当前位置:文档之家› 钼基催化剂技术发展现状

钼基催化剂技术发展现状

钼基催化剂技术发展现状
钼基催化剂技术发展现状

钼基催化剂技术发展现状

摘要:钼基催化剂广泛用于原油加氢、加氢脱硫,氨氧化丙烷为丙烯腈,气相催化氧化丙烯醛为丙烯酸,1-丁烯氧化脱氢生产1,3-丁二烯,从合成气生产乙醇或混合醇,甲烷干式重整,催化热解含碳气体生产碳纤维或纳米碳管,煤液化或气化和含氮氧化物废气净化等。

1 钼基催化剂

钼是一种ⅥB族金属元素,是过渡金属。其原子构造各层轨道的电子分布为:元素钼的N、O两个电子层不完全,该元素给出电子和接受电子均十分容易,从而使得钼的化合价在稳定条件下能够发生变化,钼可以是二价、三价、四价、五价和六价。钼化合价的多变性,使钼拥有优异的催化性能。

众所周知,化学反应千千万万,其中80%需要借助于各类催化剂才能顺利进行。

钼基催化剂多种多样,应用十分宽广,在催化剂中地位凸显,特别是在石化工业和化学工业中尤其重要。

钼基催化剂广泛用于石油加氢精制、加氢脱硫、加氢脱氮。丙烷、异丁烷氨氧化生产丙烯腈和甲基丙烯腈或制取丙烯酸和丁烯酸。氧化丁烷为马来酐(CHCO2)2O。1-丁烯氧化脱氢生产1,3-丁二烯。用合成气生产乙醇或C1~C4混合醇。催化热解含碳气源生产碳纤维或单壁纳米碳管。合成气重整制氢和生产燃料电池。褐煤液化,含NOX废气净化和气相氧化丙烯醛生产丙烯酸等。

钼基催化剂的应用与再生和从废催化剂回收有价金属是典型的循环经济。催化剂应用又是低碳产业,是绿色技术。据统计,2000~2009年,钼催化剂年消费钼约1.7万~1.8万t,约占钼总消费量的7%,2009年全球从废催化剂中回收钼约1.6万t。

随着全球经济的复苏和增长,石油消费会不断增长,预计在可以预见的未来,钼催化剂年增长至少要达8%以上。

2 钼基催化剂技术发展现状

2.1 加氢、加氢脱硫催化剂

加氢、加氢脱硫、加氢脱氮催化剂广泛用于石油精制和加氢脱硫等。传统的加氢脱硫催化剂有NiMo/r-Al2O3和CoMo/r-Al2O3催化剂等。

近年来,许多国家为了控制环境污染和改善生态环境纷纷制定新的法规,要求使用含S低的原油蒸馏产品,如直馏低硫柴油等。

2005年美国法规规定必须使用含S<50 mg/kg的直馏柴油。欧盟等国家也做了类似规定。还有一些国家明确规定要使用含S为 5~10 mg/kg的直馏燃油。为

此许多国家的石油公司对NiMo/r-Al2O3和CoMo/r-Al2O3做了改进。有的催化剂生产厂家还研制出许多新型加氢脱硫催化剂。

其中许多NiMo/r-Al2O3等改进剂,提高了Ⅷ族金属和ⅥB族金属的含量,如过去加氢脱硫催化剂含Ⅷ族金属,Ni和Co为2%~10%,如今提高到4%~11%,ⅥB族金属的含量,如Mo从10%~13%提高到14%~16%,个别催化剂含Mo为20%。

另一趋势是载体,如r-Al2O3的平均孔径较小,一般为70~90 10-10m,孔的分布变窄。

另一个重要趋势是NiMo/r-Al2O3或CoMo/r-Al2O3催化剂颗粒的比表面大为提高,一般催化剂的比表面>250 m2/g,较好的催化剂的比表面>300 m2/g。这些趋势明显提高了石油精制加氢脱硫催化剂的活性。

此外,全球各个大型石油公司和催化剂生产厂家,如Exxon Mobil石油公司、BP公司、中石化集团、西北化工研究院和抚顺石油化工研究院等又研制出一些新型加氢脱硫催化剂。

Opinder. Kishan. Bhan等研制出一种新型石油加氢脱硫催化剂。该剂为CoMoPNi/r-Al2O3。其中含Co2.9%(质量分数,下同)、Mo12%、P0.09%和Ni0.02%。研究人员称,利用这种催化剂,对含H13.039%、C85.102%、N243 mg/kg、S1.65%、API 13.4%的原油加氢脱硫后,可获得含S<50 mg/kg的直馏柴油。

该催化剂的制法如下:

将724.71份(质量)硝酸钴溶解于316.4份去离子水中,加热溶解,冷却,加入3 134.8份r-Al2O3粉末置于混合器中充分混合,再加入301.1份三氧化钼粉和计算数量的硝酸镍及磷酸于捏合机中捏合,并挤出1.3 mm三叶草形挤出物,将挤出物在100 ℃下烘干,再在593 ℃和677 ℃煅烧各2 h制成含Co 4.3%(折合含CoO 5.47%)、Mo15.3%(折合含MoO322.95%)和少量Ni和P的

CoMoNiP/r-Al2O3加氢脱硫催化剂。

Ginestra. josiane. marie. Rase等(壳牌石油公司)研制一种新型加氢脱硫催化剂,该催化剂组成为NiMoP/r-Al2O3和CoMoP/r-Al2O3。用作重质原油加氢,可提高重质原油中油沥青组成的转化率。其制法如下:将三氧化二铝粉、稀硝酸和去离子水混合,配成适于捏合的糊状物,在捏合机中捏合挤出0.8 mm 的产品,经烘干、煅烧制得载体,其平均孔径为119 10 -10 m、孔容为0.842 3 mL/g。再配制浸渍液,将896份(质量)碳酸镍、1 335份三氧化钼、331份磷酸和415份一水草酸放在反应器中,使其溶于13000份去离子水中,加热至93℃,连续搅拌得澄渍液。将载体浸渍在浸渍液中数小时,滤出载体,在125℃下烘干、483℃煅烧得催化剂,含Ni2.4%、Mo 6%、P 0.6%,Al2O3 86.57%。比表面212m2/g 孔容0.697mL/g、孔径105 10 -10m。

刘仲农等(中国石化总公司)研制一种镍钼钨镧铈等金属组成的催化剂,该剂用石油精制加氢。其制法如下:

将一定数量的假勃姆石粉(Pseudoboehmite)、田青大麻苷粉(Sesbaniacannabina)、聚乙烯醇、稀硝酸、稀磷酸、硝酸钾和硝酸镁等充分混合呈膏状,在捏合机中挤压成%u2.5 mm的三叶草形载体,在120 ℃下烘干,再在1150℃下煅烧,得到载体,比表面122 m2/g、孔容1.15 cm3/g、孔径平均为2.4 mm。

将上述载体放入由计算数量的硝酸镍、硝酸镧、硝酸铈、七钼酸铵、钨酸铵、四氯化钛、硼酸和氟氢酸等制成的浸渍液中浸渍,使镍、钼、镧等负载在载体上,在60 ℃烘干8 h,再在450 ℃煅烧4 h,制成催化剂。

制成的加氢催化剂在含Ni 10%~20%(质量分数,下同)、Mo5%~10%、La0.1%~2.5%、Ce0.1%~2.5%、W1%~5%、K0~0.5%、Mg0.5%、Ca0.2%、P0.5%、F0.5%~5%、Ti0~5%、Zr0.1%~2.5%和Si约10%。该催化剂用于裂解汽油的选择氢化。

油溶性有机钼催化剂

Wu Zhihua等研制出一种油溶性有机钼催化剂,该剂用来氢化重质原油,这种重质原油含沥青、硫、氮高和其他金属,这类重质原油用传统催化剂处理时催化剂多被中毒,加氢设备也常被污染。

典型的重质原油含C 81.6%(质量分数,下同)、H9.89%、S6.27%、N0.68%和O 1.58%,314℃下馏出物占21.16%、314℃以上馏出物占78.84%。

油溶性有机钼催化剂前驱体制法如下,将4.84 g钼酸(Mo3≥85%)与12.47g 2-乙基己基酸(纯度99%)置入反应釜中,搅拌、加热、充氮100mL/min,然后至温度为185 ℃,再充入20%H2和80%N2代替N2,将混合物保持6h,冷至室温放入产品,该产品即为2-乙基己酸钼,含Mo18%。

用这种催化剂前驱体进行氢化重质原油,沥青质转化率为84%~85%,C1~C3气体产率5.84%~7.27%,作业转化率84.5%~85%。比2-乙基己酸钼滗与滗析油混合物作催化剂好。

2.2 丙烷氨氧化制取丙烯腈催化剂

丙烯腈或甲基丙烯是三大化工产品合成的原材料,即化学纤维,橡胶和塑料。它们主要用来生产丙烯腈纤维(俗称人工合成纤维),丙烯腈-丁二烯-苯乙烯塑料,苯乙烯塑料(AS)和丙烯酰胺。丙烯腈合成纤维、合成树脂等高分子材料应用宽广,在合成化工材料中地位十分重要。

2005年,全球丙烯腈产能约7 000 kt/a,我国丙烯腈表观消费量约800 kt/a,消费量逐年增长,2006年约1 100 kt/a。

丙烷在空气中和氨可氧化为丙烯腈,反应如下:CH3CH2CH3+NH3+O2钼基催化剂500℃左右CH2·CHCN+4H2O

2000年以前,生产丙烯腈采用丙烯为原料,但丙烷较丙烯生产丙烯腈价格便宜。之后均改用丙烷或异丁烷来生产丙烯腈。

丙烯腈生产的关键技术是催化剂,早些时候工程师们采用MoBiCePOn多金属氧化物为氨氧化催化剂,钼等多金属氧化物催化剂中,氧化钼和氧化铋为主催化剂,五氧化二磷为助催化剂,少量氧化铈可抑制丙烯醛的生成,提高催化剂的选择性。

