物基质(蛋白质、细胞壁等)中,这种物理结构阻碍了淀粉与淀粉酶的接触而阻碍淀粉的消化,一般通过碾磨、破碎等手段可破坏包埋体系而转变为易消化淀粉。典型代表:谷粒、种子、豆类。 1.2 抗性淀粉颗粒(RS2) 主要存在水分含量较低的天然淀粉颗粒中,由于淀粉颗粒结构排列规律,晶体结构表面致密使得淀粉酶不易作用,从而对淀粉酶产生抗性,可通过热处理如蒸煮使其糊化失去抗性。典型代表:生的薯类、青香蕉淀粉颗粒。 1.3 回生淀粉(RS3) 食品加工过程中发生回生作用而形成的抗性淀粉。因淀粉颗粒在大量水中加热膨胀最终崩解,在冷却过程中,淀粉链重新靠近、缠绕折叠,定向排列成的紧密的淀粉晶体结构,而不易与淀粉酶结合。典型代表:加热放冷的马铃薯、红薯以及过夜的米饭。 1.4 化学改性淀粉(RS4) 通过化学改性(酯化、醚化、交联作用)或基因改良而引起淀粉分子结构发生变化而不利于淀粉酶作用的淀粉。典型代表:交联淀粉、基质改良粘大米。 1.5 淀粉脂质复合物(RS5) 当淀粉与脂质之间发生相互作用时,直连淀粉和支链淀粉的长链部分与脂肪醇或脂肪酸结合形成的复合物称RS5。脂质存在于RS5淀粉链中的双螺旋中,使得淀粉结构发生改变,不溶于水,且具热稳定性,不易与淀粉酶反应[6]。典型代表:含有淀粉和脂质的谷物和食品。 2 抗性淀粉的制备 从抗性的制备工艺方面,RS3 型抗性淀粉具有生产安全、易于控制及热稳定性好的优点,因此是最具有工业化生产与广阔的应用前景的一类抗性淀粉。抗性淀粉的产率与原料中的直链淀粉含量成正比,随着直链淀粉与支链淀粉的比例增高,抗性淀粉产率由7.61%增大至

小麦中的淀粉酶及其研究进展

小麦中的淀粉酶及其研究进展 摘要:从各个方面来研究了小麦中淀粉酶的功能作用以及它的作用机理,通过研究可知,小麦中的а-淀粉酶和β-淀粉酶对食品的品质的影响起着重要的作用。并通过国内外的研究进展来进一步说明小麦中淀粉酶的研究是很有必要的。最后提到了淀粉酶的添加来弥补某些淀粉酶不足以满足食品加工的小麦。本文主要从小麦中的淀粉酶研究意义,国内外小麦中的淀粉酶的研究近况以及未来的发展方向进行了较为全面的综述。 关键词:小麦;淀粉酶;研究进展 在活细胞中进行着大量的化学反应的特点是速度很快,且能有秩序的进行,从而使得细胞同时能进行各种降解代谢及合成代谢,以满足生命活动的需要。生物细胞之所以能够在常温常压下以极高的速度和很大的专一性进行化学反应是由于其中存在一种称为“酶”的生物催化剂。而在小麦的生长,储存,加工等环节中,其中存在的酶就具有非常重要的作用,小麦中的酶会影响着小麦的储存,加工等品质。小麦粉中的淀粉酶主要有3类,即а-淀粉酶,β-淀粉酶和葡萄糖淀粉酶。其中与面包烘焙有关的主要是а-淀粉酶和β-淀粉酶,而且а-淀粉酶与小麦的储藏品质也有着极其密切的关系。所以对小麦中的淀粉酶进行研究是十分有必要的。 1.研究小麦中的淀粉酶的意义 小麦中的淀粉酶主要有а-淀粉酶,β-淀粉酶和葡萄糖淀粉酶这三类。面粉有很多用途,可以制成各种不同的成品食品。而面粉大多数都是小麦面粉,可见要研究面粉就的研究小麦,并且小麦中的а-淀粉酶,β-淀粉酶与面包烘焙有关,而且а-淀粉酶与小麦的储藏品质也有着极其密切的关系。所以研究小麦中的淀粉酶是非常有意义的。通过研究可以更好地把握不同小麦品种的淀粉酶的性质,来改善淀粉酶,从而来改进食品品质。 1.1小麦中的а-淀粉酶对面包品质的影响 大量的研究已证实,由于淀粉酶在发酵过程中对淀粉分子进行了有益的修饰,进而改善了面包的质地、体积、颜色、货架寿命等方面的性质,具体影响如下[1,2]: 1.1.1 а-淀粉酶对面包品质的影响 ○1а-淀粉酶能增大面包体积。а-淀粉酶是通过适当阻止面筋的形成来使面包体积增加的,

