当前位置:文档之家› 4-2离散参数马尔可夫链(2)-状态的分类

4-2离散参数马尔可夫链(2)-状态的分类

4-2离散参数马尔可夫链(2)-状态的分类

随机过程 第五章 连续时间的马尔可夫链

第五章 连续时间的马尔可夫链 5.1连续时间的马尔可夫链 考虑取非负整数值的连续时间随机过程}.0),({≥t t X 定义5.1 设随机过程}.0),({≥t t X ,状态空间}0,{≥=n i I n ,若对任意 121...0+<<<≤n t t t 及I i i i n ∈+121,...,,有 })(,...)(,)()({221111n n n n i t X i t X i t X i t X P ====++ =})()({11n n n n i t X i t X P ==++ (5.1) 则称}.0),({≥t t X 为连续时间马尔可夫链. 由定义知,连续时间马尔可夫链是具有马尔可夫性的随机过程,即过程在已知现在时刻n t 及一切过去时刻所处状态的条件下,将来时刻1+n t 的状态只依赖于现在状态而与过去无关. 记(5.1)式条件概率一般形式为 ),(})()({t s p i s X j t s X P ij ===+ (5.2) 它表示系统在s 时刻处于状态i,经过时间t 后转移到状态j 的转移概率. 定义5.2 若(5.2)式的转移概率与s 无关,则称连续时间马尔可夫链具有平稳的或齐次的转移概率,此时转移概率简记为 ),(),(t p t s p ij ij = 其转移概率矩阵简记为).0,,()),(()(≥∈=t I j i t p t P ij 以下的讨论均假定我们所考虑的连续时间马尔可夫链都具有齐次转移概率.简称为齐次马尔可夫过程. 假设在某时刻,比如说时刻0,马尔可夫链进入状态i,而且接下来的s 个单位时间单位中过程未离开状态i,(即未发生转移),问随后的t 个单位时间中过程仍不离开状态i 的概率是多少呢?由马尔可夫我们知道,过程在时刻s 处于状态i 条件下,在区间[s,s+t]中仍然处于i 的概率正是它处于i 至少t 个单位的无条件概率..若记 i h 为记过程在转移到另一个状态之前停留在状态i 的时间,则对一切s,t 0≥有 },{}{t h P s h t s h P i i i >=>+> 可见,随机变量i h 具有无记忆性,因此i h 服从指数分布. 由此可见,一个连续时间马尔可夫链,每当它进入状态i,具有如下性质: (1) 在转移到另一状态之前处于状态i 的时间服从参数为i v 的指数分布;

马尔可夫链蒙特卡罗在实践中的应用

2012年第12期 吉林省教育学院学报 No.12,2012 第28卷JOURNAL OF EDUCATIONAL INSTITUTE OF JILIN PROVINCE Vol .28(总300期) Total No .300 收稿日期:2012—11—14 作者简介:孟庆一(1989—),女,吉林长春人,新加坡籍华人,英国伦敦大学数学系,本科生,研究方向:MCMC 统计学。 浅议马尔可夫链蒙特卡罗在实践中的应用 孟庆一 (英国伦敦大学,英国伦敦) 摘要:本文概括地介绍了马尔可夫链蒙特卡罗(Markov chain Monte Carlo ———MCMC ),一种随机模拟贝叶斯推断的方法。主要的抽样方法包括吉布斯采样(Gibbs Sampling )和Metropolis -Hastings 算法。本文也对MCMC 主题和应用的拓展进行了讨论。 关键词:马尔可夫链;蒙特卡罗;Gibbs 抽样;Metropolis -Hastings 中图分类号:O29 文献标识码:A 文章编号:1671—1580(2012)12—0120—02 统计学中的贝叶斯推理在过去的几十年里有前 所未有的突破,统计学家们发现了一种非常简单,但又非常强大的模拟技术,统称为MCMC 。这种技术可以运用到各种复杂的贝叶斯范例和实际情况。 贝叶斯推理: 贝叶斯方法把所给的模型里所有的未知量的不确定性联系在一起。利用所知的信息,贝叶斯方法用联合概率分布把所有未观察到的数量综合起来,从而得出的推论。在这里,给定已知的未知分布被称为后验分布。有关未知量的推理被称为预测,它们的边缘分布称作为预测分布。 贝叶斯推理根据贝叶斯规则计算后验概率: P (H |E )= P (E |H )·P (H ) P (E )然而,在大多数情况下,所给的模型的复杂性不允许我们运用这个简单的操作。因此,我们需要使用随机模拟, 或蒙地卡罗技术来代替。概述MCMC : MCMC 采用未知量的高维分布,为难度极高的模拟复杂模型的问题提供了一个答案。 一个马尔可夫链是一个序列的随机变量X 1,X 2,X 3,...这个序列有马尔可夫的属性———给予目前的状态,未来和过去的状态是独立的。从数学公 式上看, Pr (X n +1=x |X 1=x 1,X 2=x 2,…,X n =x n )=Pr (X n +1=x |X n =x n )X i 的可能的值可数的集合S 称 为链的状态空间。 幸运的是,在马尔可夫链里,我们也有与大数定律和中心极限定理类似的定理。 另外一个问题存在于如何建立一个马尔可夫链的极限分布与所需的分配一模一样。一种可行的解决方案是Gibbs 抽样。它是基于一个马尔可夫链,其前身的依赖性是由模型中出现的条件分布所决定的。另一种可能性是Metropolis -Hastings 算法。它是基于一个马尔可夫链,其前身的依赖性是分裂成两个部分:一个是建议,另一个是接受这一建议。 Metropolis -Hastings 算法: Metropolis -Hastings 算法,可以从任何概率分布中抽取样品,只要求是可计算函数的密度成正比。在贝叶斯的应用程序中,归一化因子计算往往是非常困难的,所以,和其他常用的抽样算法一样,能够在不知道这个比例常数的情况下产生样本是Metropolis -Hastings 算法的重要特征。 该算法的总体思路是产生一系列在一个马尔可 夫链里的样品。在足够长的时间后,所生成的样品的分布与分布相匹配。 该算法基本上按如下方式工作(这是一个特殊 的例子,其建议密度是对称的情况下):首先,选择一个任意的概率密度Q (x'|x t ),这表明一个新的采样值x'给定样本值x t 。对于简单的Metropolis 算法,这个建议密度必须是对称的Q (x'| 21

