当前位置:文档之家› 4-3离散参数马尔可夫链(3)-状态的分解

4-3离散参数马尔可夫链(3)-状态的分解

4-3离散参数马尔可夫链(3)-状态的分解

随机过程 第五章 连续时间的马尔可夫链

第五章 连续时间的马尔可夫链 5.1连续时间的马尔可夫链 考虑取非负整数值的连续时间随机过程}.0),({≥t t X 定义5.1 设随机过程}.0),({≥t t X ,状态空间}0,{≥=n i I n ,若对任意 121...0+<<<≤n t t t 及I i i i n ∈+121,...,,有 })(,...)(,)()({221111n n n n i t X i t X i t X i t X P ====++ =})()({11n n n n i t X i t X P ==++ (5.1) 则称}.0),({≥t t X 为连续时间马尔可夫链. 由定义知,连续时间马尔可夫链是具有马尔可夫性的随机过程,即过程在已知现在时刻n t 及一切过去时刻所处状态的条件下,将来时刻1+n t 的状态只依赖于现在状态而与过去无关. 记(5.1)式条件概率一般形式为 ),(})()({t s p i s X j t s X P ij ===+ (5.2) 它表示系统在s 时刻处于状态i,经过时间t 后转移到状态j 的转移概率. 定义5.2 若(5.2)式的转移概率与s 无关,则称连续时间马尔可夫链具有平稳的或齐次的转移概率,此时转移概率简记为 ),(),(t p t s p ij ij = 其转移概率矩阵简记为).0,,()),(()(≥∈=t I j i t p t P ij 以下的讨论均假定我们所考虑的连续时间马尔可夫链都具有齐次转移概率.简称为齐次马尔可夫过程. 假设在某时刻,比如说时刻0,马尔可夫链进入状态i,而且接下来的s 个单位时间单位中过程未离开状态i,(即未发生转移),问随后的t 个单位时间中过程仍不离开状态i 的概率是多少呢?由马尔可夫我们知道,过程在时刻s 处于状态i 条件下,在区间[s,s+t]中仍然处于i 的概率正是它处于i 至少t 个单位的无条件概率..若记 i h 为记过程在转移到另一个状态之前停留在状态i 的时间,则对一切s,t 0≥有 },{}{t h P s h t s h P i i i >=>+> 可见,随机变量i h 具有无记忆性,因此i h 服从指数分布. 由此可见,一个连续时间马尔可夫链,每当它进入状态i,具有如下性质: (1) 在转移到另一状态之前处于状态i 的时间服从参数为i v 的指数分布;

马尔可夫链蒙特卡罗在实践中的应用

2012年第12期 吉林省教育学院学报 No.12,2012 第28卷JOURNAL OF EDUCATIONAL INSTITUTE OF JILIN PROVINCE Vol .28(总300期) Total No .300 收稿日期:2012—11—14 作者简介:孟庆一(1989—),女,吉林长春人,新加坡籍华人,英国伦敦大学数学系,本科生,研究方向:MCMC 统计学。 浅议马尔可夫链蒙特卡罗在实践中的应用 孟庆一 (英国伦敦大学,英国伦敦) 摘要:本文概括地介绍了马尔可夫链蒙特卡罗(Markov chain Monte Carlo ———MCMC ),一种随机模拟贝叶斯推断的方法。主要的抽样方法包括吉布斯采样(Gibbs Sampling )和Metropolis -Hastings 算法。本文也对MCMC 主题和应用的拓展进行了讨论。 关键词:马尔可夫链;蒙特卡罗;Gibbs 抽样;Metropolis -Hastings 中图分类号:O29 文献标识码:A 文章编号:1671—1580(2012)12—0120—02 统计学中的贝叶斯推理在过去的几十年里有前 所未有的突破,统计学家们发现了一种非常简单,但又非常强大的模拟技术,统称为MCMC 。这种技术可以运用到各种复杂的贝叶斯范例和实际情况。 贝叶斯推理: 贝叶斯方法把所给的模型里所有的未知量的不确定性联系在一起。利用所知的信息,贝叶斯方法用联合概率分布把所有未观察到的数量综合起来,从而得出的推论。在这里,给定已知的未知分布被称为后验分布。有关未知量的推理被称为预测,它们的边缘分布称作为预测分布。 贝叶斯推理根据贝叶斯规则计算后验概率: P (H |E )= P (E |H )·P (H ) P (E )然而,在大多数情况下,所给的模型的复杂性不允许我们运用这个简单的操作。因此,我们需要使用随机模拟, 或蒙地卡罗技术来代替。概述MCMC : MCMC 采用未知量的高维分布,为难度极高的模拟复杂模型的问题提供了一个答案。 一个马尔可夫链是一个序列的随机变量X 1,X 2,X 3,...这个序列有马尔可夫的属性———给予目前的状态,未来和过去的状态是独立的。从数学公 式上看, Pr (X n +1=x |X 1=x 1,X 2=x 2,…,X n =x n )=Pr (X n +1=x |X n =x n )X i 的可能的值可数的集合S 称 为链的状态空间。 幸运的是,在马尔可夫链里,我们也有与大数定律和中心极限定理类似的定理。 另外一个问题存在于如何建立一个马尔可夫链的极限分布与所需的分配一模一样。一种可行的解决方案是Gibbs 抽样。它是基于一个马尔可夫链,其前身的依赖性是由模型中出现的条件分布所决定的。另一种可能性是Metropolis -Hastings 算法。它是基于一个马尔可夫链,其前身的依赖性是分裂成两个部分:一个是建议,另一个是接受这一建议。 Metropolis -Hastings 算法: Metropolis -Hastings 算法,可以从任何概率分布中抽取样品,只要求是可计算函数的密度成正比。在贝叶斯的应用程序中,归一化因子计算往往是非常困难的,所以,和其他常用的抽样算法一样,能够在不知道这个比例常数的情况下产生样本是Metropolis -Hastings 算法的重要特征。 该算法的总体思路是产生一系列在一个马尔可 夫链里的样品。在足够长的时间后,所生成的样品的分布与分布相匹配。 该算法基本上按如下方式工作(这是一个特殊 的例子,其建议密度是对称的情况下):首先,选择一个任意的概率密度Q (x'|x t ),这表明一个新的采样值x'给定样本值x t 。对于简单的Metropolis 算法,这个建议密度必须是对称的Q (x'| 21

