当前位置:文档之家› 流体在管内的流动阻力

流体在管内的流动阻力

流体在管内的流动阻力
流体在管内的流动阻力

2.2 流体在管内的流动阻力

本节重点:牛顿粘性定律、层流与湍流的比较。

难点: 边界层与层流内层。

2.2.1 牛顿粘性定律与流体的粘度 1. 流体的粘性

流体的典型特征是具有流动性,但不同流体的流动性能不同,这主要是因为流体内部质点间作相对运动时存在不同的内摩擦力。这种表明流体流动时产生内摩擦力的特性称为粘性。粘性是流动性的反面,流体的粘性越大,其流动性越小。流体的粘性是流体产生流动阻力的根源。

2. 牛顿粘性定律与流体的粘度

如图2-3所示,设有上、下两块面积很大且相距很近的平行平板,板间充满某种静止液体。若将下板固定,而对上板施加一个恒定的外力,上板就以恒定速度u 沿x 方向运动。若u 较小,则两板间的液体就会分成无数平行的薄层而运动,粘附在上板底面下的一薄层流体以速度u 随上板运动,其下各层液体的速度依次降低,紧贴在下板表面的一层液体,因粘附在静止的下板上, 其速度为零,两平板间流速呈线性变化。对任意相邻两层流体来说,上层速度较大,下层速度较小,前者对后者起带动作用,而后者对前者起拖曳作用,流体层之间的这种相互作用,产生内摩擦,而流体的粘性正是这种内摩擦的表现。

平行平板间的流体,流速分布为直线,而流体在圆管内流动时,速度分布呈抛物线形,如图2-4所示。

实验证明,对于一定的流体,内摩擦力F 与两流体层的速度差.

u d 成正比,与两层之间的垂直距离dy 成反比,与两层间的接触面积A 成正比,即

图2-4 实际流体在管内的速度分布

图2-3 平板间液体速度变化

dy

u

d A

F .

μ= (2-16) 式中:F ——内摩擦力,N ;

dy

u

d .

——法向速度梯度,即在与流体流动方向相垂直的y 方向流体速度的变化率,1/s ; μ——比例系数,称为流体的粘度或动力粘度,Pa ·s 。

一般,单位面积上的内摩擦力称为剪应力,以τ表示,单位为Pa ,则式(1-26)变为

dy

u

d .

μ

τ= (2-17) 式(2-16)、(2-17)称为牛顿粘性定律,表明流体层间的内摩擦力或剪应力与法向速度梯度成正比。

剪应力与速度梯度的关系符合牛顿粘性定律的流体,称为牛顿型流体,包括所有气体和大多数液体;不符合牛顿粘性定律的流体称为非牛顿型流体,如高分子溶液、胶体溶液及悬浮液等。本章讨论的均为牛顿型流体。

粘度的物理意义 流体流动时在与流动方向垂直的方向上产生单位速度梯度所需的剪应力。粘度是反映流体粘性大小的物理量。

粘度也是流体的物性之一,其值由实验测定。液体的粘度,随温度的升高而降低,压力对其影响可忽略不计。气体的粘度,随温度的升高而增大,一般情况下也可忽略压力的影响,但在极高或极低的压力条件下需考虑其影响。

粘度的单位

在国际单位制下,其单位为

[][]

s Pa m

s m Pa

.?==

??

?

???=

dy u d τμ 在一些工程手册中,粘度的单位常常用物理单位制下的cP (厘泊)表示,它们的换算关系为

1cP =10-3 Pa ·s

2.2.2 流动型态

1. 流体的流动型态

图2-5为雷诺实验装置示意图。水箱装有溢流装置,以维持水位恒定,箱中有一水平玻璃直管,其出口处有一阀门用以调节流量。水箱上方装有带颜色的小瓶,有色液体经细管注入玻璃管内。

从实验中观察到,当水的流速从小到大时,有色液体变化如图2-6所示。实验表明,流体在管道中流动存在两种截然不同的流型。

层流(或滞流) 如图2-6(a )所示,流体质点仅沿着与管轴平行的方向作直线运动,质点无径向脉动,质点之间互不混合;

湍流(或紊流) 如图2-6(c )所示,流体质点除了沿管轴方向向前流动外,还有径向脉动,各质点的速度在大小和方向上都随时变化,质点互相碰撞和混合

流体的流动类型可用雷诺数Re 判断。 μ

ρ

u

d =

Re (2-18)

Re 准数是一个无因次的数群。

大量的实验结果表明,流体在直管内流动时,

(1) 当Re ≤2000时,流动为层流,此区称为层流区; (2) 当Re ≥4000时,一般出现湍流,此区称为湍流区;

(3) 当2000< Re <4000 时,流动可能是层流,也可能是湍流,与外界干扰有关,该区称为不稳定的过渡区。

雷诺数的物理意义 Re 反映了流体流动中惯性力与粘性力的对比关系,标志流体流动的湍动程度。其值愈大,流体的湍动愈剧烈,内摩擦力也愈大。

2. 管内层流与湍流的比较

图2-5 雷诺实验装置

图2-6 流体流动型态示意图

流体在圆管内的速度分布是指流体流动时管截面上质点的速度随半径的变化关系。无论是层流或是湍流,管壁处质点速度均为零,越靠近管中心流速越大,到管中心处速度为最大。但两种流型的速度分布却不相同。

实验和理论分析都已证明,层流时的速度分布为抛物线形状,如图2- 7所示。

湍流时流体质点的运动状况较层流要复杂得多,截面上某一固定点的流体质点在沿管轴向前运动的同时,还有径向上的运动,使速度的大小与方向都随时变化。湍流的基本特征是出现了径向脉动速度,使得动量传递较之层流大得多,此时剪应力不服从牛顿粘性定律。湍流时的速度分布目前尚不能利用理论推导获得,而是通过实验测定,结果如图2-8所示

2.2.3流动边界层

当一个流速均匀的流体与一个固体壁面相接触时,由于壁面对流体的阻碍,与壁面相接触的流体速度降为零。由于流体的粘性作用,紧连着这层流体的另一流体层速度也有所下降。随着流体的向前流动,流速受影响的区域逐渐扩大,即在垂直于流体流动方向上产生了速度梯度。

流速降为主体流速的99%以内的区域称为边界层,边界层外缘于垂直壁面间的距离称为边界层厚度。

流体在平板上流动时的边界层如图2-9所示, 由于边界层的形成,把沿壁面的流动分为两个区域:边界层区和主流区。

2-7 层流时的速度分布

图2-8 湍流时的速度分布

图2-9 流体流动的边界层示意图

边界层区(边界层内):沿板面法向的速度梯度很大,需考虑粘度的影响,剪应力不可忽略。

主流区(边界层外):速度梯度很小,剪应力可以忽略,可视为理想流体。

图2-10

边界层流型也分为层流边界层与湍流边界层。在平板的前段,边界层内的流型为层流,称为层流边界层。离平板前沿一段距离后,边界层内的流型转为湍流,称为湍流边界层。

流体在圆管内流动时的边界层如图2-11所示。流体进入圆管后在入口处形成边界层,随着流体向前流动,边界层厚度逐渐增加,直至一段距离(进口段)后,边界层在管中心汇合,占据整个管截面,其厚度不变,等于圆管的半径,管内各截面速度分布曲线形状也保持不变,此为完全发展了的流动。由此可知,对于管流来说,只在进口段内才有边界层内外之分。在边界层汇合处,若边界层内流动是层流,则以后的管内流动为层流;