Markov链预测法

我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): B 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名):贵州民族学院 参赛队员(打印并签名) :1. 龚道杰 2. 张凤 3. 姚肖伟 指导教师或指导教师组负责人(打印并签名): 日期: 2009 年 7 月 25 日 年凝冻日数的Markov链预测法 4# 【摘要】 本文根据所给数据,利用Markov链建立了预测年凝冻日数的模型,分别从整体和局部两个角度进行分析。

首先,我们直接以年凝冻日数为依据,对其进行K-均值聚类分析,划分 状态。用频率估计概率的方法,估算出一步转移概率矩阵,1/6 5/65/3328/33P ??=?? ??,然后建立Markov 链模型()1/6 5/6()(0)(0)5/3328/33n n P n P P P ??=?=??? ?? 。以2008年作为初始状态,估计出 2009 年凝冻日数所处状态为 (1)(0)P P P =?()0.1520.848=。按K-均值标准可知,即2009年凝冻的天数在 15天以内的可能性为84.8%,在15天以上的可能性为15.2%。 由于上述模型选取的是以年为单位的数据,只能估计出2009年的凝冻日 数所处区间。为提高精度,我们选取2000-2008年的具体凝冻天数和日期,记每一天只存在两种状态,出现雨凇为状态1,否则为状态0。然后由相邻两年间的状态转移变化,得出一步转移概率矩阵i P ,1,2,...,8i =。由这8个一步转移概率矩阵,根据一步转移矩阵P 的n 次方与n 步转移概率矩阵()n P 之差的范数和达到最小的准则,选出优化后的一步转移概率矩阵 0.95000.0500*0.78890.2111P ??=???? ,再次建立Markov 链模型。以2008年为初始状态,预测2009年的概率分布为 []*(2009)(2008)0.91060.0894P P P =?= ,由频率稳定于概率,知2009年凝冻天数的估计值为14天。 关键词: Markov 链 转移概率矩阵 频率估计概率 1. 问题提出 1.1背景知识 凝冻是指冬季出现的温度低于0℃有过冷却降水或固体降水和结冰现象发生的天气现象,即气象台所说的出现雨凇的天气。雨凇的形成与气温,降水量,湿度等因素有关,超冷却的降水碰到温度等于或低于零摄氏度的物体表面使所形成玻璃状的透明或无光泽的表面粗糙并覆盖层,就叫做雨凇。其造成的危害巨大,高压线塔的倒塌,电力瘫痪,交通瘫痪,农作物的冻亡等。因而对出现雨凇天气的预测显得尤为重要。

混凝土轨枕

我国混凝土轨枕使用分析 1. 前言 自1956年我国研制出预应力混凝土枕以来截止到2002年底,铺设混凝土枕总数已达1.625亿根,占各类轨枕总数的76%,其中Ⅲ型枕837万根,占混凝土枕总数的5.2%,Ⅱ型混凝土枕9618万根,占混凝土枕总数的59.2%,Ⅰ型和69型枕仍有4360万根,占混凝 土枕总数的32.2%,桥岔枕约有452.3万根。但由于历史的原因,各型号轨枕的承载能力与在使用中铺设的线路条件并不完全匹配,产品质量不尽人意,致使一些轨枕提前出现伤损,有些伤损甚至比较严重,增加了养护维修工作量,对行车安全不利。2002年秋检资料 统计:Ⅲ型枕伤损率为0.1%,老Ⅱ型枕伤损率为0.7%,Ⅰ型和69型枕伤损率为4.9%。 2.Ⅰ型混凝土轨枕 早在1953年铁道部有关部门就开始进行了混凝土轨枕代替木枕的研究工作,于1954年开始进行轨枕试制和试铺,铁道部于1957年起开始建立预应力混凝土轨枕制造工厂。1961年铁道部有关单位总结现场使用经验,编制了“弦Ⅱ-61A”型预应力钢弦混凝土轨枕的设计图,并开始了批量生产。 总的说来,到1984年Ⅱ型混凝土轨枕鉴定前主要生产和使用的混凝土轨枕有两大类: (1)69型混凝土枕 69型是按建设型机车,轴重21t、85km/h、1840根/km进行设计的。该枕1995年约占铺设总数的50.0%,以后基本不生产。 (2) I型混凝土枕 1979年在69型枕配筋不变的情况下,将轨枕外型尺寸统到与Ⅱ型枕一样,强度与69型等强,最后统一为I型混凝土枕(弦79型和筋79型)。 与69型枕比较,I型枕中间断面高度由155mm增至165mm,提高了中间断面正弯距的承载能力,端头由原斜坡改为平坡;在螺栓孔围增设了螺旋筋,在轨枕端头增设了箍筋。 结构设计计算结果表明:轨枕截面疲劳承载能力:轨下断面11.1kN·m,中间断面负弯矩8.03kN·m;而按照给定的线路条件,轨枕截面承受的荷载弯矩为:轨下断面11.8kN·m,中间断面负弯矩10.1kN·m。显然,轨枕承载能力不足,特别是中间断面负弯矩承载能力相差更远。 轨枕截面静载抗裂弯矩为:轨下断面15.7kN·m,中间断面负弯矩11.3kN·m。 由于69型枕与I型枕设计承载能力等强,一般也统称为I型混凝土枕。 根据各方面的调查发现I型混凝土枕主要问题为: ①轨下截面强度不足,调查发现:接头轨枕轨下截面正弯矩裂纹占调查总数的84%,非接头轨枕轨下截面正弯矩裂纹占调查总数的42%。 ②中间截面设计承载力偏低。由于截面强度不足,要求中间道碴掏空,这种要求掏

