当前位置:文档之家› 平行流冷凝器的设计计算

平行流冷凝器的设计计算

平行流冷凝器的设计计算
平行流冷凝器的设计计算

10.16638/https://www.doczj.com/doc/b35319959.html,ki.1671-7988.2017.10.008

平行流冷凝器的设计计算

韩光杰1,梁永林2,陶莹1,史正玉1

(1.安徽江淮汽车集团股份有限公司,安徽合肥230601;2.河南速达电动汽车科技有限公司,

河南三门峡472000)

摘要:文章以某开发车型为基础,设计以R134a为制冷剂的空气冷却式冷凝器。文中详细介绍了冷凝器的设计步骤,根据传热方程,计算出冷凝器的能力和迎风面积,从而进一步推算出冷凝器的实际面积和风阻,选择合适的冷凝器。

关键词:平行流;空气流量;传热系数;传热面积

中图分类号:U461.9 文献标识码:A 文章编号:1671-7988 (2017)10-20-03

Design and Calculation of Parallel Flow Condenser

Han Guangjie1, Liang Yonglin2, Tao Ying2, Shi Zhengyu2

(1. The Center of Technology of Jianghuai Automobile Co. Ltd., Anhui Hefei 230601;2. Henan Suda electric

Technology Co. Ltd., Henan Sanmenxia 472000)

Abstract: In this paper, cased on a development model, the design of R134a ail cooling condenser. The design procedure of the condenser is introduced in detail, and the heat transfer capacity and the windward area ara calculated according to the heat transfer equation.In order to calculate the condenser area and the actual drag,select the appropriate condenser. Keywords: Parallel Flow; Air flow; Heat transfer coefficient; Heat transfer area

CLC NO.: U461.9 Document Code: A Article ID: 1671-7988 (2017)10-20-03

前言

冷凝器的作用是使由压缩机排出的高温高压制冷剂与冷凝器外部的空气进行热交换,将高温高压气态制冷剂转变为高温高压的液态制冷剂,并把热量散发到车外环境中。平行流式冷凝器是目前汽车上使用最广泛的结构型式,由扁管和散热翅片组成。与其他冷凝器相比,单位体积热换能力,可提高30%。

1、冷凝器设计计算步骤

1.1 计算由整车制冷量决定的冷凝器热负荷:Q c=Q e+P i

式中Q c:冷凝器的热负荷(W);Q e:整车制冷量,通常指设计工况下的制冷量(W);P i:压缩机消耗的指示功率(W)。

也可以采用如下简便形式:Q c=mQ e

式中m—负荷系数,汽车空调一般选择m=1.4

2.2 计算冷凝器的换热量(传热方程):Q c=KA oΔt m

式中K:传热系数[W/( m2·K)];A o:以外表面为基准计算的传热面积(m2);Δt m:制冷剂和冷却介质(空气)的热传平均温差(K)。

2、冷凝器计算示例

已知某车型整车制冷量为5809W,故要求换热量Q c=1.4×5809w=8133w。冷凝器有5℃过冷,已知压缩机在过冷度t e =5℃及冷凝温度t c=60℃时排气温度t d=85℃,空气进风温度t a1 =40℃。

作者简介:韩光杰,男,(1987.12-),电气设计主管,就职于安徽江淮汽车股份有限公司技术中心,从事汽车空调及线束系统的开发设计工作。

汽车空调用平行流冷凝器标准

Q 江阴亚成制冷设备有限公司企业标准 Q/320281AKK02-2007 汽车空调用平行流冷凝器 2007-12-17发布2007-12-30实施江阴亚成制冷设备有限公司发布

前言 江阴亚成制冷设备有限公司生产的汽车空调用平行流冷凝器,目前尚无国家标准和行业标准,为保证产品质量,特制定企业标准Q/32028AKK02-2007《汽车空调用平行流冷凝器》作为企业组织生产、监督检查、交货验收的依据。 本标准的编写格式符合GB/T 1.1-2000和GB/T 1.2-2002的规定。 本标准的附录A、附录B、附录C为规范性附录。 本标准由江阴亚成制冷设备有限公司负责起草。 本标准由江阴亚成制冷设备有限公司负责批准。 本标准主要起草人:马恒南何军杰郭胜

汽车空调用平行流冷凝器 1 范围 本标准规定了汽车空调用铝制平行流冷凝器的产品分类要求、试验方法、检验规则、标志、包装、贮存等。 本标准适用于本公司生产的各种规格的汽车空调用铝制平行流冷凝器(以下简称冷凝器)。 2 规范性引用文件 下列文件所包含的条款,通过在本文件中引用而构成本文件的条款。凡是注日期的引用文件,其随后所 有的修改单(不包括勘误的内容)或修订版均不适用于本文件,然而,鼓励根据本文件达成协议的各方研 究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本文件。 QC/T 657-2000 汽车空调制冷装置试验方法 JIS D 1601-1995 汽车零部件振动试验方法 JIS Z 2371-2000 盐雾试验试验方法 3 术语 3.1冷凝器标准方位 扁管沿水平方向、产品迎风面垂直于水平的位置。冷凝器的名义换热量是在这一位置上确立和测量。 3.2 系列产品 冷凝器所用的扁管材料、结构、尺寸相同,且翅片的材料、结构、尺寸相同的产品。 4产品分类 4.1 产品的型式 产品的型式为铝制平行流式,由挤制铝扁管、集流管和翅片钎焊而成。 4.2型号 4.2.1型号表示法 改型序号,用大写字母、、 表示。 顺序号。用阿拉伯数字1、2、3、 等表示。 扁管厚度为2的可以不标。 翅片高度。 扁管宽度。 平行流冷凝器代号。 4.2.2标注示例 产品扁管宽度为18mm,翅片高度为8 mm,扁管厚度为2 mm,顺序号为1,原设计的冷凝器,可标注 为PL18×8-1。Q/320281AKK02-2007 产品扁管宽度为17mm,翅片高度为9.1 mm,扁管厚度为1.9mm,顺序号为1,第二次改进设计的冷 凝器,可标注为PL17×9.1×1.9-1B。Q/320281AKK02-2007