若在汇合之前边界层内的流动已经发展成湍流,则以后的管内流动为湍流。

图2-11 圆管内进口段边界层的形成示意图

当管内流体处于湍流流动时,由于流体具有粘性和壁面的约束作用,紧靠壁面处仍

有一薄层流体作层流流动,称其为层流内层(或层流底层),如图1-25所示。在层流内层与湍流主体之间还存在一过渡层,也即当流体在圆管内作湍流流动时,从壁面到管中心分为层流内层、过渡层和湍流主体三个区域。层流内层的厚度与流体的湍动程度有关,流体的湍动程度越高,即Re 越大,层流内层越薄。在湍流主体中,径向

的传递过程引速度的脉动而大大强化,而在层流内层中,径向的传递着能依靠分子运动,因此层流内层成为传递过程主要阻力。层流内层虽然很薄,但却对传热和传质过程都有较大的影响。 流体流过平板或在园管内流动时,流动边界层是紧贴在壁面上。如果流体流过曲面,如球体或圆柱体,则边界层的情况有显著不同,即存在流体边界层与固体表面的脱离,并在脱离处产生漩涡,流体质点碰撞加剧,造成大量的能量损失。

如下图所示:

A →C :流道截面积逐渐减小,流速逐渐增加,压力逐渐减小(顺压梯度); C → S :流道截面积逐渐增加,流速逐渐减小,压力逐渐增加(逆压梯度); S 点:物体表面的流体质点在逆压梯度和粘性剪应力的作用下,速度降为0。 SS ’以下:边界层脱离固体壁面,而后倒流回来,形成涡流,出现边界层分离。

由此可知:

边界层分离的必要条件:

图2-12 湍流流动

A

S ’

流体具有粘性;

流动过程中存在逆压梯度。边界层分离的后果:

产生大量旋涡;

造成较大的能量损失。

2.2.4 流体流动阻力的计算

流动阻力的大小与流体本身的物理性质、流动状况及壁面的形状等因素有关。

化工管路系统主要由两部分组成,一部分是直管,另一部分是管件、阀门等。相应流体流动阻力也分为两种:

直管阻力:流体流经一定直径的直管时由于内摩擦而产生的阻力;

局部阻力:流体流经管件、阀门等局部地方由于流速大小及方向的改变而引起的阻力。

1. 流体在直管中的流动阻力

如图1-24所示,流体在水平等径直管中作定态流动。

在1-1′和2-2′截面间列柏努利方程,

f W p u

g z p u g z +++=++

ρ

ρ222212112121 因是直径相同的水平管,

21u u = 21z z =

ρ

2

1p p W f -=

若管道为倾斜管,则

)(

)(

22

11

g z p g z p W f +-+=ρ

ρ

由此可见,无论是水平安装,还是倾斜安装,流体的流动阻力均表现为静压能的减少,仅当水平安装时,流动阻力恰好等于两截面的静压能之差。

把能量损失f W 表示为动能2

2

u 的某一倍数。

2

82

2

u d l u W f ρτ= 令 2

8u ρτ

λ=

则 2

2

u d l W f λ= (2-19)

式(2-19)为流体在直管内流动阻力的通式,称为范宁(Fanning )公式。式中λ为无因次系数,称为摩擦系数或摩擦因数,与流体流动的Re 及管壁状况有关。

根据柏努利方程的其它形式,也可写出相应的范宁公式表示式:

压头损失 g

u d l h f 22

λ= (2-20)

压力损失 2

2

u d l p f ρλ=? (2-21)

值得注意的是,压力损失f p ?是流体流动能量损失的一种表示形式,与两截面间的压力差)(21p p p -=?意义不同,只有当管路为水平时,二者才相等。

应当指出,范宁公式对层流与湍流均适用,只是两种情况下摩擦系数λ不同。以下对层

流与湍流时摩擦系数λ分别讨论。

(1) 层流时的摩擦系数

流体在直管中作层流流动时摩擦系数的计算式:

Re

64

=

λ (2-22) 即层流时摩擦系数λ是雷诺数Re 的函数。 (2)湍流时的摩擦系数

)(Re,d

ε

ψλ= (2-23)

即湍流时摩擦系数λ是Re 和相对粗糙度d

ε

的函数,如图2-14所示,称为莫狄(Moody )摩擦系数图。

2 局部阻力

局部阻力有两种计算方法:阻力系数法和当量长度法。

(1) 阻力系数法

克服局部阻力所消耗的机械能,可以表示为动能的某一倍数,即

g

u h f

22

'ζ= (2-24)

式中ζ称为局部阻力系数,一般由实验测定。常用管件及阀门的局部阻力系数见教材。

图2-14 摩擦系数λ与雷诺数Re 及相对粗糙度d ε的关系

(2)当量长度法

将流体流过管件或阀门的局部阻力,折合成直径相同、长度为e l 的直管所产生的阻力即

g

u d l h e f

22

'λ= (2-25)

式中e l 称为管件或阀门的当量长度。

同样,管件与阀门的当量长度也是由实验测定,有时也以管道直径的倍数d l e 表示。见教材。

(完整word版)流体阻力系数

流体阻力系数 一个物体在流体(液体或气体)中和流体有相对运动时,物体会受到流体的阻力。阻力的方向和物体相对于流体的速度方向相反,其大小和相对速度的大小有关。 在相对速率v 较小时,阻力f的大小与v 成正比: f = kv 式中比例系数k 决定于物体的大小和形状以及流体的性质. 在相对速率较大以致于在物体的后方出现流体漩涡时,阻力的大小将与v平方成正比。对于物体在空气中运动的情形,阻力 f = CρAv v/2 式中,ρ是空气的密度,A 是物体的有效横截面积,C 为阻力系数。 物体在流体中下落时,受到的阻力随速率增大而增大,当阻力和重力平衡时,物体将以匀速下落。物体在流体中下落的最大速率称为终极速率,又称为收尾速率。对在空气中下落的物体,它的终极速率为: 如图

关键字:2.2.4 流体流动阻力的计算 流动阻力的大小与流体本身的物理性质、流动状况及壁面的形状等因素有关。 化工管路系统主要由两部分组成,一部分是直管,另一部分是管件、阀门等。相应流体流动阻力也分为两种: 直管阻力:流体流经一定直径的直管时由于内摩擦而产生的阻力; 局部阻力:流体流经管件、阀门等局部地方由于流速大小及方向的改变而引起的阻力。 1. 流体在直管中的流动阻力 如图1-24所示,流体在水平等径直管中作定态流动。 在1-1′和2-2′截面间列柏努利方程, 因是直径相同的水平管, 若管道为倾斜管,则 由此可见,无论是水平安装,还是倾斜安装,流体的流动阻力均表现为静压能的减少,仅当水平安装时,流动阻力恰好等于两截面的静压能之差。 把能量损失表示为动能的某一倍数。 令 则(2-19) 式(2-19)为流体在直管内流动阻力的通式,称为范宁(Fanning)公式。式中为无因次系数,称为摩擦系数或摩擦因数,与流体流动的Re及管壁状况有关。 根据柏努利方程的其它形式,也可写出相应的范宁公式表示式: 压头损失(2-20) 压力损失 (2-21) 值得注意的是,压力损失是流体流动能量损失的一种表示形式,与两截面间的压力差意义不同,只有当管路为水平时,二者才相等。 应当指出,范宁公式对层流与湍流均适用,只是两种情况下摩擦系数不同。以下对层流与湍流时摩擦系数分别讨论。 (1)层流时的摩擦系数 流体在直管中作层流流动时摩擦系数的计算式: (2-22) 即层流时摩擦系数λ是雷诺数Re的函数。 (2)湍流时的摩擦系数

