当前位置:文档之家› R410a和R22平行流冷凝器变工况特性的比较

R410a和R22平行流冷凝器变工况特性的比较

R410a和R22平行流冷凝器变工况特性的比较
R410a和R22平行流冷凝器变工况特性的比较

汽车空调用平行流冷凝器标准

Q 江阴亚成制冷设备有限公司企业标准 Q/320281AKK02-2007 汽车空调用平行流冷凝器 2007-12-17发布2007-12-30实施江阴亚成制冷设备有限公司发布

前言 江阴亚成制冷设备有限公司生产的汽车空调用平行流冷凝器,目前尚无国家标准和行业标准,为保证产品质量,特制定企业标准Q/32028AKK02-2007《汽车空调用平行流冷凝器》作为企业组织生产、监督检查、交货验收的依据。 本标准的编写格式符合GB/T 1.1-2000和GB/T 1.2-2002的规定。 本标准的附录A、附录B、附录C为规范性附录。 本标准由江阴亚成制冷设备有限公司负责起草。 本标准由江阴亚成制冷设备有限公司负责批准。 本标准主要起草人:马恒南何军杰郭胜

汽车空调用平行流冷凝器 1 范围 本标准规定了汽车空调用铝制平行流冷凝器的产品分类要求、试验方法、检验规则、标志、包装、贮存等。 本标准适用于本公司生产的各种规格的汽车空调用铝制平行流冷凝器(以下简称冷凝器)。 2 规范性引用文件 下列文件所包含的条款,通过在本文件中引用而构成本文件的条款。凡是注日期的引用文件,其随后所 有的修改单(不包括勘误的内容)或修订版均不适用于本文件,然而,鼓励根据本文件达成协议的各方研 究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本文件。 QC/T 657-2000 汽车空调制冷装置试验方法 JIS D 1601-1995 汽车零部件振动试验方法 JIS Z 2371-2000 盐雾试验试验方法 3 术语 3.1冷凝器标准方位 扁管沿水平方向、产品迎风面垂直于水平的位置。冷凝器的名义换热量是在这一位置上确立和测量。 3.2 系列产品 冷凝器所用的扁管材料、结构、尺寸相同,且翅片的材料、结构、尺寸相同的产品。 4产品分类 4.1 产品的型式 产品的型式为铝制平行流式,由挤制铝扁管、集流管和翅片钎焊而成。 4.2型号 4.2.1型号表示法 改型序号,用大写字母、、 表示。 顺序号。用阿拉伯数字1、2、3、 等表示。 扁管厚度为2的可以不标。 翅片高度。 扁管宽度。 平行流冷凝器代号。 4.2.2标注示例 产品扁管宽度为18mm,翅片高度为8 mm,扁管厚度为2 mm,顺序号为1,原设计的冷凝器,可标注 为PL18×8-1。Q/320281AKK02-2007 产品扁管宽度为17mm,翅片高度为9.1 mm,扁管厚度为1.9mm,顺序号为1,第二次改进设计的冷 凝器,可标注为PL17×9.1×1.9-1B。Q/320281AKK02-2007

过冷式微通道平行流冷凝器数值模型

文章编号:CAR137 过冷式微通道平行流冷凝器数值模型 赵宇祁照岗陈江平 (上海交通大学制冷与低温工程研究所,上海,200240) 摘 要本文总结了不同的微通道管内制冷剂冷凝换热与压降经验关联式,通过理论与实验分析选定最为合适的关联式建立了过冷式微通道平行流冷凝器数值模型。通过实验验证,模型计算换热量误差在±5%以内,空气侧压降误差在±4Pa以内,制冷剂侧压降误差在-30~40kPa之间。本文所建立的过冷式微通道平行流冷凝器模型精度满足换热器设计要求。 关键词过冷式冷凝器数值仿真关联式 NUMERICAL MODEL FOR THE SUB-COOLING MICROCHANNEL PARALLEL FLOW CONDENSER Zhao Yu Qi Zhaogang Chen Jiangping (Institute of Refrigeration and Cryogenics, Shanghai Jiaotong University, Shanghai 200240, China) Abstract This paper compared different pressure drop and heat transfer correlations in the minichannel and microchannel, choose the most suitable ones to develop the simulation model for sub-cooling condenser. The experiment result had a good agreement with the simulation model. The deviation of the condenser heat rejection is under ±5%, the condenser air side pressure drop deviation is ±4Pa and the refrigerant side pressure drop deviation is -30~40kPa. The simulation model for sub-cooling condenser developed in this paper could satisfy the requirement of heat exchanger design. Keywords Sub-cooling condenser Numerical simulation Correlation 0 引言 微通道换热器在车用空调系统中应用广泛,近年来在家用和商用空调中也得到大力推广[1-3]。其中过冷式平行流冷凝器(sub-cooling parallel flow condenser)为近几年来提出的较新型的设计。所谓过冷式平行流冷凝器,是将储液罐集成在传统冷凝器中,使储液罐后还有1到2个冷凝器流程(如图1),这样有利于保证制冷系统在不同工况下均有一定过冷度,从而提高系统效率,同时减小了储液器体积,有利于减少制冷剂充注量。与传统冷凝器相比,制冷剂在过冷式冷凝器内的流动和换热特性发生较大变化,本文旨在针对过冷式冷凝器的结构特点,建立可用于换热器设计和优化的数值模型。 作者简介:赵宇(1985-),男,博士生。 图1 过冷式平行流冷凝器结构 1 过冷式冷凝器数学模型 冷凝器中的制冷剂包括过热区、两相区和过冷区3种状态,本文根据过冷式平行流冷凝器的流动和传热特性,在NIST制冷剂热物理性质计算程序的基础上(NIST RefProp V7.0),采用分布参数方法将换热器划分为若干计算单元,针对过热、两相和

