当前位置:文档之家› 三角形内的最值问题

三角形内的最值问题

三角形内的最值问题
三角形内的最值问题

三角形内的最值问题

我们知道,求一条直线上的点,要求该点到直线外两点的距离和

最小,若两点在直线的异侧,则所求点就是两点连线与已知直线的交点;若两点在直线的同侧,则作其中一点关于已知直线的对称点,对称点与另外一点的连线与已知直线的交点。(右图)那么求一平面上的点,要求该点到平面上三点的距离和最小,这个点又怎么求呢?

在平面几何中,有一个以费尔马为名的“费尔马点”。即:在

△ABC所在平面上找一点,它到三个顶点的距离之和相等。(如图4)

以AB、BC、CA为边向形外作正三角形BCD、ACE、ABK,作此三个三角形的外接圆。设⊙ABK、⊙ACE除A外的交点为F,由A、K、B、F四点共圆知∠AFB=120°。同理∠AFC=120°于是∠BFC=120°。故⊙BCD边过点F,即⊙ABK,⊙BCD,⊙CAE共点F。

由∠AFB=120°,∠BFD=60°,知A、F、D在一条直线上。

在FD上取点G,使FG=FB,则△FBG为正三角形。由BG=BF,BD=BC,∠DBG=∠CBF=60°-∠GBC,故△DBG≌△CBF。于是GD=FC,即AD=FA+FB+FC。

对于平面上任一点P,以BP为一边作等边△PBH(如图4),连HD,同样可证△BHD≌△BPC。于是AP+PH+HD=PA+PB+PC。但PA+PH+HD≥AD=FA+ FB+FC。这就是说,点F为所求点。这点称为△ABC的费尔马点。

以上情况只考虑△ABC的三个内角都小于120°的情况,当△ABC有某一内角≥120°,例如∠A≥120°,则点A即为所求点。

在三角形中,还有很多最值问题。下面介绍在三角形三边取三点连接成的三角形中,周长最小的三角形的求法。

在△ABC中,AD、BE、CF分别为三边上的高,△

DEF称为△ABC的垂足三角形,可以证明△ABC的垂心H是△DEF的内心。(图2)

证明过程如下:

因为∠AHE=∠BHD

AC垂直于BE

AD垂直于BC

所以∠CAD=∠EBC

所以sin∠CAD=sin∠EBC

所以CE/BC=CD/AC

在△CDE与△CAB中

∠ECD=∠BCA

所以△CDE与△CAB相似

所以∠CDE=∠CAB

同理可得∠BDF=∠CAB

所以∠CDE=∠BDF

所以∠ADF=∠ADE

同理可得∠BEF=∠BED;∠CFD=∠CFE

所以△ABC的垂心H是△DEF的内心。图3

如图3作D关于AB的对称点D1,可知∠DEB=∠D1EB=∠AEF,于是,D1、F、E在一直线上。同样可知,D关于AC的对称点D2也在直线EF上,即D1、F、E、D2四点在一条直线上。

现在,我们来看由法格拉洛提出的一个问题:在△ABC的每条边上各取一点D、E、F,△DEF称为△ABC的内接三角形。试在锐角三角形ABC的所有内接三角形中,求周长最短的三角形。

解:设D是BC上固定点,求此时的周长最短的内接三角形。(图3)

作D关于AB、AC的对称点D1、D2,连D1D2交AB、AC于E、F,则△DEF为所求。实际上,对于△ABC的任一内接△DE′F′,有

DE′+E′F′+ D F′=D1E′+E′F′+ D2F′

≥D1D2=D1E+EF+ D2F

=DE+EF+FD。

就是△DEF的周长≤△DE’F’的周长。

因此,我们只要对于每一个BC上的点D,都找出相应于该点的周长最短的内接三角形DEF,在这些三角形中找出周长最短的一个就行。

由于AD1=AD,AD2=AD,故△AD1D2是等腰三角形。又由于∠1=∠2,∠3=∠4,故△AD1D2的顶角∠D1AD2=2∠BAC为定值,因此,只有当其腰AD1最短时,D1D2最短。此时必有AD最短。从而当AD 为△ABC的高时,内接三角形DEF的周长最短。

当AD为△ABC的高时,由前面三角形垂足三角形性质,可证△ABC的内接三角形中,以其垂足三角形DEF的周长最短。

三角形中的最值与范围问题

在正余弦定理的运用中,有一类题目值得关注。这类题有一个相同的特点,即知道三 角形的一条边和边所对的角,求三角形面积(或周长)的最值(或范围) ,但在解题方法的 选择上有值得考究的地方。请先看两个例题: 1 例1( 13年重庆綦江中学)在:ABC 中,角A,B,C 的对边分别为a,b, c 且cosA 二丄,a = 4 . 4 (1) 若b ?c=6,且b < c ,求b,c 的值. (2) 求L ABC 的面积的最大值。 解 (1)由余弦定理 a 1 2 二 b 2 - c 2 — 2bccosA , 2 1 16 = (b c ) - 2bc bc 2 .bc =8 , 又 v b 亠 c = 6, b

二次函数专题训练(三角形周长最值问题)含问题详解

1.如图所示,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求抛物线的解析式; (2)如图所示,直线BC下方的抛物线上有一点P,过点P作PE⊥BC于点E,作PF平行于x轴交直线BC于点F,求△PEF周长的最大值; (3)已知点M是抛物线的顶点,点N是y轴上一点,点Q是坐标平面一点,若点P是抛物线上一点,且位于抛物线的对称轴右侧,是否存在以P、M、N、Q为顶点且以PM为边的正方形?若存在,直接写出点P的横坐标;若不存在,说明理由.

