当前位置:文档之家› 电路板阻抗原理知识及应用

电路板阻抗原理知识及应用

电路板阻抗原理知识及应用
电路板阻抗原理知识及应用

电路板阻抗原理知识及

应用

公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

前言:

我们做电子设计,遇到高速电路时会遇到很多问题,也会有很多新名词,比如:过冲,下冲,时延,阻抗,反射等,经过我的反复思考与研

究,得到一些心得,跟大家一起分享。

随着信号传送速度迅猛的提高和高频电路的广泛应用,对印刷电路板也提出了更高的要求。印刷电路板提供的电路性能必须能够使信号在传输过程中不发生反射现象,信号保持完整,降低传输损耗,起到匹配阻抗的作用,这样才能得到完整、可靠、精确、无干扰、噪音低的传输信号。

在高速数字电路的PCB设计上,我们设计的产品不管是用到DDR2,还是DDR3内存,不管是PCIE差分还是SATA传输,都用到了高速PCB设计技术,而我们所设计的PCB用了阻抗控制技术后,基本上没有出现是PCB问题跑不通的情况。要理解高速信号的设计知识,先要从一些基础电子知识说起。

基础知识

导体中的自由电子在电场的作用下定向移动形成电流。电流方向只是物理学中约定俗成的一个规定,物理上规定电流的方向是正电荷的定向移动的方向或者负电荷的定向移动的反方向。电流的速度不是电子运动速度,而是电场的速度。

图1. PA6000功率分析仪的电磁抗扰度测试现场

图2:定向移动的电子

电场的传播速度和阻抗没有直接关系,但它们都与导体周围的介质有关电信号的传播速度是与导体周围的介质介电常数有关的,电信号在真空中(指导体周围比较大的范围内都是真空)的传播速度是光速3*10^8 m/s,换算为30 cm/ns 。在其它的介质中,它的传输速度是不一样的,如果相对介电系数是 Er ,则传播速度为 30/Er^。例如,在水中,水的相对介电系数是80,所以,传播速度约是真空中的1/9 ,即: 30/80^ =

cm/ns。在PCB中,FR4的相对介电系数约为4,所以,传播速度是真空中的一半,即:30/4^ = 15 cm/ns。

传输线的特征阻抗是什么

传输线的特征阻抗,又称为特性阻抗,是我们在进行高速电路设计的时候经常会提到的一个概念。信号在传输线中传输的过程中,在信号到达的一个点,传输线和参考平面之间会形成电场,由于电场的存在,会产生一个瞬间的小电流,这个小电流在传输线中的每一点都存在。同时信号也存在一定的电压,这样在信号传输过程中,传输线的每一点就会等效成一个电阻,这个电阻就是我们提到的传输线的特征阻抗。这里一定要区分一个概念,就是特征阻抗是对于交流信号(或者说高频信号)来说的,对于直流信号,传输线有一个直流阻抗,这个值可能会远小于传输线的特征阻

抗。一旦传输线的特性确定了(线宽,与参考平面的距离等特性),那么传输线的特征阻抗就确定了。一般的PCB走线特征阻抗计算公式: Z0≈

(L/C)^

其中L是单位长度传输线的固有电感,C是单位长度传输线的固有电容。通过这个简单的计算公式我们能看出来,要改变传输线的特征阻抗就要改变单位长度传输线的固有电感和电容。

影响传输线特征阻抗的几个因素

根据以上公式,这样我们就能更好的理解影响传输线特征阻抗的几个因素:

a. 线宽与特征阻抗成反比。增加线宽相当于增大电容,也就减小

了特征阻抗,反之亦然。

b. 介电常数与特征阻抗成反比。同样提高介电常数相当于增大电

容。

c. 传输线到参考平面的距离与特征阻抗成正比。增加传输线与参

考平面的距离相当于减小了电容,这样也就减小了特征阻抗,反之亦然。

d. 传输线的长度与特征阻抗没有关系。通过公式可以看出来L和

C都是单位长度传输线的参数,与传输线的长度并没有关系。

e. 线径与特征阻抗成反比。由于高频信号的趋肤效应,影响较其

他因素小。

图示理解信号传播

下面再以图示的方法说明下,传输线是一个分布参数系统,它的每一段都具有分布电容、电感和电阻。传输线的分布参数通常用单位长度的电感L和单位长度的电容C以及单位长度上的电阻、电导来表示,它们主要由传输线的几何结构和绝缘介质的特性所决定的。分布的电容、电感和电阻是传输线本身固有的参数,给定某一种传输线,这些参数的值也就确定了,这些参数反映着传输线的内在因素,它们的存在决定着传输线的一系列重要特性。传输线的等效电路是由无数个微分线段的等效电路串联而

成。

图3:传输线模型1

在上图里,以t1时间段来说,电阻Ra1的阻值很小,电感L1也很小,电容C1也很小,电阻Rb1很大。电信号从低电平变高电平高电平,它不是整条导线上一下子就变为高电平了,而是像钱塘江大潮涨潮或波浪推进时,是有一个过程的。钱塘江大潮来后,就把江面从低水位变到高水位了,波浪是一个一个的来,就像高频信号不停的传输。信号电场也如潮水一样,它是后面的推前边的,前面的继续向前。

图4:潮水在向前推进

图5:波浪在传播

在导线上的一个固定地点,它的电平是如潮头逐渐上升的,这个上升的波形,就是我们平常可以用示波器测量的上升沿,这个上升沿有快有

慢,高速信号,需要上升沿和下降沿都要快,否则电平还没到,下一个信号电平又来了。而低频信号并不等于上升沿下降沿就平缓,它也可以比较陡。低频信号如果上升沿和下降沿比较陡的,也要当高频信号来处理。

图6:传输线模型2

如何简单理解信号传播与信号回路问题

我们可以这样来简单理解信号传播与信号回路问题,一个信号在导体里传播,它就要受到导体上电阻的衰减,电感的阻碍,给寄生电容充电和

介质漏电等。微分导线后可见,信号峰头到这里来后,由于给寄生电容充电和介质漏电,它就会沿传播路径下的参考平面有一个返回电流,然后到下一个微分点,电流又返回到前一个点,这个信号还未传到终点前,沿导线的传播路径的返回电流一直存在,等信号到达终点后,整个通路建立平衡后,返回路径才从信号最好走的(最短路径,最小电阻)路径返回。低速信号地回路路径

低速信号的信号峰头从始点到终点的时间和高速信号一样,但它两个信号间时间比较长,信号推进时从导体路径返回电流,平衡后从最短路径返回。而信号峰头从始点到终点的时间远小于信号周期,所以大部分电流从最短路径返回了。

图7:低速信号地回路路径

高速信号地回路路径

高速信号和低速信号不一样,它的波形一个接一个的,所以绝大部分返回电流从信号传播路径返回。

图8:高速信号地回路路径

前面说过,在FR4的相对介电系数为4的PCB中,信号传播速度是约为15 cm/ns。如果我们以15cm长的导体来传信号,信号从这头传到那头就要1ns的时间,一个500MHz的时钟信号在里面传播,就是一个波的峰头还没到,第二波形又发出去了。这样一个波一个波的传过去,返回的电流一直从传播路径上走。

