当前位置:文档之家› 水平渐缩管道浓相气力输送流动阻力特性研究

水平渐缩管道浓相气力输送流动阻力特性研究

水平渐缩管道浓相气力输送流动阻力特性研究
水平渐缩管道浓相气力输送流动阻力特性研究

正压浓相气力输灰系统操作手册

正压浓相气力输灰系统操作手册 第一章概述 一、系统简介 气力输灰系统由电除尘器飞灰处理系统、库顶卸料及排气系统、灰库气化风系统、库底卸料系统、控制用气及布袋脉冲清洗用气系统、输送用空压机系统及空气净化系统、控制系统组成。通过压缩空气作为气力输灰的动力源,由设置在仓泵上的密闭管道,使粉煤灰被输送到灰库,再通过库底卸料器、散装机、双轴搅拌机向外排灰,实现无污染排灰。 二、 LD型浓相气力输送泵工作原理 LD型浓相气力输送泵在本系统中主要用于粉煤灰的输送,它自动化程度高,利用PLC控制整个输送过程实行全自动控制:主要由进料装置、气动出料阀、泵体、气化装置、管路系统及阀门组成。仓泵过程分为四个阶段: 1. 进料阶段:仓泵投入运行后进料阀打开,物料自由落入泵体内,当料位计发出料满信号或达到设定时间时,进料阀自动关闭。在这一过程中,料位计为主控元件,进料时间控制为备用措施。只要料位到或进料时间到,都自动关闭进料阀。 2. 流化加压阶段:泵体加压阀打开,压缩空气从泵体底部的气化室进入,扩散后穿过流化床,在物料被充分流化的同时,泵内的气压也逐渐上升。 3. 输送阶段:当泵内压力达到一定值时,压力传感器发出信号,吹堵阀打开,延时几秒钟后,出料阀自动开启,流化床上的物料流化加强,输送开始,泵内物料逐渐减少。此过程中流化床的物料始终处于流化边输送状态。 4. 吹扫阶段:当泵内物料输送完毕,压力下降到等于或接近管道阻力时,加压阀和吹堵阀关闭,出料阀在延时一定时间后关闭。整个输送过程结束,从而完成一次工作循环。 三、脉冲仓顶除尘器工作原理 该除尘器装于灰库顶部,用于灰库向外排出空气时收集灰尘之用,保证排气无粉尘。该除尘器由三个部分组成,即上箱体:包括盖板、排气口等;下箱体:包括机架、滤袋组件等;清灰系统:包括电磁脉冲阀、脉冲发生器等。 含尘气体从除尘器底部进入除尘箱中,颗粒较粗的粉尘靠自身重力向下沉落,落入灰仓,细小粉尘通过各种效应被吸附在滤袋外壁,经滤袋过滤后的净化空气通过文氏管进入上箱体从出口排出,被吸附在滤袋外壁的粉尘,随着时间的增长,越积越厚,除尘器阻力逐渐上升,处理的气体量不断减少。为了使除尘器经常保持有效的工作状态,就需要消除吸附在袋壁外面的积灰。 清灰过程是由控制仪按规定要求对各个电磁脉冲阀发出指令,依次打开阀门,顺序向各组滤袋内喷吹高压空气,于是储气罐内压缩空气经喷吹管的孔眼穿过文氏管进入滤袋(称一次气),而当喷吹的高速气体通过文氏管—引射器的一霎那,数倍于一次风的周围空气被诱导,同时进入袋内(称二次气)。这一、二次风形成一股与过滤气体相反的强有力气流射入袋内,使滤袋在一瞬间急剧收缩—膨胀—收缩,加上气流的反向作用,遂将吸附在袋壁外面的粉尘清除下来,由于清灰时向袋内喷吹的高压空气是在几组滤袋间依次进行的,并不切断需要处理的含尘空气,所以在清灰过程中,除尘器的压力损失和被处理的空气量都几乎不变。 四、 DRK空气电加热器工作原理 被设备主要对系统的压缩空气进行加热,当灰库内的存灰湿度较大,无法正常卸灰时,即把压缩空气加热,通过气化槽体向灰库内通气,起到干燥库内积灰的作用。

流体在管内的流动阻力

2.2 流体在管内的流动阻力 本节重点:牛顿粘性定律、层流与湍流的比较。 难点: 边界层与层流内层。 2.2.1 牛顿粘性定律与流体的粘度 1. 流体的粘性 流体的典型特征是具有流动性,但不同流体的流动性能不同,这主要是因为流体内部质点间作相对运动时存在不同的内摩擦力。这种表明流体流动时产生内摩擦力的特性称为粘性。粘性是流动性的反面,流体的粘性越大,其流动性越小。流体的粘性是流体产生流动阻力的根源。 2. 牛顿粘性定律与流体的粘度 如图2-3所示,设有上、下两块面积很大且相距很近的平行平板,板间充满某种静止液体。若将下板固定,而对上板施加一个恒定的外力,上板就以恒定速度u 沿x 方向运动。若u 较小,则两板间的液体就会分成无数平行的薄层而运动,粘附在上板底面下的一薄层流体以速度u 随上板运动,其下各层液体的速度依次降低,紧贴在下板表面的一层液体,因粘附在静止的下板上, 其速度为零,两平板间流速呈线性变化。对任意相邻两层流体来说,上层速度较大,下层速度较小,前者对后者起带动作用,而后者对前者起拖曳作用,流体层之间的这种相互作用,产生内摩擦,而流体的粘性正是这种内摩擦的表现。 平行平板间的流体,流速分布为直线,而流体在圆管内流动时,速度分布呈抛物线形,如图2-4所示。 实验证明,对于一定的流体,内摩擦力F 与两流体层的速度差. u d 成正比,与两层之间的垂直距离dy 成反比,与两层间的接触面积A 成正比,即 图2-4 实际流体在管内的速度分布 图2-3 平板间液体速度变化