汽轮机各种工况TRLTHATMCRVWO等

汽轮机各种工况 T R L T H A T M C R V W O 等 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

一、汽机 1.额定功率(铭牌功率TRL)是指在额定的主蒸汽及再热蒸汽参数、背压11.8KPa绝对压力,补给水率3%以及回热系统正常投入条件下,考虑扣除非同轴励磁、润滑及密封油泵等所耗功率后,制造厂能保证在寿命期内任何时间都能安全连续地在额定功率因素、额定氢压(氢冷发电机)下发电机输出的功率。此时调节阀应仍有一定裕度,以保证满足一定调频等需要。在所述额定功率定义条件下的进汽量称为额定进汽量。2.最大连续功率(T-MCR)是指在1.额定功率条件下,但背压为考虑年平均水温等因素确定的背压,(设计背压)补给水率为0%的情况下,制作厂能保证在寿命期内安全连续在额定功率因素、额定氢压(氢冷发电机)下发电机输出的功率。该功率也可作为保证热耗率和汽耗率的功率。保证热耗率考核工况:系指在上述条件下,将出力为额定功率时的热耗率和汽耗率作为保证,此工况称为保证热耗率的考核工况。 3.阀门全开功率(VWO)是指汽轮机在调节阀全开时的进汽量以及所述T-MCR定义条件下发电机端输出的功率。一般在VWO下的进汽量至少应为额定进汽量的1.05倍。此流量应为保证值。上述所指是由主汽轮机机械驱动或由主汽轮机供汽给小汽轮机驱动的给水泵,所需功率不应计算在额定功率中,但进汽量是按汽动给水泵为基础的,如果采用电动给水泵时,所需功率应自额定功率中减除(但在考核热耗率和汽耗率时是否应计入所述给水泵耗工,可由买卖双方确定)。 二、锅炉

汽轮机各种工况(TRL、THA、T-MCR、VWO等)

一、汽机 1.额定功率(铭牌功率TRL)是指在额定的主蒸汽及再热蒸汽参数、背压11.8KPa 绝对压力,补给水率3%以及回热系统正常投入条件下,考虑扣除非同轴励磁、润滑及密封油泵等所耗功率后,制造厂能保证在寿命期内任何时间都能安全连续地在额定功率因素、额定氢压(氢冷发电机)下发电机输出的功率。此时调节阀应仍有一定裕度,以保证满足一定调频等需要。在所述额定功率定义条件下的进汽量称为额定进汽量。 2.最大连续功率(T-MCR)是指在1.额定功率条件下,但背压为考虑年平均水温等因素确定的背压,(设计背压)补给水率为0%的情况下,制作厂能保证在寿命期内安全连续在额定功率因素、额定氢压(氢冷发电机)下发电机输出的功率。该功率也可作为保证热耗率和汽耗率的功率。保证热耗率考核工况:系指在上述条件下,将出力为额定功率时的热耗率和汽耗率作为保证,此工况称为保证热耗率的考核工况。 3.阀门全开功率(VWO)是指汽轮机在调节阀全开时的进汽量以及所述T-MCR 定义条件下发电机端输出的功率。一般在VWO下的进汽量至少应为额定进汽量的1.05倍。此流量应为保证值。上述所指是由主汽轮机机械驱动或由主汽轮机供汽给小汽轮机驱动的给水泵,所需功率不应计算在额定功率中,但进汽量是按汽动给水泵为基础的,如果采用电动给水泵时,所需功率应自额定功率中减除(但在考核热耗率和汽耗率时是否应计入所述给水泵耗工,可由买卖双方确定)。 二、锅炉 1.锅炉额定蒸发量,即是汽轮机在TRL工况下的进汽量。对应于:汽轮机额定功率TRL,指在额定进汽参数下,背压11.8KPa,3%的补给水量时,发电机端带

额定电功率MVA。 2.锅炉额定蒸发量,也对应汽轮机TMCR工况。对应于:汽轮机最大连续出力TMCR,指在额定进汽参数下,背压4.9KPa,0%补给水量,汽轮机进汽量与TRL 的进汽量相同时在发电机端所带的电功率MVA。 3.锅炉最大连续出力(BMCR),即是汽轮机在VWO工况下的汽轮机最大进汽量。对应于:汽轮机阀门全开VWO工况,指在额定进汽参数下,背压 4.9KPa,0%补给水量时汽轮机的最大进汽量。 注: a.汽机进汽量和锅炉蒸发量是按机组采用汽动给水泵考虑的。 b.在TMCR工况下考核汽机热耗和锅炉效率的保证值。在VWO工况下考核汽机最大进汽量和锅炉最大连续出力保证值。 c.一般说,汽机TMCR时的出力比之TRL时的出力大5%左右。汽机VWO时的进汽量比之TMCR时的进汽量多3~5%,出力则多4~4.5%。 d.如若厂用汽需用量较大时,锅炉BMCR的蒸发量考虑比汽机VWO时的进汽量再增多3%左右。 e.不考虑超压条件。 f.TMCR工况下汽机背压4.9KPa为我国北方地区按冷却水温为20℃的取值。在我国南方地区可根据实际冷却水温取值,调整为5.39KPa或更高些。 600MW机组 1机组热耗保证工况(THA工况)机组功率(已扣除励磁系统所消耗的功率)为600MW时,额定进汽参数、额定背压、回热系统投运、补水率为0%. 2铭牌工况(TRL工况)机组额定进汽参数、背压11.8KPa、补水率3%,