第五章 连续时间的Markov链

第五章 连续时间的马尔可夫链 第四章我们讨论了时间和状态都是离散的M arkov 链,本章我们研究的是时间连续、状态离散的M arkov 过程,即连续时间的M arkov 链. 连续时间的M arkov 链可以理解为一个做如下运动的随机过程:它以一个离散时间M arkov 链的方式从一个状态转移到另一状态,在两次转移之间以指数分布在前一状态停留. 这个指数分布只与过程现在的状态有关,与过去的状态无关(具有无记忆性),但与将来转移到的状态独立. 5.1 连续时间马尔可夫链的基本概念 定义 5.1 设随机过程{(),0}X t t ≥,状态空间{,1}n I i n =≥,若对任意的正整数 1210n t t t +≤<<< 及任意的非负整数121,,,n i i i I +∈ ,条件概率满足 {}111122()|(),(),,()n n n n P X t i X t i X t i X t i ++==== {}11()|()n n n n P X t i X t i ++=== (5.1) 则称{(),0}X t t ≥为连续时间的M arkov 链. 由定义知,连续时间的M arkov 链是具有M arkov 性(或称无后效性)的随机过程,它的直观意义是:过程在已知现在时刻n t 及一切过去时刻所处状态的条件下,将来时刻1n t +的状态只依赖于现在的状态而与过去的状态无关. 记(5.1)式条件概率的一般形式为 {()|()}(,)ij P X s t j X s i p s t +=== (5.2) 它表示系统在s 时刻处于状态i ,经过时间t 后在时刻s t +转移到状态j 的转移概率,通常称它为转移概率函数.一般地,它不仅与t 有关,还与s 有关. 定义 5.2 若(5.2)式的转移概率函数与s 无关,则称连续时间M arkov 链具有平稳的转移概率函数,称该M arkov 链为连续时间的齐次(或时齐)M arkov 链. 此时转移概率函数简记为(,)()ij ij p s t p t =.相应地,转移概率矩阵简记为()(()),(,,0)ij P t p t i j I t =∈≥. 若状态空间{0,1,2,}I = ,则有 ()00010210 11 12 012() ()() ...()()()()()... ... .. ....()()( )...... .. .... ij n n n p t p t p t p t p t p t P t p t p t p t p t ?? ? ? ?== ? ? ?? ? (5.3) 假设在某时刻,比如说时刻0,M arkov 链进入状态i ,在接下来的s 个单位时间内过程 未离开状态i (即未发生转移),我们要讨论的问题是在随后的t 个单位时间中过程仍不离开状态i 的概率是多少?由M arkov 性知,过程在时刻s 处于状态i 的条件下,在区间[,] s s t +

Matlab学习系列34. 马尔可夫预测

33. 马尔可夫预测 马尔可夫预测,是一种预测事件发生的概率的方法。它是基于马尔可夫链,根据事件的目前状况预测其将来各个时刻(或时期)变动状况的一种预测方法。 马尔可夫预测法的基本要求是状态转移概率矩阵必须具有一定的稳定性。因此,必须具有足够的统计数据,才能保证预测的精度与准确性。换句话说,马尔可夫预测模型必须建立在大量的统计数据的基础之上。 (一)经典马尔可夫模型 一、几个概念 状态:指某一事件在某个时刻(或时期)出现的某种结果; 状态转移:事件的发展,从一种状态转变为另一种状态; 马尔可夫过程:在事件的发展过程中,若每次状态的转移都仅与前一时刻的状态有关,而与过去的状态无关,或者说状态转移是无后效性的,则这样的状态转移过程就称为马尔可夫过程。 状态转移概率:在事件的发展变化过程中,从某一种状态出发,下一时刻转移到其它状态的可能性,称为状态转移概率。由状态i E 转为状态j E 的状态转移概率 ()(|)i j j i ij P E E P E E p →== 状态转移概率矩阵:假定某一个事件的发展过程有n 个可能的状