马尔可夫链模型简介

马尔可夫链模型简介 设考察对象为一系统,若该系统在某一时刻可能出现的事件集合为,}{N N E E E E E E ??????,2,1,2,1,两两互斥,则陈i E 为状态。N i ???=,2,1。称该系统从一种状态i E 变化到另一状态j E 的过程称为状态转移,并把整个系统不断实现状态转移的过程称为马尔可夫过程。 定义1 具有下列两个性质的马尔可夫过程称为马尔可夫链: (1)无后效性,即系统的第n 次实验结果出现的状态,只与第1-n 次有关,而与它以前所处的状态无关; (2)具有稳定性,该过程逐渐趋于稳定状态,而与初始状态无关。 定义2 向量),,,(21n u u u u ???= 成为概率向量,如果u 满足: ?? ???=???=≥∑=n j j j u n j u 11,,2,10 定义3 如果方阵P 的每行都为概率向量,则称此方阵为概率矩阵。 如果矩阵A 和B 皆为概率矩阵,则AB ,k A ,k B 也都是概率矩阵(k 为正整数)。 定义4 系统由状态i E 经过一次转移到状态j E 的概率记为ij P ,称矩阵 ????????????????????????=32 12222111211N N N N N P P P P P P P P P P 为一次(或一步)转移矩阵。 转移矩阵必为概率矩阵,且具有以下两个性质: 1、P P P k k )1()(-=; 2、k k P P =)(

其中)(k P 为k 次转移矩阵。 定义5 对概率矩阵P ,若幂次方)(m P 的所有元素皆为正数,则矩阵P 称为正规概率矩阵。(此处2≥m ) 定理1 正规概率矩阵P 的幂次方序列P ,2P ,3P ,…趋近于某一方阵T ,T 的每一行均为同一概率向量t ,且满足t tP = 。 马尔可夫链模型如下: 设系统在0=k 时所处的初始状态 ),,() 0()0(2)0(1)0(N S S S S ???=为已知,经过k 次转移后的状态向量 ),,()()(2)(1)(k N k k k S S S S ???=),2,1(???=k ,则 ??????? ?????? ?????????????=NN N N N N k P P P P P P P P P S S 212222111211)0() ( 此式即为马尔可夫链预测模型。 由上式可以看出,系统在经过k 次转后所处的状态)(k S 取决与它的初始状态)0(S 和转移矩阵P 。 马尔可夫引例 例1:市场占有率预测 设有甲、乙、丙三家企业,生产同一种产品,共同供应1000家用户,各用户在各企业间自由选购,但不超出这三家企业,也无新的用户,假定在10月末经过市场调查得知,甲,乙,丙三家企业拥有的客户分别是:250户,300户,450户,而11月份用户可能的流动情况如下表所示:

串并联可靠性模型的应用及举例

上海电力学院 选修课大型作业 课程名称:机电系统可靠性与安全性设计报告名称:串并联可靠性模型的应用及举例院系:能源与机械工程学院 专业年级:动力机械140101 学生姓名:潘广德 学号:14101055 任课教师:张建平教授 2015年4月28日

