当前位置:文档之家› 三角形中的最值问题

三角形中的最值问题

三角形中的最值问题
三角形中的最值问题

三角形中的最值问题

题型一。求和的范围型

1.中,角所对的边长分别为已知.

2.Ⅰ当时,求c;

3.Ⅱ求的取值范围.

4.

5.中,角的对边分别是,已知.

6.Ⅰ求C的大小;

7.Ⅱ若,求周长的最大值.

8.

3.在中,角所对的边分别似乎,且.

若,求角B;

求周长l的最大值.

题型二。求积的范围型

1.中,内角的对边分别是,已知.

求的大小;

若,且,求面积的最大值.

2..在三角形ABC中,角所对的边分别为,且.

求角A;

若,求bc的取值范围.

3.已知的内角A、B、C的对边分别为a、b、c,其中.

求A;

当时,求面积的最大值.

4.在中,内角A、B、C的对边长分别为,若

求角A的大小;

若,求BC边上的中线AM的最大值.

题型三。求边长的范围型

1.中,三个内角A、B、C所对的边分别为a、b、,

求角B的大小;

若,求边c的大小;

若,求b的最小值.

2.已知的周长为,且.

求边BC的长;

若的面积为,求角A的度数.

3.在中,角所对的边分别为,且满足.

求C;

若,且,求的面积.

数列复习

1.设数列的前n项和为,且满足.

2.Ⅰ求的通项公式;

3.Ⅱ设,求.

4.

5.

2.已知数列满足为正整数.

Ⅰ求证:数列为等差数列;

Ⅱ若,求数列的前n项和.

三角形中的最值与范围问题

在正余弦定理的运用中,有一类题目值得关注。这类题有一个相同的特点,即知道三 角形的一条边和边所对的角,求三角形面积(或周长)的最值(或范围) ,但在解题方法的 选择上有值得考究的地方。请先看两个例题: 1 例1( 13年重庆綦江中学)在:ABC 中,角A,B,C 的对边分别为a,b, c 且cosA 二丄,a = 4 . 4 (1) 若b ?c=6,且b < c ,求b,c 的值. (2) 求L ABC 的面积的最大值。 解 (1)由余弦定理 a 1 2 二 b 2 - c 2 — 2bccosA , 2 1 16 = (b c ) - 2bc bc 2 .bc =8 , 又 v b 亠 c = 6, b

二次函数专题训练(三角形周长最值问题)含问题详解

1.如图所示,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求抛物线的解析式; (2)如图所示,直线BC下方的抛物线上有一点P,过点P作PE⊥BC于点E,作PF平行于x轴交直线BC于点F,求△PEF周长的最大值; (3)已知点M是抛物线的顶点,点N是y轴上一点,点Q是坐标平面一点,若点P是抛物线上一点,且位于抛物线的对称轴右侧,是否存在以P、M、N、Q为顶点且以PM为边的正方形?若存在,直接写出点P的横坐标;若不存在,说明理由.

2.如图,抛物线y=﹣x2+2x+3与x轴交于A,B两点,与y轴交于点C,点D,C关于抛物线的对称轴对称,直线AD与y轴相交于点E. (1)求直线AD的解析式; (2)如图1,直线AD上方的抛物线上有一点F,过点F作FG⊥AD于点G,作FH平行于x轴交直线AD于点H,求△FGH周长的最大值; (3)如图2,点M是抛物线的顶点,点P是y轴上一动点,点Q是坐标平面一点,四边形APQM是以PM为对角线的平行四边形,点Q′与点Q关于直线AM对称,连接M Q′,P Q′.当△PM Q′与□APQM 重合部分的面积是?APQM面积的时,求?APQM面积.

3.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点A的坐标为(﹣1,0),且OC=OB,tan∠ACO=. (1)求抛物线的解析式; (2)若点D和点C关于抛物线的对称轴对称,直线AD下方的抛物线上有一点P,过点P作PH⊥AD于点H,作PM平行于y轴交直线AD于点M,交x轴于点E,求△PHM的周长的最大值; (3)在(2)的条件下,以点E为端点,在直线EP的右侧作一条射线与抛物线交于点N,使得∠NEP为锐角,在线段EB上是否存在点G,使得以E,N,G为顶点的三角形与△AOC相似?如果存在,请求出点G的坐标;如果不存在,请说明理由.