态,即1,,n E E ,则矩阵 1111n n nn p p P p p ????=?????? 其中,ij p 为从状态i E 转为状态j E 的状态转移概率,称为状态转移概率矩阵。 状态转移矩阵满足: (i) 01, ,1,,ij p i j n ≤≤= (ii) 1 1n ij j p ==∑ 二、状态转移矩阵的计算 即求出从每个状态转移到其它任何一个状态的状态转移概率ij p ,一般采用频率近似概率的思想进行计算。 例1某地区农业收成变化的三个状态,即E1“丰收”、E2“平收”和E3“欠收”。下表给出了该地区1960~1999年期间农业收成的状态变化情况(部分)。 计算该地区农业收成变化的状态转移概率矩阵。 datas=xlsread('Agriculture.xlsx');

轨枕技术标准

铁路枕木 一、枕木的分类 材料属性分类:木制枕木;钢筋混凝土枕木;复合材料枕木。 用途分类:铁路枕木;专用轨道枕木;架设枕木。 铁路枕木分类: 普通枕木,用于铁路正线线路的普通枕木; 道岔枕木,用于铁路交汇处道岔区域; 桥梁枕木,用于铁路钢结构桥梁设备的桥面线路铺设; 铁路防腐木枕型号分类(按中国标准): 二、常用枕木的规格 目前,我国的标准铁路轨距为1435mm。 标准的枕木规格如下: 1、普通枕木:宽度220mm;厚度160mm;长度2500mm; 2、道岔枕木(普通):宽度220mm;厚度160mm;长度2600~4850mm,以150mm进位,共计16个长度规格; 3、道岔枕木(标准):宽度240mm;厚度160mm;长度2600~4800mm,以200mm进位,共计12个长度规格; 4、桥梁枕木:宽度220mm;厚度240、260、280、300mm;长度3000mm;枕木尺寸 普通木枕:标准长度为2500mm,其断面形状分为I、Ⅱ两类,用于不同等级的线路上。 I类:宽度220mm,厚度160mm; Ⅱ类:宽度200mm,厚度145mm;

道岔木枕:断面尺寸为两种标准; 75型标准为:宽度220mm,厚度160mm;长度从2600mm至4850mm,每种长度相差150mm,共16个长度规格。 92型标准为:宽度240mm,厚度160mm;长度从2600mm至4800mm,每种长度相差200mm,共12个长度规格。 桥梁木枕:其截面尺寸因主梁(或纵梁)中心间距的大小而异。 单线桥梁:长度3000mm,宽度200、220,高度220、240、260、280、300mm; 三、木制轨枕 1、技术条件 树种:落叶松、马尾松、红松等。 2、枕木的尺寸见表1 表1 类别类型长度(㎝)厚度(cm)宽度(cm)备注 普枕Ⅰ2501622 普枕Ⅱ25020 岔枕15进位260-4851622 岔枕20进位260-4801624 桥枕3002024 3、尺寸公差应符合表2的规定 表2(单位:cm) 类别公差 断面形状及尺寸种类限度 普通枕木长度±

混凝土枕分类及尺寸

混凝土枕分类及尺寸 (一)混凝土枕分类 混凝土枕,根据其使用部位的不同,可分一般混凝土枕、混凝土岔枕及混凝土桥枕3种。 一般混凝土枕(以下简称混凝土枕),技术比较成熟,已列为部标准,目前已经大批铺设使用。混凝土岔枕,经过多年来的铺设试验,岔枕本身强度、弹性均有所提高,扣件也有明显改进,可以大面积推广使用。 混凝土桥枕分有碴桥面带护轮轨的混凝土桥枕和钢桥用的混凝土桥枕两种。有碴桥面带护轮轨的混凝土桥枕已铺设使用,钢桥用混凝土桥枕现正在铺设试验中。 (二)混凝土枕特性 我国铁路已广泛使用预应力混凝土枕以代替木枕,与木枕相比,其优越性表现在以下几个 方面: 1.材源丰富; 2.适宜于工厂化生产,规格一致,保证线路质量均匀; 3.强度高,耐腐蚀,使用寿命长,一般为木枕的3~4倍; 4.道床阻力大,线路的稳定性好,适合铁路的高速大运量要求,且节约木材。 其缺点如下: 1.弹性差,在同样荷载作用下所受的冲击力大(比木枕约大25%); 2.对道床铺设要求较高,除了增大道床厚度外,还须铺设缓冲垫层; 3.重量大,Ⅰ、Ⅱ型混凝土枕一般在220~250 kg,Ⅲ型混凝土枕一般为350 kg左右,人工更换混凝土枕不便。 钢筋混凝土轨枕可分普通混凝土轨枕和预应力混凝土轨枕,两者本质区别在于后者在制造时应用了预应力技术。普通混凝土枕强度较低,抗裂性差,容易开裂失效,线路上极少铺设。预应力混凝土轨枕,制作时给混凝土施加强大的预压应力,弥补了普通混凝土轨枕的缺点,在我国已得到广泛使用。 在我国铁路上,曾先后试铺过多种类型的预应力混凝土轨枕,如“弦Ⅱ—61A”、“弦61”、“筋63”、“弦65一B”、“筋69”、“弦69”、“筋81”、“丝81”、“弦79”等型号。其符号“弦”、“丝”表示采用的钢筋为高强度钢丝,“筋”表示的钢筋是粗钢筋;“61”、“69”、“79”、“81”等表示设计年份。79型以前的混凝土轨枕统称为旧轨枕。 我国现用混凝土轨枕标准分为三级,并与不同类型轨道配套使用,其适用范围如表6—6所示。

课上练习题_离散时间马尔科夫链 423

1、4.23 Trials are performed in sequence. If the last two trials were successes, then the next trial is a success with probability 0.8; otherwise the next trial is a success with probability 0.5. In the long run, what proportion of trials are successes? 2、4.32 Each of two switches is either on or off during a day. On day n, each switch will independently be on with probability [1+#of on switches during day n-1]/4. For instance, if both switches are on during day n-1, then each will independently be on during day n with probability3/4. What fraction of days are both switches on? What fractions are both off?