流体流动阻力的测定

流体流动阻力的测定 一、实验目的 (1)熟悉测定流体流经直管的阻力损失的实验组织法及测定摩擦系数的工程意义。 (2)观察摩擦系数λ与雷诺数Re 之间的关系,学习双对数坐标纸的用法 (3)掌握流体流经管件时的局部阻力,并求出该管件的局部阻力。 二、实验原理 流体在管内流动时,由于流体具有黏性,在流动时必须克服内摩擦力,因此,流体必须做功。当流体呈湍流流动时,流体内部充满了大小漩涡,流体质点运动速度和方向都发生改变,质点间不断相互碰撞,引起流体质点动量交换,使其产生了湍动阻力,结果也会消耗流体能量,所以流体的黏性和流体的漩涡产生了流体流动的阻力。 流体在管内流动的阻力的计算公式表示为 2 2 u d l h f λ= 或 2 2 12u d l p p p ρλ=-=? 式中:h 为流体通过直管的阻力(J/kg );△p 为流体通过直管的压力降(N/m 2);p 1,p 2为直管上下游界面流动的压力(N/m 2);l 为管道长(m );d 为管道直径(内径)(m );ρ为流体密度(kg/m 3);u 为流体平均流速(m/s );λ为摩擦系数,无因次。 摩擦系数λ是一个受多种因素影响的变量,其规律与流体流动类型密切相关。当流体在管内作层流流动时,根据力学基本原理,流体流动的推动力(由于压力产生)等于流体内部摩擦力(由于黏度产生),从理论上可以推得λ的计算式为 Re 64 = λ 当流体在管内作湍流流动时,由于流动情况比层流复杂得多,湍流时的λ还不能完全由理论分析建立摩擦系数关系式。湍流的摩擦系数计算式是在研究分析阻力产生的各种因素的基础上,借助因次分析方法,将诸多因素的影响归并为准数关系,最后得出如下结论 ??? ??=?? ??????????=d d du k t ε?εμρλRe,2 由此可见,λ为Re 数和管壁相对粗糙度ε/d 的函数,其函数的具体关系通过实验确定。 局部阻力通常有两种表达方式,即当量长度法和阻力系数法。 当量长度法:流体流过某管件时因局部阻力造成的能量损失相当于流体流过与其相同管径的若干米长度的直管阻力损失,用符号l e 来表示,则 2 2 u d l l h e f +=∑λ 阻力系数法:流体通过某一管件的阻力损失用流体在管路中的动能系数来表示

流体流动阻力测定实验

实验报告 项目名称:流体流动阻力测定实验 学院: 专业年级: 学号: 姓名: 指导老师: 实验组员: 一、实验目的 1、学习管路阻力损失h f和直管摩擦系数λ的测定方法。 2、掌握不同流量下摩擦系数λ与雷诺数Re之间的关系及其变化规律。 3、学习压差测量、流量测量的方法。了解压差传感器和各种流量计的结构、使用方法 及性能。 4、掌握对数坐标系的使用方法。

二、实验原理 流体在管道内流动时,由于黏性剪应力和涡流的存在,会产生摩擦阻力。这种阻力包括流体流经直管的沿程阻力以及因流体运动方向改变或管子大小形状改变所引起的局部阻力。 流体在直管内流动阻力的大小与管长、管径、流体流速和管道摩擦系数有关,它们之间存在如下关系: h f = ρf P ?=2 2 u d l λ (4-1) 式中: -f h 直管阻力,J/kg ; -d 直管管径,m ; -?p 直管阻力引起的压强降,Pa ; -l 直管管长,m ; -u 流速,m / s ; -ρ流体的密度,kg / m 3; -λ摩擦系数。 滞流时,λ= Re 64 ;湍流时,λ与Re 的关系受管壁相对粗糙度d ε?的影响,即λ= )(Re,d f ε。 当相对粗糙度一定时,λ仅与Re 有关,即λ=(Re)f ,由实验可求得。 由式(4—1),得 λ= 2 2u P l d f ???ρ (4-2) 雷诺数 Re =μ ρ ??u d (4-3) 式中-μ流体的黏度,Pa*s 测量直管两端的压力差p ?和流体在管内的流速u ,查出流体的物理性质,即可分别计算出对应的λ和Re 。 三、实验装置 1、本实验共有两套装置,实验装置用图4-2所示的实验装置流程图。每套装置中被测光滑直管段为管内径d=8mm ,管长L=1.6m 的不锈钢管;被测粗糙直管段为管内径d=10mm ,管长L=1.6m 的不锈钢管 2、 流量测量:在图1-2中由大小两个转子流量计测量。 3、 直管段压强降的测量:差压变送器或倒置U 形管直接测取压差值。

管道阻力损失计算

管道的阻力计算 风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。通常直管中以摩擦阻力为主,而弯管以局部阻力阻力为主(图6-1-1)。 图6-1-1 直管与弯管 (一)摩擦阻力 1.圆形管道摩擦阻力的计算 根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算: (6-1-1) 对于圆形风管,摩擦阻力计算公式可改为: (6-1-2) 圆形风管单位长度的摩擦阻力(又称比摩阻)为: (6-1-3) 以上各式中 λ——摩擦阻力系数;

v——风秘内空气的平均流速,m/s; ρ——空气的密度,kg/m3; l——风管长度,m; Rs——风管的水力半径,m; f——管道中充满流体部分的横断面积,m2; P——湿周,在通风、空调系统中即为风管的周长,m; D——圆形风管直径,m。 摩擦阻力系数λ与空气在风管内的流动状态和风管管壁的粗糙度有关。在通风和空调系统中,薄钢板风管的空气流动状态大多数属于紊流光滑区到粗糙区之间的过渡区。通常,高速风管的流动状态也处于过渡区。只有流速很高、表面粗糙的砖、混凝土风管流动状态才属于粗糙区。计算过渡区摩擦阻力系数的公式很多,下面列出的公式适用范围较大,在目前得到较广泛的采用: (6-1-4) 式中K——风管内壁粗糙度,mm; D——风管直径,mm。 进行通风管道的设计时,为了避免烦琐的计算,可根据公式(6-1-3)和(6-1-4)制成各种形式的计算表或线解图,供计算管道阻力时使用。只要已知流量、管径、流速、阻力四个参数中的任意两个,即可利用线解图求得其余的两个参数。线解图是按过渡区的λ值,在压力B0=101.3kPa、温度t0=20℃、宽气密度ρ0=1.204kg/m3、运动粘度 v0=15.06×10-6m2/s、管壁粗糙度K=0.15mm、圆形风管等条件下得出的。当实际使用条件下上述条件不相符时,应进行修正。 (1)密度和粘度的修正 (6-1-5) 式中Rm——实际的单位长度摩擦阻力,Pa/m; Rmo——图上查出的单位长度摩擦阻力,Pa/m; ρ——实际的空气密度,kg/m3; v——实际的空气运动粘度,m2/s。