抗性淀粉对血脂调节的研究近况

收稿日期:2010-11-15 基金项目:广州医学院学生课外学术科技项目(2008年);广州市属高校科技计划基金项目(08A059) 作者简介:区满春(1986-),女,临床医学系在校学生,研究方向: 中西医结合 膳食调理。通讯作者、指导老师:翁志强,副教授。 抗性淀粉对血脂调节的研究近况 区满春1,刘广琨1,樊 妮1,麦紫欣1,翁志强2 (1.广州医学院06级临床医学系双语2班,广州 510180;2.广州医学院第二附属医院,广州 510260) 摘要:目的:综述近年抗性淀粉降脂作用及其机制的研究进展。方法:以国内外研究抗性淀粉降脂作用及其机制的代表性论文为依据,进行分析、整理和归纳。结果:抗性淀粉能降低血清中胆固醇、甘油三酯的水平,增加粪便中类固醇的排泄。其主要机制为通过减少膳食中胆固醇的吸收、影响机体中胆固醇的代谢、促进胆固醇的排泄等降低血浆中胆固醇水平;与短链脂肪酸(SCFA)通过血循环进入肝脏增强肝组织胆固醇代谢相关基因表达水平有关。食物中某些物质能与抗性淀粉相互作用,互相影响吸收或生理功能。结论:抗性淀粉能针对高血脂这个高危因素,通过一系列机制降血脂,有助于预防高脂血症、心血管疾病、脑血管意外等的发病。关键词:抗性淀粉;高脂血症;预防医学 中图分类号:R552 文献标识码:A 文章编号:1005-5320(2011)02-0058-03 Research of resistant starch on blood -fat regulating today OU Man -chun 1,LIU Guang -kun 1,F AN N i 1,MAI Zi -xin 1,WEN G Zhi -qiang 2 (1.Faculty of Clinical medcine,Grade 2006,Bilingual Class 2,Guangzhou Medical Colle ge ,Guangzhou 510180;2.The Second Af f iliated H ospital of Guangzhou Medical Colle ge,Guangzhou 510260,China) Abstract:Objective:In order to review the role of resi stant starch on blood-fat reducing and the mechani sm in recent years.Methods:T o analyze,summarize and organize the representative papers abroad and internal,that the role of resistant starch on blood-fat reducing and the mechani sm.Results:Resistant starch could reduce the level of serum cholesterol,tri glyceride and increase the discharge of steroids.The main mechanism in low ing the level of serum cholesterol i s through by decreasing the absorption of cholesterol for meals,affecting the body metabolism,promoting the discharge of cholesterol ;It compares with short chain fatty acid(SCFA )which can come into liver to promote the level of hepatic cholesterol metabolism correlative gene expression through by blood circulation.Resistant starch and some substances in food can affect the absorption or physiologic function of each other.Conclusion:Resistant starch can reducing blood-fat in some mechani sms and contribute to preventing the onset of hyperlipemia,cardiovascular disease?and cerebral vascular accident. Key Words:Resistant starch;Hyperlipemia;Preventive medicine 抗性淀粉!(resistant starch RS)的概念引发了人们对淀粉生物利用度新的研究兴趣,并成为国际上新兴的食品研究领域。1992年世界粮农组织将其定义为健康者小肠中不吸收的淀粉及其降解产物。其具有降低餐后血糖和胰岛素反应;降低血浆甘油三酯和胆固醇,抑制结肠蛋白发酵、降低肠内胺和酚类浓度,增加粪便体积并酸化粪便;抑制结肠细胞增生,减少次级胆酸的分泌,促进结肠炎性溃疡的愈合,增加肠道镁和钙的吸收;增加饱腹感和抑制食欲等功效。笔者就抗性淀粉对血脂的调节作用研究 近况作一综述。 1 抗性淀粉简介[1~ 4] 定义:世界粮农组织将抗性淀粉定义为健康者小肠中不吸收的淀粉及其降解产物。 分类:淀粉是人类膳食中主要的碳水化合物,按不同标准可分为不同的类别。根据淀粉在小肠内的生物利用度将其分为3类:快速消化淀粉(Rapidly Digestible Starch,RDS)、缓慢消化淀粉(Slow ly Digestible Starch,SDS )和抗性淀粉(RS)。其中RS 不同于前两者,它不能被小肠中的淀粉酶水解,本身或其降解产物能原封不动地到达结肠并被其中的微生物菌群发酵,继而发挥有益的生理作用,因此曾被看作是膳食纤维(Dietary Fiber,DF)的组成成分之一。根据抗性淀粉的来源和人体试验的 ? 58?

9种减肥“超级食物” 抗性淀粉提高代谢

如对您有帮助,可购买打赏,谢谢 9种减肥“超级食物”抗性淀粉提高代谢 导语:当听到“超级食物”的时候,通常会联想到那些国外才有的食物或者很难获得的提取物等等,比如巴西莓浆果,海带宽面这些。实际上,超级食物没 当听到“超级食物”的时候,通常会联想到那些国外才有的食物或者很难获得的提取物等等,比如巴西莓浆果,海带宽面这些。实际上,超级食物没有想象的那么难以企及。想一下“小身材大营养”的扁豆,还有含有奇迹般完美蛋白质的鸡蛋,除却它们的高营养价值特点,这些食物还有成为“超级食物”的其他理由:有助于控制体重。扁豆能够提高身体能量代谢速度,鸡蛋则能增强饱腹感。下面为你介绍10种含有跑者所需营养素的超级食物,并能促进新陈代谢、增强饱腹感。 【大豆】 除富含能够增强饱腹感的膳食纤维和蛋白质以外,大豆还含有另外一种有助于控制体重的重要成分:抗性淀粉。这种成分(抗性淀粉,一种在小肠中无法被酶解的淀粉,在体内消化缓慢)含量高的食物,通常需要动员身体额外的能量去分解消化。美国科罗拉多州大学的研究人员发现成年人摄取含有抗性淀粉的一餐后,表现出较高的餐后能量代谢率。此外,抗性淀粉还可能有助于控制食欲。 获取益处:将豆沙与蒜汁和适量油调拌后,用来蘸食蔬菜。 【红辣椒】 辣椒素是辣椒最重要的成分。2010年,加州大学洛杉矶分校的研究者分别给予受试者们类辣椒素(名为二氢辣椒素酯,简写DCT)胶囊和安慰剂,结果他们发现,服用DCT的受试者组在餐后相比于安慰剂组消耗了更多的能量。“食用辛辣食物还可能会抑制持续吃东西的欲望,”美国纽约营养学家马约莉·诺兰·科恩(MarjorieNolanCohn)(著有《腹部脂肪 生活常识分享