dy u d A F . μ= (2-16) 式中:F ——内摩擦力,N ; dy u d . ——法向速度梯度,即在与流体流动方向相垂直的y 方向流体速度的变化率,1/s ; μ——比例系数,称为流体的粘度或动力粘度,Pa ·s 。 一般,单位面积上的内摩擦力称为剪应力,以τ表示,单位为Pa ,则式(1-26)变为 dy u d . μ τ= (2-17) 式(2-16)、(2-17)称为牛顿粘性定律,表明流体层间的内摩擦力或剪应力与法向速度梯度成正比。 剪应力与速度梯度的关系符合牛顿粘性定律的流体,称为牛顿型流体,包括所有气体和大多数液体;不符合牛顿粘性定律的流体称为非牛顿型流体,如高分子溶液、胶体溶液及悬浮液等。本章讨论的均为牛顿型流体。 粘度的物理意义 流体流动时在与流动方向垂直的方向上产生单位速度梯度所需的剪应力。粘度是反映流体粘性大小的物理量。 粘度也是流体的物性之一,其值由实验测定。液体的粘度,随温度的升高而降低,压力对其影响可忽略不计。气体的粘度,随温度的升高而增大,一般情况下也可忽略压力的影响,但在极高或极低的压力条件下需考虑其影响。 粘度的单位 在国际单位制下,其单位为 [][] s Pa m s m Pa .?== ?? ? ???= dy u d τμ 在一些工程手册中,粘度的单位常常用物理单位制下的cP (厘泊)表示,它们的换算关系为 1cP =10-3 Pa ·s 2.2.2 流动型态 1. 流体的流动型态

顺天粉体输送设备高压仓泵气力输送系统

高压仓泵气力输送系统技术要求规范书 1气力输送系统要求 (1)系统采用正压浓相气力输送系统 本气力输送工程是采用栓流式输送,利用压缩空气的静压能将物料在管道内形成一段灰柱,推移至储料仓的过程,输送浓度高,输送压力低。 (2)采用软质密封的进料圆顶阀,系统稳定、可靠运行的保证 进料阀是整个系统的咽喉,它的可靠和稳定对整个系统起致关重要的作用,本进料阀是利用光滑坚硬的球面圆顶阀芯,与橡胶密封圈良好的紧密接触,以保证可靠的密封。进料阀在开关过程中,阀芯与阀体密封口处保持一定的间隙,使之可以无接触的运动。当阀门关闭时,密封圈充气实现弹性变形,这样的软质密封即使有粉煤灰夹在阀芯和密封圈之间,也可实现可靠的密封,减少磨损,延长阀门寿命。 (3)系统没有开泵压力,主要阀门使用寿命长 本系统输送时在进气之前打开出料阀,没有开泵压力,降低了输送初速度,减少了阀门的冲击和磨损,增加了阀门的使用寿命。 (4)系统输送压力低,流速低,管道和阀门几乎无磨损 系统输送压力低,气力输送时输送压力一般只需0.15Mpa,系统输送时流速为3~8m/s。保证系统管道和阀门不会产生磨损。 (5)系统运行维护量小 系统中进料阀密封圈应能保证完整密封性,不得产生泄漏现象。 (6)独特的灰气预混合技术 在输送气源打开的同时,在发送器出口设置灰气预混合,既保证了高浓度输送,又保证灰持续进入输灰管道,以保证较高的灰气比,可以使灰圆滑地过度到输送管道中,避免输送装置的磨损。 2主要设备说明: (1)进料圆顶阀 圆顶阀采用国外气力输送除灰专用阀门,该阀用作系统进出料阀,壳体采用精密铸钢件,阀芯采用 Cr-Mo钢,内有可充气的特种橡胶的密封圈,圆顶阀上已预先加工好连接隔离空气和电气控制的管路,装有到位开关,压力检测装置。 无摩擦启闭,开启自如,不易卡涩,由于在阀门开启时密封圈与阀芯间存在1-2mm间隙量,结构上独特设计可保证密封面在启闭过程中无摩擦损耗; 关闭后充气密封,密封圈在压缩空气作用下产生弹性变形,与阀芯紧密接触,其接合面呈带状,密封性能好; 独特阀芯结构,能够横向切断物料柱; 阀门开启时全截面通流,并保护圆顶密封面; 高温或特殊场合,采用不同材料的密封圈,具备内水冷功能; 自动监测密封气压并有报警功能,确保密封良好; 阀芯及密封圈应用耐磨材料制造,密封圈使用寿命不小于8000小时,阀芯使用寿命不小于40000小时; (2)库顶切换阀 库顶切换阀专用于灰库间输送管线切换用的阀门。该阀为两位三通阀,结构独特,阀芯两侧设有2个可充气密封圈,采用气缸驱动,当阀门关闭时,电磁阀延时对密封圈进行充气加压,并由压力开关确认密封是否正常。 无摩擦启闭,开启自如,在阀门开启时密封圈与阀芯间存在1-2mm间隙量,结构上独特设计,可保证密封面在启闭过程中无摩擦损耗;