2.如图,抛物线y=﹣x2+2x+3与x轴交于A,B两点,与y轴交于点C,点D,C关于抛物线的对称轴对称,直线AD与y轴相交于点E. (1)求直线AD的解析式; (2)如图1,直线AD上方的抛物线上有一点F,过点F作FG⊥AD于点G,作FH平行于x轴交直线AD于点H,求△FGH周长的最大值; (3)如图2,点M是抛物线的顶点,点P是y轴上一动点,点Q是坐标平面一点,四边形APQM是以PM为对角线的平行四边形,点Q′与点Q关于直线AM对称,连接M Q′,P Q′.当△PM Q′与□APQM 重合部分的面积是?APQM面积的时,求?APQM面积.

3.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点A的坐标为(﹣1,0),且OC=OB,tan∠ACO=. (1)求抛物线的解析式; (2)若点D和点C关于抛物线的对称轴对称,直线AD下方的抛物线上有一点P,过点P作PH⊥AD于点H,作PM平行于y轴交直线AD于点M,交x轴于点E,求△PHM的周长的最大值; (3)在(2)的条件下,以点E为端点,在直线EP的右侧作一条射线与抛物线交于点N,使得∠NEP为锐角,在线段EB上是否存在点G,使得以E,N,G为顶点的三角形与△AOC相似?如果存在,请求出点G的坐标;如果不存在,请说明理由.

高考数学阶段复习试卷:三角形中的最值问题

高考数学阶段复习试卷:三角形中的最值问题 1. 在ABC ?中,a ,b ,c 分别为角A ,B ,C 所对的边长,已知:3C π= ,a b c λ+=(其中1λ>) (1)当2λ=时,证明:a b c ==; (2)若3AC BC λ?=,求边长c 的最小值. 2. 已知函数()4cos sin()3f x x x π=- (1)求函数()f x 在区间[,]42 ππ上的值域; (2)在ABC ?中,角,,A B C 所对的边分别是,,a b c 若角C 为锐角,()f C =,且2c =,求ABC ?面积的最大值。 3. 已知函数2()22cos f x x x m =+- (Ⅰ)若方程()0f x =在[0,]2x π ∈上有解,求m 的取值范围;(Ⅱ)在ABC ?中,,,a b c 分别是,,A B C 所对 的边,当(Ⅰ)中的m 取最大值,且()1f A =-,2b c +=时,求a 的最小值 4. 在ABC ?中,sin A a =. (1)求角B 的值;(2)如果2b =,求ABC ?面积的最大值. 5. 如图,扇形AOB ,圆心角AOB 等于60o ,半径为2,在弧AB 上有一动点P ,过P 引平行于OB 的直线和OA 交于点C ,设AOP θ∠=,求POC ?面积的最大值及此时θ的值.

6. 如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50m /min .在甲出发2min 后,乙从A 乘缆车到B ,在B 处停留1min 后,再从匀速步行到C .假设缆车匀速直线运动的速度为130m /min ,山路AC 长为1260m ,经测量,12cos 13A =,3cos 5 C =. (1) 求索道AB 的长; (2) 问乙出发多少分钟后,乙在缆车上与甲的距离最短? (3) 为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内? 7. 如图,在等腰直角三角形OPQ ?中,90POQ ? ∠=,22OP =点M 在线段P Q 上. (1)若5OM =求PM 的长; (2)若点N 在线段MQ 上,且30MON ?∠=,问:当POM ∠取何值时,OMN ?的面积最小?并求出面积的最小值.

动点问题最值三角形性质专练

动点问题最值三角形性质专练

————————————————————————————————作者: ————————————————————————————————日期:

动点问题三角形性质专练 三边能构成三角形,则必须满足性质:两边之和大于第三边,两边之差小于第三边! 1、如图,在直角梯形A BCD 中,AD∥BC,∠B=90°,A D=24c m,AB=8cm ,BC=26cm ,动:点P 从A 开始沿AD 边向D 以1cm/s 的速度运动;动点Q从点C 开始沿CB 边向B以3cm/s的速度运动.P、Q 分别从点A 、C 同时出发,当其中一点到达端点时,另外一点也随之停止运动,设运动时间为ts. (1)当t 为何值时,四边形P QCD 为平行四边形? (2)当t为何值时,四边形PQCD 为等腰梯形? (3)当t 为何值时,四边形PQC D为直角梯形? 2、如图,点A 的坐标为(-1,0),点B在直线y x =上运动,当线段A B最短时,点B 的坐标为【 】 A .(0,0) B.(21-,2 1 -) C.(22,22-) D.(22-,22-) 3、如图所示,在边长为2的正三角形A BC 中,E 、F 、G 分别为AB 、AC 、BC 的中点,点P 为线段EF 上一个动点,连接BP 、GP ,则△BPG 的周长的最小值是 _ .