流体流动阻力实验

实验一 流体流动阻力实验 一、实验目的 1、学习直管摩擦阻力f P ?、直管摩擦系数λ的实验方法; 2、掌握不同流量下摩擦系数λ与雷诺数Re 之间的关系及其变化规律; 3、学习局部阻力的测定方法; 4、学习压强差的几种测量方法和技巧; 5、掌握坐标系的选用方法和对数坐标系的使用方法。 二、实验原理 1. 直管摩擦系数 与雷诺数Re 的测定 直管的摩擦阻力系数是雷诺数和相对粗糙度的函数,即)/(Re,d f ελ=,对一定的相对粗糙度而言,(Re)f =λ。 流体在一定长度等直径的水平圆管内流动时,其管路阻力引起的能量损失为: ρ ρf f P P P h ?=-= 2 1 (1) 又因为摩擦阻力系数与阻力损失之间有如下关系(范宁公式) 2 2 u d l P h f f λρ=?= (2) 整理(1)(2)两式得 2 2u P l d f ???=ρλ (3) μ ρ ??= u d Re (4) 式中:-d 管径,m ; -?f P 直管阻力引起的压强降,Pa ; -l 管长,m ; -u 流速,m / s ;

-ρ流体的密度,kg / m 3 ; -μ流体的粘度,N ·s / m 2。 在实验装置中,直管段管长l 和管径d 都已固定。若水温一定,则水的密度ρ和粘度μ也是定值。所以本实验实质上是测定直管段流体阻力引起的压强降 f P ?与流速u (流量V )之间的关系。 测得一系列流量下的f P ?后,根据实验数据和式(3)可计算出不同流速下的直管摩擦系数λ;用式(4)计算对应的Re ,从而整理出直管摩擦系数和雷诺数的关系,绘出λ与Re 的关系曲线。 2. 局部阻力系数ζ的测定 2 2 'u P h f f ζρ =?= ' (5) 2'2u P f ?????? ??=ρζ (6) 式中:-ζ局部阻力系数,无因次; -?'f P 局部阻力引起的压强降,Pa ; -'f h 局部阻力引起的能量损失,J /kg 。 图3 局部阻力测量取压口布置图 局部阻力引起的压强降'f P ? 可用下面的方法测量:在一条各处直径相等的直管段上,安装待测局部阻力的阀门,在其上、下游开两对测压口a-a ’和b-b ',见图3,使 ab =bc ; a 'b '=b 'c ' 则 △P f ,a b =△P f ,bc ; △P f ,a 'b '= △P f ,b 'c '

实验一流体流动阻力的测定

. 化学实验教学中心 实验报告 化学测量与计算实验Ⅱ 实验名称:流体流动阻力的测定 学生姓名:学号: 院(系):年级:级班 指导教师:研究生助教: 实验日期: 2017.05.26 交报告日期: 2017.06.02

一、实验目的 1.学习直管摩擦阻力、直管摩擦系数的测定方法; 2.掌握直管摩擦阻力系数与雷诺数和相对粗糙度之间的关系及其变化规律; 3.掌握局部阻力的测量方法; 4.学习压强差的几种测量方法和技巧; 5.掌握坐标系的选用方法和对数坐标系的使用方法。 二、实验原理 化工管路是由直管和各种管阀件组合构成的,流体通过管内流动必定存在阻力。因此,在进行管路设计和流体机械造型时,阻力大小是一个十分重要的参数。流体流经直管时所造成机械能损失称为直管阻力损失。流体通过管件、阀门时因流体运动方向和速度大小改变所引起的机械能损失称为局部阻力损失。 1.直管摩擦阻力系数与雷诺数的测定 流体在管道内流动时,由于流体的粘性作用和涡流的影响会产生阻力。流体在直管内流动阻力的大小与管长、管径、流体流速和管道摩擦系数有关,对水平等径管道,它们之间存在如下关系: (1-1) (1-2) (1-3) 式中,为直管阻力引起的压头损失,;为管径,;为直管阻力引起的压强降,; 为管长,;为流速,;为流体密度,;为流体的粘度,。 直管摩擦阻力系数与雷诺数之间的关系,一般可以用曲线来表示。在实验装置中,直管段长度与管径都已经固定。若水温一定,则水的密度和粘度也是定值。所以本实验实质上是测定直 管段流体阻力引起的压强降与流速(流量V)之间的关系。根据实验数据以及式(1-2)可以计算出不同流速下的直管摩擦系数,用式(1-3)计算对应的,从而整理出直管摩擦系数和雷诺数的关系,绘出两者的关系曲线。

流体管路流动阻力系数的测定

五、数据处理 1、局部阻力管的原始数据以及相关处理数据 局部阻力管(不锈钢+闸阀) 18℃水的密度:ρ=998.2kg/m3管内径:20 mm 18℃水的粘度:1.0559×10-3 Pa·s 测量段长度:1000mm 2、光滑管的原始数据以及相关处理数 光滑管(不锈钢) 18℃水的密度:ρ=998.2kg/m3 管内径:20 mm 18℃水的粘度:1.0559×10-3 Pa·s 测量段长度:1000mm

3、粗糙管的原始数据以及相关数据处理 粗糙管(镀锌铁管) 18℃水的密度:ρ=998.2kg/m3管内径:20 mm 18℃水的粘度:1.0559×10-3Pa·s 测量段长度:1000mm

4、根据计算所得的粗糙管和光滑管的实验结果,在同一对数坐标上绘制曲线: 对照《化工基础》教材上的曲线图(如下),估算出两管的相对粗糙度和绝对粗糙度

已知光滑管和粗糙管的管内径都为20mm,将光滑管和粗糙管的λ和Re值代入上图可估算为粗糙管的相对 粗糙度为0.004,绝对粗糙度约为0.00008;光滑管的相对粗糙度约为0.0001,绝对粗糙度约为0.000002。 5、数据方法示例: (1)湍流时流量、流速、以及摩擦力系数的计算取光滑管第一组的数据示例 已知: 光滑管(不锈钢)18℃水的密度:ρ=998.2kg/m3管内径:20 mm 18℃ 水的粘度:1.0559×10-3Pa·s 测量段长度L:1000mm,其中,λ为光滑管阻力摩擦系数,无因次d为光滑管内径, ?p为流体流经 L m 光滑管两端的压力 又有: 流量q v =0.5m3/h 流速 u=q v / A = 4 q v / ∏d2 = 4×0.5/3600×3.14×0.022 m/s = 0.4423≈0.44 m/s 雷诺数 Re=dup /μ=(0.02*0.44*998.2)/0.0010599=8287.73 摩擦阻力系数由?p =ρLλl u2 / 2d得 λ=2d ?p/ρLu2 = 2×0.02×147.13÷(998.2×1×0.442) = 0.03045357 ≈ 0.3045 其中,λ为光滑管阻力摩擦系数,无因次d为光滑管内径?p为流体刘晶L m光滑管两端的压力