浅谈串并联可靠性模型的应用并举例 摘要 详细阐述了机械可靠性工程中串并联可靠性模型的应用,并详细的举例说明。系统可靠性与组成单元的数量、单元可靠性以及单元之间的相互联接关系有关。以便于可靠性检测,首先讨论了各单元在系统中的相互关系。在可靠性工程中,常用可靠性系统逻辑图表示系统各单元之间的功能可靠性关系。在可靠性预测中串并联的应用及其广泛。必须指出,这里所说的组件相互关系主要是指功能关系,而不是组件之间的结构装配关系。 关键词:机械可靠性串联并联混联应用举例 0前言 学技术的发展,产品质量的含义也在不断的扩充。以前产品的质量主要是指产品的性能,即产品出厂时的性能质量,而现在产品的质量已不仅仅局限于产品的性能这一指标。目前,产品质量的定义是:满足使用要求所具备的特性,即适用性。这表明产品的质量首先是指产品的某种特性,这种特性反应这用户的某种需求。概括起来,产品质量特性包括:性能、可靠性、经济性和安全性四个方面。性能是产品的技术指标,是出厂时产品应具有的质量属性,显然能出厂的产品就赢具备性能指标;可靠性是产品出厂后所表现出来的一种质量特性,是产品性能的延伸和扩展;经济性是在确定的性能和可靠性水平下的总成本,包括购置成本和使用成本两部分;安全性则是产品在流通和使用过程中保证安全的程度。在上述产品特性所包含的四个方面中,可靠性占主导地位。性能差,产品实际上是废品;性能好,也并不能保证产品可靠性水平高。反之,可靠性水平高的产品在使用中不但能保证其性能实现,而且故障发生的次数少,维修费用及因故障造成的损失也少,安全性也随之提高。由此可见,产品的可靠性是产品质量的核心,是生产厂家和广大用户所努力追求的目标。 1串联系统可靠性模型的工作原理 如果一个系统中的单元中只要有一个失效该系统就失效,则这种系统成为串联系统。或者说,只有当所有单元都正常工作时,系统才能正常工作的系统称为串联系统。 设系统正常工作时间(寿命)这一随机变量为t,则在串联系统中,要使系统能正常工作运行,就必须要求每一个单元都能正常工作,且要求每一单元的正常工作时间都大于系统正常工作时间t。假设各个单元的失效时间是相互独立的,按照概率的乘法定理和可靠性定

马尔可夫链模型

马尔可夫链模型 马尔可夫链模型(Markov Chain Model) 目录 [隐藏] ? 1 马尔可夫链模型概述 ? 2 马尔可夫链模型的性质 ? 3 离散状态空间中的马尔可夫链 模型 ? 4 马尔可夫链模型的应用 o 4.1 科学中的应用 o 4.2 人力资源中的应用 ? 5 马尔可夫模型案例分析[1] o 5.1 马尔可夫模型的建 立 o 5.2 马尔可夫模型的应 用 ? 6 参考文献 [编辑] 马尔可夫链模型概述 马尔可夫链因安德烈·马尔可夫(Andrey Markov,1856-1922)得名,是数学中具有马尔可夫性质的离散时间随机过程。该过程中,在给定当前知识或信息的情况下,过去(即当期以前的历史状态)对于预测将来(即当期以后的未来状态)是无关的。 时间和状态都是离散的马尔可夫过程称为马尔可夫链, 简记为。 马尔可夫链是随机变量的一个数列。这些变量的范围,即他们所有可能 取值的集合,被称为“状态空间”,而Xn的值则是在时间n的状态。如果Xn + 1对于过去状态的条件概率分布仅是Xn的一个函数,则 这里x为过程中的某个状态。上面这个恒等式可以被看作是马尔可夫性质。

马尔可夫在1906年首先做出了这类过程。而将此一般化到可数无限状态空间是由柯尔莫果洛夫在1936年给出的。 马尔可夫链与布朗运动以及遍历假说这两个二十世纪初期物理学重要课题是相联系的,但马尔可夫寻求的似乎不仅于数学动机,名义上是对于纵属事件大数法则的扩张。 马尔可夫链是满足下面两个假设的一种随机过程: 1、t+l时刻系统状态的概率分布只与t时刻的状态有关,与t时刻以前的状态无关; 2、从t时刻到t+l时刻的状态转移与t的值无关。一个马尔可夫链模型可表示为=(S,P,Q),其中各元的含义如下: 1)S是系统所有可能的状态所组成的非空的状态集,有时也称之为系统的状态空间,它可以是有限的、可列的集合或任意非空集。本文中假定S是可数集(即有限或可列)。用小写字母i,j(或S i,S j)等来表示状态。 2)是系统的状态转移概率矩阵,其中P ij表示系统在时刻t处于状态i,在下一时刻t+l处于状态i的概率,N是系统所有可能的状态的个数。对于任意i∈s,有 。 3)是系统的初始概率分布,q i是系统在初始时刻处于状态i的概率, 满足。 [编辑] 马尔可夫链模型的性质 马尔可夫链是由一个条件分布来表示的 P(X n + 1 | X n) 这被称为是随机过程中的“转移概率”。这有时也被称作是“一步转移概率”。二、三,以及更多步的转移概率可以导自一步转移概率和马尔可夫性质:

随机过程与马尔可夫链习题答案

信息论与编码课程习题1——预备知识 概率论与马尔可夫链 1、某同学下周一上午是否上课,取决于当天情绪及天气情况,且当天是否下雨与心情好坏没有关系。若下雨且心情好,则50%的可能会上课;若不下雨且心情好,则有10%的可能性不上课;若不下雨且心情不好则有40%的可能性上课;若下雨且心情不好,则有90%的可能不会上课。假设当天下雨的概率为30%,该同学当天心情好的概率为20%,试计算该同学周一上课的可能性是多大? 分析: 天气情况用随机变量X 表示,“0”表示下雨,“1”表示不下雨;心情好坏用Y 表示,“0”表示心情好用“0”表示,心情不好用“1”表示;是否上课用随机变量Z 表示,“0”表示上课,“1”表示不上课。由题意可知 已知{ EMBED Equation.KSEE3 \* MERGEFORMAT |[]5.00,0|0====Y X Z P , , , , , , 即题目实际上给出了八个个条件概率和四个概率 由于X ,Y 相互独立,则有 = 注意:全概率公式的应用 2、已知随机变量X 和Y 的联合分布律如又表所示, 且,,求: 1)的分布律与数学期望 2)的分布律与数学期望 3)大于10的概率 4)由上面的例子,你是否能得到离散随机变量函数的数学期望的一般表达式?包括一元和多元随机变量函数。 X Y 5 6 1 0.2 0.3 2 0.1 0.4