(完整版)解三角形测试题(附答案)

解三角形单元测试题 一、选择题: 1、在△ABC 中,a =3,b =7,c =2,那么B 等于( ) A . 30° B .45° C .60° D .120° 2、在△ABC 中,a =10,B=60°,C=45°,则c 等于 ( ) A .310+ B .( ) 1310 - C .13+ D .310 3、在△ABC 中,a =32,b =22,B =45°,则A 等于( ) A .30° B .60° C .30°或120° D . 30°或150° 4、在△ABC 中,a =12,b =13,C =60°,此三角形的解的情况是( ) A .无解 B .一解 C . 二解 D .不能确定 5、在△ABC 中,已知bc c b a ++=2 2 2 ,则角A 为( ) A . 3 π B . 6π C .32π D . 3 π或32π 6、在△ABC 中,若B b A a cos cos =,则△ABC 的形状是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形 D .等腰或直角三角形 7、已知锐角三角形的边长分别为1,3,a ,则a 的范围是( ) A .()10,8 B . ( ) 10,8 C . ( ) 10,8 D . ()8,10 8、在△ABC 中,已知C B A sin cos sin 2=,那么△ABC 一定是 ( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形 D .正三角形 9、△ABC 中,已知===B b x a ,2, 60°,如果△ABC 两组解,则x 的取值范围( ) A .2>x B .2

高考数学阶段复习试卷:三角形中的最值问题

高考数学阶段复习试卷:三角形中的最值问题 1. 在ABC ?中,a ,b ,c 分别为角A ,B ,C 所对的边长,已知:3C π= ,a b c λ+=(其中1λ>) (1)当2λ=时,证明:a b c ==; (2)若3AC BC λ?=,求边长c 的最小值. 2. 已知函数()4cos sin()3f x x x π=- (1)求函数()f x 在区间[,]42 ππ上的值域; (2)在ABC ?中,角,,A B C 所对的边分别是,,a b c 若角C 为锐角,()f C =,且2c =,求ABC ?面积的最大值。 3. 已知函数2()22cos f x x x m =+- (Ⅰ)若方程()0f x =在[0,]2x π ∈上有解,求m 的取值范围;(Ⅱ)在ABC ?中,,,a b c 分别是,,A B C 所对 的边,当(Ⅰ)中的m 取最大值,且()1f A =-,2b c +=时,求a 的最小值 4. 在ABC ?中,sin A a =. (1)求角B 的值;(2)如果2b =,求ABC ?面积的最大值. 5. 如图,扇形AOB ,圆心角AOB 等于60o ,半径为2,在弧AB 上有一动点P ,过P 引平行于OB 的直线和OA 交于点C ,设AOP θ∠=,求POC ?面积的最大值及此时θ的值.

6. 如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50m /min .在甲出发2min 后,乙从A 乘缆车到B ,在B 处停留1min 后,再从匀速步行到C .假设缆车匀速直线运动的速度为130m /min ,山路AC 长为1260m ,经测量,12cos 13A =,3cos 5 C =. (1) 求索道AB 的长; (2) 问乙出发多少分钟后,乙在缆车上与甲的距离最短? (3) 为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内? 7. 如图,在等腰直角三角形OPQ ?中,90POQ ? ∠=,22OP =点M 在线段P Q 上. (1)若5OM =求PM 的长; (2)若点N 在线段MQ 上,且30MON ?∠=,问:当POM ∠取何值时,OMN ?的面积最小?并求出面积的最小值.

动点问题最值三角形性质专练

动点问题最值三角形性质专练

————————————————————————————————作者: ————————————————————————————————日期:

动点问题三角形性质专练 三边能构成三角形,则必须满足性质:两边之和大于第三边,两边之差小于第三边! 1、如图,在直角梯形A BCD 中,AD∥BC,∠B=90°,A D=24c m,AB=8cm ,BC=26cm ,动:点P 从A 开始沿AD 边向D 以1cm/s 的速度运动;动点Q从点C 开始沿CB 边向B以3cm/s的速度运动.P、Q 分别从点A 、C 同时出发,当其中一点到达端点时,另外一点也随之停止运动,设运动时间为ts. (1)当t 为何值时,四边形P QCD 为平行四边形? (2)当t为何值时,四边形PQCD 为等腰梯形? (3)当t 为何值时,四边形PQC D为直角梯形? 2、如图,点A 的坐标为(-1,0),点B在直线y x =上运动,当线段A B最短时,点B 的坐标为【 】 A .(0,0) B.(21-,2 1 -) C.(22,22-) D.(22-,22-) 3、如图所示,在边长为2的正三角形A BC 中,E 、F 、G 分别为AB 、AC 、BC 的中点,点P 为线段EF 上一个动点,连接BP 、GP ,则△BPG 的周长的最小值是 _ .