信号传播,也相当于在给沿途的寄生电容充电,寄生电容的负端就有返回电流了。

图9:耦合产生寄生电容的返回模型

为什么要讲返回路径

我们为什么要讲返回路径,返回路径是信号传播的原动力,只有让返回路径畅通,信号传播途中才有电压差,才使信号向前走。所以返回路径

是电子电路必不可少的,是设计PCB特别是高速电路一定要考虑的,否

则,就有串扰,反射,过冲,波形畸变等各种情况产生,电路工作不正

常。返回路径就是参考面,参考平面是阻抗的一大因子。

在下图中,是单端导线的截面图,阻抗与H1成正比,与Er成反比,与W1、W2、T1成反比,大家可以看出,W1,W2,T1是一个梯形面,这三个参数组成的就是导体截面,实际阻抗与导线截面积成反比。也就是说,特性阻抗是与导体截面积、导体到参考平面的距离和导体到参考平面间介质的介电常数有关的。

图10:导线与参考面截面

我们在设计PCB板时,要设计好参考平面

我们在设计PCB板时,设计好参考平面,如四层板,中间两层是参考层;六层板,第二层和第五层是参考层。参考平面可以是地层,也可以是电源层,以地为参考层更好。

图11:四层板叠层

六层板的第一层和第三层以第二层为参考平面,第四层和第六层以第五层为参考平面,要使第三层和第四层相互影响较小,可以把PP片3的厚度加大,厚度加大到远远大于(三倍以上)PP片2的厚度时,它们间的影响就非常小了。如PP片2和PP片4的厚度为3mil,PP片3的厚度为

10mil,这时,你用阻抗计算软件算第三层或第四层信号线的阻抗,你用微带线和带状线的模型去计算,计算的结果相差不大。

用这个比喻大家就明白了,月亮到地球的距离是38万公里,地球到太阳的距离是亿公里,太阳的质量和体积都比地球大得非常多,但对月球的影响远远不及地球,原因就是月亮到地球的距离远远小于到太阳的距离。所以大家在对待多层数复杂电路板的时候,找好一个参考层,让其它层远离这个信号层,让指定的这个参考层为主影响,这时,我们设计的阻抗叠层模型就要简单很多。

图12:六层板叠层

参考层中间断面或打孔过多造成隔断怎么办

参考层要完整覆盖信号走线,中间断面或打孔过多造成隔断,都会严重影响信号传输质量。但很多时候为了成本考虑用合理的层数,信号要换层,参考面也可能是两个电源平面,中间是分断的,这时就要有方法处理下。信号线换层时,也要考虑返回电流的回路,所以参考层变了,也要把回路联通,对于参考层不是一个电平的,要在两个电平参考层间加电容连接,如下图:

图13:信号线穿过两个参考面

参考层变化了,阻抗就就变了。参考层电平不一样,又不能直接连通,这时就加电容来连接。电容有通交隔直的作用,在两个不同电平的参考面间加电容,给高频信号一个返回通路,也使阻抗不连续变好一些。

上面讲了一部分阻抗设计知识,当然这些知识是我们平常很少注意的地方,也从另一个侧面来理解阻抗。要彻底搞懂阻抗知识及用好它,我们还有很多知识点需要补充,这些知识点很容易在书本上看到的,也要花很多功夫学习。

做PCB设计,把元件布好和连接好导线只算低层次。要想你设计的电路板可靠地工作,还有非常多的知识要补充学习,再灵活应用。。

简单的设计方法,也可以让你设计的高速PCB电路达到阻抗要求

你不想搞懂高深的理论知识,下面说一下简单的设计方法,也可以让你设计的高速PCB电路达到阻抗要求。你在设计PCB时,单端信号线走线宽度设置成一个宽度,差分(双端)走线设置为另一宽度,电源线等过电流的线按电流要求又设置成其它宽度。根据经验,如单端线宽设为5mil,差分的设为,线间距都为5mil,当然还要考虑参考平面。这样,你在发板要求里给生产厂家说明,说:线宽为5mil的都给做成50欧姆阻抗,线宽为的为差分线,做成100欧姆阻抗就行了。这里说明的是每种阻抗做一种宽度,生产厂家就会按你的要求给你计算生产成你要的阻抗要求了。当

然,你做的线宽还是要先用阻抗计算软件计算下,误差大了,生产厂家给你调整不了的。

简单说明就是,你是不同的阻抗用不同线宽,他们就会把这个线宽选择出来调整,他们可以改变线宽、线间距、介质材料、铜厚度、介质厚度等来满足阻抗要求。在设计之前也要多和厂家沟通,调整设计元素,减少厂家的调整难度。

致远产品从低速到高速,从单机产品到复杂产品,以致今天我们做高端仪器仪表,是我们十几年里不断的摸索学习,下了很多心力,才在高速复杂电路上有所建树。今天我们的高端仪器,有高速FPGA,高速

DSP,DDR2/DDR3多内存组成的大系统,我们能使它稳定可靠的工作,全靠这些理论知识加实践经验结合。如我们做了气体分析记录仪器,单板用了22片DDR内存,我们PA系列功率分析仪,板卡内是DSP+FPGA组成的复杂系统,板卡间跑PCIE高速信号,这些都靠我们的扎实丰富的理论加实践知识去完成的。

任何一门知识都不是单独存在的,它都和其它知识组成系统知识,只有在相关知识上都了解情况下,再融合贯通,灵活应用,才能做出好的作品来。

射频同轴电缆特性阻抗Zc的测试

射频同轴电缆特性阻抗Z C 的测试 胡 树 豪 这里介绍射频同轴电缆特性阻抗Z C 的6种测试方法。它们同样也适合于双绞线,只不过仪器要转换为差分系统而已。 一、λ/4线接负载法 1、测试方法与步骤: ·待测电缆一段,长约半米(无严格要求),两端装上连接器。扫频范围由仪器低频扫到百余兆赫即可。对于其它长度的电缆,扫频范围请自定。 ·仪器工作在测反射(或回损)状态,作完校正后画面应选阻抗圆图。 ·在测试端口接上待测电缆,电缆末端接上精密负载。 ·画面不外三种情况: 轨迹集中为一点,则Z C = Z 0(测试系统特性阻抗,一般为50Ω)。 轨迹呈圆弧或圆圈状,在圆图右边,则Z C > Z 0 。 轨迹呈圆弧或圆圈状,在圆图左边,则Z C < Z 0 。 ·将光标移到最接近实轴的点上,记下此点的电阻值R in (不管电抗值)。 n i C R Z Z 0= 例如:R in = 54Ω,则Z C = 52Ω,若R in = 46Ω,则Z C = 48Ω。 若轨迹不与实轴相交,则扫频范围不够或电缆太短;若交点太多,则扫频范围太宽或电缆太长。 2、优点 轨迹直观连续,不易出错。 连接器的反射可以通过λ/4线抵消。 3、缺点 必须截取短样本。 必须两端装连接器。 电缆质量必须较好,否则不同频率的测试结果起伏较大,不好下结论。 4、物理概念与对公式的理解 λ/4线有阻抗变换作用,其输入阻抗Z in 与负载阻抗Z L 之间满足Z in = Z C 2/Z L 关系。 现在Z L = Z 0,Z in = R in ,代入展开即得上面的Z C 计算公式。 λ/4线的阻抗变换公式是众所周知的,但作为特性阻抗的测试方法却未曾见。在测阻抗曲线试验中发现,与实轴相交的这一点是可用来测特性阻抗的;因为它把矛盾扩大了,反而更容易测准。由于曲线是很规矩的,不易出错。但必须用第一个交点,即除原点以外的最低频率的与实轴最近的一点,用第二点就可能出问题。换句话说,待测电缆的电长度应为λ/4的奇数倍,不能是偶数倍。 二、λ/8线开、短路法 1、测试方法与步骤: ·样本与扫频方案 对于已装好连接器的跳线,长度已定,只能由长度定扫频方案而对于电缆原材料,则可以按要求频率确定下料长度。此时待测电缆一头装连接器即可。