3、Let ri denote the long-run proportion of time a given irreducible Markov chain is in state i. Explain why ri is also the proportion of transitions that are into state i as well as being the proportion of transition that are from state i. 4、4.44 Suppose that a population consists of a fixed number, say, m, of genes in any generation. Each gene is one of two possible genetic types. If any generation has exactly i (of its m) genes being type 1, then the next generation will have j type 1 genes with probability j m j m i m m i j m- ? ? ? ? ?- ? ? ? ? ? ?? ? ? ? ? . Let Xn denote the number of type 1 genes in the nth generation, and assume that X0 = i. (a) Find E[Xn] (b) What is the probability that eventually all the genes will be type 1?

马尔可夫链预测方法及其一类应用【开题报告】

开题报告 数学与应用数学 马尔可夫链预测方法及其一类应用 一、综述本课题国内外研究动态, 说明选题的依据和意义 概率论自1654年创立以来, 已由最初的博弈分析问题发展成为现今的方法论综合性学科. 而其中随机过程已经是现代概率论发展的必然性. 在这其中, 马尔可夫在1906年的"大数定理关于相依变量的扩展"(Extension de la loi de grands bombers etc)论文中首次创立的马尔可夫链已经成为了概率论的重中之重. 马尔可夫是世界上著名的数学家、社会学家. 他所研究的范围非常的广泛, 涉及到概率论、数论、数的集合、函数逼近论、数理统计、微分方程等方面. 马尔可夫在1906~1912年间, 他提出并研究了一种能用数学分析方法研究自然过程的一般图示, 后人把这种图示以他的姓氏命名为马尔可夫链(Markov Chain). 在当时, 马尔可夫开创性地采用了一种对无后效性的随机过程的研究范式, 即在已知当前状态的情况下, 过程的未来状态与其过去状态无关, 这就是现在大家非常熟悉了解的马尔可夫过程. 在现实生活当中, 有许多过程都能被看作成马尔可夫过程. 如软件可靠性测试、传染病受感染的人数、农村剩余劳动力流动趋势预测、液体中微粒所作的布朗运动、产品市场占有率及利润率的变动等等. 也正是由于马尔可夫链在生活中所具有的普遍存在性, 马尔可夫链理论才被广泛应用于近代的物理学, 生物学, 地质学, 计算机科学, 公共事业, 教育管理、经济管理、以及企业人员管理、桥梁建筑等各个领域. 马尔可夫链运用数学模型对定性问题进行预测提供了一种思路, 丰富了预测的内容. 其大体上可以分为以下几个步骤: 首先, 把现象看作成为一个系统, 并对该系统进行科学的划分. 根据系统的实际和需要划分出多个状态, 系统所划分出来的各个状态就是要预测的内容. 其次, 对现象各种状态的状态概率进行统计测定, 也就是判定出系统当前处于什么状态. 然后, 对各系统未来发展的每次转移概率进行预测, 就是要确定出系统是如何转移的. 最后, 根据系统当前的各种状态和转移概率矩阵, 推测出系统经过若干次转移后, 到达

枕木选择、道床参数

查表《井巷工程》表3-10选择30kg/m钢轨,(二)选择道床参数 根据巷道通过的运输设备,已选用30kg/m钢轨其道床参数h c与h b 分别 为410mm和220mm,道砟面至轨道面高度为h a =h c -h b =410-220=190mm,采用钢筋 混凝土轨枕。(查表3-5与3-10与3-11) 道床参数的选择是指钢轨型号,轨枕规格和道咋高度三者的确定。下面可根据图表说明道床参数。 常用道床参数 表1-2 钢轨型号是以每米长度的重量来表示的。煤矿常用的型号是15,22, 30和38kg/m。钢轨型号是根据巷道类型,运输方式及设备,矿车容积与轨枕来选用。

巷道轨枕选择 表1-3 对轨道敷设的要求是:钢轨的型号应与行驶车辆的类型相适应,轨道敷设应平直,且具有一定的强度和弹性;在弯道处,轨道连接应光滑,接运输巷道内同一线路必须采用同一型号的钢轨;道岔的型号不得低于线路的钢轨型号;在倾角大于15°的巷道中,轨道的辅设应采取防滑措施。轨枕的类型和规格应与选用的钢轨型号相适应。矿井多使用钢筋混凝土轨枕或木轨枕,个别地点也有用轨枕的。混凝土轨枕主要用于井底车场,运输大巷,上(下)山和中巷;木轨枕主要用于道岔等处,钢轨枕主要用于固定道床。由于预应力钢筋混凝土轨枕具有较好的抗裂性和耐久性,构建刚度大,节约木料,造价低等优点,所以应大力推广使用。常用的轨枕规格见表1-3。 常用轨枕规格 表1-3 单位:mm