4、菱形OBCD 在平面直角坐标系中的位置如图所示,顶点B (2,0),?=∠60DOB ,点P 是对角线OC 上一个动点,E (0,-1),当EP +BP 最短时,点P 的坐标为__________. 5、如图,在锐角三角形ABC 中,BC=24,∠ABC=45°, B D平分∠ABC,M、N 分别是BD 、B C 上的动点,则CM +MN 的最小值是 。 6、如图,在矩形ABCD 中,AB=4,AD=6,E 是A B的中点,F 是线段BC上的动点,将△EBF 沿EF 所在直线折叠得到△EB ′F,连接B ′D,则B ′D 的小值是( ) A . B.6 ? C. D.4 7、如图,菱形ABCD 中,AB=2,∠A=120°,点P,Q,K分别为线段B C,CD,BD 上的任意一点,则PK+QK 的最小值为【 】 A .?1? B.3 C. 2? D .3+1 8、如图,正方形AB CD 的边长为2,ABE ?是等边三角形,点E 在正方形ABCD 内,在对角线A C上有一点P ,使PD+PE的和最小,则这个最小值为( ) A 、2 ?B 、22 ?C 、2 ??D、6 9、点A 、B均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角

三角形最值问题典型题

P为边长等于1的正△ABC内任意一点,设L=PA+PB+PC,求L的最值。几何最值问题归结为以下三个定理 ①三角形的三边关系:两边之和大于第三边,两边之差小于第三边; ②两点间线段最短; ③连结直线外一点和直线上各点的所有线段中,垂线段最短; 分析:求最值则涉及最小值以及最大值. 先求最小值,如下 一、射影法 过点P分别作PD⊥BC于D,PE⊥AC于E,PF⊥AB于F. 过点A作AD’⊥BC于D’,过B作BE’⊥AC,过C作CF’⊥AB。 AP+PD>AD’① BP+PE>BE’② CP+PF>CF’③ ①+②+③,得, AP+BP+CP+PD+PE+PF AD’ +BE’ + CF’ = a 即AP+BP+CP+a a ∴AP+BP+CP a 二、旋转法 顺时针旋转△BPC60°,可得△PBE为等边三角形.得要使PA+PB+PC=AP+PE+EF′最小,只要AP,PE,EF′在一条直线上, 即如上图:∠ABF’=120°,可得最小L=a; C

三、面积法 作如图所示辅助线,则DEF的面积为, 又∵ ED?PB FD?PC EF?PA ∴?6a?(PA+PB+PC) ∴最小L= a 下面求其最大值,这要考虑到三角形的三边关系,如下图 过P点作BC的平行线交AB,AC于点D,F. 由于∠APD>∠AFP=∠ADP, 推出AD>AP① 又∵BD+DP>BP② 和PF+FC>PC③ 又∵DF=AF④ 由①②③④可得:最大L<2; 相关知识链接:在三角形所在平面上,求一点,使该点到三角形三个顶点距离之和最小。即A F

在ABC内求一点P,使 PA+PB+PC之值为最小,人们称这个点为“费马点”。

三角形内的最值问题

三角形内的最值问题 我们知道,求一条直线上的点,要求该点到直线外两点的距离和 最小,若两点在直线的异侧,则所求点就是两点连线与已知直线的交点;若两点在直线的同侧,则作其中一点关于已知直线的对称点,对称点与另外一点的连线与已知直线的交点。(右图)那么求一平面上的点,要求该点到平面上三点的距离和最小,这个点又怎么求呢? 在平面几何中,有一个以费尔马为名的“费尔马点”。即:在 △ABC所在平面上找一点,它到三个顶点的距离之和相等。(如图4) 以AB、BC、CA为边向形外作正三角形BCD、ACE、ABK,作此三个三角形的外接圆。设⊙ABK、⊙ACE除A外的交点为F,由A、K、B、F四点共圆知∠AFB=120°。同理∠AFC=120°于是∠BFC=120°。故⊙BCD边过点F,即⊙ABK,⊙BCD,⊙CAE共点F。 由∠AFB=120°,∠BFD=60°,知A、F、D在一条直线上。 在FD上取点G,使FG=FB,则△FBG为正三角形。由BG=BF,BD=BC,∠DBG=∠CBF=60°-∠GBC,故△DBG≌△CBF。于是GD=FC,即AD=FA+FB+FC。 对于平面上任一点P,以BP为一边作等边△PBH(如图4),连HD,同样可证△BHD≌△BPC。于是AP+PH+HD=PA+PB+PC。但PA+PH+HD≥AD=FA+ FB+FC。这就是说,点F为所求点。这点称为△ABC的费尔马点。 以上情况只考虑△ABC的三个内角都小于120°的情况,当△ABC有某一内角≥120°,例如∠A≥120°,则点A即为所求点。 在三角形中,还有很多最值问题。下面介绍在三角形三边取三点连接成的三角形中,周长最小的三角形的求法。 在△ABC中,AD、BE、CF分别为三边上的高,△ DEF称为△ABC的垂足三角形,可以证明△ABC的垂心H是△DEF的内心。(图2) 证明过程如下: 因为∠AHE=∠BHD AC垂直于BE AD垂直于BC 所以∠CAD=∠EBC 所以sin∠CAD=sin∠EBC 所以CE/BC=CD/AC 在△CDE与△CAB中 ∠ECD=∠BCA 所以△CDE与△CAB相似 所以∠CDE=∠CAB 同理可得∠BDF=∠CAB 所以∠CDE=∠BDF

初中数学最值问题典型例题(含答案分析)