公共建筑设计原理重点整理46261

公共建筑设计原理 卷首语 1、分析公共建筑设计中的共性问题,运用一般性原则,阐明公共建筑中带有普遍性和规律 性的问题。 2、学习公共建筑设计的基本原则、构思方法和必要的组合技巧。 3、公共建筑类型:医疗建筑、文教建筑、办公建筑、商业建筑、体育建筑、交通建筑、邮 电建筑、展览建筑、演出建筑、纪念建筑等。 4、公共建筑的设计工作涉及到总体规划布局、功能关系分析、建筑空间组合、结构形式选 择等技术问题。 5、公共建筑设计原理:分析题目、调查场地、总平设计、建筑设计、建筑成果表达。 6、建筑分类:按建筑风格、建筑组合方式、结构类型、使用功能(居住建筑、公共建筑、 工业建筑)或高度划分。 7、建筑设计原则:经济、安全、适用、美观。 8、公共建筑:面向社会、具备公共参与性或开放性特征的建筑类型。 第一章:公共建筑的总体环境布局 1总体环境布局的基本组成 1)、建筑是什么? ——建筑是为了人类社会活动的需要,利用物质技术,按照科学法则和审美要求,通过对空间的塑造,组织与完善所形成的物质环境。 2)、创造室外空间环境时,应考虑内在因素和外在因素两方面的问题。 内在:公共建筑本身的功能、经济及美观的问题; 外在:城市规划、周围环境、地段状况等。 3)、室外环境的空间与场所: a、开敞的空间场所(集散广场) 在共公建筑中,因为人流比较集中而要求空阔的场所,形成一定规模的集散广场,需要各种流线的通行能力和空间构图的需要来确定其规模和布局形式。 因为这类广场对城市面貌影响较大,同时在艺术处理上要求较高,因此需要充分考虑广场的空间尺度和立体构成等构图的问题,为人们观赏建筑景观,提供良好的位置与角度。 有些公共建筑,因为城市规划的要求,安排在道路的交叉路口。在这种情况下,为了避免主体建筑出路口与转角处人流的干扰,常将建筑后退,形成一段比较开阔的场所,这样处理有利于道路交叉口处的空间处理。 b、活动场地 与室内空间的联系密切,应靠近主题建筑主要部位 c、停车场所 停车场位置,一般要设置在方便易找的地方,如主体建筑物的一侧或后侧,但不应影响整体空间环境的完整性和艺术性为原则。 高层建筑或大型公共建筑在车辆较多的情况下,可以考虑利用地下停车场或立体停车场,以节约场所用地。 d、大多数公共建筑还需要设置服务性的院落,如锅炉房、厨房等。一般为了出入方便,

射频阻抗匹配与史密斯_Smith_圆图:基本原理详解

阻抗匹配与史密斯(Smith)圆图:基本原理
在处理 RF 系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。一般情况下, 需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、 功率放大器输出(RFOUT)与天线之间的匹配、 LNA/VCO 输出与混频器输入 之间的匹配。匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。
在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预知的影响。频率在数十兆赫兹 以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的 RF 测试、并进行适当调谐。 需要用计算值确定电路的结构类型和相应的目标元件值。
有很多种阻抗匹配的方法,包括
?
计算机仿真: 由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。设计者必须熟悉用正确的 格式输入众多的数据。设计人员还需要具有从大量的输出结果中找到有用数据的技能。另外,除非计算机是专门为这个用途 制造的,否则电路仿真软件不可能预装在计算机上。
? ? ?
手工计算: 这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、并且被处理的数据多为复数。 经验: 只有在 RF 领域工作过多年的人才能使用这种方法。总之,它只适合于资深的专家。 史密斯圆图:本文要重点讨论的内容。
本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。讨论的主题包括参数的实际范例,比如找出匹 配网络元件的数值。当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的 影响以及进行稳定性分析。
图 1. 阻抗和史密斯圆图基础
基础知识
在介绍史密斯圆图的使用之前,最好回顾一下 RF 环境下(大于 100MHz) IC 连线的电磁波传播现象。这对 RS-485 传输线、PA 和天线之间 的连接、LNA 和下变频器/混频器之间的连接等应用都是有效的。

交流阻抗的原理与应用

交流阻抗的原理及应用-测聚苯胺修饰电极的电化学 性能 一、实验目的 (1)掌握交流阻抗法(EIS)的实验原理及方法。 (2)了解Nyquist图和Bode图的意义。 (3)学会用Zsimpwin软件对实验数据进行拟合。 二、实验原理 交流阻抗法(alternating current impedance,AC impedance)阻抗测量原本是电学中研究线性电路网络频率响应特性的一种方法,引用到研究电极过程,成为电化学研究中的一种实验方法。控制通过电化学系统的电流或电势在小振幅的条件下随时间按正弦规律变化,同时测量相应的系统电势或电流随时间的变化,此时电极系统的频响函数就是电化学阻抗。通过阻抗可以分析电化学系统的反应机理、计算系统的相关参数。交流阻抗法是一种以小振幅的正弦波电位(或电流)为扰动信号,益加在外加直流电压上,并作用于电解池,通过测童系统在较宽频率范围的阻抗谱,获得研究体系相关动力学信息及电极界面结构信息的电化学测量方法。对于一个电解池系统,当在电极两端施加一定电压时,阴阳极会构成一个回路,在这个回路中,电子和离子的传递受到一定的阻力的作用,包括:溶液的阻力,电极的阻力。而这些阻力正好可以用电阻R进行表征。再者,在电极和溶液界面上,两相中的剩余电荷会引起静电相互作用,以及电极表面与溶液中的各种粒子(溶剂分子、溶剂化了的离子和分子等)的相互作用。 复数阻抗的测量是以复数形式给出电极在一系列频率下的阻抗,不仅能给出阻抗的绝对值,还可给出相位角,可为研究电极提供较丰富的信息。 对于一个纯粹电化学控制的电极体系,可等效成如图2一1所示的电路。

图2一1测试电池的等效电路 图2一1中,R e 为溶液电阻,C P 为电极/溶液的双电层电容,R P 为电极电阻。此等效电 路的总阻抗为: 2 p 2p 22 22p 2p 2e 1jw -1R C R C R C RP R Z P P ωω+++= 其中,实部是 2 p 2p 2p e 1R C R R Z ω++ =, 虚部是 2p 2 p 2p 2p , ,R C 2ω1R j ωωZ -+= 对于每一个w 值,都有相应的Z ’与Z ’’,在复数阻抗平面内表示为一个点连接各w 的阻抗点,得到一条曲线,成为复数阻抗曲线,如图2一2所示。 当w→∞时,半圆与Z ’轴的交点即为电解质溶液的电阻Re ;当W→0时,半圆与Z , 轴的交点即为Re 十Rp 。一般情况下,电解质溶液的电阻Re ,可忽略,因此,根据半圆与Z ’轴的交点即可求得电极体系的电阻Rp ;当w=w xax 为半圆最高点的角频率)时,据公式q 可求得电极/溶液的双电层电容Cp 。