汽轮机变工况

第三章第三章汽轮机的变工况 chapter 3 The changing condition of Steam turbine 设计工况:运行时各种参数都保持设计值。 变工况:偏离设计值的工况。 经济功率:汽轮机在设计条件下所发出的功率。 额定功率:汽轮机长期运行所能连续发出的最大功率。 研究目的:不同工况下热力过程,蒸汽流量、蒸汽参数的变化,不同调节方式对汽轮机工作的影响;保证机组安全、经济运行。 第一节喷嘴的变工况 The changing condition of a nozzle 分析:喷嘴前后参数与流量之间的变化关系 一、渐缩喷嘴的变工况 The changing condition of a contracting nozzle 试验:调整喷嘴前后阀门,改变初压和背压,测取流量的变化。 (一)(一)初压P*0不变而背压P1变化 (1)(1)εn=1,P1= P*0,G=0,a-b,d (2)(2)0<εn<εcr,G<G cr,a-b1-c1,1 (3)(3)εn=εcr,G=G cr,a-b2-c2,e (4)(4)ε1d<εn<εcr,G=G cr,a-b3-c3,3 (5)(5)εn=ε1d,G=G cr,a-c4,4 (6)(6)εn<ε1d,G=G cr,a-c4-c5,5 列椭圆方程: (二)(二)流量网图 改变p*0可得出一系列曲线,即流量网图 横坐标:ε1= p1/p*0m; 纵坐标:βm=G/G 0m; 参变量:ε0= p*01 /p*0m p*0m、G*0m:分别为初压最大值和与之相应的临界流量的最大值。 例1:已知:p0 =9MPa ,p01 =7.2MPa,p1 =6.3MPa,p11 =4.5MPa 求:流量的变化。

第三章 汽轮机的变工况特性-第三节 配汽方式及其对定压运行机组便工况的影响

第三节 配汽方式及其对定压运行机组便工况的影响 汽轮机的配汽方式有节流配汽、喷嘴配汽与旁通配汽等多种,其中最常用的是节流配汽与喷嘴配汽两种。旁通配汽主要用在船、舰汽轮机上,故这里不作介绍。下面先介绍配汽方式,然后介绍配汽方式对定压运行机组交工况的影响。 一、节流配汽 进入汽轮机的所有蒸汽都通过一个调节汽门(在大容量机组上,为避免这个汽门尺寸太大,可通过几个同时启闭的汽门),然后流进汽轮机,如图3.3.1(a)所示。最大负荷时,调节汽门全开,蒸汽流量最大,全机扣除进汽机构节流损失后的理想比治降)('?mac t h (见图3.3.1b)最大,故功率最大。部分负荷时,调节汽门关小,因蒸汽流量减小,且蒸汽受到节流,全机扣除进汽机构节流损失后的理想 比治降减为)(''?mac t h 故功率减小。图3.3.1(b)中0 p '表示调节汽门全开时第一级级前压力,0 p ''表示调节汽门部分开启时第一级级前压力。 节流配汽汽轮机定压运行时的主要缺点是,低负荷时调节汽门中节流损失较大,使扣除进汽机构节流损失后的理想比焓降减小得较多。通常用节流效率th η表示节流损失对汽轮机经济件的影响:

mac t mac t th h h ?' '?=)(η (3.3.1) 根据第二章全机相对内效率i η的定义,可得 th i mac t mac t mac t mac i mac t mac i i h h h h h h ηηη'=?' '?''?''?=?''?=)()()()( (3.3.2) 式中,)()(''?' '?='mac t mac i i h h η,指未包括进汽机构的通流部分相对内效率,对再热机组m ac t h ?、)(''?mac t h 、)(''?mac i h 均为高中低压缸比焓降之和。 节流效率是蒸汽初终参数和流量的函数。图3.3.2是初压0p =12.75MPa ,初温0t =565℃时,节流效率th η与背压g p 、流量比G G /1的关系曲线。只要求出 G G /1下的0P '',若是再热机组尚需知道再热压力 1r p 、再热压损1r p ?与再热温度r t ,就可查水蒸汽图表求出th η。由图可见,在同一背压下,蒸汽流量比设计值小得越多,调节汽门中的节流越大,节流效率越低。在同一流量下,背压越高,节流效率越低。因此,全饥理想比焓降较小的背压式汽轮机,不宜 采用节值配汽。背压很低的凝汽式汽轮机,即使流量下降较多,节流效率仍降得根少。 与喷嘴配汽相比,节流配汽的优点是:没有调节级,结构比较简单,造成本较低;定压运行流量变化时,各级温度变化较小,对负荷变化适应性较好。 现代大型节流配汽汽轮机若是滑压运行则既可用于承担基本负荷, 也可用于

汽轮机各种工况(TRL、THA、T-MCR、VWO等)

1.额定功率(铭牌功率TRL)是指在额定的主蒸汽及再热蒸汽参数、背压11.8KPa 绝对压力,补给水率3%以及回热系统正常投入条件下,考虑扣除非同轴励磁、润滑及密封油泵等所耗功率后,制造厂能保证在寿命期内任何时间都能安全连续地在额定功率因素、额定氢压(氢冷发电机)下发电机输出的功率。此时调节阀应仍有一定裕度,以保证满足一定调频等需要。在所述额定功率定义条件下的进汽量称为额定进汽量。 2.最大连续功率(T-MCR)是指在1.额定功率条件下,但背压为考虑年平均水温等因素确定的背压,(设计背压)补给水率为0%的情况下,制作厂能保证在寿命期内安全连续在额定功率因素、额定氢压(氢冷发电机)下发电机输出的功率。该功率也可作为保证热耗率和汽耗率的功率。保证热耗率考核工况:系指在上述条件下,将出力为额定功率时的热耗率和汽耗率作为保证,此工况称为保证热耗率的考核工况。 3.阀门全开功率(VWO)是指汽轮机在调节阀全开时的进汽量以及所述T-MCR 定义条件下发电机端输出的功率。一般在VWO下的进汽量至少应为额定进汽量的1.05倍。此流量应为保证值。上述所指是由主汽轮机机械驱动或由主汽轮机供汽给小汽轮机驱动的给水泵,所需功率不应计算在额定功率中,但进汽量是按汽动给水泵为基础的,如果采用电动给水泵时,所需功率应自额定功率中减除(但在考核热耗率和汽耗率时是否应计入所述给水泵耗工,可由买卖双方确定)。 二.锅炉 1.锅炉额定蒸发量,即是汽轮机在TRL工况下的进汽量。对应于:汽轮机额定功率TRL,指在额定进汽参数下,背压11.8KPa,3%的补给水量时,发电机端带额定电功率MVA。