HTFS冷凝器蒸发器设计

干式蒸发器设计与校核 I.系统参数确定 利用SolKane对系统参数进行设计: 输入蒸发温度、冷凝温度,过热度设定为4℃,过热度太大,会引起蒸发器设计面积过大;蒸发器压降设定为0.5bar,过冷度设定在2.0℃,冷凝器压降为0.3bar。

II.HTFS 设计 1.Problem Definition 项目定义 ⑴Application Options -应用选型 冷侧与热侧的Application 应用会自动根据后面的过程参数中进出口干度调整,在选择时可保持默认状态。。 ⑵Process Data-过程参数 类别 污垢系数/m 2·K·W -1 类别 污垢系数/m 2·K·W -1 远海海水 0.000086 处理过的冷水塔循环用水 0.00017 近海海水 0.00017 经处理的工业循环用水 0.00017 城市生活用水 0.00017 清净河水 0.00034 自来水/井水/湖水 0.00017 未经处理的工业循环用水 0.00043 混浊河水 0.0005 参考换热器设计手册 对于冷凝器和蒸发器来说,因管内外传热系数均很大,所以污垢系数对换热器的面积影响非常大。 估计压降 容许压降

2.Property Data-物性参数 ⑴Hot Stream Compositions 热侧流体组成 ⑵Property Methods 物性方法 第一步:Search Databank 从数据库搜 索组分 删除组分

⑶Search Chemical Components 加入组分 ⑷Hot Stream Properties 生成物性 ⑷冷侧流体物性参数生成操作与热侧流体一样。 第四步:Restore Defaults 重置物性

过冷式微通道平行流冷凝器数值模型

文章编号:CAR137 过冷式微通道平行流冷凝器数值模型 赵宇祁照岗陈江平 (上海交通大学制冷与低温工程研究所,上海,200240) 摘 要本文总结了不同的微通道管内制冷剂冷凝换热与压降经验关联式,通过理论与实验分析选定最为合适的关联式建立了过冷式微通道平行流冷凝器数值模型。通过实验验证,模型计算换热量误差在±5%以内,空气侧压降误差在±4Pa以内,制冷剂侧压降误差在-30~40kPa之间。本文所建立的过冷式微通道平行流冷凝器模型精度满足换热器设计要求。 关键词过冷式冷凝器数值仿真关联式 NUMERICAL MODEL FOR THE SUB-COOLING MICROCHANNEL PARALLEL FLOW CONDENSER Zhao Yu Qi Zhaogang Chen Jiangping (Institute of Refrigeration and Cryogenics, Shanghai Jiaotong University, Shanghai 200240, China) Abstract This paper compared different pressure drop and heat transfer correlations in the minichannel and microchannel, choose the most suitable ones to develop the simulation model for sub-cooling condenser. The experiment result had a good agreement with the simulation model. The deviation of the condenser heat rejection is under ±5%, the condenser air side pressure drop deviation is ±4Pa and the refrigerant side pressure drop deviation is -30~40kPa. The simulation model for sub-cooling condenser developed in this paper could satisfy the requirement of heat exchanger design. Keywords Sub-cooling condenser Numerical simulation Correlation 0 引言 微通道换热器在车用空调系统中应用广泛,近年来在家用和商用空调中也得到大力推广[1-3]。其中过冷式平行流冷凝器(sub-cooling parallel flow condenser)为近几年来提出的较新型的设计。所谓过冷式平行流冷凝器,是将储液罐集成在传统冷凝器中,使储液罐后还有1到2个冷凝器流程(如图1),这样有利于保证制冷系统在不同工况下均有一定过冷度,从而提高系统效率,同时减小了储液器体积,有利于减少制冷剂充注量。与传统冷凝器相比,制冷剂在过冷式冷凝器内的流动和换热特性发生较大变化,本文旨在针对过冷式冷凝器的结构特点,建立可用于换热器设计和优化的数值模型。 作者简介:赵宇(1985-),男,博士生。 图1 过冷式平行流冷凝器结构 1 过冷式冷凝器数学模型 冷凝器中的制冷剂包括过热区、两相区和过冷区3种状态,本文根据过冷式平行流冷凝器的流动和传热特性,在NIST制冷剂热物理性质计算程序的基础上(NIST RefProp V7.0),采用分布参数方法将换热器划分为若干计算单元,针对过热、两相和