进入21世纪后,随着丙烯腈需求的不断增大,世界各国的大型催化剂生产厂家斥巨资研发新型氨氧化催化剂,以提高催化剂的活性、丙烷或异丁烷的转化率和丙烯腈的产率。

美国的BP公司、德国的BASF石化公司、日本旭电化工株式会社和我国的兰化石油化工集团等均研制多种新型氨氧化催化剂。其中主要有:

MoBiCePOn催化剂(20世纪末产品)

MoBiVPWOn美国BP公司

MoVTeNbOn三菱公司

MoVNbSnOn旭电化工公司

MoVSbNbTiTbOn旭电化工公司

其发展趋势是催化元素日趋增多,令人眼花缭乱。有的公司近期研制的氨氧化催化剂,其中金属氧化物的种类多达8种,有的多达10种,载体SiO2比表面日趋增大,孔径日趋变小。

Claus. Lugmair等推出一种新型丙烷氨氧化为丙烯腈或异丁烷氨氧化为甲基丙烯腈催化剂。

该催化剂的通式如下:

MoVaSbbNbcXdLeOn

式中X选自Ti、Sn、Zr和Hf等。L选自镧系金属,如La、Pr、Nd、Sm、Eu、Tm、Gd、Th、Dy、Ho、Er、Yb和Lu等。0.1

典型的丙烷氨氧化为丙烯腈的催化剂有:

Mo1V0.3Sb0.2Nb0.06Ti0.1Tb0.005On、Mo1V0.3Sb0.2Nb0.06Ti0.1Nd0.005On和Mo1V0.3Sb0.2Nb0.06Ti0.1Sm0.005On等。

Mo1V0.3Sb0.2Nb0.06Ti0.1Tb0.005On催化剂制法如下,向衬有聚四氟乙烯的小型反应釜中加入1.0 g三氧化钼、2.0 mL VOSO4、2.849 mL Sb2O3浆液、TiO2 2.5 mL浆液、Tb(OAc)3 0.875 mL、草酸铌2.1 mL和去离子水2.98 mL。将上述混合物加热至175 ℃,反应48 h,冷却至室温。放出反应产物、过滤、滤饼用去离子水洗涤3次。在90 ℃下烘干12 h,破碎,在600 ℃氮气下煅烧,过筛(60目)制成催化剂,利用制得的催化剂,在420 ℃下,WHSV=0.1下,给料比C3H8∶NH3∶O2∶He为1∶1.4∶3∶12(质量比)进行气相氨氧化丙烷为丙烯腈,丙烯腈产率为53%,丙烷转化率83%,丙烯腈选择性64%。

2.3气相氧化丙烯醛为丙烯酸催化剂

Junzo·Ohishi等研制出一种氧化丙烯醛为丙烯酸的新型催化剂。该催化剂为Mo12V3W1.2Cu1.2Sb0.5,此外,这类催化剂尚可含少量Mg、K和Fe等。这类催化剂载体可为r-Al2O3等。Mo12V3W1.2Cu1.2Sb0.5催化剂制法如下:

向一反应釜中先加入600份(质量)去离子水,将水加热至95~100℃,搅拌,再加入16.26份钨酸铵、18.22份偏钒酸铵和110份钼酸铵,使其溶解,再加入7.75份醋酸锑溶液。

在另一反应釜中,先加入96份去离子水,15.56份硫酸铜,溶解得硫酸铜水溶液。再将2台反应釜的溶液混合在一起,得到一种混合液。再将混合液以一定的速率进行喷雾干燥,喷嘴出口温度为100℃,喷雾干燥得到颗粒状粉末,再在390℃下煅烧,煅烧后产品经研磨。最后将12份(质量)的煅烧粉末与36份三氧化二铝粉末载体捏合成4mm,喷洒上20%的甘油溶液,再在390℃下煅烧5 h,煅烧时升温速度为70℃/h,冷至室温得出M

o12V3W1.2Cu1.2Sb0.5,气相氧化丙烯醛为丙烯酸催化剂。

用这种催化剂进行丙烯醛氧化生产丙烯酸试验,在245℃氧化。丙烯酸产率97.9%,丙烯酸选择性98.7%。丙烯醛转化率为99.2%。

2.4 1-丁烯氧化脱氢生产1,3-丁二烯催化剂

1,3-丁二烯具有优异的稳定性和机械稳定性,是合成橡胶,如合成丁苯橡胶,顺-1,4-丁二烯橡胶、氯丁橡胶、ABS树脂、丁苯乳胶和聚酰胺等的重要原料。

Shin chaE HO等研制出一种铋钼铁等多金属氧化催化剂,该剂用于1-丁烯氧化脱氢生产1,3-丁二烯,用这种催化剂时,1-丁烯转化为1,3-丁二烯的产率高,1-丁烯的转化率高、1,3-丁二烯的选择性高,催化活性持久且抗老化。

该催化剂的制法如下:将铋溶液与铁溶液前驱体混合均匀再与钼酸盐溶液,如仲钼酸铵水溶液混合,调整pH值,进行水热合成,过滤,洗涤后,在120℃下烘干8 h,再在500℃煅烧4 h,得出Bi∶Mo∶Fe摩尔比为1∶0.6~1∶0.1~1.26的BiMoFeOn催化剂。

2.5 甲烷干式重整催化剂

传统上甲烷干式重整生产合成气(H2+CO)和制备燃料电池是用铂钯金铑铱和钌等催化剂,尽管这些贵金属显示优异的催化活性且抗积炭,但由于它们的价格昂贵限制了其应用。镍钴催化剂虽然也具有催化活性,但它们积炭,容易失活。研制既有催化活性又不积炭(抗积炭)的催化剂十分引人注目。

研究显示,碳化钼如Mo2C·MoC和Mo2C/Al2O3是甲烷干式重整生产合成气的良好催化剂。

Mohamed·H·Khan推出一种碳化钼催化剂制法。在哈帕旋转管式炉中(Harper Rotating Tube Furnace),将MoO3与1∶1H2、CO(体积)反应,反应分3段进行,第1段反应区温度为590℃,反应5 h,然后在第2段和第3段反应(反应温度分别为760℃和790℃),各反应3 h。反应后得出比表面39m2/g的Mo2C。化学分析结果是该Mo2C为结合碳,游离碳<0.04%。利用这种催化剂在管式炉中进行甲烷重整,在850℃与甲烷接触,出口CO产率为47%,与理论产率接近,72 h后仍可观测到明显的反应。

2.6 由合成气生产乙醇催化剂

合成气是氢和一氧化碳混合物。理论上,合成气可由各类含碳原料生产,如天然气、石油、煤和褐煤。此外也可由各种富碳废料生产合成气。生产合成气,由合成气再生产乙醇已引起科学家的极大兴趣。

早在20世纪20年代就有人利用各种催化剂生产混合醇(C1~C4混合醇),如美国陶式化学公司和著名的联合碳化物公司等曾用二硫化钼作催化剂从合成气来生产混合醇。

2009年,Karl·Kharas等研究了用钴钼硫作催化剂从合成气来生产乙醇。这种催化剂在反应器中与合成气在325~340℃下接触一定时间后可制出C1~C4混合醇或乙醇。除CO-Mo-S催化剂外,Ni-Mo-S和Co-W-S等也属于这种催化剂。

2.7 热解含碳气体生产碳纤维催化剂

碳纤维,包括SWNts(Single-walled carbon nanotubes)单壁碳纳米管是21世纪新型材料。这种材料的碳-碳键合、纳米尺寸使得它拥有许多人们意想不到的奇特性能,特别是机械、电性和磁性等。在现实中它的用途十分宽广,在可以预见的未来其应用无限广阔。

2000年梦想波音787客机成功试飞,它的机体用碳纤维代替传统的铝合金,机身不但强度大且体轻,从而节省了20%的航空燃料。由碳纤维制成的石油探管可承受高温(260℃)、高压(2.4 MPa),可探明和开采藏在5000 m以下的石油,从而大幅度提高了石油的储量。碳纳米管强度高,且韧性好是理想的导体,医学家将其植入人体大脑(套在电极上),通过电流可治疗抑郁症和帕金森病引起的颤抖症。科学家用热电波通过纳米碳管传导进而推动碳纳米管使电子移动产生电流发电。

当今,科学家和工程师研制出许多生产碳纤维的工艺。其中热解含碳气体生产碳纤维工艺引人注目,热解法生产碳纤维的关键技术是选择活化高的催化剂。

目前,催化热解碳物料生产碳纤维的催化剂主要有:CoMo/SiO2、N

iMo/SiO2、RuMo/SiO2、Pb-Mo/SiO2、IrMo/SiO2、PtMo/SiO2、CoRe/SiO 2、NiRe/SiO2、NiCrMo/SiO2、CrFeNiMo/SiO2和CuFeZn/SiO2等。研究显示,催化活性金属,如CoMo和NiCrMoFe等应该沉积在SiO2载体上,而不能沉积在r-Al2O3载体上。催化剂的活性与Co∶[KG-*2]Mo摩尔比有关,一般来说采用Co∶[KG-*2]Mo摩尔比为1∶4的CoMo/SiO2催化剂单壁碳米管产率较高,非晶质碳产率较低。

典型SiO2载体是硅胶制成的,著名的SiO2载体产自Aldrich化学公司,其粒径为70~230目,粒径较小,平均孔径为6 mm,比表面480m2/g、孔容为0.75 cm3/g。CoMo/SiO2催化剂的制法,将SiO2载体置于硝酸钴和钼酸铵溶液中浸渍,浸渍后过滤,滤饼在120℃下烘干8 h,在500℃下煅烧4 h,得出催化剂。