4、菱形OBCD 在平面直角坐标系中的位置如图所示,顶点B (2,0),?=∠60DOB ,点P 是对角线OC 上一个动点,E (0,-1),当EP +BP 最短时,点P 的坐标为__________. 5、如图,在锐角三角形ABC 中,BC=24,∠ABC=45°, B D平分∠ABC,M、N 分别是BD 、B C 上的动点,则CM +MN 的最小值是 。 6、如图,在矩形ABCD 中,AB=4,AD=6,E 是A B的中点,F 是线段BC上的动点,将△EBF 沿EF 所在直线折叠得到△EB ′F,连接B ′D,则B ′D 的小值是( ) A . B.6 ? C. D.4 7、如图,菱形ABCD 中,AB=2,∠A=120°,点P,Q,K分别为线段B C,CD,BD 上的任意一点,则PK+QK 的最小值为【 】 A .?1? B.3 C. 2? D .3+1 8、如图,正方形AB CD 的边长为2,ABE ?是等边三角形,点E 在正方形ABCD 内,在对角线A C上有一点P ,使PD+PE的和最小,则这个最小值为( ) A 、2 ?B 、22 ?C 、2 ??D、6 9、点A 、B均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角

三角形最值问题典型题

P为边长等于1的正△ABC内任意一点,设L=PA+PB+PC,求L的最值。几何最值问题归结为以下三个定理 ①三角形的三边关系:两边之和大于第三边,两边之差小于第三边; ②两点间线段最短; ③连结直线外一点和直线上各点的所有线段中,垂线段最短; 分析:求最值则涉及最小值以及最大值. 先求最小值,如下 一、射影法 过点P分别作PD⊥BC于D,PE⊥AC于E,PF⊥AB于F. 过点A作AD’⊥BC于D’,过B作BE’⊥AC,过C作CF’⊥AB。 AP+PD>AD’① BP+PE>BE’② CP+PF>CF’③ ①+②+③,得, AP+BP+CP+PD+PE+PF AD’ +BE’ + CF’ = a 即AP+BP+CP+a a ∴AP+BP+CP a 二、旋转法 顺时针旋转△BPC60°,可得△PBE为等边三角形.得要使PA+PB+PC=AP+PE+EF′最小,只要AP,PE,EF′在一条直线上, 即如上图:∠ABF’=120°,可得最小L=a; C

三、面积法 作如图所示辅助线,则DEF的面积为, 又∵ ED?PB FD?PC EF?PA ∴?6a?(PA+PB+PC) ∴最小L= a 下面求其最大值,这要考虑到三角形的三边关系,如下图 过P点作BC的平行线交AB,AC于点D,F. 由于∠APD>∠AFP=∠ADP, 推出AD>AP① 又∵BD+DP>BP② 和PF+FC>PC③ 又∵DF=AF④ 由①②③④可得:最大L<2; 相关知识链接:在三角形所在平面上,求一点,使该点到三角形三个顶点距离之和最小。即A F

在ABC内求一点P,使 PA+PB+PC之值为最小,人们称这个点为“费马点”。

(完整版)高中数学必修五解三角形测试题及答案

(数学5必修)第一章:解三角形 [基础训练A 组] 一、选择题 1.在△ABC 中,若0 30,6,90===B a C ,则b c -等于( ) A .1 B .1- C .32 D .32- 2.若A 为△ABC 的内角,则下列函数中一定取正值的是( ) A .A sin B .A cos C .A tan D . A tan 1 3.在△ABC 中,角,A B 均为锐角,且,sin cos B A >则△ABC 的形状是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .等腰三角形 4.等腰三角形一腰上的高是3,这条高与底边的夹角为060,则底边长为( ) A .2 B . 2 3 C .3 D .32 5.在△ABC 中,若B a b sin 2=,则A 等于( ) A .006030或 B .006045或 C .0060120或 D .0015030或 6.边长为5,7,8的三角形的最大角与最小角的和是( ) A .090 B .0120 C .0135 D .0150 二、填空题 1.在Rt △ABC 中,090C =,则B A sin sin 的最大值是_______________。 2.在△ABC 中,若=++=A c bc b a 则,2 2 2 _________。 3.在△ABC 中,若====a C B b 则,135,30,20 _________。 4.在△ABC 中,若sin A ∶sin B ∶sin C =7∶8∶13,则C =_____________。 5.在△ABC 中,,26-= AB 030C =,则AC BC +的最大值是________。 三、解答题 1. 在△ABC 中,若,cos cos cos C c B b A a =+则△ABC 的形状是什么?