中考数学最值问题总结 考查知识点:1、“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。 (2、代数计算最值问题3、二次函数中最值问题) 问题原型:饮马问题造桥选址问题(完全平方公式配方求多项式取值二次函数顶点)出题背景变式:角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。 解题总思路:找点关于线的对称点实现“折”转“直” 几何基本模型: 条件:如下左图,A、B是直线l同旁的两个定点. 问题:在直线l上确定一点P,使PA PB +的值最小. 方法:作点A关于直线l的对称点A',连结A B'交l于 点P,则PA PB A B' +=的值最小 例1、如图,四边形ABCD是正方形,△ABE是等边三 角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM. (1)求证:△AMB≌△ENB; (2)①当M点在何处时,AM+CM的值最小; ②当M点在何处时,AM+BM+CM的值最小,并说明理由; (3)当AM+BM+CM的最小值为 时,求正方形的边长。 A B A' ′ P l

例2、如图13,抛物线y=ax2+bx+c(a≠0)的顶点为(1,4),交x轴于A、B,交y轴于D,其中B点的坐标为(3,0) (1)求抛物线的解析式 (2)如图14,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则x轴上是否存在一点H,使D、G、F、H四点围成的四边形周长最小.若存在,求出这个最小值及G、H的坐标;若不存在,请说明理由. (3)如图15,抛物线上是否存在一点T,过点T作x的垂线,垂足为M,过点M作直线M N∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD,若存在,求出点T的坐标;若不存在,说明理由.

二次函数及三角形周长,面积最值问题

二次函数与三角形周长,面积最值问题 知识点:1、二次函数线段,周长问题 2、二次函数线段和最小值线段差最大值问题 3、二次函数面积最大值问题 【新授课】 考点1:线段、周长问题 例1.(2018·)在平面直角坐标系中,已知抛物线的顶点坐标为(2,0),且经过点(4,1), 如图,直线y=x与抛物线交于A、B两点,直线l为y=﹣1. (1)求抛物线的解析式; (2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由. 拓展:在l上是否存在一点P,使PB-PA取得最大值?若存在,求出点P的坐标。

练习 1、如图,已知二次函数24 =-+的图象与坐标轴交于点A(-1,0)和点B(0,-5). y ax x c (1)求该二次函数的解析式;

(2)已知该函数图象的对称轴上存在一点P,使得△ABP的周长最小.请求出点P的坐标. 2、如图,抛物线y=ax2-5ax+4(a<0)经过△ABC的三个顶点,已知BC ∥x轴,点A在x轴上,点C在y轴上,且AC=BC. (1)求抛物线的解析式. (2)在抛物线的对称轴上是否存在点M,使|MA-MB|最大?若存在,求出点M的坐标;若不存在,请说明理由.

例2. (2018?莱芜)如图,抛物线y=ax2+bx+c经过A(﹣1,0),B(4,0),C (0,3)三点,D为直线BC上方抛物线上一动点,DE⊥BC于E. (1)求抛物线的函数表达式; (2)如图1,求线段DE长度的最大值; 练习 1x2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(一1,1、如图,抛物线y= 2

三角形中最值问题

第42课 三角形中的最值问题 考点提要 1.掌握三角形的概念与基本性质. 2.能运用正弦定理、余弦定理建立目标函数,解决三角形中的最值问题. 基础自测 1.(1)△ABC 中,cos A A =,则A 的值为 30° 或90° ; (2)△ABC 中,当A= 3 π 时,cos 2cos 2B C A ++取得最大值 32 . 2.在△ABC 中,m m m C B A 2:)1(:sin :sin :sin +=,则m 的取值范围是 2 1 >m . 解 由m m m c b a C B A 2:)1(:::sin :sin :sin +==, 令mk c k m b mk a 2,)1(,=+==,由b c a c b a >+>+,,得2 1>m . 3.锐角三角形ABC 中,若A=2B ,则B 的取值范围是 30o<B <45o . 4.设R ,r 分别为直角三角形的外接圆半径和内切圆半径,则 r R 1. 5.在△ABC 中,内角A ,B ,C 所对边的边长分别是,,a b c ,若23b ac =,则B 的取值范围是 0°<B ≤120° . 6.在△ABC 中,若A>B ,则下列不等式中,正确的为 ①②④ . ①A sin >B sin ; ②A cos B 2sin ; ④A 2cos B ?a >b A R sin 2?>B R sin 2?A sin >B sin ,故①正确; A cos < B cos ?)2sin(A -π<)2 sin(B -π ?A>B ,故②正确(或由余弦函 数在(0,)π上的单调性知②正确); 由A 2cos B sin ?A>B ,故④正确. 知识梳理 1.直角△ABC 中,内角A ,B ,C 所对边的边长分别是,,a b c ,C=90°,若内切圆的半径为r ,则2 a b c r +-= . 2.在三角形中,勾股定理、正弦定理、余弦定理是基础,起到工具性的作用.它们在处