套管冷凝器设计计算方法

套管冷凝器的设计方法 以R22水冷柜式空调机组L130S/B为例,机组名义制冷量130Kw,套管冷凝器采用低翅片外螺纹铜管,管外径φ19.05mm,无缝钢管外径ф28mm,冷凝器三侧进水,水量qv=24.4m3/h,单根外螺纹传热管总长4.386m,无缝钢管长度4.226m,冷凝温度tk=45℃,进水温度t w1=30℃,进出水温差5℃,试设计该套管冷凝器的传热用面积 假设冷却水在此无缝钢管内的流速w f=2.0m/s,冷却水平均温度t f,冷却水温升t w2-t w1=1.15Q0/q v*ρ =1.15x130x3600/24.4x1000x4.186 =5.26℃ 冷却水平均温度t f=1/2(tw1+tw2)=32.6℃ 查水在32.6℃下的物性参数: νf=0.732x10-6m2/s,Per=4.87,ρf=994kg/m3 λf=623x10-3W/(mK),c p=41868J/(kgK) μw=6.83x10-6Pas 冷却水在管内的雷诺系数,外螺纹铜管内径Di=0.0155m Re f=w f*Di/νf=2.0*0.0155/0.732*10-6 =42349 计算冷凝管内水侧表面传热系数σ1 σ1=C1λf/Di* Ref0.8* Per1/3(uf/uw) 0.14

=0.068*0.623*42349*4.871/3(7.27/6.83)0.14/0.0155 =22473(W/m2K) 管内阻力计算,冷凝器中单程阻力为: ΔP1=ζL/Di*ρω2/2 =0.0421x4.386/0.0155x994x2.02/2 =23.68kPa R22冷凝侧的表面传热系数σ2的计算查传热管在冷凝时的单位管长表面传热系数σ2'=1700W/m2K和每米管长外表面积Ac=0.0597m2/m,得出以管子外径为基础的表面传热系数为σ2: σ2=σ2'/Ac=1700/0.0597=28476W/m2.K 传热管以外表面面积为基础的传热系数K为: 1/K=β/αi+βri+1/σ2 1/K=1.229/22473+2.67x1x10-4+1/28476 =2857W/m2K 其中β=D0/D i=19.05/15.5=1.229 冷凝器传热温差的计算: ΔTk=(tc-tj)/Ln[(tk-tj)/(tk-tc)] =(35-30)/Ln[(45-30)/(45-35)] =12.5℃ 所需ф=19.05mm的内螺纹铜管支数N为:

蒸发器-冷凝器-设计

Q=KFΔtm式中:Q―热流量;K―总传热系数;F―换热面积;Δtm―冷热流体的平均温差。 设计示例: 设计一个R22,10HP,制冷量为28kW 的系统的蒸发器和冷凝器,设计参数如下: 蒸发温度t0,C 7 管内径di,mm 8.82 冷凝温度tk,C 54 管外径do,mm 9.52 蒸发器回风温度t1,C 27C/19 管间距H1,mm 25.4 蒸发器出风温度t2,C 17/70% 排间距H2,mm 22 冷凝器回风温度t1,C 35 蒸发器翅片间距df,mm 2.1 冷凝器出风温度t2,C 45 蒸发器翅片间距df,,mm 1.9 过冷度tsc,C 5 翅片厚度δ,mm 0.115 过热度tsh,C 5 蒸发器风量,m3/h 5600 蒸发器迎面风速,m/s 冷凝器风量,m3/h 10400 冷凝器迎面风速,m/s 蒸发器的设计: Δtm=(Δtmax—Δtmin)/ln(Δtmax/Δtmin)=((27-7)-(17-7))/ln((27-7)/(17-7))=14.4C 选取K=40 W/(m2.C) Q=KFΔtm (W) F=Q/KΔt=28000/(40*14.4)=48.6m2 计算所选翅片管单位长度的外表面积: 外表面铜管面积: S1=3.14*(do+δ*2)*(df- δ)/df=3.14*(9.52+0.115*2)*(2.1-0.115)/2.1/1000=0.0289m2 外表面翅片面积: S2=(H1*H2-(3.14*(do+δ *2)^2/4))/df/1000=(25.4*22-(3.14*(9.52+0.115*2)^2/4))/10^3/2.1=0.4611m2 St=S1+S2=0.0289+0.4611=0.49m2 所需管路总长度: L=F/St=48.6/0.49=99.18m 方案1: 可以先假设每一回路到12m, N’=L/12=8.26, 取整为8,设为3 排,每排取每4 行一个回路, 那么单排为8*4=32 根,高度为32*25.4=812.8mm。3 排有N=96 根,那单根长度L’=99.18/96=1.03m, L’/H=1.23。 方案2: 可以先假设每一回路到10m, N’=L/10=9.9, 取整为10,设为3 排,每排取每2 行一个回路, 那么单排为10*2=20 根,高度为20*25.4=508mm。3 排有N=60 根,那单根长度L’=99.18/60=1.653m, L’/H=3.24。 冷凝器的设计: Δtm=(Δtmax—Δtmin)/ln(Δtmax/Δtmin)=((54-35)-(54-45))/ln((54-35)/(54-45))=13.38C