通用电气公司制取NiCrMo/SiO2催化剂的方法是将上述3种金属用溅射枪,以氩气作溅射气体沉积在SiO2载体上。在200℃的氮气下退火24 h 制得NiCrMo/SiO2催化剂。

将适量的NiCrMo/SiO2催化剂放入无任何挥发物的化学气相沉积釜中,用5∶1(体积)的高纯氢和高纯氩混合气流冲洗,加温使釜内温度从室温逐渐提高至500℃,而后用乙烯气流代替氩气流。乙烯∶氢(体积)为5∶1,乙烯与催化剂接触约1.5 h,而后将反应釜冷至室温,用超声波从催化剂上“洗下”催化热解的产品,经高分辨率电子显微镜观测,得出直径约50 nm的碳纤维。

用类似方法,于化学气相沉积釜中,放入摩尔比为1∶4的CoMo/SiO2催化剂,以一氧化碳为碳源通入一氧化碳和氢气,在700℃下与催化剂接触1 h,产品洗下后,用扫描电镜、透射电镜、X-射线衍射和拉曼光谱等观测,该产品中94%为单壁碳纳米管,1%为多壁,5%为非晶质碳。

2.8 煤液化

煤液化是将煤,尤其是烟煤在高温与高压下与氢反应,在催化剂促进下转化为清洁的液体燃料或气化为气态燃料。

美国是世界上最早研究和实现煤液化的国家,早在20世纪70年代阿马科公司和宾夕法尼亚大学就研究了宾夕法尼亚州最大的烟煤煤田液化。我国的华神煤炭集团等也实现了煤的液化。

煤的液化或气化使用的催化剂有CoMo/r-Al2O3催化剂、二乙基己基二硫代磷酸钼,二乙基己基二硫代氨基甲酸钼和四硫代钼酸铵等。Angelov. Chavder. Angelov等采用FeO·ZnO·MoO3/r-Al2O3作煤液化的催化剂。

2.9 废气净化催化剂

近年来,燃煤锅炉、燃煤发电等产业排放的废气含一定数量的NOX污染环境,许多煤碳中含有较高数量的磷和砷化合物,还有一些煤中含钙类化合物,这类化合物,可毒化传统的废气净化催化剂。为此,许多化学家研制了新型脱氮催化剂来处理含氮废气,同时新研制的催化剂还应抑制废气中的二氧化硫的氧化,以防二氧化硫被氧化为三氧化硫,进一步转化成硫酸而腐蚀相关设备。

KaTo Yosuyoshi等研制出一种废气净化催化剂,其组分为TiMoVBiOn,催化剂中Ti∶Mo∶V比(原子)为75~98∶1~15∶0.1~10。Bi∶Mo 为0.1~0.8。

该催化剂制法如下,将比表面为90m2/g的二氧化钛、107 g钼酸铵、146.5 g硝酸铋、404g硅胶和50 mL去离子水放入捏合机中捏合30min,然后再放入28.3 g偏钒酸铵再捏合40 min,再放入151 g二氧化硅-三氧化二铝陶瓷纤维再捏合30 min,烘干,在500℃下煅烧2 h制成TiMoVBiOn催化剂,用这种催化剂处理含NOX200mg/kg和含P和As的废气,脱氮率为68%~72%。

Shinyuki Masaki制成一种TiO2∶SiO2∶MoO3∶V2O5比(质量)为71.25∶14.25∶9∶15的废气净化催化剂,用这种催化剂处理含NOX200mg/kg、SO21000 mg/kg、NH3200 mg/kg、O216%、H2O1.5%,其余为N2的废气,脱氮率为97.6%,二氧化硫氧化率为 0.2%。

2.10纳米钼基催化剂

Climax工程材料公司用升华炉以工业氧化钼为前驱体产出直径为100 nm的三氧化钼,炉的产能约250kg。这种纳米三氧化钼条用来作氟化三氯甲苯氧化为三氟甲苯或氟化多氯甲苯氧化为多氟甲苯的催化剂。

Hagemeyer.alfred制出纳米钼钒等多金属氧化物晶体,用来作丙烯醛氧化为丙烯酸的催化剂。

G.Nagaraju等以硝酸银和钼酸铵水溶液为前驱体,用水热合成法制出纳米钼酸银棒,该纳米棒用作各类氧化反应的催化剂。

许多工程师制出纳米级二硫化钼用来作加氢、加氢脱硫催化剂。纳米钼基催化剂比表面大,活化高,其应用前景十分广阔。

参考文献:

1.秦玉楠新型含钼催化剂的研制开发和应用效果。中国钼业,1996(6)

28—32

2.秦玉楠钼系催化剂的生产技术。中国钼业,1994(1)18—21

3.大竹正之,小野田武,触媒。18.169.1976

4.张文正,孙国英。世界钼系催化剂的开发与应用现状。

5.翁昊民,钼系列杂多酸催化剂。中国钼业。

6.秦玉楠,有机钼化合物的精细合成。中国钼业,1994(5).23—2

7.

7.朱权力、赵旭涛,催化学报。

8.王晓器、李伟、陶克益。分子催化。

9.张东明、赫然。钼催化剂回收现状及发展前景。2008.9.12(6)。

10.刘世强,王斌。钼催化剂深度研究进展。

催化剂的发展

催化剂的发展 一、催化剂的历史,人们对催化剂的运用 1、人们利用酵母酿酒酿醋 2、炼金术师利用硝石制作硫酸 3、最早比较完整的提出催化 剂的概念是1835年贝采尼乌斯(魔杯故事) 结论:人们在发现催化剂之前就通过各种方法利用催化剂,说明催化剂渗入我们生活的方方面面 二、催化剂的重要性及其优势 1、催化剂在使用前后其质量和化学性质不会发生改变,可以多次利用 2、催化剂可以降低反应条件,提高经济效益(举例,无催化剂时,合成氨反应的活化能很高,大约335KJ/mol,需要较高的温度下进行,加入铁催化剂后,反应以生成氮化物和氮氢化物两个阶段进行。第一阶段的反应活化能为126kJ/mol~167kJ/mol,第二阶段的反应活化能为13kJ/mol,极大的降低了反应所需的温度) 3、生物体内的酶催化剂,对生物的生命活动具有重要作用(在一定条件下,每个过氧化氢酶在一分钟内能转化5000000个过氧化氢分子) 4、催化剂可以控制产物的产率及其产物构型 三、研究新催化剂的重要性 1、催化剂在使用过程中会产生毒化等现象导致催化效率降低,研究新型催化剂降低损耗 有必要2、不同催化剂对相同反应的催化效率不同(举例,生物酶与二氧化锰催化过氧化氢)3、许多反应需要寻找催化剂加快反应,使其量产化能够实现4、对催化剂毒性,价格,使用条件,环境保护方面的要求 四、现今催化剂的发展方向 石油炼制(异构化,烷基化,精制,裂化),无机化工,有机化工,环境保护(硝酸尾气处理,内燃机排气处理) 催化剂从一开始的简单的天然催化物到化合物催化剂到现今分子筛催化剂等等,以后催化剂的发展更加注重环境保护方面,加强对油气资源的综合利用

钴钼系催化剂的硫化

硫化成功的必备条件有三个:0 _; X" s0 j6 }8 b+ N! } 1)要有足够高的硫化温度,一般不大于500 ℃;2)要有足够的强制硫化时间,并且最好有数小时的闷炉;3)强制硫化时,原料气中的硫化氢越高越好,一般不低于15 g/Nm3 。硫化时要防止催化剂超温,超过550 ℃对催化剂造成危害,但短时间超温对催化剂活性影响不大。 一、硫化条件) q8 j* @- |7 J3 C1 y& U 1、温度对硫化反应深度的影响很大,一般入口温度控制在230~260℃,床层温度控制在250~280℃。硫化反应后期应尽量提温,适当的高温(~425℃)既可以保证催化剂的活性,又可缩短硫化时间。7 K& X* R7 H+ c! }* o 2、硫化压力对硫化深度的影响不是很大,可根据装置的实际情况来确定压力,一般不低于1.0MPa(表压)。 3、H2S的浓度过低(体积分数≤0.2%)时,还原后的催化剂活性较差;H2S的较高时,对催化剂的影响不大。出于安全考虑,H2S的浓度不宜提的太高。/ W9 q8 h) o0 ?% I% h 4、系统中H2的体积分数尽量控制在10%~20%,过低会影响CS2的氢解,过高则有可能发生还原反应。 CS2在200℃以上时才发生氢解反应,所以添加CS2要等到温度达230℃左右开始添加。过早添加容易使CS2氢解不完全,在系统内冷凝和吸附。当达到温度时,就会突然发生氢解反应,放出大量的反应热导致床层温度暴涨。但超过250℃再加CS2,就可能发生CoO和MoO3的还原反应,使催化剂失活。运行过程中要保持H2的体积分数在10%~35%之间,因为当H2的浓度过低时,亦有可能造成CS2氢解不完全,在系统内冷凝和吸附。当H2含量提高时,CS2大量氢解,释放过多的反应热,从而导致催化剂床层温度暴涨。串联硫化时要防止“提温提硫”的同时发生,因为当上段硫穿透时,较高的热点温度和上段穿透的硫进入下一段,造成下段“提温提硫”,很容易造成超温。