气力输送系统介绍

气力输送系统介绍 气力输送是一项综合性技术,它涉及流体力学、材料科学、自动化技术、制造技术等领域,属输送效率高、占地少、经济而无污染的高新技术项目。随着我国经济的快速发展,各行各业的生产也在不断扩大,有些行业如火力发电厂、化工厂、水泥厂、制药厂、粮食加工厂等的一些原材料、粉粒料在输送生产工程中产生的环境污染越来越得到广泛的重视。气力输送技术于是得到了逐步的推广。气力输送是清洁生产的一个重要环节,它是以密封式输送管道代替传统的机械输送物料的一种工艺过程,是适合散料输送的一种现代物流系统。将以强大的优势取代传统的各种机械输送。 气力输送系统具有以下特点: ◆气力输送是全封闭型管道输送系统 ◆布置灵活 ◆无二次污染 ◆高放节能 ◆便于物料输送和回收、无泄漏输送 ◆气力输送系统以强大的优势。将取代传统的各种机械输送。 ◆计算机控制,自动化程度高 气力输送形式: ◆气力输送系统按类型分:正压、负压、正负压组合系统 ◆正压气力输送系统:一般工作压力为0.1~0.5MPa ◆负压气力输送系统:一般工作压力为-0.04~0.08 MPa ◆按输送形式分:稀相、浓相、半浓相等系统。 气力输送系统功能表: 常见适合气力输送物料 可以气力输送的粉粒料品种繁多,每种物料的料性对气力输送装置的适合性和效率都有很大的影响。因此在选定输送装置前要先对物料进行性能测定。现在常见适合气力输送物料示例如下:

浓相气力输送系统 浓相气力输送系统根据国外先进技术及经验,结合科学实验,经过数年实践,被确认为是一种既经济又可靠的气力输送系统。该系统输送灰气比高,耗气量少,输送速度低,有效降低管道磨损。该系统主要由压缩空气气源,发送器、控制柜、输送管、灰库五大部分。 1、压缩空气气源: 由空气压缩机、除油器、干燥器、储气罐及管道组成,主要为发送器及气控元件提供高质量的压缩空气。 2、发送器: 器集灰斗的飞灰,经流化后通过输送管道送至灰库。 3、控制柜: 以电脑集中控制各种机械元件动作,并附有手动操作机构。 4、输送管道: 经实验,输送距离可达1300米,管路寿命可达20000小时以上。 5、灰库: 由灰库本体、布袋除尘器、真空释放阀、料位计、卸灰设备等组成。 浓相气力输送系统示意图

正压浓相气力输送系统的工作原理及流程

正压浓相气力输灰工作原理及分步流程 正压浓相气力输送系统的工作原理:浓相干输灰是根据固气两相流的气力输送原理,利用压缩空气的静压和动压高浓度、高效率输送物料。飞灰在仓泵内必须得到充分流化,而且是边流化边输送。整个系统由五个部分组成:气源部分、输送部分、管路部分、灰库部分和控制部分。其中输送部分根据输灰量的要求,配以相应规格的输送机(仓泵)组成,每台输送机都是一个独立体,既可单机运行,也能多台组成系统运行。 仓泵 它是系统的核心部分,通过它将干灰与压缩空气充分混合并流态化,从而得以顺利在系统中运行。它是一个密闭的钢罐,上面装有进出料阀、流化盘、料位计、安全阀等配套设备。 仓泵工作原理: 仓泵是一个带有空气喷嘴的压力容器,这种设备具有输灰距离远、工作可靠、自动化程度高等特点,且需要用比较高压力的压缩空气作为输送介质,要配备一套空压机。它的工作过程是:先打开排气阀和进料阀进行装料,料满后关闭进料阀和排气阀,打开缸体加压阀,压缩空气将缸体内的粉尘带走。如此循环往复,就可将粉尘输送出去。

1、进料阶段:进料阀呈开启状态,一次进气阀和出料阀关闭,仓泵上部与灰斗连接,除尘器捕集的飞灰藉重力自由或经卸料机落入仓泵内,当灰位高至使料位计发出料满信号,或按系统进料设定时间到,进料阀关闭,排气阀关闭,进料状态结束。 2、加压流化阶段:进料阶段完成后,系统自动打开一次进气阀,经过处理的压缩空气经过流量调节阀进入仓泵底部流化锥,穿过流化锥后使空气均匀包围在每一粒飞灰周围,同时仓泵内压力升高,当压力高至使压力传感器发出信号时,系统自动打开出料阀,加压流化阶段结束。 3、输送阶段:出料阀、二次进气阀打开,一次进气阀不停,此时仓泵一边继续进气,边气灰混合物通过出料阀进入输灰管,飞灰始终处于边流化边进入输送管道进行输送,当仓泵内飞灰输送完后,管路压力下降,仓泵内压力降低,使压力传感器发出信号时,二次进气阀关闭,当仓泵内压力继续下降,至使压力传感器发出信号时,输送阶段结束,进气阀和出料阀保持开启状态,进入吹扫阶段。 4、吹扫阶段:进气阀和出料阀保持开启状态,压缩空气吹扫仓泵和输灰管道,定时一段时间后,吹扫结束,关闭进气阀,待仓泵内压力降至常压时,关闭出料阀,打开进料阀、排气阀,进入进料阶段,至此,系统完成一个输送循环,自动进入下一个输送循环。