R404A和R410A应用于平行流冷凝器的模拟分析比较

R404A和R410A应用于平行流冷凝器 的模拟分析比较 阚 杰1) 郝 亮1) 李 涛1) 李 强1) 袁秀玲1) 董晓俊2) 1)(西安交通大学) 2)(大冷王运输制冷有限公司亚洲技术中心) 摘 要 采用分布参数法对平行流冷凝器建立数学模型,对目前广泛使用的制冷剂R134a和低温制冷剂R404A和R410A在平行流冷凝器中的换热和流动性能进行模拟计算和分析比较。分别在相同和不同工况下,比较3种制冷剂的换热系数及压降等换热和流动性能参数。结果表明,在采用平行流冷凝器的汽车空调工况范围内,R410A和R404A的流动和传热性能均优于R134a,更适宜用于汽车空调用平行流冷凝器。 关键词 平行流冷凝器 R134a R404A R410A 换热系数 压降 The simulation analysis and comparison of R404A and R410A in parallel flow type condenser Kan Jie1) H ao Liang1) Li T ao1) Li Q iang1) Yuan Xiuling1) Dong Xiaojun2) 1)(Xi an Jiaotong U niversity) 2)(Technique Center of T hermo King T ransport Refrigeration Co.,Ltd.In Asia) ABSTRACT Derives the m athematic model of distributed parameter for parallel flow type condenser.Carries out the simulation and analysis of the heat transfer and the flow characteris tics using the refrigerant R134a,the new refrigerant m ix ture R404A and R410A in parallel flow type https://www.doczj.com/doc/b35319959.html, pares the heat transfer and flow parameters(heat transfer coefficient and the pressure drop etc.)for these three refrigerants under both the same and different oper ating conditions.The results show that under the operating conditions for the automobile air conditioning,R410A and R404A have better flow and heat transfer performances than R134a. R410is even better than R404A in the heat transfer and flow performances,so as the new re frigerant mix tures using in the m iddle and low temperatures,R410A is more suitable for using in the parallel flow type condenser. KEY W ORDS parallel flow type condenser;R134a;R404A;R410A;heat transfer coeffi cient;pressure drop 平行流冷凝器是在汽车空调工质替代的发展过程中产生的。它是一种紧凑式换热器,主要由多孔扁管和波纹型百叶窗翅片构成,与管片式和管带式冷凝器相比有结构紧凑、流动阻力小、换热效率高等优点。平行流冷凝器的扁管是每根截断的,两端有集流管,依据集流管分不分段,又可分为多元平行流式和单元平行流式。 目前汽车空调制冷系统所使用的制冷剂R12,由于其ODP值和G WP值过大,已被国际上列为禁用的CFC物质,R22作为短期替代工质很快也将被禁用。R134a作为一种较为理想的长期替代工质,已在很多制冷设备中得到广泛应用。但 第7卷 第1期 2007年2月 制冷与空调 REFRI GERA T ION AN D AIR-CON DIT I ON ING 56 60 收稿日期:2005 09 29 通讯作者:阚杰,Email:kj28403@stu.x j https://www.doczj.com/doc/b35319959.html,

升膜蒸发器设计计算说明书

《食品工程原理》课程设计 目录 一《食品工程原理》课程设计任务书 (1) (1) ........................................................................................................................................... .设计课题 (2) (2) ........................................................................................................................................... .设计条件 (2) (3) ........................................................................................................................................... .设计要求 (2) (4) ........................................................................................................................................... .设计意义 (2) (5) ........................................................................................................................................... .主要参考资料.. (3) 二设计方案的确定 (3) 三设计计算 (4) 3.1. ......................................................................................................................................... 总蒸发水量 (4) 3.2. ......................................................................................................................................... 加热面积初算. (4) ( 1)估算各效浓度 (4) ( 2)沸点的初算 (4) ( 3)温度差的计算 (5) (4)计算两效蒸发水量V,V2及加热蒸汽的消耗量S (6) (5)总传热系数K的计算 (7) ( 6)分配有效温度差,计算传热面积 (9) 3.3. ............................................................................................................................................ 重算两效传热面积.. (10) ( 1)第一次重算 (10) 3.4 计算结果 (11) 四蒸发器主要工艺尺寸的计算 (13)