催化剂

1. 1. 什么是催化剂? 化工辞典对催化剂:“一类能够改变化学反应速度而本身不进入最终产物分子组成中的物质。催化剂不能改变热力学平衡,只能影响反应过程达到平衡的速度。加速反应速度的催化剂称正催化剂,减慢者称负催化剂”。 2. 催化剂发展过程及其特征? 开发过程 ①实验室工作:资料准备 催化剂参考样品的剖析 配方筛选 ②扩大试验?a?a介于小试和工业大生产之间 ③侧流实验?a?a完全模仿工业条件 3.催化剂工业现状及其发展方向? 工业发展概况:A 国内——很多,无法统计 B 国外——美国——一百多家西欧——六十多家(25家)日本——引进与国内开发并重 发展方向: ①企业间的大合作——企业合并、收购、强强联合 ②催化剂生命周期短,更新速度快 ③提供各种服务——开停车、贵金属回收、再生 ④催化剂制造在整个公司中所占比例与来越少——催化性能更佳、需求下降 4. 催化剂活性的表示方法(6种)? ?转化率,意义上不够明确,但计算简单方便,又比较直观,工业上常使用 ?给定条件下主要产物出口浓度或反应物出口残余量 ?时空收率:单位时间内单位体积催化剂上所能得到目的产物的量 ?反应速率,理论上讲更为确切些 ?平衡温距:△T=T -T平(达到任意转化率的温度) ?给定温度下欲达某一指定转化率所需的空速 5.催化剂性能指标(三大指标等)及其意义? (1)转化率x A (conversion) ?求算时物质量可以是质量或摩尔数 ?催化剂的比活性:催化剂单位表面积上所呈现的活性。 (2)催化剂的选择性S (selectivity) ?催化剂的选择性:当化学反应在理论上(热力学上)可能有几个反应方向时,通常一种催化剂在一定条件下,只对其中的一个反应方向起加速作用,这种专门对某一个化学反应起加速作用的性能,称为催化剂的选择性。 ?(3)收率Y(yield) 通常对工业催化剂的要求是:使其只生成所希望的目的产物,并尽量接近于达到该温度和压力下的平衡转化率,最好不生成或尽量少生成其他副产物。 ?对于工业催化剂而言,当存在许多并列反应时,往往对选择性的要求更甚于对活性的要求。?如果生产原料昂贵或产物与副产物分离很困难,则应选用高选择性的催化剂,反之,则选

有机催化剂的应用及发展

催化化学综述 综述题目:有机催化剂的应用及发展 学院:_ 专业:_ 班级:___ 学号:_ 学生姓名:_ 2013年 6月16日

有机催化剂的应用及发展 前言 在化学反应里能改变其他物质的化学反应速率(既能提高也能降低),而本身的质量和化学性质在化学反应前后都没有发生改变的物质叫催化剂(也叫触媒),在现代有机合成化学及化工中有着举足轻重的地位。现代化学工业产品的85%都是通过催化过程生产的,每种新催化剂的发现及催化工艺的研制成功,都会引起化学工业的重大革新。有机催化剂作为其中非常重要的一种,和我们生活的各个方面都有着联系,其发展历史也是几经波折,最终也取得了不错的成果。有机催化剂主要分为金属有机催化剂和非金属有机催化剂,其在社会生产中具有重要作用。

1.非金属有机催化剂 金属有机催化剂相反,非金属有机催化剂是指具备催化剂基本特征的一类不包含金属离子配位的低分子量有机化合物.此类非金属有机催化剂不同于通常的单纯以质子酸中心起主导作用的有机羧酸类、苯磺酸类有机催化剂,它是通过分子中所含的N,P等富电子中心与反应物通过化学键或范德华力形成活化中间体,同时利用本身的结构因素来控制产物的立体选择性。 1.1、非金属有机催化剂的种类 1、有机胺类:脯氨酸、咪唑啉酮类、金鸡纳碱类、Ⅳ杂环卡宾类、二酮哌嗪类、胍类、脲及硫脲类等; 2 、有机膦类:三烷基膦类、三芳基膦类等; 3 、手性醇类质子催化剂:如TADDOL类催化剂。 非金属有机催化剂和金属有机催化剂以及生物有机催化剂有着非常密切的联系,有的非金属有机催化剂例如叔膦本身又是金属有机催化剂很好的配体,还有些非金属有机催化剂显示出类似于酶的特性和催化机理.大量的研究发现大多数非金属催化剂有较高的催化活性,尤其是应用在不对称合成中,经其催化的反应大都有很好的收率和对映选择性,并且具有毒性低、价格低廉、容易制备、稳定性好、易于高分子固载等一系列优点,所以越来越受到各国化学家的重视。 1.2、非金属有机催化剂的应用 1.2.1.松香酯化催化剂 松香是自然界极其丰富的一种天然树脂 ,分为脂松香、浮油松香和木松香三种 ,松香具有防腐、防潮、绝缘、粘合、乳化、软化等特性 ,广泛应用于食品工业、胶粘剂工业、电子工业、医药和农药等 ,但松香性脆、易氧化、酸值较高、热稳定性差等缺点严重妨碍了它的应用。研究发现可以通过对松香进行化学改性 ,人为地赋予它各种优良性能 ,使其得到更广泛的应用。松香化学反应主要在枞酸型树脂酸分子的两个活性基团——羧基和共扼双键上进行。它的主要反应有:异构、加成、氢化、歧化、聚合、氨解、酯化、还原、成盐反应和氧化反应。松香的氢化和酯化是其中最主要的改性手段。

含钼催化剂研究进展

含钼催化剂研究新进展 摘要含钼催化剂广泛用于多种化工生产过程,在含钼精细化学品的研究与开 发中占有重要地位。简要介绍了我国近年来一些含钼催化剂的研究进展和有关文献1前言 催化是现代十分重要的化工技术,据统计,发达国家近三分之一的国民经济总 产值来自催化技术。含钼催化剂在催化领域占有重要地位,广泛用于石油加工和化 工生产,如合成气制造、基本有机合成和精细化工产品等的的生产。因此,长期以 来国内外对含钼催化剂的创新和改进不断进行。这也引起我国钼业界的广泛关注, 逐渐成为我国钼深加工领域的一个新的发展方向。现仅就我国近年来含钼催化剂的 一些新进展作简要介绍。 2烷烃的化学加工催化剂 2.1烷烃芳构化催化剂 四烷无氧脱氢芳构化,为甲烷活化和转化的一个新的研究热点。王林胜等在1 993年首次报道一种以HZSM-5分子筛为载体的含钼催化剂使甲烷于无氧条件下高选择性地转化为苯。该催化剂是甲烷芳构化反应的典型催化剂。此后,对这种催化剂 的研究活跃。舒玉瑛等用机械混合、机械混合后焙烧、机械混合后微波处理等方法 制备这种催化剂,并考察了其对甲烷芳构化反应的催化性能。结果表明:机械混合 法、固相反应法和微波处理法制备的Mo/HZSM-5催化剂,比一般浸渍法能明显提高 芳烃的选择性和减少积碳生成;在不同制法的Mo/HZSM-5催化剂上,Mo物种落位不同,机械混合法、固相反应法和微波处理法能使Mo物种较多地落位于分子筛外表面 ,这对甲烷芳构化反应有利,并明显减少积碳的生成。 王军威等用浸渍法、机械混合法和水热法制备了Mo/HZSM-5催化剂,并考察了 钼含量和反应时间对丙烷芳构化反应的影响,深入研究了Mo物种对HZSM-5分子筛结构和酸性的作用。 最近,田丙伦等报道了对Mo/MCM-22催化剂用于甲烷无氧芳构化的研究结果。MCM-22为晶粒呈片状、含两种孔道结构的高硅沸石分子筛。同Mo/HZSM-5催化剂相比,Mo/MCM-22催化剂稳定性更好,苯产物的选择性较高 。用浸渍法制备的Mo担载量为6%的Mo/MCM-22催化剂性能最佳。此外,还研究了添加钴对Mo/MCM-22催化反应性能和催化剂积碳性质的影响。 2.2烷烃选择氧化催化剂 甲基丙烯酸(MAA)是重要的有机化工原料,当前主要用烯烃为原料生产。然而,饱和烃较烯烃来源广泛,更经济易得,故近年来由异丁烷氧化制MAA已成研究 与开发的新方向。采用一般热表面催化法由异丁烷选择氧化制取MAA主要存在的问 题是MAA选择性低,浓度反应产物(COx)高达40%。激光促进表面反应法是很有应用前景的光催化合成新技术。最近,陶跃武等分别采用在铋钼复合氧化物、钒钼复 合氧化物表面上激光促进异丁烷选择氧化制MAA,取得选择性达到90%和无COx产生的良好结果。

催化简史

催化简史 专业:工业催化姓名:李全升 学号:21207142

催化简史 催化剂的出现在人类社会的发展的过程中起到了极大的推动作用。它解决了生活和生产过程中出现的许多难题,让人们的视野变得更加得开阔,有效得推动了近代产业革命得快速发展。科学技术发展至今天,催化在支撑国民经济可持续发展中发挥着极其重要的作用,在发国家催化对于经济的直接和间接贡献已高达GNP 20%-30%之多。既然催化剂给了我们如此大的帮助,那么到底什么是催化剂?它的作用是怎样的呢?它的种类包括哪些?它到底是怎样发现和发展起来的呢? 物理化学之父奥斯特瓦尔德(F.W. Ostwald)提出了具有现代观点的催化剂和催化作用的定义:“凡能改变化学反应的速度而本身不形成化学反应的最终产物,就叫做催化剂。”他列出4种类型的催化作用:(1)过饱和物系中离析作用的催化(2)均相混合物中的催化;(3)非均相催化(4)酶的催化作用。 催化剂可按化学类型、化学组成、反应类型及市场类型来划分。按化学类型可分成贵金属、分子筛、酸碱、酶、茂金属、氧化物、硫化物等催化剂。按化学组成则可分成银、铜、镍、钯、铁等。按反应类型即催化剂功能分类则可划分成水解与水合、脱水、氧化、加氢、脱氢、聚合、酰化、卤化等。从相态分:均相反应和非均相反应。从工业应用分:石油化工催化、精细化工催化、生物酶催化等。若按市场分类则可性划分成炼油、化工和环保三类。目前国内外均以功能划分为主,兼顾市场类型及应用产业。 催化概念的诞生 古代时,人们就已利用酶酿酒、制醋;中世纪时,炼金术士用硝石作催化剂以硫磺为原料制造硫酸;13世纪,人们发现用硫酸作催化剂能使乙醇变成乙醚。直到19世纪,产业革命有力地推动了科学技术的以展,人们陆续发现了大量的催化现象。 催化剂作用是在生产发展的同时为人们由浅入深地认识到的。在科学纪元中,是贝采里乌斯(Berzelius)于1836年最先用催化作用一词来描述有关痕量物质,本身并不消耗而能够影响反应速率的各种各样的观察结果。贝采里乌斯引用的例子是淀粉受酸催化水解为葡萄糖,金属离子对过氧化氢分解的影响,及铂在氢气和氧气反应中的作用等。催化(catalysis)一词是由两个希腊字拼成,字首cata- 表示下降,动词lysein意思是分裂或破碎。贝采里乌斯可能是用“catalysis”一词来表示把阻碍分子反应的正常力破除掉.当时,反应物、产物和催化剂的化学结构都不清楚,原子—分子理论还没完全建立起来,化学键的本