2.锅炉额定蒸发量,也对应汽轮机TMCR工况。对应于:汽轮机最大连续出力TMCR,指在额定进汽参数下,背压4.9KPa,0%补给水量,汽轮机进汽量与TRL 的进汽量相同时在发电机端所带的电功率MVA。 3.锅炉最大连续出力(BMCR),即是汽轮机在VWO工况下的汽轮机最大进汽量。对应于:汽轮机阀门全开VWO工况,指在额定进汽参数下,背压 4.9KPa,0%补给水量时汽轮机的最大进汽量。 注: a.汽机进汽量和锅炉蒸发量是按机组采用汽动给水泵考虑的。 b.在TMCR工况下考核汽机热耗和锅炉效率的保证值。在VWO工况下考核汽机最大进汽量和锅炉最大连续出力保证值。 c.一般说,汽机TMCR时的出力比之TRL时的出力大5%左右。汽机VWO时的进汽量比之TMCR时的进汽量多3~5%,出力则多4~4.5%。 d.如若厂用汽需用量较大时,锅炉BMCR的蒸发量考虑比汽机VWO时的进汽量再增多3%左右。 e.不考虑超压条件。 f.TMCR工况下汽机背压4.9KPa为我国北方地区按冷却水温为20℃的取值。在我国南方地区可根据实际冷却水温取值,调整为5.39KPa或更高些。 600MW机组 1机组热耗保证工况(THA工况)机组功率(已扣除励磁系统所消耗的功率)为600MW时,额定进汽参数、额定背压、回热系统投运、补水率为0%.2铭牌工况(TRL工况)机组额定进汽参数、背压11.8KPa、补水率3%,回热系统投运下安全连续运行,发电机输出功率(已扣除励磁系统所消耗的功率)

汽轮机各种工况TRLTHTMCRVWO等定稿版

汽轮机各种工况 T R L T H T M C R V W O等 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

一、汽机 1.额定功率(铭牌功率TRL)是指在额定的主蒸汽及再热蒸汽参数、背压11.8KPa绝对压力,补给水率3%以及回热系统正常投入条件下,考虑扣除非同轴励磁、润滑及密封油泵等所耗功率后,制造厂能保证在寿命期内任何时间都能安全连续地在额定功率因素、额定氢压(氢冷发电机)下发电机输出的功率。此时调节阀应仍有一定裕度,以保证满足一定调频等需要。在所述额定功率定义条件下的进汽量称为额定进汽量。 2.最大连续功率(T-MCR)是指在1.额定功率条件下,但背压为考虑年平均水温等因素确定的背压,(设计背压)补给水率为0%的情况下,制作厂能保证在寿命期内安全连续在额定功率因素、额定氢压(氢冷发电机)下发电机输出的功率。该功率也可作为保证热耗率和汽耗率的功率。保证热耗率考核工况:系指在上述条件下,将出力为额定功率时的热耗率和汽耗率作为保证,此工况称为保证热耗率的考核工况。 3.阀门全开功率(VWO)是指汽轮机在调节阀全开时的进汽量以及所述T-MCR定义条件下发电机端输出的功率。一般在VWO下的进汽量至少应为额定进汽量的1.05倍。此流量应为保证值。上述所指是由主汽轮机机械驱动或由主汽轮机供汽给小汽轮机驱动的给水泵,所需功率不应计算在额定功率中,但进汽量是按汽动给水泵为基础的,如果采用电动给水泵时,所需功率应自额定功率中减除(但在考核热耗率和汽耗率时是否应计入所述给水泵耗工,可由买卖双方确定)。 二、锅炉 1.锅炉额定蒸发量,即是汽轮机在TRL工况下的进汽量。对应于:汽轮机额定功率TRL,指在额定进汽参数下,背压11.8KPa,3%的补给水量时,发电机端带额定电功率MVA。