(完整版)建筑设计原理试题与答案

建筑设计原理 一.选择题(每小题1,共20分) 1.方案阶段的建筑剖面,可包括以下内容() A.建筑的剖切与投影部分、设计绝对标高、环境和配景、电梯井剖面; B.建筑轴线、设计标高、高度尺寸、室外地坪; C.设计标高、环境和配景、楼梯剖面、文字标注; D.绘图比例、高度尺寸、建筑轴线、建筑阴影。 2.在面积定额指标中.所谓户均使用面积是指() A.有效总面积与总户数之比 B.建筑总面积与总户数之比 C.居住总面积与总户数之比 D.使用总面积与总户数之比 3.建筑艺术区别于其它造型艺术(如绘画、雕刻等)的重要标志在于 ( ) A、建筑艺术作品一般比较大 B、建筑有使用功能的要求 C、造价较高 D、有内部空间 4.民用建筑包括居住建筑和公共建筑,其中()属于居住建筑。 A. 托儿所 B. 宾馆 C. 公 寓 D. 疗养院 5. 平面利用系数=使用面积/建筑面积×100%,其中使用面积是指除结构面积之外的() A. 所有使用房间净面积之和 B. 所有使用房间与辅助房间净面积之和 C. 所有房间面积与交通面积之和 6.考虑建筑的防火及安全疏散,可采用的楼电梯类型有() A.双跑梯剪刀梯、螺旋楼梯、自动扶梯; B.悬臂梯、双跑梯、弧形楼梯、剪刀梯; C.防烟楼梯、封闭楼梯、消防电梯、螺旋梯; D.剪刀梯、弧形楼梯、双跑梯、封闭楼梯。 7.建筑立面的重点处理常采用()手法。 A.对比 B.均衡 C. 统一 D.韵律

8. 民用建筑的主要楼梯一般布置在() A、建筑物次要入口附近 B、主要入口附近位置明显的部位 C、一定要在房屋的中间部位 D、一定要在房屋的端部 9. 通常房间内最小净高不宜低于( ) A.2.0m B.2.2m C.2.4m D.2.6m 10.建筑施工平面图上,建筑物外部尺寸的标注一般是() A.一道 B.二道 C.三道 D.四道 11. 大厅式组合一般适用于()建筑类型。 A.剧院、电影院、体育馆B.火车站、浴室 C.医院、中小学、办公楼 D.百货商店 12.以下门的类型组可用于建筑的安全疏散口。() A.旋转门、平开门、自动感应门、卷帘门; B.平开门、弹簧门、滑拉门、防火门; C.铝合金地弹门、平开门、防火门、隔音门; D. 铁拉门、防火门、平开门、弹簧门。 13. 建筑的构成三要素中()是建筑的目的,起着主导作用。 A. 建筑功能 B. 建筑的物质技术条件 C. 建筑形象 D. 建筑的经济性 14.施工图的建筑立面包含以下内容() A.建筑轴线、设计标高、周边环境及绿化、风玫瑰; B.高度尺寸、建筑轴线、设计标高、门窗立面; C. 建筑阴影、门窗立面、室外踏步、高度尺寸; D.文字标注、设计标高、绘图比例、门前雕塑。 15.方案设计文件的内容应包括:() A.封面、设计说明、效果图、总平面图、建筑平面、立面和剖面、大样图。 B.封面、目录、设计说明、效果图、总平面图、建筑平面、立面和剖面、设计 概算。

ADS阻抗匹配原理及负载阻抗匹配

功率放大器设计的关键:输出匹配电路的性能 2008-05-15 17:51:20 作者:未知来源:电子设计技术 关键字:功率放大器匹配电路匹配网络s参数串联电阻输出功率Cout耗散功率网络分析仪高Q值对于任何功率放大器(功率放大器)设计,输出匹配电路的性能都是个关键。但是,在设计过程中,有一个问题常常为人们所忽视,那就是输出匹配电路的功率损耗。这些功率损耗出现在匹配网络的电容器、电感器,以及其他耗能元件中。功率损耗会降低功率放大器的工作效率及功率输出能力。 因为输出匹配电路并不是一个50Ω的元件,所以耗散损失与传感器增益有很大的区别。输出匹配的具体电路不同,损耗也不一样。对于设计者而言,即使他没有选择不同技术的余地,在带宽和耗散损失之间,在设计方面仍然可以做很多折衷。 匹配网络是用来实现阻抗变化的,就像是功率从一个系统或子系统传送另一个系统或者子系统,RF设计者们在这上面下了很大的功夫。对于功率放大器,阻抗控制着传送到输出端的功率大小,它的增益,还有它产生的噪声。因此,功率放大器匹配网络的设计是性能达到最优的关键。 损耗有不同的定义,但是这里我们关心的是在匹配网络中,RF功率以热量的形式耗散掉的损耗。这些损耗掉的功率是没有任何用途。依据匹配电路功能的不同,损耗的可接受范围也不同。对功率放大器来讲,输出匹配损耗一直是人们关注的问题,因为这牵涉到很大的功率。效率低不仅会缩短通话时间,而且还会在散热和可靠性方面带来很大的问题。 例如,一个GSM功率放大器工作在3.5V电压时,效率是55%,能够输出34dBm的功率。在输出功率为最大时,功率放大器的电流为1.3A。匹配的损耗在0.5dB到1dB的数量级,这与输出匹配的具体电路有关。在没有耗散损失时,功率放大器的效率为62%到69%。尽管损耗是无法完全避免的,但是这个例子告诉我们,在功率放大器匹配网络中,损耗是首要问题。 耗散损失 现在我们来看一个网络,研究一个匹配网络(图1a)中的耗散损失。电源通过无源匹配网络向无源负载传输功率。在电源和负载阻抗之间没有任何其他的限制。把匹配网络和负载合在一起考虑,电源输出一个固定量的功率Pdel 到这个网络(图1b)。输出功率的一部分以热量的形式耗散在匹配网络中。而其余的则传输到负载。Pdel是传输到匹配网络和负载(图1c)上的总功率,PL是传输到负载的那部分功率。 了解了这两个量,我们就可以知道,实际上到底有多大的一部分功率是作为有用功率从电源传输到了负载,其比例等于PL/Pdel。 这是对功率放大器输出匹配的耗散损失的正确测量,因为它只考虑了实际传输功率以及耗散功率。反射功率没有计算进去。 由此可知,这个比例就等于匹配网络工作时的功率增益GP。而工作时的功率增益完整表达式为: 这里,是负载反射系数,是匹配网络的s参数, 损失就是增益的倒数。因此,耗散损失可以定义为: Ldiss = 1/GP。 对于功率放大器而言,我们为它设计的负载一般是50Ω。通常,我们用来测量s参数的系统阻抗也是50Ω。如果系统阻抗和负载都是50Ω,那么就为0,于是,上面的表达式就可以简化为: 在计算一个匹配网络的耗散损失时,只需要知道它的传输值和反射散射参数的大小,这些可以很容易地从s参数的计算过程中得到,因为网络分析仪通常都会采用线性的方式来显示s参数的值。在评估输入和级间耗散损失时,负载的阻抗不是50Ω,但是上述的规律依然适用。 因为反射和耗散损失很容易混淆,射频工程师有时就会采用错误的方法来计算耗散损失。而最糟糕的方法就是采用未经处理的s21来进行计算。一个典型的匹配网络在1GHz(图2)时,对功率放大器而言,是数值为4+j0Ω的负载阻抗。匹配网络采用的是无损耗元件来进行模拟的,所以在匹配网络中不存在功率的耗散问题。然而,s21却是-6dB,因为在50Ω的源阻抗和4Ω的负载之间存在着巨大的不匹配问题。作为一个无损耗网络,除了一些数字噪音外,模拟的耗散损失为0dB。 在电路的模拟当中,我们可能可以采用s21来求出正确的耗散损失。这一过程包括采用复杂模拟负载线的共轭