全铝钎焊式平行流冷凝器性能对比实验 格力

文章编号:CAR155 全铝钎焊式平行流冷凝器性能对比实验 梁祥飞邢淑敏林华和庄嵘 (珠海格力电器股份有限公司制冷技术研究院,珠海 519070) 摘 要对六种全铝钎焊式平行冷凝器进行了冷凝换热性能对比试验,试验结果与双排φ9.52翅片管换热器进行了对比,得到风阻、冷凝能力和综合冷凝能力对比实验曲线。对比试验结果表明:全铝钎焊式平行流冷凝器具有较高的综合冷凝性能和单位体积换热量,部分规格的平行流冷凝器的单位迎风面积冷凝能力高于对比用翅片管换热器。 关键词平行流冷凝器冷凝换热MPE管 EXPERIMENTAL INVESTIGATION ON CONDENSATION PERFORMANCE OF BRAZED TYPE PARALLEL FLOW CONDENSERS Liang Xiangfei Xing Shumin Lin Huahe Zhuang Rong (Refrigeration Institute of Gree Electric Appliances Inc. of Zhuhai, Zhuhai 519070) Abstract Condensation heat transfer performance of six brazed type parallel flow condensers (PFHXs) were investigated, and were in comparison with a double-row φ9.52 fin-and-tube heat exchanger (CTHX) under the same testing condition. Pressure drop of airside, condensation capacity and comprehensive condensation performance were plotted in curves for comparison. The test results showed that: PFHXs had the characteristics of high comprehensive condensation performance and high condensation capacity per unit volume, the condensation capacity per unit face area of there PFHXs was higher than or equivalent to that of the CTHX under the same testing condition. Keywords Parallel flow condenser Condensation heat transfer MPE tube 0 前言 全铝钎焊式平行流冷凝器因其结构紧凑、换热效率高、内容积小、重量轻等众多优点,近年来备受国内外HV AC&R行业内人士关注。该种换热器的应用始于汽车空调,目前已逐步进入国内外家用/商用空调市场,因此也是近几年国内外空调企业、高校研究所的研究热点。 全铝钎焊式平行流冷凝器整体结构如图1(a)所示,主要由集管、多孔挤压扁管(MPE)和翅片组成,所有材质均为铝合金,整体组装后采用真空钎焊炉或充氮保护钎焊炉(CAB)整体钎焊而成。翅片外观通常为波浪形,片型一般为百叶窗,翅片与MPE管接触处焊接后为金属键链接,无接触热阻,图2是翅片与MPE管钎焊后焊合部位的局部放大图。MPE管横截面有多个内孔,内孔形状有矩 作者简介:梁祥飞(1976- ),男,硕士,工程师。形、圆形、三角形等,内孔水力直径一般在0.5~1.6mm。MPE管横截面高度一般在1~3mm,宽度则在12~26mm。波浪形翅片高度称为波高,一般在5~10mm,两相邻顶点之间的距离称为波距,一般在2~3mm,翅片厚度则在0.05~0.1mm。 本文对六种不同规格的平行流冷凝器进行了冷凝换热对比试验,同时将实验结果与现行双排φ9.52翅片管换热器进行了对比,得到风阻、冷凝能力和综合冷凝能力等对比实验曲线。对比试验结果表明:部分规格的平行流冷凝器在相同风速下的单位迎风面积冷凝能力高于对比用翅片管换热器。 集 管 (a)整体

冷凝器设计计算资料

冷凝器设计计算

冷凝器换热计算 第一部分:设计计算一、设计计算流程图

二、 设计计算(以HLR45S 为例) 1、已知参数 换热参数: 冷凝负荷:Q k =61000W 冷凝温度:t k =50℃ 环境风温度:t a1=35℃ 冷凝器结构参数: 铜管排列方式:正三角形叉排 翅片型式:开窗片,亲水膜 铜管型式:光管 铜管水平间距:S 1=25.4mm 铜管竖直方向间距:S 2=22mm 紫铜光管外径:d 0=9.52mm 铜管厚度:δt =0.35mm 翅片厚度:δf =0.115mm 翅片间距:S f =1.8mm 冷凝器尺寸参数 排数:N C =3排 每排管数:N B =52排 2、计算过程 1)冷凝器的几何参数计算 翅片管外径:f b d d δ20+== 9.75 mm

铜管内径:t i d d δ-=0=8.82 mm 当量直径:) ()(2))((4411f f b f f b eq S d S S d S U A d δδ-+---= ==3.04 mm 单位长度翅片面积:32 2110/)4 (2-?- =f b f S d S S f π=0.537 m 2/m 单位长度翅片间管外表面积:310/)(-?-=f f f b b s S d f δπ=0.0286 m 2/m 单位长度翅片管总面积:b f t f f f +==0.56666 m 2/m 翅片管肋化系数:i t i t d f f f πβ===20.46 2)空气侧换热系数 迎面风速假定:f w =2.6 m/s 最窄截面处风速:))(/(11max b f f f f d S S w S S w --=δ=4.5 m/s 冷凝器空气入口温度为:t a1=35℃ 取出冷凝器时的温度为:t a2=43℃ 确定空气物性的温度为:2/)(21a a m t t t +==39℃ 在tm =39℃下,空气热物性: v f =17.5×10-6m 2/s ,λf =0.0264W/mK ,ρf =1.0955kg/m 3,C Pa =1.103kJ/(kg*℃) 空气侧的雷诺数:f eq f v d w /Re max = =783.7 由《制冷原理与设备》中公式(7-36),空气侧换热系数 m eq eq n f f O d d C ??? ? ??= γλαRe '=50.3 W/m 2K 其中: 362)( 103)( 000425.0)( 02315.0518.0eq eq eq d d d A γ γ γ -?-+-==0.1852