《解三角形》单元测试卷

高二数学必修5解三角形单元测试题 (时间120分钟,满分150分) 一、选择题:(每小题5分,共计60分) 1. 在△ABC 中,a =10,B=60°,C=45°,则c 等于 ( ) A .310+ B .() 1310- C .13+ D .310 2. 在△ABC 中,,c=3,B=300,则a 等于( ) A . C .2 3. 不解三角形,下列判断中正确的是( ) A .a=7,b=14,A=300有两解 B .a=30,b=25,A=1500有一解 C .a=6,b=9,A=450有两解 D .a=9,c=10,B=600无解 4. 已知△ABC 的周长为9,且4:2:3sin :sin :sin =C B A ,则cosC 的值为 ( ) A .41- B .41 C .32- D .3 2 5. 在△ABC 中,A =60°,b =1,其面积为3,则C B A c b a sin sin sin ++++等于( ) A .33 B .3392 C .338 D .2 39 6. 在△ABC 中,AB =5,BC =7,AC =8,则?的值为( ) A .79 B .69 C .5 D .-5 7.关于x 的方程02 cos cos cos 22=-??-C B A x x 有一个根为1,则△AB C 一定是 ( ) A .等腰三角形 B .直角三角形 C .锐角三角形 D .钝角三角形 8. 7、已知锐角三角形的边长分别为1,3,a ,则a 的范围是( ) A .()10,8 B . ( ) 10,8 C . () 10,8 D .() 8,10 9. △ABC 中,若c=ab b a ++22,则角C 的度数是( ) A.60° B.120° C.60°或120° D.45° 10. 在△ABC 中,若b=22,a=2,且三角形有解,则A 的取值范围是( ) A.0°<A <30° B.0°<A ≤45° C.0°<A <90° D.30°<A <60° 11.在△ABC 中,A B B A 22sin tan sin tan ?=?,那么△ABC 一定是 ( ) A .锐角三角形 B .直角三角形C .等腰三角形D .等腰三角形或直角三角形 12. 已知△ABC 的三边长6,5,3===c b a ,则△ABC 的面积为 ( ) A . 14 B .142 C .15 D .152

三角形内的最值问题

三角形内的最值问题 我们知道,求一条直线上的点,要求该点到直线外两点的距离和 最小,若两点在直线的异侧,则所求点就是两点连线与已知直线的交点;若两点在直线的同侧,则作其中一点关于已知直线的对称点,对称点与另外一点的连线与已知直线的交点。(右图)那么求一平面上的点,要求该点到平面上三点的距离和最小,这个点又怎么求呢? 在平面几何中,有一个以费尔马为名的“费尔马点”。即:在 △ABC所在平面上找一点,它到三个顶点的距离之和相等。(如图4) 以AB、BC、CA为边向形外作正三角形BCD、ACE、ABK,作此三个三角形的外接圆。设⊙ABK、⊙ACE除A外的交点为F,由A、K、B、F四点共圆知∠AFB=120°。同理∠AFC=120°于是∠BFC=120°。故⊙BCD边过点F,即⊙ABK,⊙BCD,⊙CAE共点F。 由∠AFB=120°,∠BFD=60°,知A、F、D在一条直线上。 在FD上取点G,使FG=FB,则△FBG为正三角形。由BG=BF,BD=BC,∠DBG=∠CBF=60°-∠GBC,故△DBG≌△CBF。于是GD=FC,即AD=FA+FB+FC。 对于平面上任一点P,以BP为一边作等边△PBH(如图4),连HD,同样可证△BHD≌△BPC。于是AP+PH+HD=PA+PB+PC。但PA+PH+HD≥AD=FA+ FB+FC。这就是说,点F为所求点。这点称为△ABC的费尔马点。 以上情况只考虑△ABC的三个内角都小于120°的情况,当△ABC有某一内角≥120°,例如∠A≥120°,则点A即为所求点。 在三角形中,还有很多最值问题。下面介绍在三角形三边取三点连接成的三角形中,周长最小的三角形的求法。 在△ABC中,AD、BE、CF分别为三边上的高,△ DEF称为△ABC的垂足三角形,可以证明△ABC的垂心H是△DEF的内心。(图2) 证明过程如下: 因为∠AHE=∠BHD AC垂直于BE AD垂直于BC 所以∠CAD=∠EBC 所以sin∠CAD=sin∠EBC 所以CE/BC=CD/AC 在△CDE与△CAB中 ∠ECD=∠BCA 所以△CDE与△CAB相似 所以∠CDE=∠CAB 同理可得∠BDF=∠CAB 所以∠CDE=∠BDF

初中数学最值问题典型例题(含答案分析)

中考数学最值问题总结 考查知识点:1、“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。 (2、代数计算最值问题3、二次函数中最值问题) 问题原型:饮马问题造桥选址问题(完全平方公式配方求多项式取值二次函数顶点)出题背景变式:角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。 解题总思路:找点关于线的对称点实现“折”转“直” 几何基本模型: 条件:如下左图,A、B是直线l同旁的两个定点. 问题:在直线l上确定一点P,使PA PB +的值最小. 方法:作点A关于直线l的对称点A',连结A B'交l于 点P,则PA PB A B' +=的值最小 例1、如图,四边形ABCD是正方形,△ABE是等边三 角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM. (1)求证:△AMB≌△ENB; (2)①当M点在何处时,AM+CM的值最小; ②当M点在何处时,AM+BM+CM的值最小,并说明理由; (3)当AM+BM+CM的最小值为 时,求正方形的边长。 A B A' ′ P l

例2、如图13,抛物线y=ax2+bx+c(a≠0)的顶点为(1,4),交x轴于A、B,交y轴于D,其中B点的坐标为(3,0) (1)求抛物线的解析式 (2)如图14,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则x轴上是否存在一点H,使D、G、F、H四点围成的四边形周长最小.若存在,求出这个最小值及G、H的坐标;若不存在,请说明理由. (3)如图15,抛物线上是否存在一点T,过点T作x的垂线,垂足为M,过点M作直线M N∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD,若存在,求出点T的坐标;若不存在,说明理由.