通风管道阻力计算

通风管道阻力计算 风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。 一、摩擦阻力根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算: ΔPm=λν2ρl/8Rs 对于圆形风管,摩擦阻力计算公式可改写为: ΔPm=λν2ρl/2D 圆形风管单位长度的摩擦阻力(比摩阻)为: Rs=λν2ρ/2D 以上各式中 λ————摩擦阻力系数 ν————风管内空气的平均流速,m/s; ρ————空气的密度,Kg/m3; l ————风管长度,m ; Rs————风管的水力半径,m; Rs=f/P f————管道中充满流体部分的横断面积,m2; P————湿周,在通风、空调系统中既为风管的周长,m; D————圆形风管直径,m。 矩形风管的摩擦阻力计算 我们日常用的风阻线图是根据圆形风管得出的,为利用该图进行矩形风管计算,需先把矩形风管断面尺寸折算成相当的圆形风管直径,即折算成当量直径。再由此求得矩形风管的单位长度摩擦阻力。当量直径有流速当量直径和流量当量直径两种; 流速当量直径:Dv=2ab/(a+b) 流量当量直径:DL=1.3(ab)0.625/(a+b)0.25 在利用风阻线图计算是,应注意其对应关系:采用流速当量直径时,必须用矩形中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风管中的空气流量去查出阻力。 二、局部阻力当空气流动断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)流量变化的管件(如三通、四通、风管的侧面送、排风口)都会产生局部阻力。

流体流动阻力的测定

实验名称:流体流动阻力的测定 一、实验目的及任务: 1.掌握测定流体流动阻力实验的一般方法。 2.测定直管的摩擦阻力系数及突然扩大管的局部阻力系数。 3.验证湍流区内摩擦阻力系数为雷诺数和相对粗糙度的函数。 4.将所得光滑管的方程与Blasius方程相比较。 二、实验原理: 流体输送的管路由直管和阀门、弯头、流量计等部件组成。由于粘性和涡流作用,流体在输送过程中会有机械能损失。这些能量损失包括流体流经直管时的直管阻力和流经管道部件时的局部阻力,统称为流体流动阻力。 1.根据机械能衡算方程,测量不可压缩流体直管或局部的阻力 如果管道无变径,没有外加能量,无论水平或倾斜放置,上式可简化为: Δp为截面1到2之间直管段的虚拟压强差,即单位体积流体的总势能差,通过压差传感器直接测量得到。 2.流体流动阻力与流体性质、流道的几何尺寸以及流动状态有关,可表示为: 由量纲分析可以得到四个无量纲数群: 欧拉数,雷诺数,相对粗糙度和长径比 从而有 取,可得摩擦系数与阻力损失之间的关系:

从而得到实验中摩擦系数的计算式 当流体在管径为d的圆形管中流动时,选取两个截面,用压差传感器测出两个截面的静压差,即可求出流体的流动阻力。根据伯努利方程摩擦系数与静压差的关系,可以求出摩擦系数。改变流速可测得不同Re下的λ,可以求出某一相对粗糙度下的λ-Re关系。 在湍流区内摩擦系数,对于光滑管(水力学光滑),大量实验证明,Re在氛围内,λ与Re的关系遵循Blasius关系式,即 对于粗糙管,λ与Re的关系以图来表示。 3.对局部阻力,可用局部阻力系数法表示: 4. 对于扩大和缩小的直管,式中的流速按照细管的流速来计算。 对一段突然扩大的圆直管,局部阻力远大于其直管阻力。由忽略直管阻力时的伯努利方程 可以得到局部阻力系数的计算式: 式中,、分别为细管和粗管中的平均流速,为2,1截面的压差。 突然扩大管的理论计算式为:,、分别为细管和粗管的流通截面积。 三、实验流程: 本实验装置如图1所示,管道水平安装,水循环使用,其中管5为不锈钢管,测压点之间距,内径;管6为镀锌钢管,测压点间距离,内径22..5mm;管7为突然扩大管,由扩大至。各测量元件由测压口与压差传感器相连,通过管口的球阀切换被测管路,系统流量由涡

管道阻力计算

管道阻力计算 风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。 一、摩擦阻力 根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算: ΔPm=λν2ρl/8Rs 对于圆形风管,摩擦阻力计算公式可改写为: ΔPm=λν2ρl/2D 圆形风管单位长度的摩擦阻力(比摩阻)为: Rs=λν2ρ/2D 以上各式中

λ――――摩擦阻力系数 ν――――风管内空气的平均流速,m/s; ρ――――空气的密度,Kg/m3; l ――――风管长度,m Rs――――风管的水力半径,m; Rs=f/P f――――管道中充满流体部分的横断面积,m2; P――――湿周,在通风、空调系统中既为风管的周长,m;D――――圆形风管直径,m。 矩形风管的摩擦阻力计算 我们日常用的风阻线图是根据圆形风管得出的,为利用该图进行矩形风管计算,需先把矩形风管断面尺寸折算成相当的圆形风管直径,即折算成当量直径。再由此求得矩形风管的单位长度摩擦阻力。当量直径有流速当量直径和流量当量直径两种; 流速当量直径:Dv=2ab/(a+b) 流量当量直径:DL=1.3(ab)0.625/(a+b)0.25 在利用风阻线图计算是,应注意其对应关系:采用流速当量直径时,必须用矩形中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风管中的空气流量去查出阻力。

二、局部阻力 当空气流动断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)流量变化的管件(如三通、四通、风管的侧面送、排风口)都会产生局部阻力。 局部阻力按下式计算: Z=ξν2ρ/2 ξ――――局部阻力系数。局部阻力在通风、空调系统中占有较大的比例,在设计时应加以注意,为了减小局部阻力,通常采用以下措施: 1. 弯头布置管道时,应尽量取直线,减少弯头。圆形风管弯头的曲率半径一般应大于(1~2)倍管径;矩形风管弯头断面的长宽比愈大,阻力愈小;矩形直角弯头,应在其中设导流片。 2. 三通三通内流速不同的两股气流汇合时的碰撞,以及气流速度改变时形成的涡流是造成局部阻力的原因。为了减小三通的局部阻力,应注意支管和干管的连接,减小其夹角;还应尽量使支管和干管内的流速保持相等。

化工原理实验三单相流体阻力测定实验

实验三 单相流体阻力测定实验 一、实验目的 ⒈ 学习直管摩擦阻力△P f 、直管摩擦系数的测定方法。 ⒉ 掌握不同流量下摩擦系数 与雷诺数Re 之间关系及其变化规律。 ⒊ 学习压差传感器测量压差,流量计测量流量的方法。 ⒋ 掌握对数坐标系的使用方法。 二、实验内容 ⒈ 测定既定管路内流体流动的摩擦阻力和直管摩擦系数。 ⒉ 测定既定管路内流体流动的直管摩擦系数与雷诺数Re 之间关系曲线和关系式。 三、实验原理 流体在圆直管内流动时,由于流体的具有粘性和涡流的影响会产生摩擦阻力。流体在管内流动阻力的大小与管长、管径、流体流速和摩擦系数有关,它们之间存在如下关系。 h f = ρf P ?=2 2 u d l λ (3-1) λ= 22u P l d f ?? ?ρ (3-2) Re = μ ρ ??u d (3-3) 式中:-d 管径,m ; -?f P 直管阻力引起的压强降,Pa ; -l 管长,m ; -u 管内平均流速,m / s ; -ρ流体的密度,kg / m 3 ; -μ流体的粘度,N ·s / m 2 。 摩擦系数λ与雷诺数Re 之间有一定的关系,这个关系一般用曲线来表示。在实验装置中,直管段管长l 和管径d 都已固定。若水温一定,则水的密度ρ和粘度μ也是定值。所以本实验实质上是测定直管段流体阻力引起的压强降△P f 与流速u (流量V )之间的关系。 根据实验数据和式3-2可以计算出不同流速(流量V )下的直管摩擦系数λ,用式3-3计算对应的Re ,从而整理出直管摩擦系数和雷诺数的关系,绘出λ与Re 的关系曲线。