高静压FCU系统阻力特性研究

第29卷第3期 王 海,等:高静压FCU 系统阻力特性研究 ·337· 文章编号:1671-6612(2015)03-337-04 高静压FCU 系统阻力特性研究 王 海1 毕海权1 秦 萍1 王晓亮1 曾 惜1 革 非2 (1.西南交通大学机械工程学院 成都 610031; 2.中国建筑西南设计研究院有限公司 成都 610093) 【摘 要】 首先通过实验测试,研究高静压FCU 连接方盘扩散形风口时末端风口的阻力特性、方形主管接圆 形支管的三通直通段局部阻力系数,然后通过理论分析,结合现有的矩形三通局部阻力特性,建 立了矩形主管接圆形支管的三通直通段局部阻力系数计算公式,以此获得机外余压与风口数量、 连接风管长度的关系。结果表明:机外余压为50Pa 的高静压FCU ,至多可接3个Ф150mm 的方 盘扩散形风口,风口间距按3m 计算时,连接风管长度不应超过9m 。 【关键词】 FCU ;高静压;阻力损失 中图分类号 TU83 文献标识码 A Study on the Resistance Features of High Static Pressure Fan-Coil Unit Wang Hai 1 Bi Haiquan 1 Qin Ping 1 Wang Xiaoliang 1 Zeng Xi 1 Ge Fei 2 ( 1.Mechanical engineering of Southwest Jiao tong University, Chengdu, 610031; 2.China southwest architectural design and research institute Co., Ltd, Chengdu, 610093 ) 【Abstract 】 According to experimental tests, the paper studied high static pressure Fan-Coil which ending for the square-diffusion vent of resistance properties, square-head round straight section of the local resistance coefficient of the tee branch pipe, and through theoretical analysis, combined with the existing local resistance characteristics of rectangular tee, established a calculation formula of rectangular head by circular pipe tee straight section of local resistance coefficient .In order to get closed to pressure relationship with the number of vent, length of connecting duct. The results show that the pressure of 50 Pa high static pressure fan coil, picked up three to Ф150 mm of square plate diffusion vents, the vents distance calculated by 3 m, length o f connecting duct should not be more than 9 m. 【Keywords 】 Fan-Coil Unit; high static pressure; resistance loss 作者简介:王 海(1988-),男,在读硕士研究生,E-mail :857388210@https://www.doczj.com/doc/b413097401.html, 通讯作者:毕海权(1974-),男,博士,教授,E-mail :bhq@https://www.doczj.com/doc/b413097401.html, 收稿日期:2014-05-10 0 引言 近年来,由于布置灵活、调节方便,FCU 系 统在空调设计中被广泛采用。特别是高静压FCU , 因能连接更多的风口,在较大面积的室内空调系统 设计中得到越来越广泛的应用。 然而,目前对高静压FCU 系统连接风口的合 理数量及风管长度仍缺乏相应的研究结果。通过经 验估算会造成风系统阻力与机外余压不平衡,各风 口处流量不均匀,制冷、供热达不到理想工况。因而有必要对其余压特性、风系统阻力等进行研究。 目前,国内对高静压FCU 的研究较少,如文献[1]提出一种可调节出口静压的FCU 机组,能根据风系统阻力调节出口静压;文献[2]分析选择高静压FCU 机组而不计算风系统阻力会造成出风量不足等问题。对风系统三通直通段的局部阻力系数,目前设计中仍以文献[3]为主要依据,但文献[3]数 第29卷第3期 2015年6月 制冷与空调 Refrigeration and Air Conditioning V ol.29 No.3 Jun. 2015.337~340

正压浓相气力输灰系统堵管原因及处理方法正式版

Guide operators to deal with the process of things, and require them to be familiar with the details of safety technology and be able to complete things after special training.正压浓相气力输灰系统堵管原因及处理方法正式版

正压浓相气力输灰系统堵管原因及处 理方法正式版 下载提示:此操作规程资料适用于指导操作人员处理某件事情的流程和主要的行动方向,并要求参加施工的人员,熟知本工种的安全技术细节和经过专门训练,合格的情况下完成列表中的每个操作事项。文档可以直接使用,也可根据实际需要修订后使用。 苇湖梁电厂125 MW机组的气力输灰系统配用正压浓相小仓泵系统。该系统在满足飞灰输送的同时,系统及零部件曾发生不同的故障。其中最需要注意的是管道阻塞,因为大部分系统和零部件的故障如果不及时处理,最终都会导致或反映为堵管。笔者根据实际运行、维护和管理经验,分析气力输灰系统输送过程中堵管现象发生的原因,并提出预防措施和解决方法。 1 正压浓相小仓泵的工作过程

图1为正压浓相小仓泵的结构示意图。 1.1 进料过程 进料阀呈开状态,进气阀和出料阀关闭,仓泵内无压力,粉煤灰进入仓泵。当仓泵内灰位高至与料位计探头接触时,料位计发出料满信号。在控制系统作用下,自动关闭进料阀,进料结束。 1.2 充压流化过程 进气阀打开,压缩空气通过流化盘均

匀进入仓泵,仓泵内飞灰充分流态化(保证初期的灰气混和的均匀性,灰粒的碰撞、磨损、降低其粒径,提高表面光滑度),同时压力升高。当压力升高至双压表设定的上限值时,充压阶段结束。 1.3 输送过程 压力升至压力上限,出料阀打开,气灰混合物通过出料阀进入输灰管道,输至灰库。当仓泵内飞灰输送完毕后,管路阻力下降,仓泵内压力降低。当仓泵压力降至压力下限值时,输送阶段结束。 1.4 吹扫阶段

简析浓相正压输送高压仓泵气力输送系统

简析浓相正压输送高压仓泵气力输送系统 正压浓相气力输送系统主要由进料装置、发送仓泵、管道、阀门、库底除尘装置、库底气化装置、库底卸料装置、动力气源、程控装置等结构组成,采用全自动PLC智控制,也可切换手动,操作简单易维护。 正压密相气力输送系统是输送颗粒、粉状型、块状型物料常用的输送设备之一,主要由压缩空气作为输送介质,采用强制性气力输送,依靠密闭压力容器作为发送器,一般气源压力为0.5Mpa-0.7Mpa,运行压力0.3Mpa-0.5Mpa,发送罐只能采取间歇性输送方式,输送距离可达1000米以上。物料在管道内以较低速度,、沙丘状态、流态化或团聚状态输送,输送效率高,输送质量好。输送能耗远低于其形式的气力输送系统,吨输送量每百米能耗为1.5kw,是其他形式气力输送系统的65%左右。 工作原理 1.进料阶段 进料阀和排气阀打开,物料自由落入泵体内,料满后,料位计发出信号,进料阀和排气阀自动关闭,完成进料过程; 2.流化加压阶段 打开进气阀,压缩空气进入泵体上部及底部,上部加压,下部空气扩散后穿过流化床,使物料呈流态化状态,同时泵内压力上升; 3.输送状态 当泵内压力达到一定值时,压力表或压力开关发出信号,出料阀自动打开,流化床上的物料流化加强,输送开始,泵内物料逐渐减少,此时流化床上的物料始终处于边流化边输送的状态; 4.吹扫阶段 当泵内物料输送完毕,压力下降到管道阻力时,压力表或压力开关发出信号,通气延续一定时间,压缩空气清扫管道,然后进气阀关闭,间隔一段时间,关闭出料阀,打开进料阀,完成一次输送循环。