分析: 1) 2) 说明:主要考虑联合分布律与随机变量函数分布律的关系 3) 4) and so on. 3、已知随机变量的概率密度函数为,其中,为的函数,求: 1)随机变量X 小于或等于5的概率 2)随机变量Y 的概率密度函数 3)随机变量Y 大于10的概率 4)随机变量Y 的数学期望 分析 1) 2)假设用分别表示随机变量X 的分布函数、随机变量Y 的概率密度函数和分布函数,则有: 有 3) 4) 4、已知随机变量和的联合概率密度函数为 ,。 1)求随机变量Z 的数学期望 2)求随机变量Z 的概率密度函数 3)结合习题3,总结连续随机变量的函数的数学期望的一般表达式,包括包括一元和多元 Z1 6 7 9 10 P 0.2 0.3 0.1 0.4

课上练习题_离散时间马尔科夫链 423

1、4.23 Trials are performed in sequence. If the last two trials were successes, then the next trial is a success with probability 0.8; otherwise the next trial is a success with probability 0.5. In the long run, what proportion of trials are successes? 2、4.32 Each of two switches is either on or off during a day. On day n, each switch will independently be on with probability [1+#of on switches during day n-1]/4. For instance, if both switches are on during day n-1, then each will independently be on during day n with probability3/4. What fraction of days are both switches on? What fractions are both off?

3、Let ri denote the long-run proportion of time a given irreducible Markov chain is in state i. Explain why ri is also the proportion of transitions that are into state i as well as being the proportion of transition that are from state i. 4、4.44 Suppose that a population consists of a fixed number, say, m, of genes in any generation. Each gene is one of two possible genetic types. If any generation has exactly i (of its m) genes being type 1, then the next generation will have j type 1 genes with probability j m j m i m m i j m- ? ? ? ? ?- ? ? ? ? ? ?? ? ? ? ? . Let Xn denote the number of type 1 genes in the nth generation, and assume that X0 = i. (a) Find E[Xn] (b) What is the probability that eventually all the genes will be type 1?

马尔可夫链预测方法及其一类应用【开题报告】

开题报告 数学与应用数学 马尔可夫链预测方法及其一类应用 一、综述本课题国内外研究动态, 说明选题的依据和意义 概率论自1654年创立以来, 已由最初的博弈分析问题发展成为现今的方法论综合性学科. 而其中随机过程已经是现代概率论发展的必然性. 在这其中, 马尔可夫在1906年的"大数定理关于相依变量的扩展"(Extension de la loi de grands bombers etc)论文中首次创立的马尔可夫链已经成为了概率论的重中之重. 马尔可夫是世界上著名的数学家、社会学家. 他所研究的范围非常的广泛, 涉及到概率论、数论、数的集合、函数逼近论、数理统计、微分方程等方面. 马尔可夫在1906~1912年间, 他提出并研究了一种能用数学分析方法研究自然过程的一般图示, 后人把这种图示以他的姓氏命名为马尔可夫链(Markov Chain). 在当时, 马尔可夫开创性地采用了一种对无后效性的随机过程的研究范式, 即在已知当前状态的情况下, 过程的未来状态与其过去状态无关, 这就是现在大家非常熟悉了解的马尔可夫过程. 在现实生活当中, 有许多过程都能被看作成马尔可夫过程. 如软件可靠性测试、传染病受感染的人数、农村剩余劳动力流动趋势预测、液体中微粒所作的布朗运动、产品市场占有率及利润率的变动等等. 也正是由于马尔可夫链在生活中所具有的普遍存在性, 马尔可夫链理论才被广泛应用于近代的物理学, 生物学, 地质学, 计算机科学, 公共事业, 教育管理、经济管理、以及企业人员管理、桥梁建筑等各个领域. 马尔可夫链运用数学模型对定性问题进行预测提供了一种思路, 丰富了预测的内容. 其大体上可以分为以下几个步骤: 首先, 把现象看作成为一个系统, 并对该系统进行科学的划分. 根据系统的实际和需要划分出多个状态, 系统所划分出来的各个状态就是要预测的内容. 其次, 对现象各种状态的状态概率进行统计测定, 也就是判定出系统当前处于什么状态. 然后, 对各系统未来发展的每次转移概率进行预测, 就是要确定出系统是如何转移的. 最后, 根据系统当前的各种状态和转移概率矩阵, 推测出系统经过若干次转移后, 到达