向量解三角形综合练习题(难)

向量解三角形综合练习题(难)

课前测试 1. 若等边△ABC 边长为23,平面内一点M 满足CM →=12CB →+23OA →,则 MA →·MB →=( ) A .-1 B . 2 C .-2 D .2 3 2. 已知△ABC 中,AB =AC =4,BC =43,点P 为BC 边所在直线上的一个动点,则AP →·(AB →+AC →)满足( ) A .最大值为16 B .最小值为4 C .为定值8 D .与P 的位置有关 3. 如图,△ABC 中,sin 12∠ABC =3 3 ,AB =2,点D 在线段AC 上,且AD =2DC ,BD =43 3 . (1)求BC 的长; (2)求△DBC 的面积. 备用例题 1. 已知A 、B 是单位圆上的两点,O 为圆心,且∠AOB =120°,MN 是圆O 的一条直径,点C 在圆内,且满足OC →=λOA →+(1-λ)OB →(0<λ<1),则CM →·CN → 的取值范围是( ) A .[-1 2,1) B .[-1,1) C .[-3 4 ,0) D .[-1,0)

2. 设点P (x ,y )为平面上以A (4,0),B (0,4),C (1,2)为顶点的三角形区域(包括边界)内一动点,O 为原点,且OP →=λOA →+μOB →,则λ+μ的取值范围为 ________. 3. 已知点G 是△ABC 的重心,AG →=λAB →+μAC →(λ、μ∈R),若∠A =120° ,AB →·AC →=-2,则|AG →|的最小值是( ) A. 33 B .2 2 C.2 3 D.3 4 4. 已知四边形ABCD 中,AD ∥BC ,∠BAC =45°,AD =2,AB =2,BC =1,P 是边AB 所在直线上的动点,则|PC →+2PD →|的最小值为( ) A .2 B .4 C. 522 D .25 2 5. 如图,OA →,OB →分别为x 轴,y 轴非负半轴上的单位向量,点C 在x 轴上 且在点A 的右侧,D 、E 分别为△ABC 的边AB 、BC 上的点.若OE →与OA →+OB →共 线.DE →与OA →共线,则OD →·BC →的值为( ) A .-1 B .0 C .1 D .2 6. 在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,b =c ,且满足 sin B sin A =1-cos B cos A ,若点O 是△ABC 外一点,∠AOB =θ(0<θ<π),OA =2OB =2,则 平面四边形OACB 面积的最大值是( )

二次函数及三角形周长,面积最值问题

二次函数与三角形周长,面积最值问题 知识点:1、二次函数线段,周长问题 2、二次函数线段和最小值线段差最大值问题 3、二次函数面积最大值问题 【新授课】 考点1:线段、周长问题 例1.(2018·)在平面直角坐标系中,已知抛物线的顶点坐标为(2,0),且经过点(4,1), 如图,直线y=x与抛物线交于A、B两点,直线l为y=﹣1. (1)求抛物线的解析式; (2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由. 拓展:在l上是否存在一点P,使PB-PA取得最大值?若存在,求出点P的坐标。

练习 1、如图,已知二次函数24 =-+的图象与坐标轴交于点A(-1,0)和点B(0,-5). y ax x c (1)求该二次函数的解析式;

(2)已知该函数图象的对称轴上存在一点P,使得△ABP的周长最小.请求出点P的坐标. 2、如图,抛物线y=ax2-5ax+4(a<0)经过△ABC的三个顶点,已知BC ∥x轴,点A在x轴上,点C在y轴上,且AC=BC. (1)求抛物线的解析式. (2)在抛物线的对称轴上是否存在点M,使|MA-MB|最大?若存在,求出点M的坐标;若不存在,请说明理由.

例2. (2018?莱芜)如图,抛物线y=ax2+bx+c经过A(﹣1,0),B(4,0),C (0,3)三点,D为直线BC上方抛物线上一动点,DE⊥BC于E. (1)求抛物线的函数表达式; (2)如图1,求线段DE长度的最大值; 练习 1x2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(一1,1、如图,抛物线y= 2

解三角形单元测试题(附答案)