道咋道床有钢轨及连接件,轨枕,道咋等组成。道咋道床的优点是施工简单,容易更换,工程造价较低,有一定的弹性和良好的排水性,并有利于轨道调平。但在生产过程中,煤,岩粉洒落在道床上之后,使其弹性降低,排水受到阻碍,可能影响机车正常运行。只要加强维修,这种道床完全能够满足机车运行要求。 道砟应选用坚硬和不易风化的碎石或卵石,粒度以20~30MM为宜,并不得参有碎末等杂物,使其具有适当空隙度,以利排水和有良好的弹性。道砟的高度以应与选用的钢轨型号相适应。在主要运输巷道,其厚度不小于100mm,并至少不轨枕1/2~2/3的高度埋入道砟内,二者关系如图3-8所示。 道床宽度可按轨枕长队再加200mm考虑。相邻两轨枕中心线距一般为0.7~0.8m,在钢轨接头,道岔和弯道处应适当减小。道床参数见表3-5. 为了减少维护工作量和提高列车运行速度,大型矿井,特别是采用底卸式矿车运输时,井底车场和主要运输大巷应积极推广整体道床。固定道床一般是用混泥土整体浇注,将枕轨和道床固定在一起,这种道床具有维修工程量小,运营费用低,车辆运行平稳,运输速度高,服务年限长等优点。因此,这种道床主要用于大型矿井的斜井井筒,井底车场和个别运输大巷的轨道铺设中。但这种道床初期投资高,施工复杂,道床的弹性也较差。 无轨运输巷道底板的岩石强度要求f>4。否则需铺混泥土,其强度等级不低于C20. (资料素材和资料部分来自网络,供参考。可复制、编制,期待你的好评与关注)

第章离散时间的马尔可夫链

第1章 离散时间的马尔可夫链 §1 随机过程的基本概念 定义1 设(,,)P ΩF 是概率空间,(, )E E 是可测空间, T 是指标集. 若对任何t T ∈,有 :t X E Ω→,且t X ∈F E ,则称{}(), t X t T ω∈是(, , )P ΩF 上的取值于(,)E E 中的随机过 程,在无混淆的情况下简称{(), }t X t T ω∈为随机过程,称(,)E E 为状态空间或相空间,称E 中的 元素为状态,称T 为时间域. 对每个固定的ω∈Ω,称()t X ω为 {}(), t X t T ω∈对应于ω的轨道或现 实,对每个固定的t T ∈,称()t X ω为E 值随机元. 有时()t X ω也记为 设 T ?R ,{}, t t T ∈F 是F 中的一族单调增的子σ代数(σ代数流),即 ① t t T ?∈??F F ,且t F 是σ代数; ② , , s t s t T s t ?∈

马尔可夫链预测方法及其一类应用【文献综述】

文献综述 数学与应用数学 马尔可夫链预测方法及其一类应用 马尔可夫性是俄国数学家A.A.Mapkov 在1906年最早提出的. 但是, 什么是马尔可夫性呢? 一般来讲,认为它是“相互独立性”的一种自然推广. 设有一串随机事件,...,,...,,121n n A A A A -中(即n A 属于概率空间(P ,,ξΩ)中的σ代数ξ,1≥n ), 如果它们中一个或几个的发生, 对其他事件的发生与否没有影响, 则称这一串事件是相互独立的(用概率空间(P ,,ξΩ)的符号表示, 即))()(11n m n m n n A P A P X I ===, 推广下, 如果在已知,...,1+n n A A 中的某些事件的发生, 与,,...,,121-n A A A 中的事件发生与否无关, 则称这一串事件{1:≥n A n }具有马尔可夫性. 所以说, 马尔可夫性可视为相互独立性的一种自然推广. 从朴素的马尔可夫性, 到抽象出马尔可夫过程的概念, 从最简单的马尔可夫过程到一般的马尔可夫过程, 经历了几十年的发展过程. 它有极其深厚的理论基础, 如拓扑学、函数论、几何学、近世代数、泛函分析. 又有很广泛的应用空间, 如随机分形、近代物理、公共事业中的服务系统、电子信息、计算技术等. 在现实世界中, 有很多过程都是马尔可夫过程, 如软件可靠性测试、传染病受感染的人数、农村剩余劳动力流动趋势预测、液体中微粒所作的布朗运动、产品市场占有率及利润率的变动, 车站排队问题等等, 都可视为马尔可夫过程. 所谓马尔可夫链是指时间连续(或离散)、状态可列、时间齐次的马尔可夫过程. 之所以要研究这种过程, 一方面是由于它的理论比较完整深入, 可以作为一般马尔可夫过程及其他随机过程的借鉴; 二是由于它在自然科学和许多实际问题(如遗传学、教育学、经济学、建筑学、规则论、排队论等)中发挥着越来越大的作用. 自从我国著名数学家、教育家、中科院王梓坤院士在上世纪50年代将马尔可夫理论引入国内以后, 我国数学家对马尔可夫过程的研究也取得了非常好的效果, 在生灭过程的构造和它的积分型泛函的分布、马尔可夫过程的零壹律、Martin 边界与过份函数、马尔可夫过程