冷凝器的选型及工艺计算毕业设计

2.105m2冷凝器的选型及工艺设计 2.1冷凝器设计示列 已知一卧式固定管板式换热器的工艺条件如下:换热器工程直径为1000mm,换热管长度3000mm,换热面积105m2;壳程价质为二次蒸汽,轻微腐蚀,操作压力20Kpa(绝压),工作温度60C0,;管程价质为冷却水,操作压力0.4Mpa,工作度38C0,双管程,换热管规格为Φ25mm×2mm,换热管间距36mm,数量545 32 ~ 根,材料0Cr8Ni9;蒸汽进口管Φ377mm×8mm,冷凝水出口管Φ57mm,冷却水进,出口管均为Φ219mm×6mm。 2.2冷凝器结构设计 ①材料选择。根据换热器的工作状况及价质特性,壳程选用0Cr18Ni9,管程选用Q235B,管板选用0Cr18Ni9。 ②换热管。换热管是换热器的元件之一,置于筒体之内,用于两介质之间热量的交换。选用较高等级换热管,管束为I级管束。 换热管的选择 排列方式:正三角形、正方形直列和错列排列。 图2-1换热管排列方式 各种排列方式的优点: 正方形排列:易清洗,但给热效果差; 正方形错列:可提高给热系数; 等边三角形:排列紧凑,管外湍流程度高,给热系数大。 换热管与管板的连接方式有强度焊、强度胀以及胀焊并用。 强度胀接主要适用于设计压力小≤4.0Mpa;设计温度≤300℃;操作中无剧烈振动、无过大的温度波动及无明显应力腐蚀等场合。 除了有较大振动及有缝隙腐蚀的场合,强度焊接只要材料可焊性好,它可用于其它任何场合。 胀焊并用主要用于密封性能要求较高;承受振动和疲劳载荷;有缝隙腐蚀;需采用复合管板等的场合。

③管板。管板选用兼作法兰结构,管板密封面选用JB!T4701标准中的突面 密封面。换热管在管板上的排列采用正三角形排列,分程隔板两侧换热管中心距取44mm,实际排列548跟换热管。 ④分成隔板与分程隔板槽。分成隔板厚度10mm,开设Φ6mm泪孔;分成隔板槽宽12mm,深度4mm;垫片材料为石棉橡胶板,厚度为3mm。 ⑤换热管与管板的连接。换热管与管板的连接采用焊接结构,其中L1=2mm,L3=2mm。 ⑥支持板。换热器的壳程为蒸汽冷凝,不需折流板,但考虑到到换热管的支 撑,姑设置支持板。换热管无支撑最大跨距为1850mm,因此换热管至少需要3块儿支持板。本设计采用3块儿支持板,弓形缺口,垂直左右布置,缺口高度为25%筒体内直径。 ⑦拉杆与拉杆孔。选用8根Φ16mm拉杆,拉杆与管板采用用螺纹连接。拉杆两端螺纹为M16拉杆孔深度为24mm. 定距管及拉杆的选择 拉杆常用的结构型式有: a. 拉杆定距管结构,见图4-7-1(a)。此结构适用于换热管外径d≥19mm的管 束且l 2>L a (L a 按表4-5-5规定) b. 拉杆与折流板点焊结构,见图4-7-1(b)。此结构适用于换热管外径d≤14mm 的管束且l 1 ≥d; c. 当管板较薄时,也可采用其他的连接结构。

冷凝器设计计算

冷凝器换热计算 第一部分:设计计算一、设计计算流程图

二、 设计计算(以HLR 45S 为例) 1、已知参数 换热参数: 冷凝负荷:Qk =61000W 冷凝温度:t k =50℃ 环境风温度:t a1=35℃ 冷凝器结构参数: 铜管排列方式:正三角形叉排 翅片型式:开窗片,亲水膜 铜管型式:光管 铜管水平间距:S 1=25.4mm 铜管竖直方向间距:S 2=22m m 紫铜光管外径:d 0=9.52mm 铜管厚度:δt =0。35mm 翅片厚度:δf =0。115m m 翅片间距:S f =1.8mm 冷凝器尺寸参数 排数:N C =3排 每排管数:N B =52排 2、计算过程 1)冷凝器的几何参数计算 翅片管外径:f b d d δ20+== 9。75 mm 铜管内径:t i d d δ-=0=8.82 mm 当量直径:) ()(2))((4411f f b f f b eq S d S S d S U A d δδ-+---===3.04 mm 单位长度翅片面积:32 2110/)4(2-?-=f b f S d S S f π=0.537 m 2/m 单位长度翅片间管外表面积:310/)(-?-=f f f b b s S d f δπ=0.0286 m2/m

单位长度翅片管总面积:b f t f f f +==0。56666 m 2/m 翅片管肋化系数:i t i t d f f f πβ== =20.46 2)空气侧换热系数 迎面风速假定:f w =2.6 m/s 最窄截面处风速:))(/(11max b f f f f d S S w S S w --=δ=4.5 m/s 冷凝器空气入口温度为:t a1=35℃ 取出冷凝器时的温度为:t a2=43℃ 确定空气物性的温度为:2/)(21a a m t t t +==39℃ 在tm =39℃下,空气热物性: v f =17。5×10-6m 2/s,λf =0。0264W /mK ,ρf =1。0955k g/m 3,C Pa =1.103k J/(k g*℃) 空气侧的雷诺数:f eq f v d w /Re max = =783.7 由《制冷原理与设备》中公式(7-36),空气侧换热系数 m eq eq n f f O d d C ???? ??=γλαRe '=50.3 W/m 2K 其中: 362)(103)(000425.0)(02315.0518.0eq eq eq d d d A γγγ -?-+-==0。1852 ????? ??-=1000Re 24.036.1f A C =0.217 eq d n γ0066 .045.0+==0.5931 ? ?1000Re 08.028.0f m +-==-0。217 铜管差排的修正系数为1。1,开窗片的修正系数为1。2,则空气侧换热系数为:(开窗片、波纹片的修正系数有待实验验证) 'o o αα=×1.1×1.2=66.41 W/m 2K