淀粉质食品的抗老化研究进展

淀粉质食品的抗老化研究进展 李云波1 胡 燕2 (1.河南科技学院食品学院,河南新乡453003;2.华中农业大学食品科技学院,湖北武汉430070) 摘 要:老化是影响淀粉质食品品质的一大问题。阐述了淀粉质食品的老化机理和影响老化的因素及抗老化的方法。淀粉质食品的成分、贮藏条件、加工工艺等都可以影响老化速度。目前抗老化方法主要有控制贮藏条件、添加蛋白质、酶、乳化剂、多糖等。 关键词:淀粉质食品;抗老化;进展 中图分类号:X792 文献标识码:A 文章编号:1672-3198(2009)10-0272-01 淀粉质食物的品种繁多,风味各异,是人们日常生活中不可或缺的一类食品。如米饭、馒头及其它许多糕点、面点都是典型的淀粉质食品。然而,这些淀粉质食物制作成熟后,会随着时间的推移发生一系列的内在品质变化,比如米饭的变硬、馒头的干缩,面包由松软变硬脆等等。上述这些变化都是由于淀粉的老化现象所致。淀粉的老化是影响淀粉食品货架期的重要原因,对淀粉食品的抗老化研究具有非常重要的现实意义。 1 淀粉的老化机理 经完全糊化的淀粉,在较低温度下自然冷却或慢慢脱水干燥.就会使淀粉分子间发生氢键再度结合,使淀粉乳胶体内水分子逐渐脱出,发生离水作用。这时,淀粉分子则重新排列成有序的结晶而凝沉,淀粉乳老化回生成凝胶体。这种糊化后再回生结晶的淀粉称为老化淀粉(即 淀粉)。老化后的淀粉难以复水并变硬,难以消化吸收。简单地说,淀粉老化是糊化淀粉分子形成有规律排列的结晶化过程。 2 影响淀粉质食品老化的因素 2.1 食品成分对老化的影响 用来源或品种不同的淀粉制成的淀粉类食物,在贮藏过程中,老化的速度是不同的。因为在这些来源不同、品种不同的原料的淀粉组成成分中,支链淀粉和直链淀粉的比例是不同的,因而影响到不同淀粉类食物的老化速度。通常情况下,直链淀粉分子含量较高的食物容易发生老化,而支链淀粉含量较高的食物不太容易发生老化。原因在于支链淀粉的分子呈三维空间分布,形成复杂的网状结构。淀粉分子之间有一定的空间距离,不易形成氢键,妨碍了淀粉分子微晶束形成,阻止了 化淀粉向 化转变。所以选用支链淀粉含量较高的原料做成的淀粉类食物,对延缓食物中的淀粉发生老化是有益的。如果将淀粉分子降解,或是将淀粉糊精化,也可以在很大程度上减缓该类食物老化。 面粉食品在储藏过程中的老化速度与蛋白质的含量有关系。用蛋白质含量高的面粉制成的各式面点比用蛋白质含量低的面粉制成的各式面点,其老化速度明显减慢。 食物所含水分的多少对淀粉老化的速度也是有影响的。当淀粉类食物中的水分含量在30%~60%时,食物中的淀粉最容易发生老化;当淀粉类食物的水分含量在70%以上时,其老化现象就慢一些;当淀粉类食物的水分含量降至10%以下时,食物也不容易发生老化现象。 2.2 环境对老化的影响 以温度变化对米饭老化作用的影响为例,如果把温度控制在60 以上贮存米饭,一般不大容易发生米饭老化的现象。但是如果把米饭放在温度2 ~4 的环境下,米饭的老化速度就要快得多,基本上是米饭老化速度的最高峰。温度与大多数淀粉类食物发生老化关系的一般规律为:在略低于淀粉糊化温度(大约在40 ~60 )以上和淀粉冻结温度以下(大约为-7 左右)时,淀粉类食物一般不容易发生老化现象。而如果把淀粉类食物放置于上述二者温度之间,淀粉类食物的老化程度随着环境温度的不断下降而增加,老化速度也呈逐步加快的趋势。淀粉类食物发生老化作用的最适温度约在2 ~4 之间。 2.3 加工工艺对老化的影响 某些加工工艺对淀粉食品的老化有一定的延缓作用。如食品原料经过膨化处理后,其老化速度明显低于相同条件下未经过膨化处理的淀粉食品。一方面是因为膨化食品中水分含量较少,另一方面可能是因为膨化处理使淀粉的分子结构发生了改变、降解。 3 抗老化方法 3.1 控制储存条件抗老化 将淀粉类食物的储存温度控制在60 以上或-7 以下,淀粉类食物不容易发生老化。另外,当淀粉类食物的水分含量在70%以上或在10%以下时,可有效延缓其老化。 3.2 酶制剂抗老化 在淀粉质食品生产中添加淀粉酶、脂肪酶等酶制剂能起到抗老化的作用。麦芽糖淀粉酶作用于面粉中淀粉部分,使其产生小分子量的糊精,防止淀粉面筋之间的相互作用而产生的老化。 -淀粉酶能将面粉中的损伤淀粉连续不断地水解成小分子糊精和可溶性淀粉,这些小分子糊精阻止了淀粉与面筋蛋白中的麦谷蛋白之间的相互作用,从而起到延缓淀粉老化的作用。 脂肪酶在面团内有双重作用,一是氧化面粉中的色素 272