解三角形最值问题

三角形最值问题 课前强化 1.在△ABC 中,已知0 45,2,===B cm b xcm a ,如果利用正弦定理解三角形有两解,则x 的取值范围是 ( ) A.222 <x< B.222≤<x C.2x > D.2x < 2.△ABC 中,若sinA :sinB :sinC=m :(m+1):2m, 则m 的取值范围是( ) A.(0,+∞) B.( 2 1,+∞) C.(1,+∞) D.(2,+∞) 3.在△ABC 中,A 为锐角,lg b +lg(c 1)=lgsin A =-lg 2, 则△ABC 为( ) A. 等腰三角形 B. 等边三角形 C. 直角三角形 D. 等腰直角三角形 4.在△ABC 中,根据下列条件解三角形,则其中有两个解的是( ) A.0 075,45,10===C A b B.080,5,7===A b a C.060,48,60===C b a D.045,16,14===A b a 5.△ABC 的三内角,,A B C 所对边的长分别为,,a b c 设向量(,) p a c b =+ (,)q b a c a =-- ,若//p q ,则角C 的大小为 (A)6π (B)3π (C) 2π (D) 23 π 6.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为 ( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .由增加的长度决定 最值范围问题: 7、在ABC ?中,角所对的边分别为且满足(I )求角的大小;(II )求)cos(sin 3C B A +-的最大值,并求取得最大值时角的大小. ,,A B C ,,a b c sin cos .c A a C =C ,A B

三角函数解三角形中的最值问题

1.已知ABC ?中,,,a b c 分别是角,,A B C 的对边,且 222 3sin 3sin 2sin sin 3sin ,B C B C A a +-==AB AC ? 的最大值. 2. 在ABC ?中,角,,A B C 所对的边分别为,,a b c ,向量(1,cos ),(cos 21,2)m A n A λλ==--- ,已知//m n (1)若2λ=,求角A 的大小; (2)若b c +=,求λ的取值范围. 3. 设ABC ?的内角所对的边分别为,,a b c ,且1cos 2 a C c b += (1)求角A 的大小; (2)若1a =,求ABC ?周长的取值范围. 4. 已知ABC ?是半径为R 的圆的内接?且222(sin sin ))sin R A C b B -=- (1)求角C ; (2)求ABC ?面积的最大值. 5. 已知向量(2,1),(sin ,cos())2 A m n B C =-=+ ,角,,A B C 分别为ABC ?的三边,,a b c 所对的角, (1)当m n ? 取得最大值时,求角A 的大小; (2)在(1)的条件下,当a =22b c +的取值范围. 6.已知(2cos ,1)a x x =+ ,(,cos )b y x = 且//a b (1)将y 表示成x 的函数()f x ,并求()f x 的最小正周期; (2)记()f x 的最大值为,,,M a b c 分别为ABC ?的三个内角A B C 、、对应的边长,若(),2A f M =且2a =,求bc 的最大值. 7. 在锐角ABC ?中,,,a b c 分别为内角,,A B C 的对边,设2B A =,求b a 的取值范围.

解三角形中的最值问题

解三角形中的最值问题 1、在ABC ?中,角,,A B C 所对边长分别为,,a b c ,若2222a b c +=,求cos C 的最小值。 【解析】由余弦定理知2 14242) (21 2cos 2222222 2 2 =≥+=+-+=-+=ab ab ab b a ab b a b a ab c b a C , 2、在ABC ?中,60,3B AC ==o ,求2AB BC +的最大值。 3、在ABC ?中,已知角,,A B C 的对边分别为a ,b ,c ,且,sin 32sin a b A A B ≥+=。 (1)求角C 的大小;(2)求 a b c +的最大值。 解析:(1)由sin 32sin A A B +=得2sin 2sin 3A B π?? + = ?? ?,则sin sin 3A B π? ?+= ??? ,因为,a b ≥则A B ≥,所以3 A B π π+ =-,故2,33 A B C ππ+= =。 (2)由正弦定理及(1)得sin sin =sin sin 3cos 2sin sin 363a b A B A A A A A c C ππ++???? ?=+++=+ ? ??????? 所以当3 A π = 时, a b c +取得最大值2. 4、△ABC 在内角,,A B C 的对边分别为,,a b c ,已知cos sin a b C c B =+. (1)求B ;(2)若2b =,求△ABC 面积的最大值. 【答案】

5、在△ABC 中,a, b, c 分别为内角A, B, C 的对边,且2sin (2)sin (2)sin .a A a c B c b C =+++ (1)求A 的大小;(2)求sin sin B C +的最大值. 解: 6、在ABC ?中,角A B C 、、的对边分别为,,a b c ,且满足2)a c BA BC cCB CA -?=?u u u r u u u r u u u r u u u r 。 (1)求角B 的大小;(2)若||6BA BC -=u u u r u u u r ,求ABC ?面积的最大值。 答案:(1)2)cos cos a c B b C -=,由正弦定理得(2sin )cos sin cos ,A C B B C -=

(完整)初中数学《几何最值问题》典型例题

初中数学《最值问题》典型例题 一、解决几何最值问题的通常思路 两点之间线段最短; 直线外一点与直线上所有点的连线段中,垂线段最短; 三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值) 是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段. 轴 对 称 最 值 图形 l P B A N M l B A A P B l 原理两点之间线段最短两点之间线段最短三角形三边关系 特征 A,B为定点,l为定直 线,P为直线l上的一 个动点,求AP+BP的 最小值 A,B为定点,l为定直线, MN为直线l上的一条动线 段,求AM+BN的最小值 A,B为定点,l为定直线, P为直线l上的一个动 点,求|AP-BP|的最大值转化 作其中一个定点关于定 直线l的对称点 先平移AM或BN使M,N 重合,然后作其中一个定 点关于定直线l的对称点 作其中一个定点关于定 直线l的对称点 折 叠 最 值 图形 B' N M C A B 原理两点之间线段最短 特征 在△ABC中,M,N两点分别是边AB,BC上的动点,将△BMN沿MN翻折, B点的对应点为B',连接AB',求AB'的最小值. 转化转化成求AB'+B'N+NC的最小值 1.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运动,若∠AOB=45°,OP=32,则△PMN 的周长的最小值为. 【分析】作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN 的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等腰直角三角形,据此即可求解.【解答】解:作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长. ∵PC关于OA对称, ∴∠COP=2∠AOP,OC=OP 同理,∠DOP=2∠BOP,OP=OD