蒸发器的设计计算

蒸发器的设计计算

蒸发器设计计算 已知条件:工质为R22,制冷量kW 3,蒸发温度C t ?=70,进口空气的干球温度为C t a ?=211,湿球温度为C t b ?=5.151,相对湿度为34.56=φ%;出口空气的干球温度为C t a ?=132,湿球温度为C t b ?=1.112,相对湿度为80=φ%;当地大气压力Pa P b 101325=。 (1)蒸发器结构参数选择 选用mm mm 7.010?φ紫铜管,翅片厚度mm f 2.0=δ的铝套片,肋片间距 mm s f 5.2=,管排方式采用正三角排列,垂直于气流方向管间距mm s 251=,沿 气流方向的管排数4=L n ,迎面风速取s m w f /3=。 (2)计算几何参数 翅片为平直套片,考虑套片后的管外径为 mm d d f o b 4.102.02102=?+=+=δ 沿气流方向的管间距为 mm s s 65.21866.02530cos 12=?=?= 沿气流方向套片的长度为 mm s L 6.8665.21442=?== 设计结果为 mm s L 95.892565.2132532=+?=+= 每米管长翅片表面积: f b f s d s s a 100042221? ??? ? ? -?=π ()5.21000 4.10414.36 5.212522??? ? ???-??= m m 23651.0= 每米管长翅片间管子表面积:

f f f b b s s d a ) (δπ-= ()5 .210002.05.24.1014.3? -??= m m 203.0= 每米管长总外表面积: m m a a a b f of 23951.003.03651.0=+=+= 每米管长管内面积: m m d a i i 2027.0)20007.001.0(14.3=?-?==π 每米管长的外表面积: m m d a b b 2003267.00104.014.3=?==π 肋化系数: 63.14027 .03951 .0== = i of a a β 每米管长平均直径的表面积: m m d a m m 2 02983.020086.00104.014.3=?? ? ??+?==π (3)计算空气侧的干表面传热系数 ①空气的物性 空气的平均温度为 C t t t a a f ?=+=+= 172 1321221 空气在下C ?17的物性参数 3215.1m kg f =ρ ()K kg kJ c pf ?=1005 704.0=rf P s m v f 61048.14-?=

平行流冷凝器的设计计算

10.16638/https://www.doczj.com/doc/b35319959.html,ki.1671-7988.2017.10.008 平行流冷凝器的设计计算 韩光杰1,梁永林2,陶莹1,史正玉1 (1.安徽江淮汽车集团股份有限公司,安徽合肥230601;2.河南速达电动汽车科技有限公司, 河南三门峡472000) 摘要:文章以某开发车型为基础,设计以R134a为制冷剂的空气冷却式冷凝器。文中详细介绍了冷凝器的设计步骤,根据传热方程,计算出冷凝器的能力和迎风面积,从而进一步推算出冷凝器的实际面积和风阻,选择合适的冷凝器。 关键词:平行流;空气流量;传热系数;传热面积 中图分类号:U461.9 文献标识码:A 文章编号:1671-7988 (2017)10-20-03 Design and Calculation of Parallel Flow Condenser Han Guangjie1, Liang Yonglin2, Tao Ying2, Shi Zhengyu2 (1. The Center of Technology of Jianghuai Automobile Co. Ltd., Anhui Hefei 230601;2. Henan Suda electric Technology Co. Ltd., Henan Sanmenxia 472000) Abstract: In this paper, cased on a development model, the design of R134a ail cooling condenser. The design procedure of the condenser is introduced in detail, and the heat transfer capacity and the windward area ara calculated according to the heat transfer equation.In order to calculate the condenser area and the actual drag,select the appropriate condenser. Keywords: Parallel Flow; Air flow; Heat transfer coefficient; Heat transfer area CLC NO.: U461.9 Document Code: A Article ID: 1671-7988 (2017)10-20-03 前言 冷凝器的作用是使由压缩机排出的高温高压制冷剂与冷凝器外部的空气进行热交换,将高温高压气态制冷剂转变为高温高压的液态制冷剂,并把热量散发到车外环境中。平行流式冷凝器是目前汽车上使用最广泛的结构型式,由扁管和散热翅片组成。与其他冷凝器相比,单位体积热换能力,可提高30%。 1、冷凝器设计计算步骤 1.1 计算由整车制冷量决定的冷凝器热负荷:Q c=Q e+P i 式中Q c:冷凝器的热负荷(W);Q e:整车制冷量,通常指设计工况下的制冷量(W);P i:压缩机消耗的指示功率(W)。 也可以采用如下简便形式:Q c=mQ e 式中m—负荷系数,汽车空调一般选择m=1.4 2.2 计算冷凝器的换热量(传热方程):Q c=KA oΔt m 式中K:传热系数[W/( m2·K)];A o:以外表面为基准计算的传热面积(m2);Δt m:制冷剂和冷却介质(空气)的热传平均温差(K)。 2、冷凝器计算示例 已知某车型整车制冷量为5809W,故要求换热量Q c=1.4×5809w=8133w。冷凝器有5℃过冷,已知压缩机在过冷度t e =5℃及冷凝温度t c=60℃时排气温度t d=85℃,空气进风温度t a1 =40℃。 作者简介:韩光杰,男,(1987.12-),电气设计主管,就职于安徽江淮汽车股份有限公司技术中心,从事汽车空调及线束系统的开发设计工作。