催化剂的形成与发展

山西轻工职业技术学院毕业论文催化剂的形成与发展 教育系 专业班级 学生姓名 指导老师姓名 山西轻工职业技术学院二〇一七年四月十八日

催化剂的形成与发展 摘要 在化工生产、科学家实验和生命活动中,催化剂都大显身手。例如,硫酸生产中要用五氧化二钒作催化剂。由氮气跟氢气合成氨气,要用以铁为主的多分组催化剂,提高反应速率。在炼油厂,催化剂更是少不了,选用不同的催化剂,就可以得到不同品质的汽油、煤油。汽车尾气中含有害的一氧化碳和一氧化氮,利用铂等金属作催化剂可以迅速将二者转化为无害的二氧化碳和氮气。酶是植物、动物和微生物产生的具有催化能力的蛋白质,生物体的化学反应几乎都在酶的催化作用下进行,酿造业、制药业等都要用催化剂催作。传统观点认为,是催化剂与反应物生成了不稳定的中间产物,再生成了产物。现代观点认为,催化剂降低了活化能,增加了活化分子数量,从而提高了反应速率。 但是对于催化剂的发现、形成、发展现状以及发展前景,很多人都不是很了解。本文将介绍一些有关于催化剂的行成、发展与前景的简单背景和合理预测。 关键词:催化剂发展前景

目录 一.催化剂的发现与行成 (1) 1.催化剂的发现 (1) 2.催化剂的形成 (2) 二.催化剂的发展现状 (2) 1.全球发展现状 (2) 2.催化工业的发展 (3) 三.催化剂的发展前景 (4) 1.全球发展前景 (4) 2.我国的发展前景 (4)

一·催化剂的发现与形成 催化剂又叫触媒。根据国际纯粹与应用化学联合会(IUPAC)于1981年提出的定义,催化剂是一种物质,它能够改变反应的速率而不改变该反应的标准Gibbs自由焓变化。这种作用称为催化作用。涉及催化剂的反应为催化反应。 在化学化工领域中,催化剂的出现为化学以至人类社会的发展都起到了极大的推动作用。它解决了生活和生产过程中出现的许多难题,让人们的视野变得更加得开阔,有效得推动了近代产业革命得快速发展。科学技术发展至今天,催化在支撑国民经济可持续发展中发挥着极其重要的作用,在发国家催化对于经济的直接和间接贡献已高达GNP20%-30%之多。 1.催化剂的发现 古代时,人们就已利用酶酿酒、制醋;中世纪时,炼金术士用硝石作催化剂以硫磺为原料制造硫酸;13世纪,人们发现用硫酸作催化剂能使乙醇变成乙醚。直到19世纪,产业革命有力地推动了科学技术的以展,人们陆续发现了大量的催化现象。催化剂作用是在生产发展的同时为人们由浅入深地认识到的。在科学纪元中,是贝采里乌斯于1836年最先用催化作用一词来描述有关痕量物质,本身并不消耗而能够影响反应速率的各种各样的观察结果。贝采里乌斯引用的例子是淀粉受酸催化水解为葡萄糖,金属离子对过氧化氢分解的影响,及铂在氢气和氧气反应中的作用等。 1781年,帕明梯尔用酸作催化剂,使淀粉水解。1812年,基尔霍夫发现,如果有酸类存在,庶糖的水解作用会进行得很快,反之则很缓慢。而在整个水解过程中,酸类并无什么变化,它好像并不参加反应,只是加速了反应过程。同时,基尔霍夫还观测到,淀粉在稀硫酸溶液中可以变化为葡萄糖。1817年,戴维在实验中发现铂能促使醇蒸气在空气中氧化。1838年,德拉托和施万分别都发现糖之所以能发酵成为酒精和二氧化碳,是由于一种微生物的存在。贝采里乌斯就此提出,在生物体中存在的那些由普通物质、植物汁液或者血而生成无数种化合物,可能都是由此种类似的有机体组成。后来,居内将这些有机催化剂称为“酶”。 1850年,威廉米通过研究酸在蔗糖水解中的作用规律,第一次成功地分析了化学反应速度的问题,从此开始了对化学动力学的定量研究。1884年前后,包括奥斯特瓦尔德在内的几位化学家研究了各种酸对酯的水解作用以及蔗糖转化等现象的酸碱催化作用的解释,他认为催化剂现象的本质,在于某些物质具有一种特别强烈的使原本没有它参加而速度很慢的反应加速的特殊性能。他说,任何物质,如果它不参加到化学反应的最终产物中去,只是改变这个反应的速度即称为催化剂。另外,他通过总结大量的实验结果,根据热力学第二定律,提出了平衡的达成,不能改变平衡常数。1905年,勒·罗西诺和哈伯等人,根据化学热力学的原理,研究计算了氢、氮和氨在各种温度和压力平衡情况后,利用各种

合成氨催化剂的生产和技术

合成氨催化剂的生产和技术 钱伯章 (金秋石化科技传播工作室,上海200127) 摘 要 介绍了世界合成氨催化剂发展历程、新开发的合成氨催化剂种类,同时评述了我国化肥催化剂研发和生产近况,对我国化肥催化剂性能进行了评价。 关键词 合成氨 催化剂 化肥 生产 技术 进展 收稿日期:2003-07-14。 作者简介:钱伯章,高级工程师,1963~1996年任职于中国石化上海高桥分公司,2001年创立金秋石化科技传播工作室,从事石油化工技术和经济信息调研和传播工作,获各种各级荣誉奖60余项,出版著作3部,发表论文500余篇。 1 合成氨催化剂的开发历程 世界需求氮肥(折氮量)将从2001年11060亿吨增加到2003年11112亿吨,世界氮肥(折氮量)能力现为11327亿吨/年(合成氨能力116亿吨/年)。 2005年前,全世界将有约6150Mt/a 合成氨装置投产。沙特阿拉伯化肥公司(SAFCO)(沙特基础工业公司子公司)兴建的世界最大单系列合成氨装置将于2005年投产,该装置能力为3kt/d(约110Mt/a),它比现有的最大装置大50%。另外,4kt/d 规模的装置也已完成初步设计。 现在,世界最大单系列新建装置为阿根廷Profertil 公司的2105kt/d 装置,采用海尔德-托普索技术。印度尼西亚博廷拥有2kt/d 装置。巴斯夫在比利时拥有2106kt/d 装置,由乌德公司建设。KBR 公司在特立尼达建有3套1185kt/d 装置,第4套装置正在建设中,第3套装置由加勒比氮肥公司运作,产能已达2kt/d,所有这几套装置都采用KBR 公司KAAP 技术(KB R 先进合成氨工艺)用于氨合成。 大型装置可实现经济规模,单系列装置规模翻番,可减少投资费用约20%,按照当今技术,放大到313kt/d 也是可行的。KBR 己设计了4kt/d 装置,除主转化器和氨转化器为并列设置外,所有其他设备均为单系列。 世界大约10%的能源用于合成氨生产,所以,合成氨工艺和催化剂的改进将对矿物燃料的消费量产生重大影响。 自上个世纪80年代后期以来,合成氨技术继续向前发展,并建设了规模更大的装置,每吨合成氨生产的能耗也降到了28GJ 。一种铁钴催化剂引入了ICI 公司的LC A 流程,LC A 工艺中合成内件 的操作压力为8MPa 。1992年,第一个无铁的氨合 成催化剂由凯洛格公司(现KB R 公司)应用于其KAAP(Kellogg 高级氨合成工艺)工艺中。这种钌催化剂以一种石墨化的碳作为载体。据称其活性是传统的熔铁催化剂的10~20倍。在反应中,这种催化剂具有不同的动力学特征,内件可在低于化学计量的氢/氮比及约9MPa 压力下操作。 自从Haber 和Mittasch 研究之后,几乎没有发现高活性的催化剂,因此熔铁催化剂仍是广泛应用的催化剂。它具有高内在活性,长使用寿命和高密度特点,除这些优点外,它最公认的优点是价格便宜。 尽管熔铁催化剂有很多优点,但人们一直在努力开发新型催化剂,并对无铁类催化剂产生了浓厚兴趣。上个世纪70~80,日本积极寻求开发钌基催化剂。继在ICI AMV 和LCA 工艺中推出铁-钴系催化剂后,在KAAP 工艺中采用的以碳为载体的钌催化剂推动了氨合成催化剂的发展。完全不含铁、不含钌的催化剂(如Cs/Co 3Mo 3N 催化剂),其活性介于熔铁类和钌系催化剂之间,活性低于钌系催化剂。Cs/Co 3Mo 3N 催化剂、KM1R 催化剂(托普索的熔铁催化剂)和以碳为载体的含钡6%、含钌617%的催化剂在氢/氮比各为3B 1和1B 1的工艺条件下作出的对比可以看出,Cs/Co 3Mo 3N 催化剂的动力学特征介于熔铁和钌基催化剂之间,但它在600e 空气中焚烧时可再生成