射频连接器的阻抗原理

阻抗匹配与史密斯(Smith)圆图:基本原理 在处理RF系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。一般情况下,需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、功率放大器输出(RFOUT)与天线之间的匹配、LNA/VCO 输出与混频器输入之间的匹配。匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。 在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预知的影响。频率在数十兆赫兹以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的RF测试、并进行适当调谐。需要用计算值确定电路的结构类型和相应的目标元件值。 有很多种阻抗匹配的方法,包括 ?计算机仿真:由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。设计者必须熟悉用正确的格式输入众多的数据。设计人员还需要具有从大量的输出结果中找到有用数据的技能。另外,除非计算机是专门为这个用途制造的,否则电路仿真软件不可能预装在计算机上。 ?手工计算:这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、并且被处理的数据多为复数。 ?经验:只有在RF领域工作过多年的人才能使用这种方法。总之,它只适合于资深的专家。 ?史密斯圆图:本文要重点讨论的内容。 本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。讨论的主题包括参数的实际范例,比如找出匹配网络元件的数值。当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的影响以及进行稳定性分析。 图1. 阻抗和史密斯圆图基础 基础知识 在介绍史密斯圆图的使用之前,最好回顾一下RF环境下(大于100MHz) IC连线的电磁波传播现象。这对RS-485传输线、PA和天线之间的连接、LNA和下变频器/混频器之间的连接等应用都是有效的。

建筑设计原理复习考试资料

1.广义建筑学的基本概念与内涵 (1)基本概念 所谓广义建筑学,即与传统意义或狭义相对照,其研究领域和内涵有所扩大,其研究方法从注重个体或微观发展到更注重宏观和整体,把相关的学科融入其中(城市规划学、风景园林学),强调“整体观”和“辩证统一观”。 (2)基本内涵 其内涵为:通过城市设计的核心作用,把城市与建筑、建筑与地景、建筑与生态融为一体。 2. 建筑的双重功能性 一是使用功能,二是精神满足,二者缺一则不能称之为真正意义上的建筑。 3. 建筑有两种主要的需求:一是具有使用者的要求,二是社会、城市的要求。 4. 建筑的基本特征:空间性、实用性、物质性、审美性 5.建筑的空间性问题 空间是建筑的本质,是建筑的生命。建筑物内部或周围的所有区域都是具有空间定义的容量。建筑空间有两种类型:一是内部空间——由建筑物本身所形成。 二是外部空间——即城市空间,是由建筑物和他周围的环境所构成。建筑空间有六种构成方式:(会理解和判断某种建筑用了那些空间构成方式) (1)围合 ①形成:用墙体(实墙、花墙)、栏杆、列柜、篱笆及其它的物质形式围合成的一定的空间,被围部分与其外部就有了区分。 ②特点: 这种空间的区分随隔围物体的形式可以产生各种不同围的方式或强化或弱化或随意或是有一种隔而不断的感觉。 ③应用:建筑物的内部空间、各种半室外空间等. (2)覆盖 ①形成:在空间的上部设置一个面积性的物体,那么其下部便形成一个空间。这种空间垂直方向的限定性很强,水平方向的限定性很弱。如亭子、雨伞、凉棚等。 ②特点:是行为的自由,并有某种关怀、保护、庇护等作用(因为人们往往对来自上方的袭击是很担心的)。覆盖物的大小和高度是覆盖强度的两个要素。 ③应用:如雨棚、亭子、阳台、室外走廊等 (3)凹凸 ①形成 凸起一个平台也是一种空间的限定方式。这种限定会随着凸起物的增高而增强,同理,“凹入”地面也是一种空间的限定方式。 ②特点: 凸起的性质是“显露”的,显示地位或权势的高大,可增强或烘托建筑的气势。 凹入则与凸起刚好相反,它是“隐藏性”的有安全感,两者刚好是一露一藏。 ③应用: 凸起多用于纪念性建筑当中,如纪念碑前的台子……和大型公共建筑前的平台; 凹入多用于地下通道、城市人防工程、下沉式广场等。 (4)设立 ①形成:这种空间形式是意象性的,而且空间的边界是不确定的,设立和围着好是相反的情形,如果一种叫做正空间(positive),则另一种叫负空间(negative)。 ②特点:与围对应,围是物体包围或限定空间,而设立则是空间包围着限定物,而且空间的边界模糊,

阻抗匹配与史密斯圆图:基本原理

阻抗匹配与史密斯圆图:基本原理 摘要:本文是关于使用史密斯圆图进行射频阻抗匹配计算的教程。本文还提供了一些示例以描绘如何计算反射系数、阻抗、导纳等参数。本文还提供了一个样例,使用图形方法计算工作在900MHz下的MAX2472的匹配网络。 经过实践证明,史密斯圆图仍然是用于判定传输线路阻抗的基本工具。 当处理射频应用的实际实现时,总会碰到一些噩梦般的任务。其中之一就是需要匹配各个互连模块之间的不同的阻抗。通常,这些包括天线到低噪声放大器(LNA),功率放大器输出(RFOUT)到天线,以及LNA/VCO输出到混频器输入。对于信号与能量从“源”到“负载”的正确传输来说,匹配任务是必需的。 在高频率的射频电路中,寄生元素(例如导线电感、层间电容、导体电阻等等)对匹配网络有着显著,但无法预料的影响。在几十兆赫兹频率以上的电路中,理论上的计算与仿真常常是不足够的。在射频实验室测量现场,伴随着调谐工作,必须仔细考虑才能决定合适的最终取值。必须使用计算值以便于建立结构类型与目标元件的取值。 有很多方法可用于计算阻抗匹配,包括: ●计算机仿真:原理复杂但是使用简单,仿真器一般用于区别设计功能,而不是进行阻抗 匹配。设计者必须熟悉需要键入的多重数据输入,以及这些数据输入的正确格式。他们同样需要专门的知识,以便于在大量的结果数据中找到有用的数据。另外,除非计算机被用于进行电路仿真这样的工作,电路仿真软件就不会预安装在计算机上。 ●手动计算:由于计算方程的长度(“上公里的”),以及要进行计算的数字的复杂性,这 种方式被普遍认为是非常单调乏味的。 ●经验直觉:只有当一个人在射频领域中工作过很多年以后,才能取得这样的能力。简而 言之,这种方法只适用于非常资深的专家。 ●史密斯圆图:本文所专注的内容。 本文的主要目标就是回顾史密斯圆图的构造与背景,并且总结如何使用史密斯圆图的实践方式。本文提出的主题包括了参数的实际说明,例如找到匹配网络元件的取值。当然,我们使用史密斯圆图不仅仅只能进行最大功率传输的匹配。史密斯圆图同样能够帮助设计者计算出最佳的噪声系数,确保质量因素的影响,以及评估稳定性分析等等。