平行流冷凝器的设计计算

10.16638/https://www.doczj.com/doc/a914928992.html,ki.1671-7988.2017.10.008 平行流冷凝器的设计计算 韩光杰1,梁永林2,陶莹1,史正玉1 (1.安徽江淮汽车集团股份有限公司,安徽合肥230601;2.河南速达电动汽车科技有限公司, 河南三门峡472000) 摘要:文章以某开发车型为基础,设计以R134a为制冷剂的空气冷却式冷凝器。文中详细介绍了冷凝器的设计步骤,根据传热方程,计算出冷凝器的能力和迎风面积,从而进一步推算出冷凝器的实际面积和风阻,选择合适的冷凝器。 关键词:平行流;空气流量;传热系数;传热面积 中图分类号:U461.9 文献标识码:A 文章编号:1671-7988 (2017)10-20-03 Design and Calculation of Parallel Flow Condenser Han Guangjie1, Liang Yonglin2, Tao Ying2, Shi Zhengyu2 (1. The Center of Technology of Jianghuai Automobile Co. Ltd., Anhui Hefei 230601;2. Henan Suda electric Technology Co. Ltd., Henan Sanmenxia 472000) Abstract: In this paper, cased on a development model, the design of R134a ail cooling condenser. The design procedure of the condenser is introduced in detail, and the heat transfer capacity and the windward area ara calculated according to the heat transfer equation.In order to calculate the condenser area and the actual drag,select the appropriate condenser. Keywords: Parallel Flow; Air flow; Heat transfer coefficient; Heat transfer area CLC NO.: U461.9 Document Code: A Article ID: 1671-7988 (2017)10-20-03 前言 冷凝器的作用是使由压缩机排出的高温高压制冷剂与冷凝器外部的空气进行热交换,将高温高压气态制冷剂转变为高温高压的液态制冷剂,并把热量散发到车外环境中。平行流式冷凝器是目前汽车上使用最广泛的结构型式,由扁管和散热翅片组成。与其他冷凝器相比,单位体积热换能力,可提高30%。 1、冷凝器设计计算步骤 1.1 计算由整车制冷量决定的冷凝器热负荷:Q c=Q e+P i 式中Q c:冷凝器的热负荷(W);Q e:整车制冷量,通常指设计工况下的制冷量(W);P i:压缩机消耗的指示功率(W)。 也可以采用如下简便形式:Q c=mQ e 式中m—负荷系数,汽车空调一般选择m=1.4 2.2 计算冷凝器的换热量(传热方程):Q c=KA oΔt m 式中K:传热系数[W/( m2·K)];A o:以外表面为基准计算的传热面积(m2);Δt m:制冷剂和冷却介质(空气)的热传平均温差(K)。 2、冷凝器计算示例 已知某车型整车制冷量为5809W,故要求换热量Q c=1.4×5809w=8133w。冷凝器有5℃过冷,已知压缩机在过冷度t e =5℃及冷凝温度t c=60℃时排气温度t d=85℃,空气进风温度t a1 =40℃。 作者简介:韩光杰,男,(1987.12-),电气设计主管,就职于安徽江淮汽车股份有限公司技术中心,从事汽车空调及线束系统的开发设计工作。

第三章 汽轮机的变工况特性-第一节 喷嘴的变工况特性

第三章 汽轮机的变工况特性 汽轮机的热力设计就是在已经确定初终参数、功率和转速的条件下,计算和确定蒸汽流量,级数,各级尺寸、参数和效率,得出各级和全机的热力过程线等。汽轮机在设计参数下运行称为汽轮机的设计工况。由于汽轮机各级的主要尺寸基本上是按照设计工况的要求确定的,所以一般在设计工况下汽轮机的内效率达最高值,因此设计工况也称为经济工况。 汽轮机运行时所发出的功率,将根据外界的需要而变化,汽轮机的初终参数和转速也有可能变化,从而引起汽轮机的蒸汽流量和各级参数、效率等变化。汽轮机在偏离设计参数的条件下运行,称为汽轮机的变工况。 , 汽轮机工况变动时,各级蒸汽流量、压力、温度、比焓降和效率等都可能发生变化,零、部件的受力、热膨胀和热变形也都有可能变化。为了保证汽轮机安全、经济地运行,就必须弄清汽轮机的变工况特性。 电站汽轮机是固定转速汽轮机,限于篇幅,这里仅讨论等转速汽轮机的变工况。主要讨论蒸汽流量变化和初终参数变化时的变工况,其中也就包含了功率变化问题。汽轮机变工况是以级的交工况和喷嘲、动叶的变工况为基础的,因此,必须首先介绍喷嘴、动叶的变工况。 第一节 喷嘴的变工况特性 缩放嘴嘴的交工况已由流体力学介绍道了,其中一个重要概念,就是缩放喷嘴背压逐渐高于设计值时,将先在喷嘴出口处,后在喷嘴渐放段内产生冲波(或称激波)。超音速汽流经过冲波,流速大为降低,损失很大。所以,缩放喷嘴处于背压高于设计值的工况下运行时效率很低。 缩放喷嘴的速度系数?与压比n ε、膨胀度f 的关系如图3.1.1所示。膨 胀度c n A A f =,表示缩放喷嘴出口而积n A ,与喉部临界截面而积c A 之比。每条 曲线上?最高的点(图示a,b,c,d)是该缩放喷嘴的设计工况点。由图可见,缩放喷嘴设计压比n ε越小,膨胀度f 越大,而f 越大的缩放喷嘴在实际压比1n ε增大时, ?降得越多,因而喷嘴效率也降得越多。

平行流冷凝器通用技术标准

平行流冷凝器通用技术标准 主题内容与适用范围 1.本标准规定了平行流冷凝器芯体总成的技术要求、试验方法、检验规则、标志、包装、运输与贮存要求。 本标准适用于平行流冷凝器芯体总成(以下简称芯体)的制造,测试和检验。 2. 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。当这些文件被修订时,其最新版本将自动适用于本标准。 GB10125 人造气氛中的腐蚀试验盐雾试验 3.结构 芯体采用全铝平行流结构。 芯体由集流管、扁管、翅片、边板等零件组成。 4.技术要求 4.1 尺寸与外观 芯体的外观和尺寸应符合图纸要求。除图纸要求外,零件的外观应遵守良好的商品惯例。芯体翅片焊合率应大于98%;翅片倒伏不允许超过2处,且每处不能大于1cm2;不允许存在表面碰伤、擦伤、油漆剥落等有损外观的缺陷。 经检验合格的产品才能使用。更新制造模具和设备时,应认可后方可使用。 4.2 主要零件材料要求 材料应符合图纸及有关技术条件的要求。每批材料进厂必须按其技术条件或相关标准进行性能检验,合格后方可入库提供制造使用。凡采用新材料或代用材料,应通过试验鉴定并办理认可手续。 通常采用的材料及牌号如下: 翅片复合铝箔 扁管 集液器外壁复合管 隔板双面复合板 4.3 性能 4.3.1 换热量 芯体的换热量应满足图纸要求。通常采用的试验条件如下: a) 冷凝器入口侧空气干球温度:35℃ 1℃; b) 冷凝器压力:1.518MPa(表压); c) 过冷度:5℃(过冷式冷凝器采用15℃); d) 过热度:25℃; e) 迎面空气风速:4.5m/s; 4.3.2 空气阻力 在4.3.1同样的条件下,冷凝器空气侧阻力应满足图纸要求。 4.3.3 液阻 在4.3.1同样的条件下,冷凝器制冷剂侧的液阻应满足图纸要求。 4.3.4 气密性能