四、实验流程及主要设备参数: 1.实验流程图:见图1 水泵8将储水槽9中的水抽出,送入实验系统,首先经玻璃转子流量计2测量流量,然后送入被测直管段5或6测量流体流动的光滑管或粗糙管的阻力,或经7测量局部阻力后回到储水槽, 水循环使用。被测直管段流体流动阻力△p可根据其数值大小分别采用变送器18或空气—水倒置∪型管10来测量。

(完整版)管道内的局部阻力及损失计算

第四节管道内的局部阻力及损失计算 在实际的管路系统中,不但存在上一节所讲的在等截面直管中的沿程损失,而且也存在有各种各样的其它管件,如弯管、流道突然扩大或缩小、阀门、三通等,当流体流过这些管道的局部区域时,流速大小和方向被迫急剧地发生改变,因而出现流体质点的撞击,产生旋涡、二次流以及流动的分离及再附壁现象。此时由于粘性的作用,流体质点间发生剧烈的摩擦和动量交换,从而阻碍着流体的运动。这种在局部障碍物处产生的损失称为局部损失,其阻力称为局部阻力。因此一般的管路系统中,既有沿程损失,又有局部损失。 4.4.1 局部损失的产生的原因及计算 一、产生局部损失的原因 产生局部损失的原因多种多样,而且十分复杂,因此很难概括全面。这里结合几种常见的管道来说明。 ()() 图4.9 局部损失的原因 对于突然扩张的管道,由于流体从小管道突然进入大管道如图 4.9 ()所示,而且由于流体惯性的作用,流体质点在突然扩张处不可能马上贴附于壁面,而是在拐角的尖点处离开了壁面,出现了一系列的旋涡。进一步随着流体流动截面面积的不断的扩张,直到 2 截面处流体充满了整个管截面。在拐角处由于流体微团相互之间的摩擦作用,使得一部分机械能不可逆的转换成热能,在流动过程中,不断地有微团被主流带走,同时也有微团补充到拐角区,这种流体微团的不断补充和带走,必然产生撞击、摩擦和质量交换,从而消耗一部分机械能。另一方面,进入大管流体的流速必然重新分配,增加了流体的相对运动,并导致流体的进一步的摩擦和撞击。局部损失就发生在旋涡开始到消失的一段距离上。 图4.9()给出了弯曲管道的流动。由于管道弯曲,流线会发生弯曲,流体在受到向心力的作用下,管壁外侧的压力高于内侧的压力。在管壁的外侧,压强先增加而后减小,同时内侧的压强先减小后增加,这样流体在管内形成螺旋状的交替流动。 综上所述,碰撞和旋涡是产生局部损失的主要原因。当然在 1-2之间也存在沿程损失,一般来说,局部损失比沿程损失要大得多。在测量局部损失的实验中,实际上也包括了沿程损失。 二、局部损失的计算 如前所述,单位重量流体的局部能量损失以表示

化工原理实验~流体流动阻力系数的测定实验报告

流体流动阻力系数的测定实验报告 一、实验目的: 1、掌握测定流体流动阻力实验的一般实验方法。 2、测定直管的摩擦阻力系数λ及突然扩大管与阀门的局部阻力系数ξ。 3、验证湍流区内摩擦阻力系数λ为雷诺系数Re与相对粗糙度的函数。 4、将所得光滑管的λ—Re方程与Blasius方程相比较。 二、实验器材: 流体阻力实验装置一套 三、实验原理: 1、直管摩擦阻力 不可压缩流体(如水),在圆形直管中做稳定流动时,由于黏性与涡流的作用产生摩擦阻力;流体在流过突然扩大、弯头等管件时,由于流体运动的速度与方向突然变化,产 生局部阻力。影响流体阻力的因素较多,在工程上通常采用量纲分析方法简化实验,得 到在一定条件下具有普遍意义的结果,其方法如下。 流体流动阻力与流体的性质,流体流经处的几何尺寸以及流动状态有关,可表示为 △P=f (d, l, u,ρ,μ,ε) 引入下列无量纲数群。 雷诺数Re=duρ/μ 相对粗糙度ε/ d 管子长径比l / d 从而得到 △P/(ρu2)=ψ(duρ/μ,ε/ d, l / d) 令λ=φ(Re,ε/ d) △P/ρ=(l / d)φ(Re,ε/ d)u2/2 可得摩擦阻力系数与压头损失之间的关系,这种关系可用试验方法直接测定。 h f=△P/ρ=λ(l / d)u2/2 ——直管阻力,J/kg 式中,h f l——被测管长,m d——被测管内径,m u——平均流速,m/s λ——摩擦阻力系数。 当流体在一管径为d的圆形管中流动时,选取两个截面,用U形压差计测出这两个截面间的静压强差,即为流体流过两截面间的流动阻力。根据伯努利方程找出静压强差 与摩擦阻力系数的关系式,即可求出摩擦阻力系数。改变流速可测出不同Re下的摩擦 阻力系数,这样就可得出某一相对粗糙度下管子的λ—Re关系。 (1)、湍流区的摩擦阻力系数 在湍流区内λ=f(Re,ε/d)。对于光滑管,大量实验证明,当Re在3×103~105范围内,λ与Re的关系遵循Blasius关系式,即λ=0、3163 / Re0、25 对于粗糙管,λ与Re的关系均以图来表示。 2、局部阻力

实验一 流体流动阻力测定实验

4.1 流体流动阻力测定实验 一、实验目的 ⒈学习直管摩擦阻力△P f 、直管摩擦系数λ的测定方法。 ⒉掌握直管摩擦系数λ与雷诺数Re 和相对粗糙度之间的关系及其变化规律。 ⒊掌握局部阻力的测量方法。 ⒋学习压强差的几种测量方法和技巧。 ⒌掌握双对数坐标系的使用方法。 二、实验内容 ⒈测定实验管路(光滑管和粗糙管)内流体流动的阻力和直管摩擦系数λ。 ⒉测定实验管路内流体流动的直管摩擦系数λ与雷诺数Re 和相对粗糙度之间的关系曲线。 ⒊在本实验压差测量范围内,测量阀门的局部阻力系数。 三、实验原理 ⒈直管摩擦系数λ与雷诺数Re 的测定 流体在管道内流动时,由于流体的粘性作用和涡流的影响会产生阻力。流体在直管内 流动阻力的大小与管长、管径、流体流速和管道摩擦系数有关,它们之间存在如下关系: h f = ρf P ?=22 u d l λ (4-1) λ=22u P l d f ???ρ (4-2) Re = μρ??u d (4-3) 式中:-d 管径,m ; -?f P 直管阻力引起的压强降,Pa ; -l 管长,m ; -u 流速,m / s ; -ρ流体的密度,kg / m 3; -μ流体的粘度,N ·s / m 2。 直管摩擦系数λ与雷诺数Re 之间有一定的关系,这个关系一般用曲线来表示。在实验装置中,直管段管长l 和管径d 都已固定。若水温一定,则水的密度ρ和粘度μ也是定值。所以本实验实质上是测定直管段流体阻力引起的压强降△P f 与流速u (流量V )之间的关系。 根据实验数据和式(1-2)可计算出不同流速下的直管摩擦系数λ,用式(1-3)计算对应的Re ,从而整理出直管摩擦系数和雷诺数的关系,绘出λ与Re 的关系曲线。 ⒉局部阻力系数ζ的测定 22 'u P h f f ζρ=?=' (4-4)