小麦抗性淀粉的研究进展

小麦抗性淀粉的研究进展 摘要:该文主要阐述了抗性淀粉的理化性质、制备工艺和遗传特性的研究现状,最后简介其其在食品工业中应用前景。 关键词:小麦、抗性淀粉、RS3 1983 年,英国生理学家 Hans Englyst 首先将一部分在人体肠胃中不被淀粉酶消化的淀粉定义为抗性淀粉(Resistant Starch,简称 RS)[1]。近年来碳水化合物与健康关系的研究发现,抗性淀粉具有提供能量,降低食物热效应[2],调节、保护小肠, 防止糖尿病和脂肪堆积以及促进锌、钙、镁离子的吸收[3]等功能, 因此 RS 已成为近年来碳水化合物研究的热点之一。 抗性淀粉是一种无异味、持水性低、多孔性白色粉末,抗性淀粉至今尚无化学上精确分类,目前大多根据淀粉来源和人体试验结果,将抗性淀粉分为4种类型:RS1(物理包埋淀粉)、RS2(抗性淀粉颗粒)、RS3(回生淀粉)、(化学改性淀粉),其中 RS3是研究和应用最广泛一种。RS3是指糊化后的淀粉在冷却或储存过程中部分重结晶,由于结晶区的出现,阻止淀粉酶靠近结晶区域的葡萄糖苷键,并阻止淀粉酶活性基团中的结合部位与淀粉分子结合,造成不能完全被淀粉酶作用而产生抗酶解性。 小麦是当今产量最大的粮食作物之一。随着小麦深加工的发展,小麦淀粉工业在我国发展迅速,但由于小麦淀粉加工适应性差,其在实际领域中并未得到很好的应用。因此选择以小麦淀粉为原料开发抗性淀粉产品,具有理论和实际上的重大意义。 一、小麦抗性淀粉的理化性质研究 小麦抗性淀粉的数均分子量为3198,重均分子量为7291,抗性淀粉形成过程中,其分子结构特征没有变化[4]。 Behall 等[5]对 RS 的理化特性进行了分析,表明 RS 为白色无异味的多孔性粉末,平均聚合度在 30-200 之间,在 100-165℃之间直链淀粉晶体熔融,产生吸热反应;耐热性高,持水性低,含热量低。X-衍射表明, RS 在空间上形成双螺旋结构,分离的 RS 的衍射图谱显示其为 B 型晶体结构[6]。 邵秀芝等[7]采用微波—酶法制备小麦抗性淀粉,并对其物理性质惊醒了研究。发现其与原小麦淀粉相比,小麦抗性淀粉表面粗糙,形状变得不规则,结晶结构为B 型和 V 型结合体,持水性大于原淀粉,而乳化能力和乳化稳定性均低于原淀粉;在相同溶液浓度条件下,抗性淀粉粘度比原淀粉低得多。 王娟等等[8]利用压热法制备小麦抗性淀粉 RS3,并考察其部分理化性质及结构性质。结果表明,该产品含抗性淀粉 13.89%,透光率较好,持水力、溶解度和膨胀度都随水浴加热温度的升高而上升。其淀粉-碘复合物最大吸收波长为 594 nm,碘吸收曲线在 580~610 nm之间呈较宽的吸收峰。该产品颗粒形状大部分为圆形,偏光十字明显,多呈十字型,且交叉点均位于颗粒中心;起糊温度为68.7 ℃,糊化不易发生,但较易老化。淀粉颗粒结晶结构为 C 型,仍保留了小麦淀粉红外光谱的特征吸收峰。

改性淀粉的研究进展及其应用综述

改性淀粉的研究进展及其应用综述 李月丰 (湖南农业大学食品科技学院,湖南长沙 410128) 摘要:本文综述了改性淀粉的主要特点,阐述了改性淀粉在各领域的应用研究,展望了改性淀粉的发展前景。 关键词:改性淀粉;应用;研究进展 0、前言 淀粉是天然高分子聚合物,是自然界来源最丰富的一种可再生物质,可降解,不会对环境造成污染。由直链淀粉和支链淀粉两部分组成,其水解的终产物为葡萄糖。 改性淀粉以天然淀粉为原料经过特定的化学方法、物理方法、酶处理法, 改良其原有性能的淀粉, 被广泛应用于食品、医药、皮革、铸造、造纸、纺织、水处理等行业。 1、改性淀粉在不同领域中的应用 1.1、在食品行业的应用 改性淀粉由于耐热、耐酸,具有良好的黏着性、稳定性、凝胶性和淀粉糊的透明度,较好的弥补和改善普通淀粉的不足,在食品行业有着广泛的用途。交联淀粉广泛应用于食品的增稠剂中, 尤其是需要粘度稳定性很好的浓溶液中。低交联度的淀粉可以在水果馅饼中用作填充料,加入罐头中可使其耐灭菌处理。酸法变性淀粉则大大提高了淀粉的凝胶性,用于果冻、夹心饼、软糖的生产。淀粉衍生物醋酸淀粉酯在食品工业中用作耐酸粘合剂。Hung, P. V. 和Morita, N.(2004)研究还表明[1-2]:交联键能加强淀粉颗粒之间的结合作用, 使之较稳定存在, 从而糊液有较好的流动性。李文钊等[3]将一种T0098 预糊化淀粉应用在面包中,可延缓老化, 使烘焙制品保持柔软蓬松, 延长保存期。王玉田等人[4]将玉米改性淀粉应用于灌肠制品中,发现灌肠制品在弹性、气味、滋味和组织状态及贮藏方面均有很大改善,并具有较高的成品率和经济效益。 1.2、在水处理中的应用 改性淀粉作为一种很有发展前途的新型水处理剂,已经得到越来越多的重