有机催化剂的应用及发展

https://www.doczj.com/doc/b28660891.html,/sundae_meng 催化化学综述 综述题目:有机催化剂的应用及发展 学院:_ 专业:_ 班级:___ 学号:_ 学生姓名:_ 2013年 6月16日

有机催化剂的应用及发展 前言 在化学反应里能改变其他物质的化学反应速率(既能提高也能降低),而本身的质量和化学性质在化学反应前后都没有发生改变的物质叫催化剂(也叫触媒),在现代有机合成化学及化工中有着举足轻重的地位。现代化学工业产品的85%都是通过催化过程生产的,每种新催化剂的发现及催化工艺的研制成功,都会引起化学工业的重大革新。有机催化剂作为其中非常重要的一种,和我们生活的各个方面都有着联系,其发展历史也是几经波折,最终也取得了不错的成果。有机催化剂主要分为金属有机催化剂和非金属有机催化剂,其在社会生产中具有重要作用。

1.非金属有机催化剂 金属有机催化剂相反,非金属有机催化剂是指具备催化剂基本特征的一类不包含金属离子配位的低分子量有机化合物.此类非金属有机催化剂不同于通常的单纯以质子酸中心起主导作用的有机羧酸类、苯磺酸类有机催化剂,它是通过分子中所含的N,P等富电子中心与反应物通过化学键或范德华力形成活化中间体,同时利用本身的结构因素来控制产物的立体选择性。 1.1、非金属有机催化剂的种类 1、有机胺类:脯氨酸、咪唑啉酮类、金鸡纳碱类、Ⅳ杂环卡宾类、二酮哌嗪类、胍类、脲及硫脲类等; 2 、有机膦类:三烷基膦类、三芳基膦类等; 3 、手性醇类质子催化剂:如TADDOL类催化剂。 非金属有机催化剂和金属有机催化剂以及生物有机催化剂有着非常密切的联系,有的非金属有机催化剂例如叔膦本身又是金属有机催化剂很好的配体,还有些非金属有机催化剂显示出类似于酶的特性和催化机理.大量的研究发现大多数非金属催化剂有较高的催化活性,尤其是应用在不对称合成中,经其催化的反应大都有很好的收率和对映选择性,并且具有毒性低、价格低廉、容易制备、稳定性好、易于高分子固载等一系列优点,所以越来越受到各国化学家的重视。 1.2、非金属有机催化剂的应用 1.2.1.松香酯化催化剂 松香是自然界极其丰富的一种天然树脂 ,分为脂松香、浮油松香和木松香三种 ,松香具有防腐、防潮、绝缘、粘合、乳化、软化等特性 ,广泛应用于食品工业、胶粘剂工业、电子工业、医药和农药等 ,但松香性脆、易氧化、酸值较高、热稳定性差等缺点严重妨碍了它的应用。研究发现可以通过对松香进行化学改性 ,人为地赋予它各种优良性能 ,使其得到更广泛的应用。松香化学反应主要在枞酸型树脂酸分子的两个活性基团——羧基和共扼双键上进行。它的主要反应有:异构、加成、氢化、歧化、聚合、氨解、酯化、还原、成盐反应和氧化反应。松香的氢化和酯化是其中

配位催化剂的应用

配位催化剂的应用前景 某某* (单位名称地址邮编) 摘要;本文介绍了材料的类型和常用的合成方法,综述了近年来材料在催化领域的应用,特别是以材料中骨架金属作为活性中心骨架有机配体作为活性中心和负载催化活性组分的催化反应,以期对材料的催化性能较全面的认识。 关键词; 金属-有机骨架类型合成催化应用;负载型金催化剂;催化性能 1前言 金属-有机骨架材料是由金属离子与有机配体通过自组装过化生成的一类具有周期性多维网状结构的多孔晶体材料,具有纳米级的骨架型规整的孔道结构,大的表面积和孔隙率以及小的固体密度,在吸附、分离、催化等方面均表现出了优异的性能,已成为新材料领域的研究热点与前沿。材料的出现可以追溯到1989年为主要代表的工作在硝基甲烷中制备出了具有类似金刚石结构的三维网状配位聚合物同时预测了该材料可能产生出比沸石分子筛更大的孔道和空穴,从此开始了材料的研究热潮。但早期合成的材料的骨架和孔结构不够稳定,容易变形。直到1995年等合成出了具有稳定孔结构的,才使其具有了实用由于材料具有大的比表面积和规整的孔道结构,并且孔尺寸的可调控性强,骨架金属离子和有机配体易实现功能化,气体吸附[1]、磁学性能[2]、生物医学[3]以及光电材[4]等领域得到了广泛应用。这些特性貌似与现有的沸石和介孔分子筛很相似,但实际上却有较大的差别,材料还可负载高分散的纳米金属活性组分等,因此材料具有区别于其他催化剂材料的独特结构特征。 2 含钼催化剂的应用 2. 1 钴钼、镍钼催化剂 钴钼、镍钼催化剂主要用于石油加工过程中的加氢精制,如加氢脱硫( HDS)、加氢脱氮、加氢饱和等。其特点是不易中毒,使用寿命长在催化反应过程中具有很高的活性、良好的选择性和机械强度;不仅可处理一般原油,而且对品质低劣的重质油也很有效。制备钴钼催化剂主要有湿混、干混、浸渍等三种方法。湿混法是将硝酸钴和钼酸铵与有机酸配成均匀透明溶液,然后与拟薄水铝石一起经*作者简介:某某,女,(1991—),甘肃酒泉,现为,,,,,,,

催化剂制备方法大全

催 化 剂 的 制 备 方 法 与 成 型 技 术 总 结 应用化学系1202班 王宏颖 2012080201

催化剂的制备方法与成型技术 一、固体催化剂的组成: 固体催化剂主要有活性组分、助剂和载体三部分组成: 1.活性组分:主催化剂,是催化剂中产生活性的部分,没有它催化剂就不能产生催化作用。 2.助剂:本身没有活性或活性很低,少量助剂加到催化剂中,与活性组分产生作用,从而显著改善催化剂的活性和选择性等。 3.载体:载体主要对催化活性组分起机械承载作用,并增加有效催化反应表面、提供适宜的孔结构;提高催化剂的热稳定性和抗毒能力;减少催化剂用量,降低成本。 目前,国内外研究较多的催化剂载体有:SiO2,Al2O3、玻璃纤维网(布)、空心陶瓷球、有机玻璃、光导纤维、天然粘土、泡沫塑料、树脂、活性炭,Y、β、ZSM-5分子筛,SBA-15、MCM-41、LaP04等系列载体。 二、催化剂传统制备方法 1、浸渍法 (1)过量浸渍法 (2)等量浸渍法(多次浸渍以防止竞争吸附) 2、沉淀法(制氧化物或复合氧化物)(注意加料顺序:正加法或倒加法,沉淀剂 加到盐溶液为正,反之为倒加) (1)单组分沉淀法 (2)多组分共沉淀法 (3)均匀沉淀法(沉淀剂:尿素) (4)超均匀沉淀法 (NH4HCO3和NH4OH组成的缓冲溶液pH=9) (5)浸渍沉淀法 浸渍沉淀法是在浸渍法的基础上辅以均匀沉淀法发展起来的,即在浸渍液中预先配入沉淀剂母体,待浸渍单元操作完成后,加热升温使待沉淀组分沉积在载体表面上。此法,可以用来制备比浸渍法分布更加均匀的金属或金属氧化物负载型催化剂。 (6)导晶沉淀法 本法是借晶化导向剂(晶种)引导非晶型沉淀转化为晶型沉淀的快速有效方法。举例:以廉价易得的水玻璃为原料的高硅酸钠型分子筛,包括丝光沸石、Y型、X型分子筛。 3、共混合法 混合法是将一定比例的各组分配成浆料后成型干燥,再经活化处理即可。如合成气制甲醇用的催化剂就是将氧化锌和氧化铬放在一起混合均匀(适当加入铬

催化剂的历史及其发展趋势

催化剂的历史及其发展趋势 1.催化剂的历史 催化现象由来已久,早在古代,人们就利用酵素酿酒制醋,中世纪炼金术士用硝石催化剂从事硫磺制作硫酸。十三世纪发现硫酸能使乙醇产生乙醚,十八世纪利用氧化氮之所硫酸,即所谓的铅室法[1]。最早记载“催化现象”的资料可以追溯到十六世纪末(1597年)德国的《炼金术》一书,但是当时“催化作用”还没有被作为一个正式的化学概念提出。一直到十九世纪初期,由于催化现象的不断发现,为了要解释众多的催化现象,开始提出了“催化”这一个名词。最早是在1835年,瑞典化学家J.J.Berzelius(1779-1848)在其著名的“二元学说”的基础上,把观察到的零星化学变化归结为是由一种“催化力(catalyticforce)”所引起的,并引入了“催化作用(cataysis)”一词[2]。从此,对于催化作用的研究才广泛的开展起来。 1.1萌芽时期(20世纪以前) 催化剂工业发展史与工业催化过程的开发及演变有密切关系。1740年英国医生J.沃德在伦敦附近建立了一座燃烧硫磺和硝石制硫酸的工厂,接着,1746 年英国J.罗巴克建立了铅室反应器,生产过程中由硝石产生的氧化氮实际上是一种气态的催化剂,这是利用催化技术从事工业规模生产的开端。1831年P.菲利普斯获得二氧化硫在铂上氧化成三氧化硫的英国专利。19世纪60年代,开发了用氯化铜为催化剂使氯化氢进行氧化以制取氯气的迪肯过程。1875年德国人E.雅各布在克罗伊茨纳赫建立了第一座生产发烟硫酸的接触法装置,并制造所需的铂催化剂,这是固体工业催化剂的先驱。铂是第一个工业催化剂,现在铂仍然是许多重要工业催化剂中的催化活性组分。19世纪,催化剂工业的产品品种少,都采用手工作坊的生产方式。由于催化剂在化工生产中的重要作用,自工业催化剂问世以来,其制造方法就被视为秘密。 1.2奠基时期(20世纪初) 在这一时期内,制成了一系列重要的金属催化剂,催化活性成分由金属扩大到氧化物,液体酸催化剂的使用规模扩大。制造者开始利用较为复杂的配方来开发和改善催化剂,并运用高度分散可提高催化活性的原理,设计出有关的制造技术,例如沉淀法、浸渍法、热熔融法、浸取法等,成为现代催化剂工业中的基