专题 三角形中的最值与取值范围问题

专题 三角形中的最值与取值范围问题 三角形中的边与角的最值与取值范围问题,是复习过程中的难点,在高考中考查形式灵活,常常在知识的交汇点处命题,与函数、几何、不等式等知识结合在一起。我们知道三角形只要满足三个条件,那么这个三角形就基本唯一确定了,而少于三个条件时,有些边角周长面积就可以变化,从而就有了求这些量的取值范围问题。这类问题的实质是将几何问题转化为代数问题,求解主要是充分运用三角形的内角和定理,正余弦定理,面积公式,基本不等式,三角恒等变形,三角函数的图像和性质来进行解题,非常综合,是解三角形中的难点问题。下面对这类问题的解法做下探讨。 类型一:已知一角+对边 例题1:在?ABC 中,A=60°,,求 (1)ABC ?面积的最大值; (2)b c +的取值范围; (3)2b c +的最大值; (4)BC 边上高的最大值。 类型二:已知一角+边的等量关系 例题2:在?ABC 中,A=60°,1b c +=,求 (1)ABC S ?的最大值; (2)a 的取值范围; (3)周长的取值范围。 类型三:已知一角+面积 例题3:在?ABC 中,A=60°,ABC S ?= (1)b c +的最小值; (2)a 的最小值。 (3)周长的最小值。 (4) 112b c +的最小值。 类型四:已知角的等量关系 例题4:在?ABC 中,A=2B ,则 c b 的取值范围为

变式:在锐角?ABC 中,A=2B ,则c b 的取值范围为 类型五:已知两边,求面积的最值 例题5:在?ABC 中,已知1,2AB BC ==,求 (1)ABC S ?的最大值; (2)角C 的取值范围。 类型六:已知一边+另两边的等量关系 例题6:在?ABC 中,已知6,10BC AB AC =+ =,求ABC S ?的最大值。 变式:在?ABC 中,已知6,BC AC ==,求ABC S ?的最大值。 类型七:三边的等量关系 例题7:在?ABC 中,角A ,B ,C 所对的边分别为a,b,c,若2222a b c +=,求cos C 的最小值。

高考大题---解三角形中有关最值问题的题型汇总

解三角形中有关最值问题的题型汇总 1.(2010年浙江高考)在ABC ?中,c b a ,,C B A 所对的边分别为,,角,设S 为ABC ?的面积,满足)(4 3222c b a S -+=。 (1)求角C 的大小; (2)求B A sin sin +的最大值。 2(2011年湖南高考)在ABC ?中,c b a ,,C B A 所对的边分别为,,角,且满足C a A c sin sin = (1) 求角C 的大小; (2) 求)4cos(sin 3π +-B A 的最大值,并求取得最大值时角A ,B 的大小。 3.(2011年全国新课标2)在ABC ?中,?=60B ,AC=3,求AB+2BC 的最大值。 4.(2012太原模拟)ABC ?中,c b a ,,C B A 所对的边分别为,,角,设向量),(a b a c m --=→,),(c b a n +=→,若→m 平行于→n 。 (1)求角B 的大小; (2)求C A sin sin +的最大值。 5(2012年浙江宁波模拟)已知函数θθπ2cos )4( sin 32)(2-+=x f ,A 为ABC ?中的最小内角,且满足32)(=A f 。 (1)求角A 的大小; (2)若BC 边上的中线长为3,求ABC S ?的最大值。 6. (2013年全国新课标2)在ABC ?中,c b a ,,C B A 所对的边分别为 ,,角,已知B c C b a sin cos += (1)求B ; (2)若b=2, 求ABC S ?的最大值。

7(2014年陕西高考)在ABC ?中,c b a ,,C B A 所对的边分别为,,角。 (1)若c b a ,,成等差数列,证明sinA+sinC=2sin(A+C); (2)若c b a ,,成等比数列,求cosB 的最小值。 8.(2015年山东高考)设)4(cos cos sin )(2π+ -=x x x x f (1)求)(x f 的单调区间; (2)在锐角ABC ?中,c b a ,,C B A 所对的边分别为,,角,若)2(A f =0,a=1,求ABC S ?的最大值。 9.(2016年北京高考)在ABC ?中,ac b c a 2222+=+ (1)求角B 的大小; (2)C A cos cos 2+求的最大值。 10(2016高考山东理数)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知tan tan 2(tan tan ).cos cos A B A B B A +=+ (Ⅰ)证明:a+b=2c; (Ⅱ)求cosC 的最小值. 11.(2016河南中原名校一联,理10)在ABC ?中,角A ,B ,C 的对边分别为a ,b , c ,已知向量()cos ,cos m A B = ,(),2n a c b =- ,且//m n . (1)求角A 的大小; (2)若4=a ,求ABC S ?的最大值。 12.(2016绥化模拟)在ABC ?中,232cos 2 --x x C 是方程的一个根。 (1)求角C ; (2)当a+b=10时,求ABC ?周长的最小值。