_马尔可夫链蒙特卡洛_MCMC_方法在估计IRT模型参数中的应用

IRT自20世纪60年代出现以来,由于其理论模型的科学性和精确性见长,一开始就受到心理和教育测量学的研究者和实际工作者的关注和兴趣。至今已成为考试技术学研究领域中最有影响的一种现代测量理论。但理论的严谨性又导致了计算的复杂性,因而也影响了IRT的普及和应用乃至它的考试研究2006年10月第2卷第4期ExaminationsResearchOct.2006Vol.2,No.4 “马尔可夫链蒙特卡洛”(M CM C)方法在估计IRT 模型参数中的应用[1][2] 王权编译【摘要】本文介绍和阐述怎样运用“马尔可夫链蒙特卡洛”(MCMC)技术,并结合Bayes方法来估计IRT的模型参数。首先简要地概述了MCMC方法估计模型参数的基本原理;其次介绍MCMC方法估计模型参数的一般方法,涉及Gibbs抽样、取舍抽样、Metropolis-Hastings算法等概念和方法;最后以IRT的“二参数逻辑斯蒂”(2PL)模型为例,重点介绍了用“Gibbs范围内的M-H算法”估计项目参数(β1jβ2j)的算法过程。结束本文时还解说了MCMC方法的特点。 阅读本文需具有随机过程、Markov链、Bayes方法等概率论的基本知识。 【关键词】项目反应理论 马尔可夫链蒙特卡洛Gibbs抽样取舍抽样作者简介王权,教授,浙江大学教育系。浙江杭州,310028。45

《考试研究》第2卷第4期 发展速度。令我们欣喜的是在20世纪90年代,国外统计学家又推陈出新地提出了参数估计的新方法,使IRT的应用和发展又迈出了新的一步。 模型参数的估计是IRT的核心内容。以往的参数估计方法主要有“条件极大似然估计”(CMLE)、“联合极大似然估计”(JMLE)、“边际极大似然估计” (MMLE)和“条件期望—极大化算法”(E-MAlgorithm)等,大致上后一种算法均是前一种算法的改进[3]。E-M算法是由R.D.Bock和M.Aitkin于1981年创立,它是以MMLE方法为基础发展而成。在E-M算法中,E步要涉及精确的数字积分计算,或者在M步要涉及偏导计算,当模型较复杂时,计算就十分困难。加之,它还难以将项目参数估计中的“不可靠性”(uncertainty)结合进能力参数估计时不可靠性的计算;反之亦然。 “马尔可夫链蒙特卡洛”(MarkovChainMonteCarlo,MCMC)方法是一种动态的计算机模拟技术,它是根据任一多元理论分布,特别是根据以贝叶斯(Bayes)推断为中心的多元后验分布来模拟随机样本的一种方法。它在估计IRT模型参数的应用中,一方面继承了以往估计能力参数和项目参数时所采用的“分而治之”(divide-and-conquer)的策略,采用能力参数与项目参数交替迭代计算的方法生成Markov链;然后采取迥然不同于极大似然方法的思路,充分发挥计算机模拟技术的优势,采集充分大的状态样本,用初等的方法来估计模型参数,绕开了E-M算法中的复杂计算,从而提高了估计的成功率。 —“Gibbs采样1992年统计学家J.H.Albert首先将一种特殊的MCMC方法—— 法”应用于IRT问题的研究。现在它已被推广应用于多种复杂的IRT模型,在应用于大范围的教育测验评价中尤显它的长处。本文主要介绍MCMC方法的基本原理和基本方法,为说明方便,只列举应用于较为简单状况的二参数逻辑斯蒂模型,它是进一步推广应用的基础。 一、MCMC方法的基本原理 用MCMC方法估计IRT的模型参数的基本思路是:首先定义一Markov链,M0,M1,M2,…,Mk,…状态Mk=(θk,βk),k=1,2,…其中θ为能力参数,β为项目参数,θ和β可以为多维;然后根据Markov链模拟观测(即模拟状态);最后用所得的模拟观测推断参数θ和β。在一定的规则条件下,随着k的增长,状态Mk的46

第章离散时间的马尔可夫链

第1章 离散时间的马尔可夫链 §1 随机过程的基本概念 定义1 设(,,)P ΩF 是概率空间,(, )E E 是可测空间, T 是指标集. 若对任何t T ∈,有 :t X E Ω→,且t X ∈F E ,则称{}(), t X t T ω∈是(, , )P ΩF 上的取值于(,)E E 中的随机过 程,在无混淆的情况下简称{(), }t X t T ω∈为随机过程,称(,)E E 为状态空间或相空间,称E 中的 元素为状态,称T 为时间域. 对每个固定的ω∈Ω,称()t X ω为 {}(), t X t T ω∈对应于ω的轨道或现 实,对每个固定的t T ∈,称()t X ω为E 值随机元. 有时()t X ω也记为 设 T ?R ,{}, t t T ∈F 是F 中的一族单调增的子σ代数(σ代数流),即 ① t t T ?∈??F F ,且t F 是σ代数; ② , , s t s t T s t ?∈