汽轮机变工况课程设计

《汽轮机原理》课程设计 一、目的及任务 汽轮机课程设计是对在汽轮机课程中所学到的理论知识的系统总结、巩固和加深,要求掌握汽轮机热力计算及变工况下热力计算的原则、方法和步骤。 课程设计的任务是针对200MW 或300MW 汽轮机额定功率的50%、55%、60%、65%、70%、75%、80%、85%、90%、95%工况,首先计算并绘制出调节级特性曲线、而对调节级进行变工况热力计算,再对其余压力级进行变工况热力计算,同时求出各级的内功率、相对内效率等全部特征参数,并与设计工况作对比分析。 二、内容及要求 1、变工况进汽量估算过程。 2、做出所有压力级变工况计算的汇总表,并把调节级、以及其它级中任一级的详细热力计算过程书面写出。 3、绘出整机中各级热力过程线,同时绘出各级速度三角形。 三、设计步骤 3.1 汽轮机变工况进汽量D 0的初步估算 D 0=3600P e m /()mac t ri g m h D ηηη?+?(kg/h ) 式中,P e 为变工况功率(kW )。 △h t mac 为汽轮机整机理想比焓降,对于本设计采用中间再热的汽轮机,中压缸入口状态点应按再热后温度计算。 m 为考虑回热抽汽进汽量增大的系数,其与回热级数、给水温度及机组参数和容量有关,通常取m =1.15-1.25,对于本设计200MW 、300MW 汽轮机,取m =1.19-1.22。 △D 为考虑前轴封及阀杆漏汽以保证发出经济功率的蒸汽裕量,通常△D =(3-5)%D 0(kg/h )。 机组的整机相对内效率ηri 、发电机效率ηg 和机械效率ηm 的选取,参考同类型、同容量的汽轮发电机组。 由于整机相对内效率ηri 取决于汽轮机内部各项损失,这些损失又与蒸汽流量及通流部分的几何参数有关,因此只能初步估计(ηri ),求出进汽量后进行变工况试算,试算完成后再进行校核。 表1 汽轮发电机组的各种效率范围

第三章 汽轮机的变工况特性-第七节 初终参数变化对汽轮机工作的影响

第七节 初终参数变化对汽轮机工作的影响 一、初终参数变化过大对安全性的影响 1.蒸汽初压0p 、再热压力r p 变化过大对安全性的影响 1 ) 初温不变,初压升高过多,将使主蒸汽管道、主汽门、调节汽门、导管及汽缸等承压部件内部应力增大。若调节汽门开度不变,则0p 增大,致使新汽比容减小、蒸汽流量增大、功率增大、零件受力增大。各级叶片的受力正比于流量而增大。特别是末级的危险性最大,因为流量增大时末级比治、焓降增大得最多,而叶片的受力正比于流量和比焓降之积,故对应力水平已很高的末级叶片的运行安全性可能带来危险。第一调节汽门刚全开而其他调节汽门关闭时,调节级动叶受力最大,若这时初压0p 升高,则调节级流量增大,比焓降不变,叶片受力更大,影响远行安全性。此外,初压0p 升高、流量增大还将使轴向推力增大。 因此未经核算之前,初压 0p 不允许超过制造厂规定的高限数值。我国姚孟 电厂的法国阿尔斯通生产的亚临界320MW 汽轮机规定初压 0p 应小于等于l05% 额定值。当达到l05%额定韧压时,高压旁路调节阀自动开启,通过旁路排汽降低汽轮机的 0p 。如果旁路投入后0p 仍不能降低,则只允许0p 瞬时超过l05%额 定汽压,但不能超过112%额定汽压。同理,再热蒸汽压力Pr 也不能超过制造厂规定的高限数值。 2 ) 初温0t 不变、初压0p 降低一般不会带来危险。如滑压运行时0p 的下降,并未影响安全。然而P 。降低时,若所发功率不减小,甚至仍要发出额定功率,那么必将使全机蒸汽流量超过额定值,这时若各监视段压力超过最大允许值,将使轴向推力过大,这是危险的,不能允许的。因此蒸汽初压P 0降低时,功率必须相应地减小。对于 0p =8.83MPa 的高压机组,即使0p 降到3.0MPa ,也不会使 凝汽式机组的排汽过热,也就不会使汽缸和凝汽器过热 2.蒸汽初温0t 和再热汽温r t 变化过大对安全性的影响 1) 0p 与r p 不变,0t 与r t 升高将使锅炉过热器和再热器管壁,新汽和再热