专题24解三角形中的最值、范围问题(解析版)

专题24 解三角形中的最值、范围问题解三角形问题是高考高频考点,命题大多放在解答题的第一题,主要利用三角形的内角和定理,正、余弦定理、三角形面积公式等知识解题,解题时要灵活利用三角形的边角关系进行“边转角” “角转边”,另外要注意a c,ac,a2 c 2三者的关系 . 高考中经常将三角变换与解三角形知识综合起来命题,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理实现边角互化;以上特征都不明显时,则要考虑两个定理都有可能用到.而三角变换中主要是“变角、变函数名和变运算形式” ,其中的核心是“变角” ,即注意角之间的结构差异,弥补这种结构差异的依据就是三角公式 . a b c 1、正弦定理:2R,其中R为ABC 外接圆的半径 sin A sinB sinC 正弦定理的主要作用是方程和分式中的边角互化 . 其原则为关于边,或是角的正弦值是否具备齐次的特征 . 如果齐次则可直接进行边化角或是角化边,否则不可行学/科-+ 网 2 2 2 2 2 2 例如:(1) sin A sin B sin AsinB sin C a b ab c (2)bcosC ccosB a sin B cosC sinC cosB sin A (恒等式) bc sin B sinC (3) a 2 sin 2 A a sin A 2、余弦定理:a2 b2 c2 2bc cos A 22 变式:a2b c 2bc 1 cosA 此公式在已知a, A的情况下,配合均值不等式可得到 b c和bc 的 最值 4、三角形中的不等关系 (1)任意两边之和大于第三边:在判定是否构成三角形时,只需验证较小的两边之和是否比第三边大即可 . 由于不存在等号成立的条件,在求最值时使用较少 (2)在三角形中,边角以及角的三角函数值存在等价关系: a b A B sinA sinB cosA cosB 其中由A B cosA cosB 利用的是余弦函数单调性,而A B sinA sinB 仅在一个三角形内有效. 5 、解三角形中处理不等关系的几种方法(1)转变为一个变量的函数:通过边角互化和代入消元,将多变量表达式转变为函数,从而将问题转化为求函数的值域(最值) (2)利用均值不等式求得最值

解三角形中的一类最值(范围)问题的解法探究

高中数学解三角形中的一类最值或范围问题的解法探究 姓名:任德辉 单位:重庆市綦江区南州中学 在正余弦定理的运用中,有一类题目值得关注。这类题有一个相同的特点,即知道三角形的一条边和边所对的角,求三角形面积(或周长)的最值(或范围),但在解题方法的选择上有值得考究的地方。请先看两个例题: 例1(13年重庆綦江中学)在ABC ?中,角A,B,C 的对边分别为c b a ,,且4,4 1cos == a A . (1)若6=+c b ,且b < c ,求c b ,的值. (2)求ABC ?的面积的最大值。 解 (1)由余弦定理A bc c b a cos 2222-+=, ∴bc bc c b 2 12)(162--+= ∴8=bc , 又∵,6=+c b b

中考培优竞赛专题经典讲义第10讲最值问题之三角形三边关系

第10 讲最值问题之三角形三边关系 模型讲解 问题:在直线l 上找一点P,使得PA PB 的值最大 解析:连接AB,并延长与 1 交点即为点P. 证明:如图,根据△ABP ' 三边关系,BP ' - AP ' < AB,即P ' B - P ' A< PB - P A 【例题讲解】 例题1、如图,∠MON=90°,矩形ABCD 的顶点A、B 分别在边OM ,ON 上,当 B 在边ON 上运动时,A 随之在OM 上运动,矩形ABCD 的形状保持不变,其中AB=2,BC =1,运动过程中,点 D 到点O 的最大距离为 ____________. 【解答】 解:如图,取AB 的中点E,连接OD、OE、DE, Q ∠MON =90°,AB=2 OE=AE= 1 2 AB=1, Q BC =1,四边形ABCD 是矩形,AD =BC=1,DE= 2 , 根据三角形的三边关系,OD

【巩固练习】 1、如图,∠MON =90°,边长为 2 的等边三角形ABC 的顶点A、B 分别在边OM 、ON 上,当 B 在边ON 上运动时, A 随之在边OM 上运动,等边三角形的形状保持不变,运动过程中,点 C 到点O 的最大距离为____________. 2、在△ABC 中,∠C=90°,AC =4,BC =2,点A、C 分别在x 轴、y 轴上,当点 A 在x 轴上运动时,点 C 随之在y 轴上运动,在运动过程中,点 B 到原点的最大距离是___________________. 3、如右图,正六边形ABCDEF 的边长为2,两顶点A、B 分别在x 轴和y 轴上运动,则顶点 D 到原点O 的距离的最大值和最小值的乘积为___________________. 4、如图,平面直角坐标系中,将含30°的三角尺的直角顶点 C 落在第二象限. 其斜边两端点A、B 分别落在x 轴、y 轴上,且AB=12cm (1)若OB =6cm. ①求点 C 的坐标; ②若点 A 向右滑动的距离与点 B 向上滑动的距离相等,求滑动的距离; (2)点 C 与点O 的距离的最大值=_____________cm.