平行流冷凝器通用技术标准

平行流冷凝器通用技术标准 主题内容与适用范围 1.本标准规定了平行流冷凝器芯体总成的技术要求、试验方法、检验规则、标志、包装、运输与贮存要求。 本标准适用于平行流冷凝器芯体总成(以下简称芯体)的制造,测试和检验。 2. 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。当这些文件被修订时,其最新版本将自动适用于本标准。 GB10125 人造气氛中的腐蚀试验盐雾试验 3.结构 芯体采用全铝平行流结构。 芯体由集流管、扁管、翅片、边板等零件组成。 4.技术要求 4.1 尺寸与外观 芯体的外观和尺寸应符合图纸要求。除图纸要求外,零件的外观应遵守良好的商品惯例。芯体翅片焊合率应大于98%;翅片倒伏不允许超过2处,且每处不能大于1cm2;不允许存在表面碰伤、擦伤、油漆剥落等有损外观的缺陷。 经检验合格的产品才能使用。更新制造模具和设备时,应认可后方可使用。 4.2 主要零件材料要求 材料应符合图纸及有关技术条件的要求。每批材料进厂必须按其技术条件或相关标准进行性能检验,合格后方可入库提供制造使用。凡采用新材料或代用材料,应通过试验鉴定并办理认可手续。 通常采用的材料及牌号如下: 翅片复合铝箔 扁管 集液器外壁复合管 隔板双面复合板 4.3 性能 4.3.1 换热量 芯体的换热量应满足图纸要求。通常采用的试验条件如下: a) 冷凝器入口侧空气干球温度:35℃ 1℃; b) 冷凝器压力:1.518MPa(表压); c) 过冷度:5℃(过冷式冷凝器采用15℃); d) 过热度:25℃; e) 迎面空气风速:4.5m/s; 4.3.2 空气阻力 在4.3.1同样的条件下,冷凝器空气侧阻力应满足图纸要求。 4.3.3 液阻 在4.3.1同样的条件下,冷凝器制冷剂侧的液阻应满足图纸要求。 4.3.4 气密性能

冷凝器换热面积计算方法

冷凝器换热面积计算方法 制冷量+压缩机电机功率/200~250=冷凝器换热面 例如:(3SS1-1500压缩机)CT=40℃:CE=-25℃压缩机制冷量=12527W+压缩机电机功率11250W=23777/230=风冷凝器换热面积103m2 水冷凝器换热面积与风冷凝器比例=概算1比18(103/18)=6m2 蒸发器的面积根据压缩机制冷量(蒸发温度℃×Δt相对湿度的休正系数查表)。 制冷量的计算方法 制冷量=温差×重量/时间×比热×设备维护机构 例如:有一个速冻库 1库温-35℃ 2速冻量1T/H 3时间2/H内 4速冻物质(鲜鱼) 5环境温度27℃ 6设备维护机构保温板 计算:62℃×1000/2/H×0.82×1.23=31266kcal/n 可以查压缩机蒸发温度CT=40CE-40℃制冷量=31266kcal/n 关于R410A和R22翅片管换热器回路数比的探讨晨怡热管(特灵亚洲研发中心上海200001)申广玉2008-6-15 20:10:07 摘要:通过理论计算得出了相同换热量和相同工况下,采用5/16″管径R410A蒸发器(或冷凝器)与采用3/8″管径R22蒸发器(或冷凝器)时回路数的比值,并指出比值是两工质物性差异和盘管的内径及当量摩擦阻力系数差异共同作用的结果。 关键词:R410A;回路数;蒸发器;冷凝器 中图分类号:TQ051 文献标识码: B

1前言 随着人类环保意识的提高,新冷媒技术的发展和应用已成为空调器发展的方向和关注的焦点。目前,国际上一致看好的R22替代物是混合工质R407C和R410A。其中R410A是HFC 32和HFC 125按照50%:50%的质量百分比组成的二元近共沸混合制冷剂,它的温度滑移不超过0.2℃(R407C温度滑移约7℃左右),这给制冷剂的充灌、设备的更换提供了很多方便。另外,由于R410A系统运行的蒸发压力和冷凝压力比R22高60%,所以系统性能对压力损失不敏感,每个回路工质循环流速可以加大,有利于换热器的强化换热,这为提高R410A系统的整体能效创造了有力条件。 正是由于R410A具有上述优点,在R22用量最大的单元式空调和热泵产品中,R410A是其首要的替代品。美国有望在2007年底将R410A产品在单元式空调的应用比例提高到80%,并在2009年底接近100%[1]。 但是R410A和R22物性存在着上述明显差异而不能在原R22系统中直接充注替代使用,应该对新的R410A 系统中的压缩机、蒸发器、冷凝器、节流机构和系统管路等部件重新设计才能达到系统的最佳匹配。本文仅以R410A和R22翅片管蒸发器和冷凝器的回路数相对比进行说明。 2R410A和R22翅片管蒸发器回路数比计算 目前常用的R22换热器一般采用的是3/8″内螺纹管,R410A换热器一般采用的是5/16″内螺纹。无特殊说明,所述的R410A和R22换热器即分别指这两种结构的换热器。 无论采用何种工质,在设计蒸发器时,一般均要保证工质在蒸发器中的饱和温度降ΔT相同,即:

相关主题
文本预览
相关文档 最新文档