【专业资料】汽轮机试验各工况的解释

汽轮机试验各工况的解释 作为汽轮机试验的从业人员,一开始对汽轮机各工况如TRL、TMCR、THA、VWO工况是不太清楚的,工作几年以后,实践出真知,自然十分清晰了。我下面以最通俗的说法解释这几个工况的含义和意义。希望看完文档后,能有恍然大悟的感觉。 (1)THA工况 THA是turbine heat acceptance的缩写。汽轮机考核工况,用于汽轮机性能的验收和评价。在汽轮机额定功率(发电量)下,额定排汽压力下(全年平均背压),额定进汽参数下,无补水时机组的热耗率。此工况即为THA工况,也称验收工况。 解释完THA工况,才有资格再去看TRL和TMCR工况。 (2)TRL工况 TRL是turbine rated load的缩写(锅炉TRL蒸发量对应)。汽轮机排汽压力和环境温度有很大关系,若排汽压力升高,机组主汽流量必然增大。对汽轮机、锅炉的安全性都有影响。此工况目的在于考核机组夏季炎热时候,机组是否具备发出额定功率的能力。 TRL工况要求在额定进汽参数下,机组高背压(湿冷机组11.8kPa,空冷机组33kPa)下,补水率3%,额定进汽参数条件下,机组发额定功率时的热耗率。 请注意,此时TRL对应的主汽流量比THA工况下高出不少。 (3)TMCR工况 TMCR为turbine maximum continue rate的缩写。与TRL工况、锅炉BRL 工况对应。汽轮机最大连续运行工况。TMCR工况为TRL进汽流量下,THA工况背压下,在额定进汽参数下,机组的热耗率。额定进汽参数条件下,无补水机组的热耗率。 注意,TMCR工况下,机组的功率高出THA和TRL不少。 (4)VWO工况 VWO是valve wide open的缩写。所有阀门全开工况。与锅炉BMCR工况对应。汽轮机在锅炉最大蒸发量下,机组在额定进汽参数,额定排汽压力,无补水时机组的热耗率。VWO工况除进汽流量与THA不同外,其他参数条件要求与THA 一致。 锅炉侧工况比较简单,一般只记住额定和最大两个工况即可,百度上介绍的一般没有问题。 ——光辉岁月1661制作

汽轮机原理习题(作业题答案)

第一章 级的工作原理 补 1. 已知某喷嘴前的蒸汽参数为p 0=3.6Mpa ,t 0=500℃,c 0=80m/s ,求:初态滞止状态下的音速和其在喷嘴中达临界时的临界速度c cr 。 解: 由p 0=3.6Mpa ,t 0=500℃查得: h 0=3349.5; s 0=7.1439 0002 1 c h h h ?+ =* =3349.5+3.2=3452.7 查得0*点参数为p 0* =3.6334;v 0*=0.0956 ∴音速a 0*=* 0*0v kp =671.85 (或a 0*=* 0kRT =681.76 ; 或a 0*=* 0)1(h k *-=1017.7) c cr = * *1 2a K +=626.5 12题. 假定过热蒸汽作等熵流动,在喷嘴某一截面上汽流速度c=650m/s ,该截面上的音速a=500m/s ,求喷嘴中汽流的临界速度 c cr 为多少?。 解: 2222) 1(212112121cr cr cr cr cr cr c k k c v p k k c h c h -+=+-=+=+ )2 1 1(1)1(222c k a k k c cr +-+-=∴=522 23题. 汽轮机某级蒸汽压力p 0=3.4Mpa ,初温t 0=435℃,该级反动度Ωm =0.38,级后压力p 2=2.2Mpa ,该级采用减缩喷嘴,出口截面积A n =52cm 2,计算: ⑴通过喷嘴的蒸汽流量 ⑵若级后蒸汽压力降为p 21=1.12Mpa ,反动度降为Ωm =0.3,则通过喷嘴的流量又是多少? 答:1):17.9 kg/s; 2):20.5kg/s

赵润泽—汽轮机变工况的研究

昌吉学院论文(设计)分类号:本科毕业论文(设计)密级: 汽轮机变工况的研究 系院物理系 学科门类工学 专业能源工程及自动化 学号 1225862040 姓名赵润泽 指导教师王刚前 教师职称 年月日

毕业论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果或作品。本人完全意识到本声明的法律后果由本人承担。 作者签名:赵润泽 年月日 毕业论文版权使用授权书 本毕业论文作者完全了解学院有关保存、使用毕业论文的规定,同意学院保留并向有关毕业论文管理部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权本学院及以上级别优秀毕业毕业论文评选机构将本毕业论文的全部或部分内容编入有关数据库以资检索,可以采用复印、缩印或扫描等复制手段保存和汇编本毕业论文。 声明人签名:导师签名:王刚前 年月日年月日

昌吉学院2102届本科毕业论文(设计) 一、摘要 汽轮机的发明及应用对现代工业的发展有着卓越的贡献,也是现代火力电厂中使用最广泛的原动机。随着国家能源体系结构的不断变化,汽轮机在社会推动各部门经济的发展具有重大的影响。汽轮机主要是以锅炉蒸汽为动力来源,依次经过一系列内部环形配置的喷嘴和汽轮机的动叶,将蒸汽的热能通过转化成为机械功的旋转机械设备。汽轮机在额定出力下的工作状况称为理想工况或设计工况,但是汽轮机在实际的运行过程中,汽轮机的设计工况将根据外界的需求而变化,汽轮机的初始参数值和转速值也有可能变化,这些均会引起汽轮机内部各项参数及零部件受力情况的变化,从而影响汽轮机的经济,安全的运行要求,这种情况与设计条件不相符合的运行工作状况称为汽轮机的非设计工况或变工况。结合实习经历,分析华电新疆昌吉热电厂二期125MW汽轮机的运行工况,分别从汽轮机变工况所涉及到的渐缩喷嘴和级内这两方面展开讨论及认识,分析工况变化时对汽轮机性能的影响,改善机组变工况时的性能,保证汽轮机在变工况下能安全、经济地连续运行。 关键词:汽轮机变工况喷嘴安全经济