解三角形单元测试题 班级: ____ 姓名 成绩:______________ 一、选择题: 1、在△ABC 中,a =3,b =7,c =2,那么B 等于( ) A . 30° B .45° C .60° D .120° 2、在△ABC 中,a =10,B=60°,C=45°,则c 等于 ( ) A .310+ B .( ) 1310 - C .13+ D .310 3、在△ABC 中,a =32,b =22,B =45°,则A 等于( ) A .30° B .60° C .30°或120° D . 30°或150° 4、在△ABC 中,a =12,b =13,C =60°,此三角形的解的情况是( ) A .无解 B .一解 C . 二解 D .不能确定 5、在△ABC 中,已知bc c b a ++=2 2 2 ,则角A 为( ) A . 3 π B . 6 π C .32π D . 3π或32π 6、在△ABC 中,若B b A a cos cos =,则△ABC 的形状是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形 D .等腰或直角三角形 7、已知锐角三角形的边长分别为1,3,a ,则a 的范围是( ) A .()10,8 B . ( ) 10,8 C . ( ) 10,8 D . ()8,10 8、在△ABC 中,已知C B A sin cos sin 2=,那么△ABC 一定是 ( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形 D .正三角形 9、△ABC 中,已知===B b x a ,2, 60°,如果△ABC 两组解,则x 的取值范围( ) A .2>x B .2

三角形中最值问题

第42课 三角形中的最值问题 考点提要 1.掌握三角形的概念与基本性质. 2.能运用正弦定理、余弦定理建立目标函数,解决三角形中的最值问题. 基础自测 1.(1)△ABC 中,cos A A =,则A 的值为 30° 或90° ; (2)△ABC 中,当A= 3 π 时,cos 2cos 2B C A ++取得最大值 32 . 2.在△ABC 中,m m m C B A 2:)1(:sin :sin :sin +=,则m 的取值范围是 2 1 >m . 解 由m m m c b a C B A 2:)1(:::sin :sin :sin +==, 令mk c k m b mk a 2,)1(,=+==,由b c a c b a >+>+,,得2 1>m . 3.锐角三角形ABC 中,若A=2B ,则B 的取值范围是 30o<B <45o . 4.设R ,r 分别为直角三角形的外接圆半径和内切圆半径,则 r R 1. 5.在△ABC 中,内角A ,B ,C 所对边的边长分别是,,a b c ,若23b ac =,则B 的取值范围是 0°<B ≤120° . 6.在△ABC 中,若A>B ,则下列不等式中,正确的为 ①②④ . ①A sin >B sin ; ②A cos B 2sin ; ④A 2cos B ?a >b A R sin 2?>B R sin 2?A sin >B sin ,故①正确; A cos < B cos ?)2sin(A -π<)2 sin(B -π ?A>B ,故②正确(或由余弦函 数在(0,)π上的单调性知②正确); 由A 2cos B sin ?A>B ,故④正确. 知识梳理 1.直角△ABC 中,内角A ,B ,C 所对边的边长分别是,,a b c ,C=90°,若内切圆的半径为r ,则2 a b c r +-= . 2.在三角形中,勾股定理、正弦定理、余弦定理是基础,起到工具性的作用.它们在处

解三角形最值问题

三角形最值问题 课前强化 1.在△ABC 中,已知0 45,2,===B cm b xcm a ,如果利用正弦定理解三角形有两解,则x 的取值范围是 ( ) A.222 <x< B.222≤<x C.2x > D.2x < 2.△ABC 中,若sinA :sinB :sinC=m :(m+1):2m, 则m 的取值范围是( ) A.(0,+∞) B.( 2 1,+∞) C.(1,+∞) D.(2,+∞) 3.在△ABC 中,A 为锐角,lg b +lg(c 1)=lgsin A =-lg 2, 则△ABC 为( ) A. 等腰三角形 B. 等边三角形 C. 直角三角形 D. 等腰直角三角形 4.在△ABC 中,根据下列条件解三角形,则其中有两个解的是( ) A.0 075,45,10===C A b B.080,5,7===A b a C.060,48,60===C b a D.045,16,14===A b a 5.△ABC 的三内角,,A B C 所对边的长分别为,,a b c 设向量(,) p a c b =+ (,)q b a c a =-- ,若//p q ,则角C 的大小为 (A)6π (B)3π (C) 2π (D) 23 π 6.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为 ( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .由增加的长度决定 最值范围问题: 7、在ABC ?中,角所对的边分别为且满足(I )求角的大小;(II )求)cos(sin 3C B A +-的最大值,并求取得最大值时角的大小. ,,A B C ,,a b c sin cos .c A a C =C ,A B

高二解三角形综合练习题

解三角形 一、选择题 1.在△ABC中,角A,B,C的对边分别为a,b,c.若A=60°,c=2,b=1,则a=( ) A.1 B.3 C.2 D.3 2.设a,b,c分别是△ABC中角A,B,C所对的边,则直线l1:sin A·x+ay+c=0与l2:bx-sin B·y+sin C=0的位置关系是( ) A.平行B.重合 C.垂直D.相交但不垂直 3.在△ABC中,若2cos B sin A=sin C,则△ABC的形状一定是( ) A.等腰直角三角形B.直角三角形 C.等腰三角形D.等边三角形 4.在△ABC中,已知A∶B=1∶2,∠ACB的平分线CD把三角形分成面积为3∶2的两部分,则cos A等于( ) A.1 3 B. 1 2 C.3 4D.0 5.在△ABC中,AC=7,BC=2,B=60°,则BC边上的高等于( ) A. 3 2 B. 33 2 C.3+6 2 D. 3+39 4 6.已知锐角三角形三边长分别为3,4,a,则a的取值范围为( ) A.1