流体流动阻力的测定实验

流体流动阻力的测定实验 一、实验内容 1.测定流体在特定的材质和ξ/d 的直管中流动时的阻力摩擦系数λ,并确定λ和Re 之间的关系。 2.测定流体通过阀门时的局部阻力系数。 二、实验目的 1.解测定流体流动阻力摩擦系数的工程定义,掌握测定流体阻力的实验组织方法。 2.测定流体流经直管的摩擦阻力和流经管件或阀门的局部阻力,确定直管阻力摩擦系数与雷诺数之间的关系。 3.熟悉压差计和流量计的使用方法。 4.认识组成管路系统的各部件、阀门并了解其作用。 三、实验原理 流体通过由直管和阀门组成的管路系统时,由于粘性剪应力和涡流应力的存在,要损失一定的机械能。流体流经直管时所造成机械能损失称为直管阻力损失。流体通过阀门时因流体运动方向和速度大小改变所引起的机械能损失称为局部阻力损失。 1.直管阻力 流体流动过程是一个多参数过程,)(ερμ、、、、、u l d f h f =。由因次分析法,从诸多影响流体流动的因素中组合流体流经管件时的阻力损失可用下式表示: ?? ????ξμρ=ρ?d ,du ,d l F u P 2 λ=Ψ(Re ,ε/d ) 雷诺准数μ ρdu e = R ;2 2 u d l P h f ??=?=λρ 只要找出λ、ξ就可计算出流体在管道内流动时的能量损失。 g P Hg )R(ρρ-=?

易知,直管摩擦系数λ仅与Re 和 d ε 有关。因此,只要在实验室规模的装置 上,用水做实验物系,进行试验,确定λ与Re 和 d ε 的关系,然后计算画图即可。 2.局部阻力 局部阻力可以用当量长度法或局部阻力系数法来表示,本实验用局部阻力系数法来表示,即流体通过某一管件或阀门的阻力损失用流体在管路中的动能系数 来表示,用公式表示: 2 2 u P h f ξρ=?= 一般情况下,由于管件和阀门的材料及加工精度不完全相同,每一制造厂及每一批产品的阻力系数是不尽相同的。 四、实验设计 由 22 u d l h f ??=λ和2 2u h f ξ=知,当实验装置确定后,只要改变管路中流体流速u 及流量V ,测定相应的直管阻力压差ΔP 1和局部阻力压差ΔP 2,就能通过计算得到一系列的λ和ξ的值以及相应的Re 的值, 【原始数据】在实验中,我们要测的原始数据有流量V ,用来计算直管阻力压差ΔP 1和局部阻力压差ΔP 2的U 型压差计的左右两边水银柱高度,流体的温度t (据此确定ρ和μ),还有管路的直径d 和直管长度l 。 【测量点】在直管段两端和局部两端各设一对测压点,分别测定ΔP 1 和ΔP 2 ,还要在管路中配置一个流量和温度测试点。 【测试方法】温度用温度计测定,流量我们用涡轮流量计来测定,则 Q=f/ξ 其中,f 表示涡轮流量计的转子频率,其值由数显仪表显示;ξ为涡轮流量计的仪表系数;Q 为流量,单位L/s 。 五、实验装置流程及说明 主要设备和部件:离心泵,循环水箱,涡轮流量计,阀门,直管及管件,玻

流动阻力及阻力损失计算方法

29 第五节 阻力损失 1-5-1 两种阻力损失 直管阻力和局部阻力 化工管路主要由两部分组成:一种是直管, 另一种是弯头、三通、阀门等各种管件。无论是直管或管件都对流动有一定的阻力, 消耗一定的机械能。直管造成的机械能损失称为直管阻力损失(或称沿程阻力损失);管件造成的机械能损失称为局部阻力损失。 对阻力损失作此划分是因为两种不同阻力损失起因于不同的外部条件,也为了工程计算及研究的方便, 但这并不意味着两者有质的不同。此外, 应注意将直管阻力损失与固体表面间的摩擦损失相区别。固体摩擦仅发生在接触的外表面, 而直管阻力损失发生在流体内部, 紧贴管壁的流体 层与管壁之间并没有相对滑动。 图1-33 阻力损失 阻力损失表现为流体势能的降低 图1-33表示流体在均匀直管中作定态流动, u 1=u 2。截面1、2之间未加入机械能, h e =0。由机械能衡算式(1-42)可知: ρρρ2 12211 P P -=???? ??+-???? ??+=g z p g z p h f (1-71) 由此可知, 对于通常的管路,无论是直管阻力或是局部阻力, 也不论是层流或湍流, 阻力损失均主要表现为流体势能的降低, 即ρ/P ?。该式同时表明, 只有水平管道, 才能以p ?(即p 1-p 2)代替P ?以表达阻力损失。 层流时直管阻力损失 流体在直管中作层流流动时, 因阻力损失造成的势能差可直接由式(1-68)求出: 2 32d lu μ= ?P (1-72) 此式称为泊稷叶(Poiseuille)方程。层流阻力损失遂为: 2 32d lu h f ρμ= (1-73) 1-5-2 湍流时直管阻力损失的实验研究方法 层流时阻力损失的计算式是由理论推导得到的。湍流时由于情况复杂得多,未能得出理论式,但可以通过实验研究, 获得经验的计算式。这种实验研究方法是化工中常用的方法。因此本节通过湍流时直管阻力损失的实验研究, 对此法作介绍。实验研究的基本步骤如下: (1) 析因实验──寻找影响过程的主要因素 对所研究的过程作初步的实验和经验的归纳, 尽可能地列出影响过程的主要因素 对于湍流时直管阻力损失h f , 经分析和初步实验获知诸影响因素为: 流体性质:密度ρ、粘度μ; 流动的几何尺寸:管径d 、管长l 、管壁粗糙度ε (管内壁表面高低不平); 流动条件:流速u ; 于是待求的关系式应为:

流体流动阻力的测定实验报告

银纳米粒子制备及光谱和电化学性能表征 - 1 - 流体流动阻力的测定 王晓鸽 一、实验目的 1. 掌握测定流体流经直管、管件和阀门时阻力损失的实验方法。 2. 测定直管摩擦系数λ与雷诺准数Re 的关系,验证在一般湍流区λ与Re 的关系曲线。 3. 测定流体流经管件、阀门时的局部阻力系数ξ。 4. 学会流量计和压差计的使用方法。 5. 识辨组成管路的各种管件、阀门,并了解其作用。 二、实验原理 流体通过由直管、管件(如三通和弯头等)和阀门等组成的管路系统时,由于粘性剪应力和涡流应力的存在,要损失一定的机械能。流体流经直管时所造成机械能损失称为直管阻力损失。流体通过管件、阀门时因流体运动方向和速度大小改变所引起的机械能损失称为局部阻力损失。 1.直管阻力摩擦系数 的测定 流体在水平等径直管中稳定流动时,阻力损失为: 即, 式中: —直管阻力摩擦系数,无因次; —直管内径, ; —流体流经 米直管的压力降, ; —单位质量流体流经 米直管的机械能损失, ;