基于绝对分布的马尔可夫链预测方法

基于绝对分布的马尔可夫链预测方法 对于一列相依的随机变量,用步长为一的马尔可夫链模型和初始分布推算出未来时段的绝对分布来做预测分析,即为传统的马尔可夫链预测方法之一,可称之为“基于绝对分布的马尔可夫链预测方法”,不妨记其为“ADMCP法”。其具体方法步骤如下: (1)计算指标值序列均值x,均方差s,建立指标值的分级标准(相当于确定马尔可夫链的状态空间),可根据资料序列的长短及具体间题的要求进行。例如,可以样本均方差为标准(也可以用有序聚类的方法建立分级标准等)将指标值分级,即按4.2.1中指出的方法确定马尔可夫链的状态空间E=[1, 2,一,m]; (2)按(1)所建立的分级标准,确定资料序列中各时段指标值所对应的状态; (3)对(2)所得的结果进行统计计算,可得步长为一的马尔可夫链的转移概率矩阵 ,它决定了指标值状态转移过程的概率法则; (4)“马氏性”检验(应用工作者使用该方法时,一般都不做这一步,本文加上这一步意在完善"ADMCP法,’); (5)若以第1时段作为基期,该时段的指标值属于状态i,则可认为初始分布为 这里P(0)是一个单位行向量,它的第i个分量为1,其余分量全为0。于是第l+1时段的绝对分布为 第l+1时段的预测状态j满足: ;为预测第l+k时段的状态,则可 得到所预测的状态j满足: (6)可进一步对该马尔可夫链的特征(遍历性、平稳分布等)进行分析。 4.3.2叠加马尔可夫链预测方法 对于一列相依的随机变量,利用各阶(各种步长)马尔可夫链求得的绝对分布叠加来做预测分析,也是传统的马尔可夫链预测方法之一,可称之为“叠加马尔可夫链预测方法”不妨记其为“SPMCP 法’,。其具体方法步骤如下: (1)计算指标值序列均值x,均方差s,建立指标值的分级标准(相当于确定马尔可夫链的状态空间),可根据资料序列的长短及具体问题的要求进行; (2)按“(1)"所建立的分级标准,确定资料序列中各时段指标值所对应的状态: (3)对“(2)”所得的结果进行统计,可得不同滞时(步长)的马尔可夫链的转移概率矩阵,它决定了指标值状态转移过程的概率法则; (4)“马氏性”检验(应用工作者使用该方法时,一般也不做这一步,本文加上这一步同样意在完善,"SPMCP法”): (5)分别以前面若干时段的指标值为初始状态,结合其相应的各阶转移概率矩阵即可预测出该时段指标值的状态概率 (6)将同一状态的各预测概率求和作为指标值处于该状态的预测概率,即 ,所对应的i即为该时段指标值的预测状态。待该时段的指标值确定之后,将其加入到原序列之中,再重复步骤"(1)一(6)",可进行下时段指标值状态的预测。

马尔可夫性与马尔可夫链

马尔可夫性与马尔可夫链 【教学目标】 1.掌握马尔可夫性与马尔可夫链。 2.熟练运用马尔可夫性与马尔可夫链解决具体问题。 3.亲历马尔可夫性与马尔可夫链的探索过程,体验分析归纳得出马尔可夫性与马尔可夫链,进一步发展学生的探究、交流能力。 【教学重难点】 重点:掌握马尔可夫性与马尔可夫链。 难点:马尔可夫性与马尔可夫链的实际应用。 【教学过程】 一、直接引入 师:今天这节课我们主要学习马尔可夫性与马尔可夫链,这节课的主要内容有马尔可夫性与马尔可夫链,并且我们要掌握这些知识的具体应用,能熟练解决相关问题。 二、讲授新课 (1)教师引导学生在预习的基础上了解马尔可夫性与马尔可夫链内容,形成初步感知。 (2)首先,我们先来学习马尔可夫性,它的具体内容是: 1n X +的随机变化规律与0X ,1X ,…1n X -的取值都没有关系,随机变量序列{}n X 的所具有的这类性质称为马尔可夫性 它是如何在题目中应用的呢?我们通过一道例题来具体说明。 例: 马尔可夫性描述了一种_____。 解析:状态序列 可以给学生一定的提示。 根据例题的解题方法,让学生自己动手练习。 练习: 序列所有可能取值的集合,被称为_____。 (3)接着,我们再来看下马尔可夫链内容,它的具体内容是:

一般地,我们称具有马尔可夫性的随机变量序列{}n X为马尔可夫链。 它是如何在题目中应用的呢?我们也通过一道例题来具体说明。 例:请同学们查询资料,判断马尔可夫链与布朗运动是否有联系 解析:马尔可夫链与布朗运动以及遍历假说这两个二十世纪初期物理学重要课题是相联系的,但马尔可夫寻求的似乎不仅于数学动机,名义上是对于纵属事件大数法则的扩张。 根据例题的解题方法,让学生自己动手练习。 练习: 请写出马尔科夫链满足的两个假设。 三、课堂总结 (1)这节课我们主要讲了马尔可夫性与马尔可夫链 (2)它们在解题中具体怎么应用? 四、习题检测 1.请同学们写出马尔可夫性的定义。 2.请同学们写出马尔科夫链的定义。 3.请同学们写出马尔科夫性和马尔科夫链之间的联系。