系统特点 正压浓相气力输送系统是以空压机为气源,仓泵输送物料的一种密相高压气力输送系统。正压浓相气力输送系统具有流速低,耗气量小,适宜长距离,大容量的输送,便于实现流态化输送,具有噪声低、破碎少的特点,适宜输送水泥、粉煤灰、矿粉、铸造型砂、化工原料等磨削性大的物料。 1、输送管道配置灵活,使工厂生产工艺流程更合理; 2、输送系统完全密闭,粉尘飞扬少,可实现环保要求; 3、运动零部件少,维护保养方便,易于实现自动化; 4、物料输送效率高,降低了包装和装卸运输费用; 5、能避免输送的物料受潮,污损和混入其他杂物,保证了输送质量; 6、在输送过程中可同时实现多种工艺操作过程; 7、对于化学物质不稳定的物料,可采用惰性气体输送。 8、流速低,对管道的磨损小;耗气量小,适合长距离输送;单罐输送是间歇输送,实现连续输送,须用双罐;破碎少,噪音低;自动化程度较高。 我们目前正压浓相气力输送系统的气力输送泵是在汲取国内外同类产品的先进技术与结构的基础上,采用正压气力输送方式输送粉粒状物料,使用于电厂粉煤灰,水泥,铸造型沙,矿粉,粮食,化工原料等粉粒状物料的输送,可根据具体地形布置输送管道,实现集中,分散大高度长距离输送,输送过程不受条件限制,能确保物料不受潮湿,利用生产和环境保护,本设备配置自动化操作台,可实现手动和自动控制,自动控制采用继电器或PLC微处理器两种形式,通过长期运行,实践证明,其性能稳定,质量可靠,无粉尘污染,是较理想的气力输送设备。

正压浓相气力输灰系统堵管原因及处理方法

xx电厂125 MW机组的气力输灰系统配用正压浓相仓泵系统,该系统在满足飞灰输送的同时,系统及零部件曾发生不同的故障。其中最需要注意的是管道阻塞,因为大部分系统和零部件的故障如果不及时处理,最终都会导致或反映为堵管。笔者根据实际运行、维护和管理经验,分析气力输灰系统输送过程中堵管现象发生的原因,并提出预防措施和解决方法。 1 正压浓相气力输灰仓泵的工作过程 图1为正压浓相气力输灰仓泵的结构示意图。 1.1 进料过程 进料阀呈开状态,进气阀和出料阀关闭,仓泵内无压力,粉煤灰进入仓泵。当仓泵内灰位高至与料位计探头接触时,料位计发出料满信号。在控制系统作用下,自动关闭进料阀,进料结束。 1.2 充压流化过程 进气阀打开,压缩空气通过流化盘均匀进入仓泵,仓泵内飞灰充分流态化(保证初期的灰气混和的均匀性,灰粒的碰撞、磨损、降低其粒径,提高表面光滑度),同时压力升高。当压力升高至双压表设定的上限值时,充压阶段结束。 1.3 输送过程 压力升至压力上限,出料阀打开,气灰混合物通过出料阀进入输灰管道,输至灰库。当仓泵内飞灰输送完毕后,管路阻力下降,仓泵内压力降低。当仓泵压力降至压力下限值时,输送阶段结束。 1.4 吹扫阶段 进气阀和出料阀仍然保持开启状态,吹扫仓泵及输灰管道内的残余灰,以利于下次输送。也可说吹扫过程是对输送过程的补充。吹扫过程按时间设定,吹扫结束后,关闭进气阀,延时关闭出料阀,泄掉余压,然后打开进料阀,仓泵恢复到进料状态。 2 堵管的判断及其影响因素 2.1 堵管现象的判断 在输送气灰混合物的过程中,在设定的输送时间内,仓泵双压力表未达到下限值,控制系统则判断为堵管,自动关闭进气阀、出料阀。

气力输送系统资料

气力输送系统资料 气力输送是一项综合性技术,它涉及流体力学、材料科学、自动化技术、制造技术等领域,属输送效率高、占地少、经济而无污染的高新技术项目。随着我国经济的快速发展,各行各业的生产也在不断扩大,有些行业如火力发电厂、化工厂、水泥厂、制药厂、粮食加工厂等的一些原材料、粉粒料在输送生产工程中产生的环境污染越来越得到广泛的重视。气力输送技术于是得到了逐步的推广。气力输送是清洁生产的一个重要环节,它是以密封式输送管道代替传统的机械输送物料的一种工艺过程,是适合散料输送的一种现代物流系统。将以强大的优势取代传统的各种机械输送。 气力输送系统具有以下特点: ★气力输送是全封闭型管道输送系统 ★布置灵活 ★无二次污染 ★高放节能 ★便于物料输送和回收、无泄漏输送 ★气力输送系统以强大的优势。将取代传统的各种机械输送。 ★计算机控制,自动化程度高 气力输送形式: ★气力输送系统按类型分:正压、负压、正负压组合系统 ★正压气力输送系统:一般工作压力为0.1~0.5MPa ★负压气力输送系统:一般工作压力为-0.04~0.08 MPa ★按输送形式分:稀相、浓相、半浓相等系统。 气力输送系统功能表:

常见适合气力输送物料 可以气力输送的粉粒料品种繁多,每种物料的料性对气力输送装置的适合性和效率都有很大的影响。因此在选定输送装置前要先对物料进行性能测定。现在常见适合气力输送物料示例如下: 浓相气力输送系统 浓相气力输送系统根据国外先进技术及经验,结合科学实验,经过数年实践,被确认为是一种既经济又可靠的气力输送系统。该系统输送灰气比高,耗气量少,输送速度低,有效降低管道磨损。该系统主要由压缩空气气源,发送器、控制柜、输送管、灰库五大部分。 1、压缩空气气源: 由空气压缩机、除油器、干燥器、储气罐及管道组成,主要为发送器及气控元件提供高质量的压缩空气。 2、发送器: 器集灰斗的飞灰,经流化后通过输送管道送至灰库。 3、控制柜: 以电脑集中控制各种机械元件动作,并附有手动操作机构。 4、输送管道: 经实验,输送距离可达1300米,管路寿命可达20000小时以上。 5、灰库: 由灰库本体、布袋除尘器、真空释放阀、料位计、卸灰设备等组成。

正压浓相气力输灰系统堵管原因及处理方法标准版本

文件编号:RHD-QB-K6453 (操作规程范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 正压浓相气力输灰系统堵管原因及处理方法标 准版本

正压浓相气力输灰系统堵管原因及 处理方法标准版本 操作指导:该操作规程文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时必须遵循的程序或步骤。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 苇湖梁电厂125 MW机组的气力输灰系统配用正压浓相小仓泵系统。该系统在满足飞灰输送的同时,系统及零部件曾发生不同的故障。其中最需要注意的是管道阻塞,因为大部分系统和零部件的故障如果不及时处理,最终都会导致或反映为堵管。笔者根据实际运行、维护和管理经验,分析气力输灰系统输送过程中堵管现象发生的原因,并提出预防措施和解决方法。 1 正压浓相小仓泵的工作过程

图1为正压浓相小仓泵的结构示意图。 1.1 进料过程 进料阀呈开状态,进气阀和出料阀关闭,仓泵内无压力,粉煤灰进入仓泵。当仓泵内灰位高至与料位计探头接触时,料位计发出料满信号。在控制系统作用下,自动关闭进料阀,进料结束。 1.2 充压流化过程 进气阀打开,压缩空气通过流化盘均匀进入仓泵,仓泵内飞灰充分流态化(保证初期的灰气混和的均匀性,灰粒的碰撞、磨损、降低其粒径,提高表面

光滑度),同时压力升高。当压力升高至双压表设定的上限值时,充压阶段结束。 1.3 输送过程 压力升至压力上限,出料阀打开,气灰混合物通过出料阀进入输灰管道,输至灰库。当仓泵内飞灰输送完毕后,管路阻力下降,仓泵内压力降低。当仓泵压力降至压力下限值时,输送阶段结束。 1.4 吹扫阶段 进气阀和出料阀仍然保持开启状态,吹扫仓泵及输灰管道内的残余灰,以利于下次输送。也可说吹扫过程是对输送过程的补充。吹扫过程按时间设定,吹

气力输送系统说明书(纽普兰)-2资料讲解

正压浓相气力输送系统 安装、调试、使用、维护 说明书 镇江纽普兰气力输送有限公司

目录 1 概述------------------------------------------------------------------------------ 2 2系统组成------------------------------------------------------------------------ 3 3 系统工艺流程------------------------------------------------------------------5 4运输和存贮--------------------------------------------------------------------6 5 系统安装----------------------------------------------------------------------7 6系统调试-----------------------------------------------------------------------9 7运行-----------------------------------------------------------------------------12 8故障-----------------------------------------------------------------------------12 9维护---------------------------------------------------------------------------13 附表A 故障分析及排除方法-------------------------------------------------14

正压浓相气力输灰系统堵管原因及处理方法标准范本

操作规程编号:LX-FS-A90466 正压浓相气力输灰系统堵管原因及 处理方法标准范本 In The Daily Work Environment, The Operation Standards Are Restricted, And Relevant Personnel Are Required To Abide By The Corresponding Procedures And Codes Of Conduct, So That The Overall Behavior Can Reach The Specified Standards 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

正压浓相气力输灰系统堵管原因及 处理方法标准范本 使用说明:本操作规程资料适用于日常工作环境中对既定操作标准、规范进行约束,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 苇湖梁电厂125 MW机组的气力输灰系统配用正压浓相小仓泵系统。该系统在满足飞灰输送的同时,系统及零部件曾发生不同的故障。其中最需要注意的是管道阻塞,因为大部分系统和零部件的故障如果不及时处理,最终都会导致或反映为堵管。笔者根据实际运行、维护和管理经验,分析气力输灰系统输送过程中堵管现象发生的原因,并提出预防措施和解决方法。 1 正压浓相小仓泵的工作过程