马尔可夫链预测方法及其一类应用【文献综述】

文献综述 数学与应用数学 马尔可夫链预测方法及其一类应用 马尔可夫性是俄国数学家A.A.Mapkov 在1906年最早提出的. 但是, 什么是马尔可夫性呢? 一般来讲,认为它是“相互独立性”的一种自然推广. 设有一串随机事件,...,,...,,121n n A A A A -中(即n A 属于概率空间(P ,,ξΩ)中的σ代数ξ,1≥n ), 如果它们中一个或几个的发生, 对其他事件的发生与否没有影响, 则称这一串事件是相互独立的(用概率空间(P ,,ξΩ)的符号表示, 即))()(11n m n m n n A P A P X I ===, 推广下, 如果在已知,...,1+n n A A 中的某些事件的发生, 与,,...,,121-n A A A 中的事件发生与否无关, 则称这一串事件{1:≥n A n }具有马尔可夫性. 所以说, 马尔可夫性可视为相互独立性的一种自然推广. 从朴素的马尔可夫性, 到抽象出马尔可夫过程的概念, 从最简单的马尔可夫过程到一般的马尔可夫过程, 经历了几十年的发展过程. 它有极其深厚的理论基础, 如拓扑学、函数论、几何学、近世代数、泛函分析. 又有很广泛的应用空间, 如随机分形、近代物理、公共事业中的服务系统、电子信息、计算技术等. 在现实世界中, 有很多过程都是马尔可夫过程, 如软件可靠性测试、传染病受感染的人数、农村剩余劳动力流动趋势预测、液体中微粒所作的布朗运动、产品市场占有率及利润率的变动, 车站排队问题等等, 都可视为马尔可夫过程. 所谓马尔可夫链是指时间连续(或离散)、状态可列、时间齐次的马尔可夫过程. 之所以要研究这种过程, 一方面是由于它的理论比较完整深入, 可以作为一般马尔可夫过程及其他随机过程的借鉴; 二是由于它在自然科学和许多实际问题(如遗传学、教育学、经济学、建筑学、规则论、排队论等)中发挥着越来越大的作用. 自从我国著名数学家、教育家、中科院王梓坤院士在上世纪50年代将马尔可夫理论引入国内以后, 我国数学家对马尔可夫过程的研究也取得了非常好的效果, 在生灭过程的构造和它的积分型泛函的分布、马尔可夫过程的零壹律、Martin 边界与过份函数、马尔可夫过程

马尔可夫链

3.5 马尔可夫链预测方法 一、基于绝对分布的马尔可夫链预测方法 对于一列相依的随机变量,用步长为一的马尔可夫链模型和初始分布推算出未来时段的绝对分布来做预测分析方法,称为“基于绝对分布的马尔可夫链预测方法”,不妨记其为“ADMCP 法”。其具体方法步骤如下: 1.计算指标值序列均值x ,均方差s ,建立指标值的分级标准,即确定马尔可夫链的状态空间I ,这可根据资料序列的长短及具体间题的要求进行。例如,可用样本均方差为标准,将指标值分级,确定马尔可夫链的状态空间 I =[1, 2,…,m ]; 2.按步骤1所建立的分级标准,确定资料序列中各时段指标值所对应的状态; 3.对步骤2所得的结果进行统计计算,可得马尔可夫链的一步转移概率矩阵1P ,它决定了指标值状态转移过程的概率法则; 4.进行“马氏性” 检验; 5.若以第1时段作为基期,该时段的指标值属于状态i ,则可认为初始分布为 (0)(0,,0,1,0,0)P = 这里P (0)是一个单位行向量,它的第i 个分量为1,其余分量全为0。于是第2时段的绝对分布为 1(1)(0)P P P =12((1),(1),,(1))m p p p = 则第2时段的预测状态j 满足:(1)max{(1),}j i p p i I =∈; 同样预测第k +1时段的状态,则有 1()(0)k P k P P =12((),(),,())m p k p k p k = 得到所预测的状态j 满足: ()max{(),}j i p k p k i I =∈ 6.进一步对该马尔可夫链的特征(遍历性、平稳分布等)进行分析。 二、叠加马尔可夫链预测方法 对于一列相依的随机变量,利用各种步长的马尔可夫链求得的绝对分布叠加来做预测分析,的方法,称为“叠加马尔可夫链预测方法”,不妨记其为“SPMCP 法’。其具体方法步骤如下: 1) 计算指标值序列均值x ,均方差s ,建立指标值的分级标准(相当于确定马尔可夫链的状态空间),可根据资料序列的长短及具体问题的要求进行; 2) 按1)所建立的分级标准,确定资料序列中各时段指标值所对应的状态; 3) 对2)所得的结果进行统计,可得不同滞时(步长)的马尔可夫链的转移概率矩阵,它决定了指标值状态转移过程的概率法则; 4) 马氏性检验; 5) 分别以前面若干时段的指标值为初始状态,结合其相应的各步转移概率矩阵即可预测出该时段指标值的状态概率 (6)将同一状态的各预测概率求和作为指标值处于该状态的预测概率,即 ,所对应的i 即为该时段指标值的预测状态。待该时段的指标值确定之后,将其加 入到原序列之中,再重复步骤"(1)一(6)",可进行下时段指标值状态的预测。 (7)可进一步对该马尔可夫链的特征(遍历性、平稳分布等)进行分析。