公共建筑设计原理题库(有答案)

绪论 1.如何理解“埏埴以为器,当其无,有器之用。凿户牖以为室,当其无,有室之用。故有之以为利,无之以为用。”。并说明建筑空间与实体之间的关系。 第一章 填空 1.被拿破仑誉为“欧洲最美丽的客厅”是意大利威尼斯圣马可广场。2.室外空间环境的形成,一般考 虑.... 和。 3.《园冶》的作者是计成。 选择 1.创造室外环境时,主要考虑两个方面的问题,即在的因素和外在因素。下列哪项属于外在因素。(BCD ) A.公共建筑本身的功能B.周围环境C.地段状况D.城市规划2.公共建筑前面往往后退一段距离,形成开敞的室外场地,其主要用途是(B ) A.供人们观赏主体建筑之用B.用来疏散人流 C.供人们活动用D.作停车场地 3.创造室外环境时,主要考虑两个方面的问题,即在的因素和外在因素。下列哪项属于在因素。(ABC )

A.公共建筑本身的功能B.经济C.美观D.城市规划 4.作为优秀的建筑总体布局的例证和典,被拿破仑誉为“欧洲最美丽的客厅”是(D ) 。 A.卢浮宫B.圣彼得大教堂 C.罗马图拉真广场D.意大利威尼斯圣马可广场问答题 1.简述室外环境的空间与场所关系。 (一)开敞场地(集散广场) 人流.车流流量大,交通组织复杂,如影剧院.体育场馆.铁路客运站等,艺术处理要求较高。 (二)活动场地如体育馆.学校.幼儿园等需要设置运动场.球场.游戏场等,位置应靠近主体建筑的主要空间及出入口。 (三)停车场地包括汽车停车场与自行车停车场。位置一般要求靠近出入口并防止影响建筑物的交通与景观,节约用地可以设置地下停车场。 (四)其他场地如杂务院.锅炉房.厨房等。单独设置出入口,位置尽量隐蔽。 2.在公共建筑室外空间环境的组合问题上,值得借鉴的经验有那些?或如何组织公共建筑室外空间环境。 1)从建筑群的使用性质出发,着重分析功能关系,并加以合理的分区,运用道路.广场等交通联系手段加以组织,使总体空间环境的布局联系方便,紧凑合理。

阻抗匹配概念

阻抗匹配概念 阻抗匹配概念 阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。对于不同特性的电路,匹配条件是不一样的。 在纯电阻电路中,当负载电阻等于激励源内阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配。 当激励源内阻抗和负载阻抗含有电抗成份时,为使负载得到最大功率,负载阻抗与内阻必须满足共扼关系,即电阻成份相等,电抗成份只数值相等而符号相反。这种匹配条件称为共扼匹配。 阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于传输线上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。 大体上,阻抗匹配有两种,一种是透过改变阻抗力(lumped-circuit matching),另一种则是调整传输线的波长(transmission line matching)。 要匹配一组线路,首先把负载点的阻抗值,除以传输线的特性阻抗值来归一化,然后把数值划在史密夫图表上。 改变阻抗力把电容或电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿著代表实数电阻的圆圈走动。如果把电容或电感接地,首先图表上的点会以图中心旋转180度,然后才沿电阻圈走动,再沿中心旋转180度。重覆以上方法直至电阻值变成1,即可直接把阻抗力变为零完成匹配。 调整传输线由负载点至来源点加长传输线,在图表上的圆点会沿著图中心以逆时针方向走动,直至走到电阻值为1的圆圈上,即可加电容或电感把阻抗力调整为零,完成匹配 阻抗匹配则传输功率大,对于一个电源来讲,单它的内阻等于负载时,输出功率最大,此时阻抗匹配。最大功率传输定理,如果是高频的话,就是无反射波。对于普通的宽频放大器,输出阻抗50Ω,功率传输电路中需要考虑阻抗匹配,可是如果信号波长远远大于电缆长度,即缆长可以忽略的话,就无须考虑阻抗匹配了。阻抗匹配是指在能量传输时,要求负载阻抗要和传输线的特征阻抗相等,此时的传输不会产生反射,这表明所有能量都被负载吸收了.反之则在传输中有能量损失。高速PCB布线时,为了防止信号的反射,要求是线路的阻抗为50欧姆。这是个大约的数字,一般规定同轴电缆基带50欧姆,频带75欧姆,对绞线则为100欧姆,只是取个整而已,为了匹配方便. 阻抗从字面上看就与电阻不一样,其中只有一个阻字是相同的,而另一个抗字呢?简单地说,阻抗就是电阻加电抗,所以才叫阻抗;周延一点地说,阻抗就是电阻、电容抗及电感抗在向量上的和。在直流电的世界中,物体对电流阻碍的作用叫做电阻,世界上所有的物质都有电阻,只是电阻值的大小差异而已。电阻小的物质称作良导体,电阻很大的物质称作非导体,而最近在高科技领域中称的超

阻抗测试方法

成品阻抗测试方法: 1、仪器设置: 网络分析仪:CENTER:200MHz SPAN:2MHz(视被测电缆的长度进行设定)MEAS:S12 或S21 FORMA T:Phase 直通校准 注意:校准完毕为一条数值为零的直线,SPAN更改不同的数值需要重新校准。 2、电容测量仪测试电容值。(数值现实稳定可以读取数值)。 3、相位差的测量: 网络分析仪连接被测电缆,显示相位值,按照以下方式进行读取数值: 打开菜单MARKER SERACH,target value设置为0,打开multi target search , 记录两个标记点的频率值(注意:选择红圈内数值最接近的标记点)。 如上图所示:应选择标记点1、2。 δf=(f m -f n )/m-n 4、按照特性阻抗的公式: 平均特性阻抗=1000/(δf*c) δf单位为MHz, C为测量的电容值:单位nf。 注意事项:1、测试频率差时被测电缆的接头状态必须和测试电容的接头状态保持一致。 2、target value设置为0,以避免产生误差。 3、保证校准状态有效。

相对传播速度的测量方法: 1:相对传播速度的定义:信号在介质中的传播速度与自由空间的传播速度之比。 2、仪器的设置: 网络分析仪进行测试: CENTER:200MHz SPAN:1MHz MEAS:S12 或S21 FORMA T:Group delay 直通校准 校准后为一条数值为零的直线。 3、连接被测电缆,打开Marker Factions ,将统计功能打开。读取平均值即为延迟时间t。 4、按照下列公式计算相对传播速度: V =L/(t?c) ?100% V:相对传播速度。L:电缆的实际长度(米)c=3.0?108米/秒 t :延迟时间(秒)。 电缆相位及电长度测试及计算方法: 1、仪器的设置: 网络分析仪设置: CENTER:要求测试频点SPAN:10MHz(或者按照通知单要求设置起始终止频率)MEAS:S12 或S21 FORMA T:Extend Phase 直通校准 校准后为一条数值为零的直线。 2、连接被测电缆,读取要求频率点的数值。