流动阻力及阻力损失计算方法

29 第五节 阻力损失 1-5-1 两种阻力损失 直管阻力和局部阻力 化工管路主要由两部分组成:一种是直管, 另一种是弯头、三通、阀门等各种管件。无论是直管或管件都对流动有一定的阻力, 消耗一定的机械能。直管造成的机械能损失称为直管阻力损失(或称沿程阻力损失);管件造成的机械能损失称为局部阻力损失。 对阻力损失作此划分是因为两种不同阻力损失起因于不同的外部条件,也为了工程计算及研究的方便, 但这并不意味着两者有质的不同。此外, 应注意将直管阻力损失与固体表面间的摩擦损失相区别。固体摩擦仅发生在接触的外表面, 而直管阻力损失发生在流体内部, 紧贴管壁的流体 层与管壁之间并没有相对滑动。 图1-33 阻力损失 阻力损失表现为流体势能的降低 图1-33表示流体在均匀直管中作定态流动, u 1=u 2。截面1、2之间未加入机械能, h e =0。由机械能衡算式(1-42)可知: ρρρ2 12211 P P -=???? ??+-???? ??+=g z p g z p h f (1-71) 由此可知, 对于通常的管路,无论是直管阻力或是局部阻力, 也不论是层流或湍流, 阻力损失均主要表现为流体势能的降低, 即ρ/P ?。该式同时表明, 只有水平管道, 才能以p ?(即p 1-p 2)代替P ?以表达阻力损失。 层流时直管阻力损失 流体在直管中作层流流动时, 因阻力损失造成的势能差可直接由式(1-68)求出: 2 32d lu μ= ?P (1-72) 此式称为泊稷叶(Poiseuille)方程。层流阻力损失遂为: 2 32d lu h f ρμ= (1-73) 1-5-2 湍流时直管阻力损失的实验研究方法 层流时阻力损失的计算式是由理论推导得到的。湍流时由于情况复杂得多,未能得出理论式,但可以通过实验研究, 获得经验的计算式。这种实验研究方法是化工中常用的方法。因此本节通过湍流时直管阻力损失的实验研究, 对此法作介绍。实验研究的基本步骤如下: (1) 析因实验──寻找影响过程的主要因素 对所研究的过程作初步的实验和经验的归纳, 尽可能地列出影响过程的主要因素 对于湍流时直管阻力损失h f , 经分析和初步实验获知诸影响因素为: 流体性质:密度ρ、粘度μ; 流动的几何尺寸:管径d 、管长l 、管壁粗糙度ε (管内壁表面高低不平); 流动条件:流速u ; 于是待求的关系式应为:

气力输送系统技术协议

XX发电有限责任公司石灰石粉气力输送系统 技术协议 甲方:XXXX电力成套设备有限公司乙方:XXXX电力设备有限公司

年月 沈阳中投电力成套设备有限公司承包的(以下简称甲方) 阜新发电有限责任公司三期技改工程2×350MW机组烟气脱硫工程,石灰石粉输送项目。系统设备由常州市昊达电力设备有限公司(以下简称乙方)双方共同协商,达成如下技术协议: 一. 系统组成概述 1、本工程为阜新发电有限责任公司三期技改工程2×350MW机组烟气脱硫工程石灰石粉厂配置的下引式正压气力石灰石粉输送系统。 石灰石粉厂安装1台国产20t/h立磨。采用布袋除尘器收集的石灰石粉采用下引式正压气力输送系统送到干粉库储存,以1台磨机系统为一单元,设有专用空气压缩机作为石灰石粉输送动力并兼作控制气源,在系统末端设有2座800m3 、直径9m、库高22.5米的平底混凝土石灰石粉库,库下设石灰石粉装车装置。 每台磨机系统配置一台布袋除尘器,除尘器下设6个斗,每3个灰斗接1台螺旋输送机,在螺旋输送机出口下各设一套AB3.0(V=3.0m3)下引式型浓相压气力输送泵;系统输送能力:20-24t/h;除尘器下仓泵采用1根DN125输粉管,将石灰石粉输送至粉库贮存(输送距离约150米)。 粉库建2座容积为800m3混凝土平底型粉库,每座粉库设一个卸料口,在卸料口下设一台LXF-400×400手动螺旋插板门,依次为DN200气动阀门、SZ-100装车散装机,形成石灰石粉卸料系统,供装车运送至阜新电厂。 2、输送系统采用PLC进行控制,该部分采用AB可编程控制器作为主控机,直接控制和协调各输送系统设备的正常工作,并对各用气点上的气源压力进行监控。对现场各种情况进行处理,逻辑程序受控于相应的PLC控制盘。 3、输粉管道均采用普通无缝钢管, 弯管采用复合陶瓷耐磨弯管。为了对供气压力进

正压浓相气力输送系统的工作原理及流程

正压浓相气力输送系统的工作原理及流程正压浓相气力输灰工作原理及分步流程 正压浓相气力输送系统的工作原理:浓相干输灰是根据固气两相流的气力输送原理,利用压缩空气的静压和动压高浓度、高效率输送物料。飞灰在仓泵内必须得到充分流化,而且是边流化边输送。整个系统由五个部分组成:气源部分、输送部分、管路部分、灰库部分和控制部分。其中输送部分根据输灰量的要求,配以相应规格的输送机(仓泵)组成,每台输送机都是一个独立体,既可单机运行,也能多台组成系统运行。 仓泵 它是系统的核心部分,通过它将干灰与压缩空气充分混合并流态化,从而得以顺利在系统中运行。它是一个密闭的钢罐,上面装有进出料阀、流化盘、料位计、安全阀等配套设备。仓泵工作原理: 仓泵是一个带有空气喷嘴的压力容器,这种设备具有输灰距离远、工作可靠、自动化程度高等特点,且需要用比较高压力的压缩空气作为输送介质,要配备一套空压机。它的工作过程是:先打开排气阀和进料阀进行装料,料满后关闭进料阀和排气阀,打开缸体加压阀,压缩空气将缸体内的粉尘带走。如此循环往复,就可将粉尘输送出去。 1、进料阶段:进料阀呈开启状态,一次进气阀和出料阀关闭,仓泵上部与灰斗连接,除尘器捕集的飞灰藉重力自由或经卸料机落入仓泵内,当灰位高至使料位计发出料满信号,或按系统进料设定时间到,进料阀关闭,排气阀关闭,进料状态结束。 2、加压流化阶段:进料阶段完成后,系统自动打开一次进气阀,经过处理的压缩空气经过流量调节阀进入仓泵底部流化锥,穿过流化锥后使空气均匀包围在每一