5马尔可夫链模型

马尔可夫链模型 在考察随机因素影响的动态系统时,常常碰到这样的情况,系统在每个时期所处的状态是随机的,从这个时期到下个时期的状态按照一定的概率进行转移,并且下个时期的状态只取决于这个时期的状态和转移概率,与以前各时期的状态无关。这种性质称为无后效性或马尔可夫性。通俗的说就是已知现在,将来与历史无关。 具有马氏性的,时间、状态无为离散的随机转移过程通常用马氏链(Markov Chain)模型描述。 马氏链模型在经济、社会、生态、遗传等许多领域中有着广泛的应用。值得提出的是,虽然它是解决随机转移过程的工具,但是一些确定性系统的状态转移问题也能用马氏链模型处理。 马氏链简介: 马氏链及其基本方程:按照系统的发展,时间离散化为 0,1,2,n = ,对每个n ,系统的状态用随机变量n X 表示,设n X 可以 取k 个离散值1,2,,n X k = ,且n X i =的概率记作() i a n ,称为状态概 率,从n X i =到1 n X j +=的概率记作ij p ,称为转移概率。如果1 n X +的 取值只取决于n X 的取值及转移概率,而与1 2,,n n X X -- 的取值无关, 那么这种离散状态按照离散时间的随机转移过程称为马氏链。 由状态转移的无后效性和全概率公式可以写出马氏链的基本方程为 1 (1)()1,2,,k i j ij j a n a n p i k =+= =∑

并且() i a n 和ij p 应满足 1 1 ()10,1,2,;0 ;1 1,2,,k k j ij ij j j a n n p p i k ====≥==∑∑ 引入状态概率向量和转移概率矩阵 12()((),(),,()) {}k ij k a n a n a n a n P p == 则基本方程可以表为1 (1)()(0)n a n a n P a P ++== 例1:某商店每月考察一次经营情况,其结果用经营状况好与孬表示。若本月经营状况好,则下月保持好的概率为0.5,若本月经营状况不好,则下月保持好的概率为0.4,试分析该商店若干时间后的经营状况。 解:商店的经营状况是随机的,每月转变一次。用随机变量n X 表示第n 个月的经营状况,称为经营系统的状态.1,2 n X =分别表示 好与不好,0,1,n = 。用() i a n 表示第n 月处于状态i 的概率(1,2i =) 即()()i n a n P X i ==,ij p 表示本月处于状态i ,下月转为状态j 的概率。 这里1 n X +无后效性,只取决于n X 和ij p 。 112112220.5,0.4,0.5,0.6p p p p ==∴== 根据全概率公式可以得到: 11112212112222 (1)()()0.50.5(1)()(1)()()0.4 0.6a n a n p a n p a n a n P P a n a n p a n p +=+??? ?+==? ?+=+?? ? 假设这个递推公式存在极限w ,有w w P = ,即()0w P E -=。于 是当经营状况好或孬时,经计算可以得到下面的结果

马尔可夫性与马尔可夫链

马尔可夫性与马尔可夫链 【教学目标】 1.掌握马尔可夫性与马尔可夫链。 2.熟练运用马尔可夫性与马尔可夫链解决具体问题。 3.亲历马尔可夫性与马尔可夫链的探索过程,体验分析归纳得出马尔可夫性与马尔可夫链,进一步发展学生的探究、交流能力。 【教学重难点】 重点:掌握马尔可夫性与马尔可夫链。 难点:马尔可夫性与马尔可夫链的实际应用。 【教学过程】 一、直接引入 师:今天这节课我们主要学习马尔可夫性与马尔可夫链,这节课的主要内容有马尔可夫性与马尔可夫链,并且我们要掌握这些知识的具体应用,能熟练解决相关问题。 二、讲授新课 (1)教师引导学生在预习的基础上了解马尔可夫性与马尔可夫链内容,形成初步感知。 (2)首先,我们先来学习马尔可夫性,它的具体内容是: 1n X +的随机变化规律与0X ,1X ,…1n X -的取值都没有关系,随机变量序列{}n X 的所具有的这类性质称为马尔可夫性 它是如何在题目中应用的呢?我们通过一道例题来具体说明。 例: 马尔可夫性描述了一种_____。 解析:状态序列 可以给学生一定的提示。 根据例题的解题方法,让学生自己动手练习。 练习: 序列所有可能取值的集合,被称为_____。 (3)接着,我们再来看下马尔可夫链内容,它的具体内容是:

一般地,我们称具有马尔可夫性的随机变量序列{}n X为马尔可夫链。 它是如何在题目中应用的呢?我们也通过一道例题来具体说明。 例:请同学们查询资料,判断马尔可夫链与布朗运动是否有联系 解析:马尔可夫链与布朗运动以及遍历假说这两个二十世纪初期物理学重要课题是相联系的,但马尔可夫寻求的似乎不仅于数学动机,名义上是对于纵属事件大数法则的扩张。 根据例题的解题方法,让学生自己动手练习。 练习: 请写出马尔科夫链满足的两个假设。 三、课堂总结 (1)这节课我们主要讲了马尔可夫性与马尔可夫链 (2)它们在解题中具体怎么应用? 四、习题检测 1.请同学们写出马尔可夫性的定义。 2.请同学们写出马尔科夫链的定义。 3.请同学们写出马尔科夫性和马尔科夫链之间的联系。