催化剂的制备方法及成型

催化剂的制备方法及成型 一催化剂的制备方法 1.1浸渍法 将含有活性组分(或连同助催化剂组分)的液态(或气态)物质浸载在固态载体表面上。此法的优点为:可使用外形与尺寸合乎要求的载体,省去催化剂成型工序;可选择合适的载体,为催化剂提供所需的宏观结构特性,包括比表面、孔半径、机械强度、导热系数等;负载组分仅仅分布在载体表面上,利用率高,用量少,成本低。广泛用于负载型催化剂的制备,尤其适用于低含量贵金属催化剂。 影响浸渍效果的因素有浸渍溶液本身的性质、载体的结构、浸渍过程的操作条件等。浸渍方法有:①超孔容浸渍法,浸渍溶液体积超过载体微孔能容纳的体积,常在弱吸附的情况下使用;②等孔容浸渍法,浸渍溶液与载体有效微孔容积相等,无多余废液,可省略过滤,便于控制负载量和连续操作;③多次浸渍法,浸渍、干燥、煅烧反复进行多次,直至负载量足够为止,适用于浸载组分的溶解度不大的情况,也可用来依次浸载若干组分,以回避组分间的竞争吸附;④流化喷洒浸渍法,浸渍溶液直接喷洒到反应器中处在流化状态的载体颗粒上,制备完毕可直接转入使用,无需专用的催化剂制备设备;⑤蒸气相浸渍法,借助浸渍化合物的挥发性,以蒸气相的形式将它负载到载体表面上,但活性组分容易流失,必须在使用过程中随时补充。 1.2沉淀法 用淀剂将可溶性的催化剂组分转化为难溶或不溶化合物,经分离、洗涤、干燥、煅烧、成型或还原等工序,制得成品催化剂。广泛用于高含量的非贵金属、金属氧化物、金属盐催化剂或催化剂载体。沉淀法有: ①共沉淀法,将催化剂所需的两个或两个以上的组分同时沉淀的一种方法。其特点是一次操作可以同时得到几个组分,而且各个组分的分布比较均匀。如果组分之间形成固体溶液,那么分散度更为理想。为了避免各个组分的分步沉淀,各金属盐的浓度、沉淀剂的浓度、介质的pH值及其他条件都须满足各个组分一起沉淀的要求。 ②均匀沉淀法,首先使待沉淀溶液与沉淀剂母体充分混合,造成一个十分均匀的体系,然后调节温度,逐渐提高pH值,或在体系中逐渐生成沉淀剂等,创造形成沉淀的条件,使沉淀缓慢地进行,以制取颗粒十分均匀而比较纯净的固体。例如,在铝盐溶液中加入尿素,混合均匀后加热升温至90~100℃,此时体系中各处的尿素同时水解,放出OH-离子: 于是氢氧化铝沉淀可在整个体系中均匀地形成。 ③超均匀沉淀法,以缓冲剂将两种反应物暂时隔开,然后迅速混合,在瞬间内使整个体系在各处同时形成一个均匀的过饱和溶液,可使沉淀颗粒大小一致,组分分布均匀。苯选择加氢的镍/氧化硅催化剂的制法是:在沉淀槽中,底部装入硅酸钠溶液,中层隔以硝酸钠缓冲剂,上层放置酸化硝酸镍,然后骤然搅拌,静置一段时间,便析出超均匀的沉淀物。 ④浸渍沉淀法,在浸渍法的基础上辅以均匀沉淀法,即在浸渍液中预先配入沉淀剂母体,待浸渍操作完成后加热升温,使待沉淀组分沉积在载体表面上。 混合法多组分催化剂在压片、挤条等成型之前,一般都要经历这一步骤。此法设备简单,操作方便,产品化学组成稳定,可用于制备高含量的多组分催化剂,尤其是混合氧化物催化剂,但此法分散度较低。 混合可在任何两相间进行,可以是液-固混合(湿式混合),也可以是固-固混合(干式混合)。混合的目的:一是促进物料间的均匀分布,提高分散度;二是产生新的物理性质(塑性),便于成型,并提高机械强度。

聚烯烃催化剂的发展现状与趋势

聚烯烃催化剂的发展现状与趋势 摘要:本文评述了自二十世纪五十年代初至今的近五十年时间里聚烯烃催化剂的几个重要发展阶段,讨论了Ziegler-Natta催化剂、无烷基金属化合物催化剂、茂金属催化剂及非茂有机金属催化剂的组成及特性,提出了我国在聚烯烃催化剂开发方面的对策。 关键词:Ziegler-Natta催化剂;茂金属催化剂;非茂催化剂;聚烯烃;对策 聚烯烃工业的发展是一个国家石化工业发展的重要标志,九十年代以来,世界聚烯烃生产能力大幅度增长,世界市场面临着供大于求的形势,在这种情况下,只有加大技术开发力度,掌握和采用先进技术,才能降低成本,提高产品附加值和市场竞争力。众所周知,聚烯烃技术的关键在于催化剂,聚烯烃树脂性能的改进与聚烯烃催化剂的开发有着极为密切的关系。所以研究和总结聚烯烃催化剂的发展历程对制定我国在聚烯烃工业中的中、长期战略目标具有十分重要的意义。 在各种聚烯烃催化剂中,目前使用最广泛的仍是齐格勒-纳塔(Ziegler-Natta)催化剂,它自五十年代问世以来,经过各国共同开发研究,经历了由第一代至第四代的发展,催化性能不断提高,推动了聚烯烃工业的迅猛发展,生产规模的不断扩大及高性能聚烯烃树脂(如高等规聚丙烯)的合成均可归因于齐格勒-纳塔催化剂的成熟与发展。目前对这类催化剂的研究和开发工作主要集中在高活性和高度立体定向催化剂的研制上。 1976年德国汉堡大学的Kaminsky教授偶然发现向Cp2ZrCl2 /三甲基铝(TMA)体系中加入少量水,催化剂活性会明显增大,后来对产生这一现象的原因进行了深入研究,结果发现,少量水的引入使TMA变成了甲基铝氧烷(MAO),由此揭开了烯烃聚合催化剂又一个新的篇章。茂金属催化剂由于具有理想的单活性中心,通过变换其配位基团又可以改变活性中心的电负性和空间环境,从而能精密地控制分子量、分子量分布、共聚单体含量和在主链上的分布及结晶构造。因而茂金属催化剂在聚合物品种的开发上显示出了明显的优势,用齐格勒-纳塔催化剂很难实现的聚烯烃树脂的功能化在茂金属催化剂作用下则很快得到了解决。正是由于茂金属聚烯烃所具备的优异性能,才使得茂金属催化剂自八十年代中期逐步成

钴钼系耐硫变换催化剂使用注意事项

K8-11系列催化剂使用注意事项 一、催化剂的使用 1.1 催化剂的装填 装填催化剂之前,必须认真检查反应器,保持清洁干净,支撑栅格正常牢固。为了避免在高的蒸汽分压和高温条件下损坏失去强度,催化剂床层底部支撑催化剂的金属部件应选用耐高温和耐腐蚀的惰性金属材料。惰性材料应不含硅,防止高温、高水汽分压下释放出硅。 催化剂装填时,通常没有必要对催化剂进行过筛,如果在运输及装卸过程中,由于不正确地作业使催化剂损坏,发现有磨损或破碎现象必须过筛。催化剂的装填无论采取从桶内直接倒入,还是使用溜槽或充填管都可以。但无论采用哪一种装填方式,都必须避免催化剂自由下落高度超过1米,并且要分层装填,每层都要整平之后再装下一层,防止疏密不均,在装填期间,如需要在催化剂上走动,为了避免直接踩在催化剂上,应垫上木版,使身体重量分散在木版的面积上。 一般情况下,催化剂床层顶部应覆盖金属网和/或惰性材料,主要是为了防止在装置开车或停车期间因高的气体流速可能发生催化剂被吹出或湍动,可能由于气体分布不均发生催化剂床层湍动,损坏催化剂。 由于高压,原料气密度较大,为了尽可能的减小床层阻力降,应严格控制催化剂床层高度和催化剂床层高径比。通常催化剂床层高度应控制在3~5m;催化剂床层高径比控制在1.0~1.8。 1.2 开车 1.2.1 升温 为防止水蒸气在催化剂上冷凝,首次开车升温时,应使用惰性气体(N 2、H 2 、 空气或天然气)把催化剂加热到工艺气露点以上温度,最好使用N 2 。 采用≤50℃/h的升温速度加热催化剂,根据最大可获得流量来设定压力,从而确保气体在催化剂上能很好分布。在通常情况下,气体的有效线速度不应小于设计值的50%,但也不应超过设计值。 当催化剂床层温度达到100℃~130℃时,恒温2~3小时排除吸附的物理水,然后继续升温至200℃~230℃时,进行下一步的硫化程度。如果最初加热选用的是空气,在引入硫化气之前,必须用氮气或蒸汽吹扫系统,以置换残余氧气。硫化气的切换基本上在常压或较高压力下进行,这取决于气流的方便。 1.2.2 硫化 与铁铬系催化剂的还原相似,钴钼系耐硫变换催化剂使用前一般需要经过活化(硫化)方能使用,硫化的好坏对硫化后催化剂的活性有着重要作用。 如果工艺气中的硫含量较高,一般使用工艺气直接硫化时,硫化过程中可能发生下述反应: CoO+H 2S ? CoS+H 2 O ?H0 298 =-13.4KJ/mol (1) MoO 3+2H 2 S+H 2 ? MoS 2 +3H 2 O ?H0 298 =-48.1KJ/mol (2) CO+H 2O ? CO 2 +H 2 ?H0 298 =-41.4KJ/mol (3) CO+3H 2? CH 4 +H 2 O ?H0 298 =-206.2KJ/mol (4) 硫化过程为了使产生的热量尽可能小,便于硫化温度控制,在硫化过程中应尽可能地抑制这后两个反应,特别是反应(4),通常催化剂转化成硫化态后,对反应(3)是有利的,但催化剂为氧化态时,并在较高的压力下,即开车的初期