粒飞灰周围,同时仓泵内压力升高,当压力高至使压力传感器发出信号时,系统自动打开出料阀,加压流化阶段结束。 3、输送阶段:出料阀、二次进气阀打开,一次进气阀不停,此时仓泵一边继续进气,边气灰混合物通过出料阀进入输灰管,飞灰始终处于边流化边进入输送管道进行输送,当仓泵内飞灰输送完后,管路压力下降,仓泵内压力降低,使压力传感器发出信号时,二次进气阀关闭,当仓泵内压力继续下降,至使压力传感器发出信号时,输送阶段结束,进气阀和出料阀保持开启状态,进入吹扫阶段。 4、吹扫阶段:进气阀和出料阀保持开启状态,压缩空气吹扫仓泵和输灰管道,定时一段时间后,吹扫结束,关闭进气阀,待仓泵内压力降至常压时,关闭出料阀,打开进料阀、排气阀,进入进料阶段,至此,系统完成一个输送循环,自动进入下一个输送循环。

流动阻力测定思考题

实验1 单项流动阻力测定 (1)启动离心泵前,为什么必须关闭泵的出口阀门 答:由离心泵特性曲线知,流量为零时,轴功率最小,电动机负荷最小,不会过载烧毁线圈。 (2)作离心泵特性曲线测定时,先要把泵体灌满水以防止气缚现象发生,而阻力实验 对泵灌水却无要求,为什么 答:阻力实验水箱中的水位远高于离心泵,由于静压强较大使水泵泵体始终充满水,所以 不需要灌水。 (3)流量为零时,U 形管两支管液位水平吗为什么 答:水平,当u=0时 柏努利方程就变成流体静力学基本方程: 21212211,,Z Z p p g p Z g P Z ==+=+时当ρρ (4)怎样排除管路系统中的空气如何检验系统内的空气已经被排除干净 答:启动离心泵用大流量水循环把残留在系统内的空气带走。关闭出口阀后,打开U 形管 顶部的阀门,利用空气压强使U 形管两支管水往下降,当两支管液柱水平,证明系统中空气已被排除干净。 (5)为什么本实验数据须在双对数坐标纸上标绘 答:因为对数可以把乘、除变成加、减,用对数坐标既可以把大数变成小数,又可以把小 数扩大取值范围,使坐标点更为集中清晰,作出来的图一目了然。 (6)你在本实验中掌握了哪些测试流量、压强的方法它们各有什么特点 答:测流量用转子流量计、测压强用U 形管压差计,差压变送器。转子流量计,随流量的 大小,转子可以上、下浮动。U 形管压差计结构简单,使用方便、经济。差压变送器,将压差转换成直流电流,直流电流由毫安表读得,再由已知的压差~电流回归式算出相应的压差,可测大流量下的压强差。 (7)读转子流量计时应注意什么为什么 答:读时,眼睛平视转子最大端面处的流量刻度。如果仰视或俯视,则刻度不准,流量就 全有误差。 (8)两个转子能同时开启吗为什么 答:不能同时开启。因为大流量会把U 形管压差计中的指示液冲走。 (9)开启阀门要逆时针旋转、关闭阀门要顺时针旋转,为什么工厂操作会形成这种习惯 答:顺时针旋转方便顺手,工厂遇到紧急情况时,要在最短的时间,迅速关闭阀门,久而 久之就形成习惯。当然阀门制造商也满足客户的要求,阀门制做成顺关逆开。 (10)使用直流数字电压表时应注意些什么 答:使用前先通电预热15分钟,另外,调好零点(旧设备),新设备,不需要调零点。如 果有波动,取平均值。

正压浓相气力输灰系统堵管原因及处理方法(正式)

编订:__________________ 单位:__________________ 时间:__________________ 正压浓相气力输灰系统堵管原因及处理方法(正式) Standardize The Management Mechanism To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-6883-85 正压浓相气力输灰系统堵管原因及 处理方法(正式) 使用备注:本文档可用在日常工作场景,通过对管理机制、管理原则、管理方法以及管理机构进行设置固定的规范,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 苇湖梁电厂125 MW机组的气力输灰系统配用正压浓相小仓泵系统。该系统在满足飞灰输送的同时,系统及零部件曾发生不同的故障。其中最需要注意的是管道阻塞,因为大部分系统和零部件的故障如果不及时处理,最终都会导致或反映为堵管。笔者根据实际运行、维护和管理经验,分析气力输灰系统输送过程中堵管现象发生的原因,并提出预防措施和解决方法。 1 正压浓相小仓泵的工作过程 图1为正压浓相小仓泵的结构示意图。

1.1 进料过程 进料阀呈开状态,进气阀和出料阀关闭,仓泵内无压力,粉煤灰进入仓泵。当仓泵内灰位高至与料位计探头接触时,料位计发出料满信号。在控制系统作用下,自动关闭进料阀,进料结束。 1.2 充压流化过程 进气阀打开,压缩空气通过流化盘均匀进入仓泵,仓泵内飞灰充分流态化(保证初期的灰气混和的均匀性,灰粒的碰撞、磨损、降低其粒径,提高表面光滑度),同时压力升高。当压力升高至双压表设定的上限值时,充压阶段结束。 1.3 输送过程 压力升至压力上限,出料阀打开,气灰混合物通

相关主题
文本预览
相关文档 最新文档