几种常见饲料原料中抗性淀粉含量的测定

几种常见饲料原料中抗性淀粉含量的测定 Resistant starch,简称RS,这一概念由Englyst提出,国内大多数文章译为抗性淀粉,也有的将其译为抗淀粉及抗消化淀粉,1993 年,欧洲抗性淀粉研究协会(EURESTA)将其定义为“健康者小肠中不被吸收的淀粉及其降解产物的总称”。抗性淀粉一般分为4类:RS1型(生理不可消化性截留淀粉);RS2型(抗性淀粉颗粒);RS3型(老化淀粉);RS4型(化学改性淀粉),杨光和丁霄霖(2002)分别就抗性淀粉的测定方法进行了讨论,但测定结果却不尽一致,本文通过参考 Megazyme公司试剂盒提供的方法,结合国内实际情况,研究出一套准确,方便、快捷测定饲料中抗性淀粉含量的方法,为饲料行业测定抗性淀粉提供一种新的方法。 1 原理 先用胰α-淀粉酶(Pancreatic α-amylase)将非抗性淀粉水解成葡萄糖,再利用抗性淀粉能溶于KOH中的性质,用淀粉葡萄糖苷酶(Amyloglucosidase,AMG)使其水解成葡萄糖,然后测定糖的含量,从而推算出非抗性和抗性淀粉的含量。 2 仪器与试剂 2.1 仪器 GILSON移液枪,DSHZ-300多用途水浴恒温振荡器(江苏太仓王秀实验设备厂),分析天平(0.000 1g),Beckman Synchron CX4/Pro全自动生化分析仪,WH-1微型旋涡混合仪(上海沪西分析仪器厂),离心机(Eppendorf Centrifuge 5810 R)。 2.2 溶液的配制 2.2.1 马来酸缓冲液(0.1M,pH=6.0)将2 3.2g马来酸溶解于1 600ml蒸馏水中,用4M(160g/l)NaOH调pH至6.0,加入0.6g CaCl22H2O和0.4g叠氮钠,蒸馏水定容至2L,室温保存。 2.2.2 醋酸钠缓冲液(1.2M,pH= 3.8)取69.6ml冰醋酸于800ml蒸馏水中,用4M NaOH调PH至3.8,蒸馏水定容至1L,室温保存。 2.2.3 氢氧化钾(2M)称取112.2g KOH溶于900ml去离子水中,用玻璃棒搅动,使之溶解,去离子水定容至1L。 2.2.4 乙醇(50%,V/V)取526ml 95%乙醇于1L容量瓶中,蒸馏水定容,混匀,室温保存。 2.2.5 淀粉葡萄糖苷酶(Amyloglucosidase,AMG)工作液(300U/ml):取 1.0ml AMG母液(3300U/ml,Megazyme公司试剂盒提供),用马来酸缓冲液稀释到11ml. (注意:此试剂要求现配现用) 2.2.6胰α-淀粉酶(Pancreatic α-amylase)反应液:称取1.0g胰α-淀粉酶(Megazyme 公司试剂盒提供)用适量马来酸缓冲液溶解,转入于100ml容量瓶,加入 1.0mlAMG工作液,振摇5min,摇匀,用马来酸缓冲液定容。溶液于12 000r/min离心10min,取出上清液,以备后用(注意:此试剂要求现配现用) 3 测定步骤 3.1 称取100mg(±5mg)样品于15ml离心试管(带盖)中,并轻轻敲打试管,使样品掉入试管底部。 3.2 每管内加胰α-淀粉酶(Pancreatic α-amylase)反应液 4.0ml(现配现用)。 3.3 盖紧盖子,旋涡混匀,然后用橡皮筋扎紧(一般为六个试管一扎)。 3.4 将扎好的试管放入37℃的水浴恒温振荡器中(200次/min)水解,16h后取出。 3.5 用纸巾将试管外的水擦干,加入 4.0ml乙醇(95%)旋涡混匀。 3.6 在离心机上于1 500g(大约3 000r/min)离心12min。 3.7 轻轻将试管移出(因为是低速离心,过重摇晃会使沉淀松散)将上清液倒入100ml容量瓶中,向剩下的沉淀中加入2ml乙醇(50%)旋涡混匀,再加入6ml乙醇(50%)旋涡混匀,仍然在1 500g离心12min 3.8 重复步骤3.7一次。