(文章)三角形中的最值问题

三角形中的最值问题 解三角形问题,可以较好地考察三角函数的诱导公式,恒等变换,边角转化,正弦余弦定理等知识点,是三角,函数,解析几何和不等式的知识的交汇点,在高考中容易出综合题,其中,三角形中的最值问题又是一个重点。其实,这一部分的最值问题解决的方法只有两种,建立目标函数后,可以利用重要不等式解决,也可以利用三角函数的有界性。下面举例说明: 例1.要是斜边一定的直角三角形周长最大,它的一个锐角应是( ) A .∏ /4 B. ∏/3 C. ∏/6 D.正弦值是1/3的锐角 解:解法1.(三角函数的有界性)设斜边为c ,其一个锐角是α,周长是L,则两个直角边是csin α 和ccos α, 故 L=c+csin α +ccos α =c+1.414csin(α+∏ /4 ) ∵0<α<∏/2 ∴当α+∏ /4 =∏/2时,Lmax=c+1.414c 故选A 解法2.设两条直角边为a,b,周长为L ,则斜边c=22b a +是定值。 L=a+b+2 2b a +≤) +(222b a +22b a +=(2+1) 22b a +(当且仅当a=b 时取等号) 即三角形是等腰直角三角形,周长取得最大值时,其一个锐角是∏ /4 从而选A. 例2.已知直角三角形周长是1,其面积的最大值为 . 方法Ⅰ.(三角函数的有界性) 设该直角三角形的斜边是c ,一个锐角是A ,面积是S ,则两条直角边是csinA 和ccosA ,根据题意 csinA+ccosA+c=1,即c=A A sin sin 11++ ① S=21csinA*ccosA=41sin2A ≤4 1 (当且仅当A=∏/4时取等号)

初中数学最值问题典型例题(含答案分析)

中考数学最值问题总结 考查知识点:1、“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。 (2、代数计算最值问题3、二次函数中最值问题) 问题原型:饮马问题造桥选址问题(完全平方公式配方求多项式取值二次函数顶点)出题背景变式:角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。 解题总思路:找点关于线的对称点实现“折”转“直” 几何基本模型: 条件:如下左图,A、B是直线l同旁的两个定点. 问题:在直线l上确定一点P,使PA PB +的值最小. 方法:作点A关于直线l的对称点A',连结A B'交l于 点P,则PA PB A B' +=的值最小 例1、如图,四边形ABCD是正方形,△ABE是等边三角 形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM. (1)求证:△AMB≌△ENB; (2)①当M点在何处时,AM+CM的值最小; ②当M点在何处时,AM+BM+CM的值最小,并说明理由; (3)当AM+BM+CM的最小值为时,求正方形的边长。 A B A'′P l

例2、如图13,抛物线y=ax2+bx+c(a≠0)的顶点为(1,4),交x轴于A、B,交y轴于D,其中B点的坐标为(3,0) (1)求抛物线的解析式 (2)如图14,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则x轴上是否存在一点H,使D、G、F、H四点围成的四边形周长最小.若存在,求出这个最小值及G、H的坐标;若不存在,请说明理由. (3)如图15,抛物线上是否存在一点T,过点T作x的垂线,垂足为M,过点M作直线M N ∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD,若存在,求出点T的坐标;若不存在,说明理由.

微专题5 三角形中的最值问题

微专题5 三角形中的最值问题 问题背景 高考复习过程中,三角形中的范围与最值问题,是同学们学习解三角形的过程中比较常见的问题,也是高考重要题型.它不仅仅需要用到三角变换、正余弦定理,往往还需要涉及不等式、函数、数形结合等知识与方法. 高考命题方向: 1.利用正余弦定理转化为三角函数求范围; 2.利用正余弦定理转化为基本不等式求最值; 3.利用数形结合求最值. 思维模型 说明: 1.解决方案及流程 ①分析边角关系,对照正余弦定理的适用范围,确定是否选择正余弦定理,还是建系列用数形结合法; ②若利用正余弦定理,确定是化边还是化角运算;若利用建系,转化为哪种几何问题; ③如化角,则利用三角变换将问题转化为某一三角式求值问题;如化边,则注意利用不等式或函数思想求解;如化为几何问题,则寻求特殊位置求解; ④注意考虑变量的范围对最值的影响; ⑤总结归纳在三角形中求范围问题的方法. 2.失误与防范 ①使用正余弦定理时,究竟是化边为角,还是化角为边,有时都可以,有时只能从一个方向去突破,要扣准条件和目标; ②在涉及角的问题尤其是锐角或钝角三角形时,要注意角的隐含条件的挖掘; ③三角形中某些特殊类型,容易思维定势,总在正余弦定理中考虑,有时可以通过建系列用数形结合迎刃而解. 问题解决 一、典型例题 例1 ABC ?中,,,a b c 分别为角,,A B C 的对边,2A C =,则 a c 的取值范围是____. 变题:若在例1中ABC ?改为锐角ABC ?,则a c 的取值范围是____. 例2 ABC ?中,,,a b c 分别为角,,A B C 的对边,且,,a b c 成等比数列,则角B 的最大值为____. 拓展:ABC ?中,已知tan 3tan A B =,求角A —角B 的最大值. 例3 满足条件2,AB AC ==的三角形ABC 的面积的最大值为____.

文本预览