马尔可夫链模型讲解

马尔可夫链模型(Markov Chain Model) 目录 [隐藏] 1 马尔可夫链模型概述 2 马尔可夫链模型的性质 3 离散状态空间中的马尔可夫链模 型 4 马尔可夫链模型的应用 o 4.1 科学中的应用 o 4.2 人力资源中的应用 5 马尔可夫模型案例分析[1] o 5.1 马尔可夫模型的建立 o 5.2 马尔可夫模型的应用 6 参考文献 [编辑] 马尔可夫链模型概述 马尔可夫链因安德烈·马尔可夫(Andrey Markov,1856-1922)得名,是数学中具有马尔可夫性质的离散时间随机过程。该过程中,在给定当前知识或信息的情况下,过去(即当期以前的历史状态)对于预测将来(即当期以后的未来状态)是无关的。 时间和状态都是离散的马尔可夫过程称为马尔可夫链, 简记为 。 马尔可夫链是随机变量的一个数列。这些变量的范围,即他们所有可能取值的集合,被称为“状态空间”,而Xn的值则是在时间n的状态。如果Xn + 1对于过去状态的条件概率分布仅是Xn的一个函数,则 这里x为过程中的某个状态。上面这个恒等式可以被看作是马尔可夫性质。

马尔可夫在1906年首先做出了这类过程。而将此一般化到可数无限状态空间是由柯尔莫果洛夫在1936年给出的。 马尔可夫链与布朗运动以及遍历假说这两个二十世纪初期物理学重要课题是相联系的,但马尔可夫寻求的似乎不仅于数学动机,名义上是对于纵属事件大数法则的扩张。 马尔可夫链是满足下面两个假设的一种随机过程: 1、t+l时刻系统状态的概率分布只与t时刻的状态有关,与t时刻以前的状态无关; 2、从t时刻到t+l时刻的状态转移与t的值无关。一个马尔可夫链模型可表示为=(S,P,Q),其中各元的含义如下: 1)S是系统所有可能的状态所组成的非空的状态集,有时也称之为系统的状态空间,它可以是有限的、可列的集合或任意非空集。本文中假定S是可数集(即有限或可列)。用小写字母i,j(或S i,S j)等来表示状态。 2)是系统的状态转移概率矩阵,其中P ij表示系统在时刻t处于状态i,在下一时刻t+l处于状态i的概率,N是系统所有可能的状态 的个数。对于任意i∈s,有。 3)是系统的初始概率分布,q i是系统在初始时刻处 于状态i的概率,满足。 [编辑] 马尔可夫链模型的性质 马尔可夫链是由一个条件分布来表示的 P(X | X n) n+ 1 这被称为是随机过程中的“转移概率”。这有时也被称作是“一步转移概率”。二、三,以及更多步的转移概率可以导自一步转移概率和马尔可夫性质:

马尔可夫链模型

马尔可夫链 在自然界与社会现象中,许多随机现象遵循下列演变规律,已知某个系统(或过程)在时刻0t t =所处的状态,与该系统(或过程)在时刻0t t >所处的状态与时刻0t t <所处的状态无关。例如,微分方程的初值问题描述的物理系统属于这类随机性现象。随机现象具有的这种特性称为无后效性(随机过程的无后效性),无后效性的直观含义:已知“现在”,“将来”和“过去”无关。 在贝努利过程(){} ,1X n n ≥中,设()X n 表示第n 次掷一颗骰子时出现的点数,易见,今后出现的点数与过去出现的点数无关。 在维纳过程(){} ,0X t t ≥中,设()X t 表示花粉在水面上作布朗运动时所处的位置,易见,已知花粉目前所处的位置,花粉将来的位置与过去的位置无关。 在泊松过程(){,0}N t t ≥中,设()N t 表示时间段[0,]t 内进入某商店的顾客数。易见,已知时间段0[0,]t 内进入商店的顾客数()0N t ,在时间段()0[0,]t t t >内进入商店的顾客数 ()N t 等于()0N t 加上在时间段0(,]t t 内进入商店的顾客数()()0N t N t -,而与时刻0t 前进 入商店的顾客无关。 一、马尔可夫过程 定义:给定随机过程 (){},X t t T ∈。如果对任意正整数3n ≥,任意的 12,,1, ,n i t t t t T i n <<<∈=,任意的11, ,,n x x S -∈S 是()X t 的状态空间,总有 ()()()1111|,n n n n P X x X t x X t x --≤== ()() 11|,n n n n n P X x X t x x R --=≤=∈ 则称(){} ,X t t T ∈为马尔可夫过程。 在这个定义中,如果把时刻1n t -看作“现在”,时刻n t 是“将来”,时刻12, ,n t t -是“过 去”。马尔可夫过程要求:已知现在的状态()11n n X t x --=,过程将来的状态()n X t 与过程过去的状态()()1122, ,n n X t x X t x --==无关。这就体现了马尔可夫过程具有无后效性。 通常也把无后效性称为马尔可夫性。 从概率论的观点看,马尔可夫过程要求,给定()()1111,,n n X t x X t x --==时,() n X t 的条件分布仅与()11n n X t x --=有关,而与()()12, ,n X t X t -无关。

相关主题
文本预览
相关文档 最新文档