淀粉泡沫材料研究研究进展

淀粉泡沫材料研究研究进展 作者:周江,佟金来源:吉林大学 [摘要]:在概述淀粉材料发泡原理的基础上,综述了淀粉泡沫材料研究与开发的最新进展。阐述了材料组成和发泡工艺参数等因素对淀粉泡沫材料的发泡行为和性能的影响,介绍了淀粉泡沫材料在包装领域的应用,并对未来的研发方向做了展望。 泡沫塑料(如聚苯乙烯泡沫)作为缓;中包装材料被大量使用。由于回收利用的可操作性差以及价格等方面的原因,绝大部分使用过的泡沫包装材料被作为废弃物处理掉的。这些泡沫材料质量轻、体积大而且难于腐烂降解,给环境带来了严重的冲击。采用生物降解材料是解决这一问题的有效途径之一。淀粉作为一种天然高分子,既可再生,又能完全降解。其低廉的价格和广泛的来源,使得淀粉成为制备生物降解塑料的主要原料之一[1-2]。以淀粉为原料研制开发的生物降解泡沫材料,在某些领域已经开始取代聚苯乙烯泡沫材料,它既可以抑制废弃的塑料泡沫包装材料造成的环境污染,又能节约有限的石油资源,对于解决目前全球面临的环境危机和资源危机无疑具有重要的意义。本文综述了这方面研究工作的最新进展并对淀粉泡沫材料在包装领域的应用前景进行了介绍。 1 淀粉材料的发泡 淀粉材料的发泡方法可分为2类:1)升温发泡,即在常压下迅速加热材料使得其中的水分汽化蒸发,从而在淀粉材料中形成多孔结构;2)降压发泡,即在一定的压力下加热材料,使得材料中的水成为过热液体,然后快速释放外部压力造成其中过热的水汽化蒸发,从而使淀粉材料发泡。在淀粉材料的发泡过程中,水的作用是非常特殊和重要的。在发泡前,水是淀粉材料的增塑剂,起着促进淀粉塑化的作用;在发泡过程中它又变成发泡剂,是泡体长大的动力。 淀粉材料的粘弹性是影响泡体长大的主要因素。而淀粉材料的粘弹性不但与温度有关,而且与淀粉的塑化程度及其水含量(或其它增塑剂)有关。为了使淀粉材料发泡,首先必须提供足够的热量,使淀粉材料的温度高于其玻璃化转变温度而处在橡胶态。水的存在将有效地降低淀粉材料的玻璃化转变温度。在发泡过程中,随着水的蒸发消失,材料的玻璃化转变温度不断升高,最终从橡胶态回到玻璃态,从而将体内的孔洞结构保持下来。如果材料的最终状态仍然是橡胶态,则体内的孔洞结构将逐渐塌陷萎缩。 2 淀粉材料发泡工艺 2.1 挤出发泡 挤出发泡技术是利用降压发泡的原理,通过挤出机实现的。淀粉和水以及其它添加剂进入挤出机后,在热和剪切的共同作用下,颗粒淀粉的结晶结构被破坏,并形成淀粉高分子的无序化熔体,即所谓的热塑性淀粉。由于螺杆的挤压和挤出机腔体的限制,加热的淀粉熔体中将建立起很高的压力,使得其中的水成为过热的液体(温度可高达220℃)而不汽化蒸发。当淀粉熔体从挤出机机头挤出后,物料中的压力被释放,过热的水瞬间汽化蒸发,在淀粉熔体中形成多孔结构。同时,物料温度的下降和由于水蒸发造成的材料玻璃化温度的上升,使得热塑性淀粉从高弹态回到玻璃态,从而将其中的多孔结构冻结而形成泡沫材料。用挤出发泡技术制备淀粉泡沫包装材料始于20世纪80年代末期,随后又有多项用挤出发泡技术制备淀粉泡沫材料的专利问世。该方法是目前生产缓冲包装使用的淀粉泡沫松散填充材料(loose fill)的主要方法。 2.2 烘焙发泡 Shogren等人利用食品工业中的烘焙技术,在封闭的模具中加热淀粉糊(温度范围175~235℃)制备出淀粉泡沫材料。与挤出发泡技术相比,用烘焙技术得到的淀粉泡沫材料一般在表明层有较

淀粉物理性能的研究进展

淀粉物理性能的研究进展 摘要:本文介绍了淀粉的分类、淀粉的组成、淀粉颗粒的性质以及淀粉的凝沉性和粘度等性质。比较了玉米淀粉、马铃薯淀粉、木薯淀粉以及小麦淀粉之间等各种淀粉的各组分组成含量及其目前各淀粉的发展研究情况。 关键词:淀粉组分含量性质影响因素 正随着国民经济的高速发展,我国淀粉工业也得到了相应的发展。我国拥有丰富的淀粉工业原料,玉米产量9000多万吨,居世界第二,薯类居第一,这些是我国发展点淀粉工业的基础[1]。淀粉是植物的重要储藏物质,随着淀粉工业的发展,淀粉深加工产品的数量不断增加,淀粉的应用范围不断扩大,对淀粉品质的要求也越来越高。 一、淀粉的分类 淀粉根据其分子形状可分为直链淀粉和支链淀粉,支链淀粉是由α-1,4 葡萄糖苷键连接的线性葡聚糖,二支链淀粉是由α-1,4 和α-1,6 糖苷键连接的具有分支结构的葡聚糖。直链淀粉在水溶液中并不是线性分子,而在分子内氢键的作用下分子链卷曲成螺旋状,每个螺旋含有6个葡萄糖残基。在显微镜下,淀粉都是形状和大小不同的透明颗粒,其形状有圆形、卵形(椭圆形)、多角形等三种[2]。不同淀粉粒平均颗粒大小不同:马铃薯淀粉粒65μm,小麦淀粉粒20μm,甘薯淀粉粒15μm,玉米淀粉粒16μm,稻米淀粉粒5μm。就同一种淀粉而言,淀粉粒的大小也不均匀,如玉米淀粉粒中最大的为26μm,最小的为5μm。在常见的淀粉中马拉松淀粉的颗粒最大,稻米淀粉的颗粒最小。支链淀粉易分散在冰水中,而直链淀粉不易分散在冰水中。天然淀粉粒完全不溶于冷水。在68-80℃时,直链淀粉在水中溶胀而形成胶体,支链淀粉则仍为颗粒,但是,一旦支链淀粉溶解后冷却则不易析出。 二、淀粉的组成 1.水分 淀粉中的含水量取决于储存环境的温度和相对湿度,一般在10-20%范围内。在相同条件下,马铃薯淀粉的含量较高。淀粉的含水量随环境条件的变化而变化,环境的相对湿度越大,淀粉的含水量越高。在饱和湿度条件下,吸水量多,并引起淀粉颗粒膨胀。玉米,马铃薯,木薯淀粉的吸水量分别为39.9%、50.9%、47.9%(干基淀粉计)颗粒直径分别增大9.1%、12.7%、28.4%。淀粉的这种吸水性表明淀粉颗粒具有渗透性,水及水溶液能自由渗入颗粒内部,淀粉与稀碘溶液很快变蓝,再与硫代硫酸钠溶液蓝色消失就说明这点。 2.脂类化合物