马尔可夫链模型讲解

马尔可夫链模型(Markov Chain Model) 目录 [隐藏] 1 马尔可夫链模型概述 2 马尔可夫链模型的性质 3 离散状态空间中的马尔可夫链模 型 4 马尔可夫链模型的应用 o 4.1 科学中的应用 o 4.2 人力资源中的应用 5 马尔可夫模型案例分析[1] o 5.1 马尔可夫模型的建立 o 5.2 马尔可夫模型的应用 6 参考文献 [编辑] 马尔可夫链模型概述 马尔可夫链因安德烈·马尔可夫(Andrey Markov,1856-1922)得名,是数学中具有马尔可夫性质的离散时间随机过程。该过程中,在给定当前知识或信息的情况下,过去(即当期以前的历史状态)对于预测将来(即当期以后的未来状态)是无关的。 时间和状态都是离散的马尔可夫过程称为马尔可夫链, 简记为 。 马尔可夫链是随机变量的一个数列。这些变量的范围,即他们所有可能取值的集合,被称为“状态空间”,而Xn的值则是在时间n的状态。如果Xn + 1对于过去状态的条件概率分布仅是Xn的一个函数,则 这里x为过程中的某个状态。上面这个恒等式可以被看作是马尔可夫性质。

马尔可夫在1906年首先做出了这类过程。而将此一般化到可数无限状态空间是由柯尔莫果洛夫在1936年给出的。 马尔可夫链与布朗运动以及遍历假说这两个二十世纪初期物理学重要课题是相联系的,但马尔可夫寻求的似乎不仅于数学动机,名义上是对于纵属事件大数法则的扩张。 马尔可夫链是满足下面两个假设的一种随机过程: 1、t+l时刻系统状态的概率分布只与t时刻的状态有关,与t时刻以前的状态无关; 2、从t时刻到t+l时刻的状态转移与t的值无关。一个马尔可夫链模型可表示为=(S,P,Q),其中各元的含义如下: 1)S是系统所有可能的状态所组成的非空的状态集,有时也称之为系统的状态空间,它可以是有限的、可列的集合或任意非空集。本文中假定S是可数集(即有限或可列)。用小写字母i,j(或S i,S j)等来表示状态。 2)是系统的状态转移概率矩阵,其中P ij表示系统在时刻t处于状态i,在下一时刻t+l处于状态i的概率,N是系统所有可能的状态 的个数。对于任意i∈s,有。 3)是系统的初始概率分布,q i是系统在初始时刻处 于状态i的概率,满足。 [编辑] 马尔可夫链模型的性质 马尔可夫链是由一个条件分布来表示的 P(X | X n) n+ 1 这被称为是随机过程中的“转移概率”。这有时也被称作是“一步转移概率”。二、三,以及更多步的转移概率可以导自一步转移概率和马尔可夫性质:

马尔可夫链预测方法

马尔可夫链预测方法 一、基于绝对分布的马尔可夫链预测方法 对于一列相依的随机变量,用步长为一的马尔可夫链模型和初始分布推算出未来时段的绝对分布来做预测分析方法,称为“基于绝对分布的马尔可夫链预测方法”,不妨记其为“ADMCP 法”。其具体方法步骤如下: 1.计算指标值序列均值x ,均方差s ,建立指标值的分级标准,即确定马尔可夫链的状态空间I ,这可根据资料序列的长短及具体间题的要求进行。例如,可用样本均方差为标准,将指标值分级,确定马尔可夫链的状态空间 I =[1, 2,…,m ]; 2.按步骤1所建立的分级标准,确定资料序列中各时段指标值所对应的状态; 3.对步骤2所得的结果进行统计计算,可得马尔可夫链的一步转移概率矩阵1P ,它决定了指标值状态转移过程的概率法则; 4.进行“马氏性” 检验; 5.若以第1时段作为基期,该时段的指标值属于状态i ,则可认为初始分布为 (0)(0,,0,1,0,0)P = 这里P (0)是一个单位行向量,它的第i 个分量为1,其余分量全为0。于是第2时段的绝对分布为 1(1)(0)P P P =12((1),(1),,(1))m p p p = 则第2时段的预测状态j 满足:(1)max{(1),}j i p p i I =∈; 同样预测第k +1时段的状态,则有 1()(0)k P k P P =12((),(),,())m p k p k p k = 得到所预测的状态j 满足: ()max{(),}j i p k p k i I =∈ 6.进一步对该马尔可夫链的特征(遍历性、平稳分布等)进行分析。 二、叠加马尔可夫链预测方法 对于一列相依的随机变量,利用各种步长的马尔可夫链求得的绝对分布叠加来做预测分析,的方法,称为“叠加马尔可夫链预测方法”,不妨记其为“SPMCP 法’。其具体方法步骤如下: 1) 计算指标值序列均值x ,均方差s ,建立指标值的分级标准(相当于确定马尔可夫链的状态空间),可根据资料序列的长短及具体问题的要求进行; 2) 按1)所建立的分级标准,确定资料序列中各时段指标值所对应的状态; 3) 对2)所得的结果进行统计,可得不同滞时(步长)的马尔可夫链的转移概率矩阵,它决定了指标值状态转移过程的概率法则; 4) 马氏性检验; 5) 分别以前面若干时段的指标值为初始状态,结合其相应的各步转移概率矩阵即可预测出该时段指标值的状态概率 (6)将同一状态的各预测概率求和作为指标值处于该状态的预测概率,即 ,所对应的i 即为该时段指标值的预测状态。待该时段的指标值确定之后,将其加 入到原序列之中,再重复步骤"(1)一(6)",可进行下时段指标值状态的预测。 (7)可进一步对该马尔可夫链的特征(遍历性、平稳分布等)进行分析。

相关主题
文本预览
相关文档 最新文档