—流体密度,; —直管长度,; —流体在管内流动的平均流速,。 层流流时, 湍流时是雷诺准数和相对粗糙度的函数,须由实验确定。 欲测定,需确定、,测定、、、等参数。、为装置参数(装置参数表格中给出),、通过测定流体温度,再查有关手册而得,通过测定流体流量,再由管径计算得到。可用型管、倒置型管、测压直管等液柱压差计测定,或采用差压变送器和二次仪表显示。求取和后,再将和标绘在双对数坐标图上。 2.局部阻力系数的测定 局部阻力损失通常有两种表示方法,即当量长度法和阻力系数法。本实验采用阻力系数法。 流体通过某一管件或阀门时的机械能损失表示为流体在小管径内流动时平均动能的某一倍数,局部阻力的这种计算方法,称为阻力系数法。即: 因此, 式中:—局部阻力系数,无因次; -局部阻力压强降,;(本装置中,所测得的压降应扣除两测压口间直管段的压降,直管段的压降由直管阻力实验结果求取。)—流体密度,; —流体在管内流动的平均流速,。 根据连接阀门两端管径,流体密度,流体温度(查流体物性、),

管道流体阻力的测定‘

管道流体阻力的测定 一.实验目的 1. 掌握测定流体流动阻力的一般实验方法; 2. 测定直管摩擦系数λ及管件的局部阻力系数ξ; 3. 验证在一般里湍流区内λ与Re 的关系曲线(ξ/d 为定值)。 二.实验装置 图1 实验装置图 1、本实验有" 2 11、" 1各二套装置,每套装置上设有二根测试用的管路,流体(水)流量用孔板 或文氏管流量计测量,由管路出口处的调节阀5调节其流量。 2、管路上设置三组U型差压计,分别用来测定流量、直管阻力和管件局部阻力相应的静压差,从测压孔引出的高低压管间有平衡阀相连,其连接情况及平衡阀的安装位置见图c 。差压计指示液有水银和四氯化碳。 三.基本原理和方法 不可压缩性流体在直管内作稳定流动时,由于粘滞性而产生摩擦阻力,即直管阻力。流体在流经变径、弯管、阀门等管件时,由于流速及其方向的变化而产生局部阻力。在湍流状态下,管壁的粗糙度也影响流体阻力,通常流体阻力用流体的压头损失H f 或压力降△p 表示,并可用实验方法直接测定。 1、直管阻力H f 及直管摩擦系数λ 直管阻力H f 及直管摩擦系数λ的关系为 2 2 1u d l H f ??=λ [J/kg ] (1) 式中:1l ——直管的测试长度 [m ];d ——测试管的内径 [m ]; u ——管内流体流速 [m /s ]。 流体以一定的速度u 经过内径为d ,长度为l 1的直管所产生的直管阻力H f 可用U型差压计测得,

若已测得的差压计读数为R f (cmccl 4)。根据柏努利方程(0,02 2 =?=?z u )及流体静力学原理可得: g R g R p H f f O H O H ccl O H f ?=???-=?= -006.01022 2 4 2 ρρρρ [J/kg ] (2) 式中:g =9.8072 /s m 流体的流速u 可由孔板或文氏管流量计两边引出的差压计读数R(cm Hg ),按下式求得: n aR u = [m /s ] (3) 其中:"1装置:a =0.4166 n=0.5016 "2装置:a =0.4309 n=0.4896 "3装置:a =0.3621 n=0.5058 "4装置:a =0.3638 n=0.5029 于是由式(1),(2),(3)可得n f f R u l g dR u l dH 2 12 1012.02?= = λ (4) 又已知雷诺数 μ ρ du = Re (5) 式中:ρ——流体(水)的密度 [kg/3 m ]; μ——流体(水)的粘度 [Pas]。 若测得流体的操作温度t ,查取ρ、μ,再根据一对 u f H -值,由式(4),(5)便可求得一对Re -λ值,因而,在不同流速下,可得到一系列Re -λ值,标绘在双对数坐标纸上,即可得到Re -λ关系曲线。 2、局部阻力H ’f 与局部阻力系数ζ; 局部阻力H ’f 与局部阻力系数ζ的关系为: [J/kg] (6) 管件的局部阻力也可由U 型差压计测取,但因管件所引起的流速大小和方向的变化而产生旋涡,需要在相当长的管道内才能消除,故只能先测定包括被测管件在内的一段直管l 2的总阻力∑f H ,然 后减去这一段直管l 2的直管阻力H f1,就可得到管件的局部阻力H ’f 。 1 2 1' l l H H H H H f f f f f ? -=-= ∑∑ (7) 若已测得包括管件在内的压差读数为R ’f (cmHg ),利用式(2)可得: g R H f f ?=∑'126.0 [J/kg] 于是由式(3),(6),(7)得

管道流动阻力的计算

流体在管道中流动,其流动阻力包括有: (1)(1)直管阻力:流体流经直管段时,由于克服流体的粘滞性及与管内壁间的磨擦所产生的阻力。它存在于沿流动方向的整个长度上,故也称沿程直管流动阻力。记为。 (2)(2)局部阻力:流体流经异形管或管件(如阀门、弯头、三通等)时,由于流动发生骤然变化引起涡流所产生的能量损失。它仅存在流体流动的某一局部范围办。记为。 因此,柏努利方程中项应为: 说明:流动阻力可用不同的方法表示, ——1kg质量流体流动时所损失的机械能,单位为J/kg; ——1N重量流体流动时所损失的机械能,单位为m; ——1体积流体流动时所损失的机械能,单位为Pa或。 1. 1.直管段阻力(h fz)的计算 流体流经直管段时,流动阻力可依下述公式计算: [J/kg] 或 [m] [pa] 式中,——磨擦阻力系数; l——直管的长度(m); d——直管内直径(m); ——流体密度;u——流体在直管段内的流速(m/s) 2.局部阻力(h fJ)的计算 局部阻力的计算可采用阻力系数法或当量长度法进行。

1)1)阻力系数法:将液体克服局部阻力所产生的能量损失折合为表示其动能若干倍的方法。其计算表达式可写出为: [J/kg] (a) 或 [m] (b) [pa] [pa] (c 其中,称为局部阻力系数,通常由实验测定。下面列举几种常用的局部阻力系 数的求法。 *突然扩大与突然缩小 管路由于直径改变而突然扩大或缩小,所产生的能量损失按(b)或(c)式计算。式中的流速u均以小管的流速为准,局部阻力系数可根据小管与大管的截面积之比从管件与阀门当量长度共线图曲线上查得。 *进口与出口 流体自容器进入管内,可看作很大的截面A1突然进入很小的截面A2,即A2 /A1约等于0。根据突然扩大与突然缩小的局部阻力系数图的曲线(b),查出局部阻力系数=,这种损失常称为进口损失,相应的系数又称为进口阻力系数。若管口圆滑或喇叭状,则局部阻力系数相应减少,约为~。 流体自管子进入容器或从管子直接排放到管外空间,可看作很小的截面A1突然进入很大的截面A2截面即,A1/A2约等于0 ,从突然扩大与突然缩小的局部阻力系数图中曲线(a)可以查出局部阻力系数=1,这种损失常称为出口损失,相应的阻力系数又称为出口阻力系数。

相关主题
文本预览
相关文档 最新文档