抗性淀粉的简介及其制备

1. 抗性淀粉研究 1.1 抗性淀粉简介 1981年Anderson等首次发现食物中的淀粉经过小肠并未完全被消化。通过测定作为大肠发酵指示的呼出的氢气,他们发现白面包中大约有20%的淀粉进入大肠[1]。最初,研究者称淀粉进入大肠的现象为淀粉的不良吸收,但是随着对淀粉在人体内代谢过程的深入研究,发现进入大肠的淀粉能被大肠里的微生物发酵,作为能源利用。研究者们将这种不被健康人体小肠所吸收的淀粉称之为抗性淀粉(Resistant Starch),简称RS。这种淀粉较其他淀粉在体内消化、吸收和进入血液较缓慢,具有类似膳食纤维的功能特性。但抗性淀粉本身仍然是淀粉,其化学结构不同于纤维。作为一种新型功能型添加剂,抗性淀粉对人体健康有重要作用,它能降低血糖和胰岛素的反应,适合肥胖病人和糖尿病人食用。动物实验表明,抗性淀粉还具有降低血清胆固醇、防治心血管疾病的作用[2]。此外,抗性淀粉还具有比传统膳食纤维更好的加工特性,特别是在膨胀度、黏度、凝胶能力、持水性等方面[3]。作为一种新型的膳食纤维,抗性淀粉具有类似于传统膳食纤维的生理功能,在大肠中,经微生物发酵,它的产短链脂肪酸尤其是丁酸的能力远远高于普通膳食纤维[4]。而且,将抗性淀粉添加到食品中,RS不会影响食物的风味、质地和外观,在许多应用中,甚至可以提高最终产品的风味。因此在过去几十年中,RS已作为保健营养成分应用于面包、谷物早餐、面条等普通食品和减肥食品等特殊食品中[5]。 1.2 抗性淀粉的分类 抗性淀粉(RS)因其天然来源或加工方法不同,其抗消化性会有很大的差别,目前一般可将其分为4类,即RS1、RS2、RS3、RS4[6]。 RS1,物理包埋淀粉,是指那些因细胞壁的屏障作用或蛋白质的隔离作用而不能被淀粉酶接近的淀粉。如部分研磨的谷物和豆类中,一些淀粉被裹在细胞壁里,在水中不能充分膨胀和分散,不能被淀粉酶接近,因此不能被消化。但是在加工和咀嚼之后,往往变得可以消化; RS2,颗粒状抗性淀粉,是指那些天然具有抗消化性的淀粉。主要存在于生的马铃薯、香蕉和高直链玉米淀粉中。其抗酶解的原因是因为具有致密的结构和部分结晶结构,其抗性随着糊化而消失; RS3,回生淀粉,是指糊化后在冷却或储存过程中结晶而难以被淀粉酶分解的淀粉,也称为老化淀粉。它是抗性淀粉的重要成分,通过食品加工引起淀粉化学结构、聚合度和晶体构象等方面的变化而形成的,因而也是一类重要的抗性淀粉。回生淀粉是膳食中抗性淀粉的主要成分,这类淀粉即使经加热处理,也难以被淀粉酶消化,因此可作为食品添加剂使用。一般采用湿热处理制备,如直链含量为70%的玉米淀粉,经过压热法处理,可获得21.2%的RS3的产品。国外专利中多采用高直链玉米淀粉为

淀粉在肉质中的应用特性比较及其新研究发展

几种常见淀粉在肉质品 中的应用特性比较及其研究新进展 姓名:陈东锋 班级:食工 09(4)班 学号:090107714 2012年3月24日 几种常见淀粉在肉质品中的应用特性比较及其研究新进展 陈东锋 (武汉工业学院食品学院食工094班 090107714) 【摘要】在肉制品的加工中添加一定量的淀粉,可以起到填充、粘着和增稠的作用。淀粉作为一种价格低廉而对产品又具有明显良性作用的填充料,研究它在肉制品中的性能和应用,具有重要的现实意义和应