催化剂制备

纳米金属催化剂的制备方法 摘要:纳米金属催化剂的制备方法包括化学法和物理法。化学法中主要有溶胶-凝胶法、沉淀法、溶剂热合成法、微乳法和水解法等;物理法主要有气相凝聚法、溅射法和机械研磨法等。其中化学法中的溶胶-凝胶法及沉淀法应用最广。对纳米金属催化剂的制备方法进行了比较,并简要论述了制备及应用过程中存在的主要问题。 关键词:纳米;催化剂;制备方法 引言 纳米催化材料由于其特有的量子尺寸效应、宏观量子隧道效应等性能,显现出许多特有性质,在催化领域的应用为广大催化工作者开拓了一个广阔空间,国际上已把纳米粒子催化剂称为第四代催化剂,因此纳米材料在催化领域的应用日益受到重视。许多发达国家都相继投入大量人力、财力开展纳米粒子作为高性能催化剂的研究,如美国的Nano 中心,日本的Nano ST 均把纳米材料催化剂的研究列为重点开发项目。我国对纳米材料的研究也给以高度重视,国家“863”计划、“973”计划大力支持纳米材料及纳米催化剂的研究,已取得了可喜成果。目前,国内外纳米催化剂的制备和应用逐步拓展到催化加氢、脱氢、聚合、酯化、化学能源、污水处理等方面。纳米金属催化剂制备方法分为化学法及物理法:化学法包括溶胶-凝胶法、沉淀法、溶剂热合成法、微乳法和水解法等;物理法包括气相凝聚法、溅射法和机械研磨法等。 1 化学法制备金属纳米催化剂 1.1 溶胶-凝胶法 该法一般是以金属盐或半金属盐作前驱体,将适当的烷氧化物如四甲氧基硅烷与水、酸性或碱性催化剂与共熔剂,在搅拌超声下进行水解和缩聚反应形成SiO2 三维网络结构。在成胶过程中引入的金属组分包埋在三维网络结构中,再进行凝胶老化过程,即将凝胶浸于液体中,继续聚合反应,凝胶强度增加。最后通过干燥,将溶剂从相互关联的多孔网格中蒸发掉,即可得到纳米尺寸的网格结构。溶胶-凝胶技术已成为实现化学剪裁合成纳米材料的主要手段。但该法使用的原料价格较昂贵;通常整个溶胶-凝胶过程所需时间较长,有时长达几天或几周;而且凝胶中存在大量微孔,在干燥过程中将逸出许多气体及有机物,并产生收缩。溶胶-凝胶法还被用来制备复合纳米金属催化剂,如KeijiHashimoto等人利用溶胶-凝胶工艺制备了K+[Zn3(SiO3Al)10(OH)2]- 纳米粒子用于醇脱氢反应。李永丹等人还利用溶胶-凝胶法制备了镍基催化剂,并对其进行了甲烷分解制备碳纳米管的研究,所制备的纳米管直径为10~20nm。雷翠月也利用此法,直接制备出了高比表面积、低堆积密度的纤维状纳米级负载CuO-Al2O3 超细粒子,活性组分以远低于纳米级的微晶粒子簇状态均匀地分散在纳米级氧化铝载体表面,在500℃内具有较高的稳定性,晶粒未聚集长大,在十二醇催化胺化反应中表现出了较高的催化活性。陈立功等人在醇催化胺化反应研究中开发了一种改进的溶胶-凝胶法,利用这种方法制备的铜基纳米催化剂的活性和稳定性都有了显著提高。 1.2 沉淀法

催化剂发展历程

催化剂的发展历程 班级:化工091 姓名:程朝阳 学号:21号

摘要 催化剂又叫触媒。根据国际纯粹与应用化学联合会(IUPAC)于1981年提出的定义,催化剂是一种物质,它能够改变反应的速率而不改变该反应的标准Gibbs自由焓变化。这种作用称为催化作用。涉及催化剂的反应为催化反应。催化剂有正催化剂和负催化剂两类。正催化剂能使化学反应速度加快几百倍、几千倍,甚至几百万倍。使化学反应减慢的催化剂,刚做“负催化剂”。例如,在食用油脂里加入0.01~0.02%没食子酸正丙脂,可以有效地防止酸败。没食子酸正丙脂就是一种负催化剂。 今天化学工业中,催化剂种类已达100万种,有金属、氧化物、酸、碱、盐等,真是琳琅满目,层出不穷。它们在炼油、塑料、合成氨、合成橡胶、合成纤维等工业部门的许多物质转化过程中,大显神威、施晨奇才,简直到了“点石成金”、出神入化的地步,创造出一个又一个奇迹。据统计,在化学工业中约有百分之八十五的化学反应离不开催化剂。可以这样说,没有催化剂,就没有现代的化学工业。 催化剂是化学中的魔术师,是化学工业中一员主将。 关键字:催化剂、催化功能、载体、活性组分等

萌芽时期(20世纪以前) 催化剂工业发展史与工业催化过程的开发及演变有密切关系。1740年英国医生J.沃德在伦敦附近建立了一座燃烧硫磺和硝石制硫酸的工厂,接着,1746年英国J.罗巴克建立了铅室反应器,生产过程中由硝石产生的氧化氮实际上是一种气态的催化剂,这是利用催化技术从事工业规模生产的开端。1831年P.菲利普斯获得二氧化硫在铂上氧化成三氧化硫的英国专利。19世纪60年代,开发了用氯化铜为催化剂使氯化氢进行氧化以制取氯气的迪肯过程。1875年德国人E.雅各布在克罗伊茨纳赫建立了第一座生产发烟硫酸的接触法装置,并制造所需的铂催化剂,这是固体工业催化剂的先驱。铂是第一个工业催化剂,现在铂仍然是许多重要工业催化剂中的催化活性组分。19世纪,催化剂工业的产品品种少,都采用手工作坊的生产方式。由于催化剂在化工生产中的重要作用,自工业催化剂问世以来,其制造方法就被视为秘密。 在这一时期内,制成了一系列重要的金属催化剂,催化活性成分由金属扩大到氧化物,液体酸催化剂的使用规模扩大。制造者开始利用较为复杂的配方来开发和改善催化剂,并运用高度分散可提高催化活性的原理,设计出有关的制造技术,例如沉淀法、浸渍法、热熔融法、浸取法等,成为现代催化剂工业中的基础技术。催化剂载体的作用及其选择也受到重视,选用的载体包括硅藻土、浮石、硅胶、氧化铝等。为了适应于大型固定床反应器的要求,在生产工艺中出现了成型技术,已有条状和锭状催化剂投入使用。这一时期已有较大的生产规模,但品种较为单一,除自产自用外,某些广泛使用的催化剂已作为商品进入市场。同时,工业实践的发展推动了催化理论的进展。1925年H.S.泰勒提出活性中心理论,这对以后制造技术的发展起了重要作用。 金属催化剂 20世纪初,在英国和德国建立了以镍为催化剂的油脂加氢制取硬化油的工厂,1913年,德国巴登苯胺纯碱公司用磁铁矿为原料,经热熔法并加入助剂以生产铁系氨合成催化剂。1923年F.费歇尔以钴为催化剂,从一氧化碳加氢制烃取得成功。1925年,美国M.雷尼获得制造骨架镍催化剂的专利并投入生产. 这是一种从Ni-Si合金用碱浸去硅而得的骨架镍。1926年,法本公司用铁、锡、钼等金属为催化剂,从煤和焦油经高压加氢液化生产液体燃料,这种方法称柏吉斯法。该阶段奠定了制造金属催化剂的基础技术,包括过渡金属氧化物、盐类的还原技术和合金的部分萃取技术等,催化剂的材质也从铂扩大到铁、钴、镍等较便宜的金属。 氧化物催化剂 鉴于19世纪开发的二氧化硫氧化用的铂催化剂易被原料气中的砷所毒化,出现了两种催化剂配合使用的工艺。德国曼海姆装置中第一段采用活性较低的氧化铁为催化剂,剩余的二氧化硫再用铂催化剂进行第二段转化。这一阶段,开发了抗毒能力高的负载型钒氧化物催化剂,并于1913年在德国巴登苯胺纯碱公司用于新型接触法硫酸厂,其寿命可达几年至十年之久。20年代以后,钒氧化物催化剂迅速取代原有的铂催化剂,并成为大宗的商品催化剂。制硫酸催化剂的这一变革,为氧化物催化剂开辟了广阔前景。 液态催化剂 1919年美国新泽西标准油公司开发以硫酸为催化剂从丙烯水合制异丙醇的

相关主题
文本预览
相关文档 最新文档