住宅建筑设计原理重点整理

住宅建筑设计原理 第一章住宅套型设计 住宅的定义:住宅是人类为了满足家庭生活的需要所构筑的物质空间,它是人类适应自然、改造自然的产物,并且伴随人类的进步逐步发展起来。 户型:户型是根据住户家庭人口构成(如人口规模、代际数和家庭结构)的不同而划分的住户类型。 套型:套型是指为满足不同户型住户的生活居住需要而设计的不同类型的成套的居住空间。 核心户:一对夫妻及其未婚子女组成的家庭。 主干户:一对夫妻及其已婚子女和孙辈(一个家庭)所组成的家庭。 联合户:一对夫妻及其已婚子女和孙辈(多个家庭)所组成的家庭。 家庭生活行为模式:家务型、休养型、交际型、家庭职业型、文化型 住宅室内采光标准 每户至少应有一个居室在大寒日保证一个小时以上的日照(以外墙窗台中心点计算)。房间直接天然采光标准通常以侧窗洞口面积与该房间地面面积之比(窗地比)进行控制。 套型各功能空间设计 一套住宅的功能空间可归纳为划分为居住、厨卫、交流及其他三大部分。 居住空间 居住空间可划分为卧室、起居室、工作学习室、餐室 卧室:主卧室适宜的面积大小在9~15㎡之间,次卧室适宜面积在5~12㎡之间。 卧室空间尺寸应恰当,开间应大于,开间和进深的比值应小于1/2。应有直接采光,自然通风,良好景观,尽量选择南向。卧室与卧室间不应穿越。 主卧室应提供住户多种床位布置选择,其房间短边最小净尺寸不宜小于3000mm。次卧室短边最小净尺寸不宜小于2100mm。 起居室:起居室适宜的面积在10~25㎡之间,其房间短边最小净尺寸宜在3000mm以上。 起居室应当相对封闭,有直接采光和自然通风,起居室门洞布置应综合考虑使用功能要求,减少直接开向起居室的门的数量。 工作学习室:工作学习室的短边最小净尺寸不宜小于2100mm。 餐室:餐室最小面积不宜小于5㎡,其短边最小净尺寸不宜小于2100mm。另外,应注意房间平面的长、宽尺寸比例,一般控制在1:以内为宜,避免空间给人带来狭长感。 门的设置与家具布置 房间门:房间门的尺寸既要考虑人的通行,又要考虑家具搬运。其户门、起居室门和卧室门洞口最小宽度不应小于900mm,厨房门不应小于800mm,卫生间门不应小于700mm。 当进卧室的门位于长边墙时,宜靠中段布置,或靠一侧布置,留出500mm以上的墙段,使房间四角都有布置家居的可能。 阳台门:阳台门的大小一般仅考虑人员通行尺寸,因无大型家具搬运,其门洞口最小宽度不应小于700mm 窗的设置与家具布置 通常窗下口(窗台)高度距地面900mm左右,窗洞高1500mm左右。窗在房间中的位置宜靠房间中部,且最好有一外墙段宽度在900~1400mm,以满足布置家具和床位的可能。 居住部分空间设计与处理 据资料分析,在一般住宅内,层高每降低100mm,造价可降低1%~3%。

阻抗匹配和阻抗变换是什么-阻抗变换和阻抗匹配的详细概述

阻抗匹配和阻抗变换是什么?阻抗变换和阻抗匹配的详细概述阻抗匹配是无线电技术中常见的一种工作状态,它反映了输入电路与输出电路之间的功率传输关系。当电路实现阻抗匹配时,将获得最大的功率传输。反之,当电路阻抗失配时,不但得不到最大的功率传输,还可能对电路产生损害。阻抗匹配常见于各级放大电路之间、放大器与负载之间、测量仪器与被测电路之间、天线与接收机或发信机与天线之间,等等。例如,扩音机的输出电路与扬声器之间必须做到阻抗匹配,不匹配时,扩音机的输出功率将不能全部送至扬声器。如果扬声器的阻抗远小于扩音机的输出阻抗,扩音机就处于过载状态,其末级功率放大管很容易损坏。反之,如果扬声器的阻抗高于扩音机的输出阻抗过多,会引起输出电压升高,同样不利于扩,音机的工作,声音还会产生失真.因此扩音机电路的输出阻抗与扬声器的阻抗越接近越好。又例如,无线电发信机的输出阻抗与馈线的阻抗、馈线与天线的阻抗也应达到一致。如果阻抗值不一致,发信机输出的高频能量将不能全部由天线发射出去。这部分没有发射出去的能量会反射回来,产生驻波,严重时会引起馈线的绝缘层及发信机末级功放管的损坏。为了使信号和能量有效地传输,必须使电路工作在阻抗匹配状态,即信号源或功率源的内阻等于电路的输人阻抗,电路的输出阻抗等于负载的阻抗。在一般的输入、输出电路中常含有电阻、电容和电感元件,由它们所组成的电路称为电抗电路,其中只含有电阻的电路称为纯电阻电路. 下面对纯电阻电路和电抗电路的阻抗匹配问题分别进行简要的分。1、纯电阻电路在中学物理电学中曾讲述这样一个问题:把一个电阻为R的用电器,接在一个电动势为E、内阻为r的电池组上(见图1),在什么条件下电源输出的功率最大呢?当外电阻等于内电阻时,电源对外电路输出的功率最大,这就是纯电阻电路的功率匹配。假如换成交流电路,同样也必须满足R=r这个条件电路才能匹配。 2、电抗电路电抗电路要比纯电阻电路复杂,电路中除了电阻外还有电容和电感.元件,并工作于低频或高频交流电路。在交流电路中,电阻、电容和电感对交流电的阻碍作用叫阻抗,用字母Z表示.其中,电容和电感对交流电的阻碍作用,分别称为容抗及和感抗而.容

特性阻抗之原理与应用

特性阻抗之原理與應用 Characteristic Impedance 一、前題 1、導線中所傳導者為直流(D.C.)時,所受到的阻力稱為電阻(Resistance),代表符號為R,數值單位為“歐姆”(ohm,Ω)。其與電壓電流相關的歐姆定律公式為: R=V/I;另與線長及截面積有關的公式為:R=ρL/A。 2、導線中所傳導者為交流(A.C.)時,所遭遇的阻力稱為阻抗(Impedance),符號為Z,單位仍為Ω。其與電阻、感抗及容抗等相關的公式為: Z =√R2 +(XL—Xc)2 3、電路板業界中,一般脫口而出的“阻抗控制”嚴格來說并不正确,專業性的說法應為“特性阻抗控制”(Characteristic Impedance Control)才對。因為電腦類PCB線路中所“流通”的“東西”并不是電流,而是針對方波訊號或脈沖在能量上的傳導。此種“訊號”傳輸時所受到的“阻力”另稱為“特性阻抗”,代表的符號是Zo。計算公式為:Zo = √L/C ,(式中L為電感值,C為電容值),不過Zo的單位仍為歐姆。只因“特性”的原文共有五個章節,加上三個單字一并唸出時拗口繞舌十分費力。為簡化起見才把“特性”一字暫時省掉。故知俗稱的“阻抗控制”,實際上根本不是針對交流電“阻抗”所進行的“控制”。且即使要簡化掉“特性”也應說成Controlled Impedance,或阻抗匹配才不致太過外行。 圖1 PCB元件間以訊號(Signal)互傳,板面傳輸線中所遭遇的阻力稱為“特性阻抗” 二、需做特性阻抗控制的板類 電路板發展40年以來已成為電機、電子、家電、通信(含有線及無線)等硬體必備的重要元件。若純就終端產品之工作頻率,及必須阻抗匹配的觀點來分類時,所用到的電路板約可粗分為兩大類:

住宅建筑设计原理考试重点

一、名词解释: 1.户型:根据住户家庭人口构成(如人口规模、代际数和家庭结构)的不同而划分的住户类型。 2.住宅:指专供居住的房屋,包括别墅、公寓、职工家属宿舍和集体宿舍、职工单身宿舍和学生宿舍等。但不包括住宅楼中作为人防用、不住人的地下室等,也不包括托儿所、病房、疗养院、旅馆等具有专门用途的房屋。 3.日照间距:日照间距指前后两排南向房屋之间,为保证后排房屋在冬至日底层获得不低于二小时的满窗日照而保持的最小间隔距离。 4.住宅组团:在城市居住区规划和居住小区设计中,将若干栋住宅集中紧凑地布置在一起,在建筑上形成整体的、在生活上有密切联系的住宅组织形式。 5.套型:为满足不同户型住户的生活居住需要而设计的不同类型的成套居住空间。 6.容积率:是指一个小区的总建筑面积与用地面积的比率。 7.复式住宅:所谓复式住宅,即在住宅层高3.3-3.5m的情况下,在内部空间中巧妙地布置夹层,形成空间重复利用。 8.点式住宅:此种住宅在进深、面阔、方向、尺寸大体相当,在住区规划图上好似一个点,故称点式住宅 9.建筑密度:是指建筑物的覆盖率,具体指项目用地范围内所有建筑的基底总面积与规划建设用地面积之比(%),它可以反映出一定用地范围内的空地率和建筑密集程度。 四、简答 1.低层住宅特点: 答:优:1居住行为方面:使住户较接近自然,为老人儿童残疾人生活提供方便,一次性上楼高度小或不用上楼,使住户在住宅附近活动频率加大,加强住户之间相互交往。 2居住心理方面:小体量易形成亲切的尺度,符合人类回归自然的心理需求;造型灵活,有“前院后庭”的;理想家园模式,使对住宅及居住环境有较强的认同感和归属感。 3整体环境的协调性强:因体量小,使其与地形、地貌、绿化、水体等

阻抗匹配

阻抗匹配与史密斯(Smith)圆图: 基本原理 本文利用史密斯圆图作为RF 阻抗匹配的设计指南。文中给出了反射系数、阻抗和导 纳的作图范例,并用作图法设计了一个频率为60MHz 的匹配网络。 实践证明:史密斯圆图仍然是计算传输线阻抗的基本工具。 在处理RF 系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。一般情况下,需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、功率放大 器输出(RFOUT)与天线之间的匹配、LNA/VCO 输出与混频器输入之间的匹配。匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。 在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预 知的影响。频率在数十兆赫兹以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的RF 测试、并进行适当调谐。需要用计算值确定电路的结构类型和相应的目标元件值。 有很多种阻抗匹配的方法,包括: ? 计算机仿真: 由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。设计者必须熟悉用正确的格式输入众多的数据。设计人员还需要具有从大量的输出结果中找到有用数据的技能。另外,除非计算机是专门为这个用途制造的,否则电路仿真软件不可能预装在计算机上。 ? 手工计算: 这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、并且被处理的数据多为复数。 ? 经验: 只有在RF 领域工作过多年的人才能使用这种方法。总之,它只适合于资深的专家。 ? 史密斯圆图: 本文要重点讨论的内容。 本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。讨论的主题包括参数的实际范例,比如找出匹配网络元件的数值。当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的影响以及进行稳定性分析。 w w w . p c b t e c h .n e t

阻抗匹配的原理

阻抗匹配概念 阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。对于不同特性的电路,匹配条件是不一样的。 在纯电阻电路中,当负载电阻等于激励源内阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配。 当激励源内阻抗和负载阻抗含有电抗成份时,为使负载得到最大功率,负载阻抗与内阻必须满足共扼关系,即电阻成份相等,电抗成份只数值相等而符号相反。这种匹配条件称为共扼匹配。 阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。 大体上,阻抗匹配有两种,一种是透过改变阻抗力(lumped-circuit matching),另一种则是调整传输线的波长(transmission line matching)。 要匹配一组线路,首先把负载点的阻抗值,除以传输线的特性阻抗值来归一化,然后把数值划在史密夫图表上。 右图中R为负载电阻,r为电源E的内阻,E为电压源。由于r的存在,当R很大时,电路接近开路状态;而当R很少时接近短路状态。显然负载在开路及短路状态都不能获得最大功率。 根据式:

从上式可看出,当R=r时式中的 式中分母中的(R-r)的值最小为0,此时负载所获取的功率最大。所以,当负载电阻等于电源内阻时,负载将获得最大功率。这就是电子电路阻抗匹配的基本原理。 改变阻抗力 把电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿著代表实数电阻的圆圈走动。如果把电容或电感接地,首先图表上的点会以图中心旋转180度,然后才沿电阻圈走动,再沿中心旋转180度。重覆以上方法直至电阻值变成1,即可直接把阻抗力变为零完成匹配。 调整传输线 由负载点至来源点加长传输线,在图表上的圆点会沿著图中心以逆时针方向走动,直至走到电阻值为1的圆圈上,即可加电容或电感把阻抗力调整为零,完成匹配 阻抗匹配则传输功率大,对于一个电源来讲,单它的内阻等于负载时,输出功率最大,此时阻抗匹配。最大功率传输定理,如果是高频的话,就是无反射波。对于普通的宽频放大器,输出阻抗50Ω,功率传输电路中需要考虑阻抗匹配,可是如果信号波长远远大于电缆长度,即缆长可以忽略的话,就无须考虑阻抗匹配了。阻抗匹配是指在能量传输时,要求负载阻抗要和传输线的特征阻抗相等,此时的传输不会产生反射,这表明所有能量都被负载吸收了.反之则在传输中有能量损失。高速PCB布线时,为了防止信号的反射,要求是线路的阻抗为5 0欧姆。这是个大约的数字,一般规定同轴电缆基带50欧姆,频带75欧姆,对绞线则为 100欧姆,只是取个整而已,为了匹配方便. 阻抗从字面上看就与电阻不一样,其中只有一个阻字是相同的,而另一个抗字呢?简单地说,阻抗就是电阻加电抗,所以才叫阻抗;周延一点地说,阻抗就是电阻、电容抗及电感抗在向量上的和。在直流电的世界中,物体对电流阻碍的作用叫做电阻,世界上所有的物质都有电

相关主题
文本预览
相关文档 最新文档