用价值。本文主要是对几种在肉制品中常见淀粉的性能和应用进行了比较和分析,并概述了其在当前的一些新的研究进展。 【关键词】淀粉肉制品应用进展 淀粉为肉类食品中最常用的增稠剂,在肉制品中主要起改善产品的组织状态及口感,提高出品率的作用。淀粉在肉制品添加量一般为 3%-12%之间,添加量不宜过大,过大会影响产品的质量,如产品口感发粘、组织结构状态差等【1】。肉制品中常见的淀粉主要分为两类,一类是原淀粉,另一类是变性淀粉。这类淀粉主要用于勾芡,如:绿豆淀粉、马铃薯淀粉、小麦淀粉、甘薯淀粉等。变性淀粉是原淀粉经处理后的淀粉,质量优于原淀粉,具有吸水量大、口感不发粘、不回生等特点,常见的有:预糊化淀粉、磷酸酯淀粉、交联淀粉、酸变性淀粉等。近几年变性淀粉使用量正逐年增大。 1. 原淀粉与变性淀粉的在肉制品中的应用效果的比较表 【2】 原淀粉变性淀粉 持水性持水性较差,在使用中一 般与卡拉胶配合使用 持水性强,取代卡拉胶, 并且与原淀粉相比持水性 增加20%-30%。 乳化性没有乳化作用,保油性 差,应与大豆蛋白结合使 用 保油、水性能好,代替部 分大豆蛋白作为乳化剂, 具有良好的乳化性。 切面性能切面无光泽,透明度较 差,组织松散粗糙 切面光亮,组织细腻,透 明度好,结构紧密,久 置。 货架期产品在贮运、销售中易回 生,低温贮存析水、货架 期短 产品不回生,低温 贮存不析水,延长货架期 感官指标产品质地硬、弹性 差、发粘、易变色 产品质地柔软、弹性好、 色泽稳定,口感又韧性 出品率150%-160%180%-200% 2. 原淀粉在肉制品中应用的利弊 2.1优点:以西式火腿为例

生物可降解塑料塑料的最新研究现状

生物可降解塑料的研究现状 摘要:生物可降解材料因其具有可降解的特性越来越受到人们的关注。本文主要介绍生物可降解塑料的应用背景,塑料的最新研究及其成果。其中可降解塑料包括淀粉基高分子材料、聚乳酸和PHB。 关键词:生物可降解塑料白色污染淀粉基材料聚乳酸PHB 现代材料包括金属材料、无机非金属材料和高分子材料作为现代文明三大支柱(能然、材料、信息)之一在人类的生产活动中起着越来越重要的作用。[1]传统的高分子塑料在给国民经济带来快速发展,人民生活带来巨大改变的同时也给人类的生存环境带来了巨大的破坏。当今社会“白色污染”的问题变得越来越受关注。这类塑料由于在自然环境下难以降解处理,以致造成了城市环境的视觉污染,同时由于它们不能像草木一样被生物降解,还常常引起动物误食,并造成土壤环境恶化。塑料制品在食品行业中广泛使用,高温下塑料中的增塑剂、稳定剂、抗氧化剂等助剂将渗入到食物中,会对人的肝脏、肾脏及中枢神经系统造成损害。塑料的大量使用必然会带来如何处理废弃塑料的难题。传统的塑料处理方法主要包括直接填埋、焚烧、高温炼油等方法。这些处理方法不仅对环境造成破坏,同时也对人类健康构成巨大威胁。石油、天然气等能然已面临危机,以石油为原料的塑料生产将受到很大的阻力。为了减少废弃塑料对环境的污染和缓解能然危机,多年来人们努力开发生物可降解材料,用以替代普通塑料。生物可降解塑料是指一类由自然界存在的微生物如细菌、霉菌(真菌)和藻类的作用而引起降解的塑料。理想的生物降解塑料是一种具有优良的使用性能、废弃后可被环境微生物完全分解、最终被无机化而成为自然界中碳素循环的一个组成部分的高分子材料。生物降解过程主要分为三个阶段:(1)高分子材料表面被微生物粘附;(2)微生物在高分子表面分泌的酶作用下,通过水解和氧化等反应将高分子断裂成相对分子量较低的小分子化合物;(3)微生物吸收或消化小分子化合物,经过代谢最终形成二氧化碳和水。 一、生物可降解材料的种类 按照原料组成和制造工艺不同可分为以下三种:天然高分子及其改性材料、微生物合成高分子材料和化学合成高分子材料。天然高分子中含量最丰富的资源包括纤维素、甲壳素、木质素、淀粉、各种动植物蛋白质以及多糖类等,他们具有多种官能团,可通过物理或化学的方法改性成为新材料,也可通过物理、化学及生物技术降解成单体或低聚物用作能源及化工原料。微生物合成高分子降解塑料是由生物发酵方法制的一类材料。 二、最新研究成果及其应用 2.1天然高分子及其改性材料 天然合成高分子降解塑料天然高分子大多数可以生物降解,但热学、力学性能差,不能满足工程材料的性能要求。通过对天然高分子改性可以得到能有实用价值的天然高分子降解塑料。其中天然高分子聚合物降解塑料包括淀粉、纤维素、木质素、多糖以及蛋白质等为基材的复合材料。淀粉是植物经光合作用而形成的碳水化合物,由于其来源广泛、价格低廉、降解后仍以二氧化碳和水的形式回归到自然,被认为是完全没有污染的可再生能源,以淀粉基高分子材料的塑料制品已在非食用领域得到了广泛的开发和研究。 淀粉基高分子材料包括淀粉填充塑料和完全淀粉基塑料。其中,淀粉基填充塑料主要是指以淀粉作为填充剂,与PE、PP等通用塑料共混。[2]传统的淀粉填

相关主题
文本预览
相关文档 最新文档