第三章 汽轮机的变工况特性-第二节 级与级组的变工况特性

第二节 级与级组的变工况特性 在了解喷嘴与动叶的变工况特性后,就可分析级与级组的变工况特性。 一、级内压力与流量的关系 分级内为临界工况与亚临界工况两种情况来讨论。 1.级内为临界工况 级内的喷嘴叶栅或动叶栅两者之一的流速达到或超过临界速度,就称该工况为级的临界工况。。 1)级的工况变化前后喷嘴流速均达到或超过临界值时,不论动叶中流速是否达到临界值,此级的流量与滞止初压或初压成正比,与滞止初温或初温的平方根成反比,即 01 001 01 0000 01 1T T P P T T P P G G c == (3.2.1) 若不考虑温度变化,则 00100 011p p p p G G C c == (3.2.2) 2)级的工况变化前后喷嘴流速均未达到临界值而动叶内流速均达到或超过临界值时,只要采用动叶的相对热力参数,喷嘴变工况的结论都可用在动叶上,故 11 1 111 11 0101 011 1T T P P T T p p G G c c == (3.2.3) 若不考虑温度变化,则 11101 111p p p p G G c c == (3.2.4) 若冲动级动叶顶部采用曲径汽封,则叶顶漏汽量极小,漏汽效率近于[]491,其他情况下叶顶漏汽也不大。为了简化,可以认为喷嘴流量等于动叶流量,这时喷嘴在设计工况和变工况下的连续方程可写成 c n n G p A μ=

1c n n G p A μ=由于喷嘴在设计工况和变工况下处于亚临界工况,故斜切部分没有偏转,喷嘴出口面积n A 不变。将上两式相比后代入式(3.2.3)得 1c c G G == ≈对于动叶处于临界工况的凝汽式汽轮机末级是可行的, 例如流量增大20%时,其误差小于0.24%。则上式变为 01 01 0010000 01 1T T P P T T p p G G c c == (3.2.5) 若不考虑温度变化的影响,则 00100 011p p p p G G c c == (3.2.6) 可见级处于临界工况时,级的流量与滞止初压或初压成正比,与滞止初温或初温的平方根成反比;若不考虑温度变化,则流量只与滞止初压或初压成正比。 2.级内为亚临界工况 若级内喷嘴和动叶出口汽流速度均小于临界速度,则称该级工况为亚临界工况。这时级的喷嘴出口连续方程为 t n n t c A Gv 11μ= 设00c ≈,则1t c = n n G A μ?= ? (3.2.7) 式(3.2.7)括号中的数值表示级的反动度为零时流过该级喷嘴的流量'G , 这时喷嘴出口理想比容' 2t v 是由状态点0p 、0t 等比嫡膨胀到2p 的比容。若这时喷 嘴出口速度仍小于临界值,则全级肯定是亚临界工况,那么 '0.648c G G A β== 代入式(3.2.7)得设计工况为亚临界工况的流量方程:

汽轮机各种工况简介

汽轮机各种工况简介 工况, 简介, 汽轮机 1。额定功率(铭牌功率TRL)是指在额定的主蒸汽及再热蒸汽参数、背压11.8KPa绝对压力,补给水率3%以及回热系统正常投入条件下,考虑扣除非同轴励磁、润滑及密封油泵等所耗功率后,制造厂能保证在寿命期内任何时间都能安全连续地在额定功率因素、额定氢压(氢冷发电机)下发电机输出的功率。此时调节阀应仍有一定裕度,以保证满足一定调频等需要。在所述额定功率定义条件下的进汽量称为额定进汽量。 2。最大连续功率(T-MCR)是指在1.额定功率条件下,但背压为考虑年平均水温等因素确定的背压,(设计背压)补给水率为0%的情况下,制作厂能保证在寿命期内安全连续在额定功率因素、额定氢压(氢冷发电机)下发电机输出的功率。该功率也可作为保证热耗率和汽耗率的功率。保证热耗率考核工况:系指在上述条件下,将出力为额定功率时的热耗率和汽耗率作为保证,此工况称为保证热耗率的考核工况。 3.阀门全开功率(VWO)是指汽轮机在调节阀全开时的进汽量以及所述T-MCR定义条件下发电机端输出的功率。一般在VWO下的进汽量至少应为额定进汽量的1.05倍。此流量应为保证值。上述所指是由主汽轮机机械驱动或由主汽轮机供汽给小汽轮机驱动的给水泵,所需功率不应计算在额定功率中,但进汽量是按汽动给水泵为基础的,如果采用电动给水泵时,所需功率应自额定功率中减除(但在考核热耗率和汽耗率时是否应计入所述给水泵耗工,可由买卖双方确定)。 二.锅炉 1.锅炉额定蒸发量,即是汽轮机在TRL工况下的进汽量。对应于:汽轮机额定功率TRL,指在额定进汽参数下,背压11.8KPa,3%的补给水量时,发电机端带额定电功率MVA。 2.锅炉额定蒸发量,也对应汽轮机TMCR工况。对应于:汽轮机最大连续出力TMCR,指在额定进汽参数下,背压4.9KPa,0%补给水量,汽轮机进汽量与TRL的进汽量相同时在发电机端所带的电功率MVA。 3.锅炉最大连续出力(BMCR),即是汽轮机在VWO工况下的汽轮机最大进汽量。对应于:汽轮机阀门全开VWO工况,指在额定进汽参数下,背压 4.9KPa,0%补给水量时汽轮机的最大进汽量。注:a.汽机进汽量和锅炉蒸发量是按机组采用汽动给水泵考虑的。 b.在TMCR 工况下考核汽机热耗和锅炉效率的保证值。在VWO工况下考核汽机最大进汽量和锅炉最大连续出力保证值。 c.一般说,汽机TMCR时的出力比之TRL时的出力大5%左右。汽机VWO 时的进汽量比之TMCR时的进汽量多3~5%,出力则多4~4.5%。 d.如若厂用汽需用量较

相关主题
文本预览
相关文档 最新文档