C.7

三角函数解三角形中的最值问题

1.已知ABC ?中,,,a b c 分别是角,,A B C 的对边,且 222 3sin 3sin 2sin sin 3sin ,B C B C A a +-==AB AC ? 的最大值. 2. 在ABC ?中,角,,A B C 所对的边分别为,,a b c ,向量(1,cos ),(cos 21,2)m A n A λλ==--- ,已知//m n (1)若2λ=,求角A 的大小; (2)若b c +=,求λ的取值范围. 3. 设ABC ?的内角所对的边分别为,,a b c ,且1cos 2 a C c b += (1)求角A 的大小; (2)若1a =,求ABC ?周长的取值范围. 4. 已知ABC ?是半径为R 的圆的内接?且222(sin sin ))sin R A C b B -=- (1)求角C ; (2)求ABC ?面积的最大值. 5. 已知向量(2,1),(sin ,cos())2 A m n B C =-=+ ,角,,A B C 分别为ABC ?的三边,,a b c 所对的角, (1)当m n ? 取得最大值时,求角A 的大小; (2)在(1)的条件下,当a =22b c +的取值范围. 6.已知(2cos ,1)a x x =+ ,(,cos )b y x = 且//a b (1)将y 表示成x 的函数()f x ,并求()f x 的最小正周期; (2)记()f x 的最大值为,,,M a b c 分别为ABC ?的三个内角A B C 、、对应的边长,若(),2A f M =且2a =,求bc 的最大值. 7. 在锐角ABC ?中,,,a b c 分别为内角,,A B C 的对边,设2B A =,求b a 的取值范围.

三角函数与解三角形练习题

三角函数及解三角形练习题 一.解答题(共16小题) 1.在△ABC中,3sinA+4cosB=6,4sinB+3cosA=1,求C的大小. 2.已知3sinθtanθ=8,且0<θ<π. (Ⅰ)求cosθ; (Ⅱ)求函数f(x)=6cosxcos(x﹣θ)在[0,]上的值域. 3.已知是函数f(x)=2cos2x+asin2x+1的一个零点. (Ⅰ)数a的值; (Ⅱ)求f(x)的单调递增区间. 4.已知函数f(x)=sin(2x+)+sin2x. (1)求函数f(x)的最小正周期; (2)若函数g(x)对任意x∈R,有g(x)=f(x+),求函数g(x)在[﹣,]上的值域. 5.已知函数f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值; (2)求f(x)的单调递增区间. 6.已知函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)的图象关于直线x=对称,且图象上相邻两个最高点的距离为π. (Ⅰ)求ω和φ的值; (Ⅱ)若f()=(<α<),求cos(α+)的值. 7.已知向量=(cosx,sinx),=(3,﹣),x∈[0,π]. (1)若∥,求x的值; (2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值. 8.已知函数的部分图象如图所示.

(1)求函数f(x)的解析式; (2)在△ABC中,角A,B,C的对边分别是a,b,c,若(2a﹣c)cosB=bcosC,求的取值围. 9.函数f(x)=2sin(ωx+φ)(ω>0,0<φ<)的部分图象如图所示,M 为最高点,该图象与y轴交于点F(0,),与x轴交于点B,C,且△MBC的面积为π. (Ⅰ)求函数f(x)的解析式; (Ⅱ)若f(α﹣)=,求cos2α的值. 10.已知函数. (Ⅰ)求f(x)的最大值及相应的x值; (Ⅱ)设函数,如图,点P,M,N分别是函数y=g(x)图象的零值点、最高点和最低点,求cos∠MPN的值. 11.设函数f(x)=sin(ωx﹣)+sin(ωx﹣),其中0<ω<3,已知f ()=0.

解三角形中的最值问题

解三角形中的最值问题 1、在ABC ?中,角,,A B C 所对边长分别为,,a b c ,若2222a b c +=,求cos C 的最小值。 【解析】由余弦定理知2 14242) (21 2cos 2222222 2 2 =≥+=+-+=-+=ab ab ab b a ab b a b a ab c b a C , 2、在ABC ?中,60,3B AC ==o ,求2AB BC +的最大值。 3、在ABC ?中,已知角,,A B C 的对边分别为a ,b ,c ,且,sin 32sin a b A A B ≥+=。 (1)求角C 的大小;(2)求 a b c +的最大值。 解析:(1)由sin 32sin A A B +=得2sin 2sin 3A B π?? + = ?? ?,则sin sin 3A B π? ?+= ??? ,因为,a b ≥则A B ≥,所以3 A B π π+ =-,故2,33 A B C ππ+= =。 (2)由正弦定理及(1)得sin sin =sin sin 3cos 2sin sin 363a b A B A A A A A c C ππ++???? ?=+++=+ ? ??????? 所以当3 A π = 时, a b c +取得最大值2. 4、△ABC 在内角,,A B C 的对边分别为,,a b c ,已知cos sin a b C c B =+. (1)求B ;(2)若2b =,求△ABC 面积的最大值. 【答案】

5、在△ABC 中,a, b, c 分别为内角A, B, C 的对边,且2sin (2)sin (2)sin .a A a c B c b C =+++ (1)求A 的大小;(2)求sin sin B C +的最大值. 解: 6、在ABC ?中,角A B C 、、的对边分别为,,a b c ,且满足2)a c BA BC cCB CA -?=?u u u r u u u r u u u r u u u r 。 (1)求角B 的大小;(2)若||6BA BC -=u u u r u u u r ,求ABC ?面积的最大值。 答案:(1)2)cos cos a c B b C -=,由正弦定理得(2sin )cos sin cos ,A C B B C -=

(完整)初中数学《几何最值问题》典型例题

初中数学《最值问题》典型例题 一、解决几何最值问题的通常思路 两点之间线段最短; 直线外一点与直线上所有点的连线段中,垂线段最短; 三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值) 是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段. 轴 对 称 最 值 图形 l P B A N M l B A A P B l 原理两点之间线段最短两点之间线段最短三角形三边关系 特征 A,B为定点,l为定直 线,P为直线l上的一 个动点,求AP+BP的 最小值 A,B为定点,l为定直线, MN为直线l上的一条动线 段,求AM+BN的最小值 A,B为定点,l为定直线, P为直线l上的一个动 点,求|AP-BP|的最大值转化 作其中一个定点关于定 直线l的对称点 先平移AM或BN使M,N 重合,然后作其中一个定 点关于定直线l的对称点 作其中一个定点关于定 直线l的对称点 折 叠 最 值 图形 B' N M C A B 原理两点之间线段最短 特征 在△ABC中,M,N两点分别是边AB,BC上的动点,将△BMN沿MN翻折, B点的对应点为B',连接AB',求AB'的最小值. 转化转化成求AB'+B'N+NC的最小值 1.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运动,若∠AOB=45°,OP=32,则△PMN 的周长的最小值为. 【分析】作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN 的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等腰直角三角形,据此即可求解.【解答】解:作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长. ∵PC关于OA对称, ∴∠COP=2∠AOP,OC=OP 同理,∠DOP=2∠BOP,OP=OD

解三角形练习题及答案

解三角形练习题及答案 解三角形习题及答案 、选择题(每题5分,共40分) 1、己知三角形三边之比为5 : 7 : 8,则最大角与最小角的和为(). A. 90° B. 120° C. 135° D. 150° 2、在厶ABC中,下列等式正确的是(). A. a : b=Z A :Z B B . a : b= sin A : sin B C. a : b= sin B : sin A D . asin A= bsin B 1 : 2 : 3,则它们所对的边长之比为( 3、若三角形的三个内角之比为 A. 1 : 2 : 3 B . 1 : 3 : 2 C . 1 : 4 : 9 D . 1 :;』2 : 3 4、在厶ABC中,a= V5 , b= 尿,/ A= 30 °贝卩c等于(). A. 2 5 B. --:5C . 2 ;5或■、5 D. . 10或■,5 5、已知△ ABC中,/ A= 60° a=76 , b= 4,那么满足条件的厶ABC的形 状大小(). A .有一种情形B.有两种情形

C .不可求出 D .有三种以上情形 6、在厶ABC 中,若a2+ b2—c2v 0,则4 ABC 是(). A .锐角三角形B.直角三角形 C .钝角三角形 D .形状不能确定 7、sin7cos37 -sin 83 sin 37 的值为( ) A.—一 2 B. 1 2 C. 1 2 n 3 D.— — 8、化简1 T:等于( ) A. 3 B.二 C. 3 D. 1 2 二、填空题(每题5分,共20分) 9、已知cos a —cos B 二丄,sin a —sin 3 =丄,贝S cos (a —B )= . 2 3 10、在厶ABC 中,/ A= 105° / B= 45° c=忑,贝S b= _____________ . a + b + c 你在厶ABC 中,/ A= 60° a= 3,则sinA + sinB + sinC = --------- ? 12、在厶ABC中,若sin A : sin B : sin C = 2 : 3 : 4,则最大角的余弦值等于__ . 班别:__________ 姓名: _____________ 序号:_______ 得分: _______ 9、______ 10、_______ 11、 ________ 12、__________

文本预览
相关文档 最新文档