当前位置:文档之家› 2019年浙江温州中考数学试卷(含解析)

2019年浙江温州中考数学试卷(含解析)

2019年浙江温州中考数学试卷(含解析)
2019年浙江温州中考数学试卷(含解析)

2019年浙江省温州市初中毕业、升学考试

数学

一、选择题(本大题共10小题,每小题4分,共40分.在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填涂在答题卡相应位置

.......上)

1.(2019浙江省温州市,1,4分)计算:(-3)×5的结果是【】A.-15 B.15 C.-2 D.2

【答案】A

【解析】根据有理数乘法法则,先确定积的符号为-,然后把它们的绝对值相乘,结果为-15.

【知识点】有理数的运算

2.(2019浙江省温州市,1,4分)太阳距离银河系中心约为250 000 000 000 000 000公里,其中数据250 000 000 000 000 000用科学记数法表示为【】

A.0.25×1018B.2.5×1017C.25×1016D.25×1016

【答案】B

【解析】250 000 000 000 000 000=2.5×100 000 000 000 000 000=2.5×1017.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.

【知识点】科学记数法

3.(2019浙江省温州市,1,4分)某露天舞台如图所示,它的俯视图

...是【】

【答案】B

【解析】本题考查的是画出立体图形的三视图的知识,解题的关键是准确掌握三视图的概念来求解,要画出图中几何体的俯视图,首先由俯视图的概念:几何体的俯视图是从上面看到的图形,观察得出这个几何体的俯视图是长方形中间有一个长方形,且这两个长方形具有共同的边,故选答案B.

几何体的三视图:主视图是从物体正面看所得到的图形,左视图是从物体左面看所得到的图形,俯视图是从物体的上面看所得的图形.2、画三视图的口诀为:长对正,高平齐,宽相等.轮廓内看见的棱线用实线画出,看不见的棱线用虚线画出.

【知识点】三视图

4.(2019浙江省温州市,1,4分)在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为【】

A.1

6

B.

1

3

C.

1

2

D.

2

3

【答案】A

【解析】本题考查了概率公式,根据概率的定义即可得到答案. 共6张扑克牌,其中1张“红桃”,则从中任意

抽取1张,是“红桃”的概率为1

6

.故选答案A.

【知识点】概率

5.(2019浙江省温州市,1,4分)对温州某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图

所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有【 】 A .20人 B .40人 C .60人 D .80人 【答案】D

【解析】从统计图可知选择鲳鱼的占全体统计人数的20%,则抽取的样本容量为40÷20%=200,则根据统计图可知选择黄鱼的有200×40%=80人.故选答案D. 【知识点】统计图

6.(2019浙江省温州市,1,4分)验光师测得一组关于近视眼镜的度数y (度)与镜片焦距x (米)的对应数据近视眼镜的度数y (度) 200 250 400 500 1000 镜片焦距x (米)

0.50

0.40

0.25

0.20

0.10

A .y x =

B .100y =

C .y x =

D .400

y = 【答案】A

【解析】从表格中的近视眼镜的度数y (度)与镜片焦距x (米)的对应数据可以知道,它们满足xy=100,因此,y 关于x 的函数表达式为100

y x

=

.故选答案A. 【知识点】反比例函数 7.(2019浙江省温州市,1,4分)若扇形的圆心角为90°,半径为6,则该扇形的弧长为【 】 A .32

π B .2π C .3π D .6π 【答案】D

【解析】扇形的圆心角为90°,它的半径为6,即n=90°,r=6,根据弧长公式l=180

n r

π,得6π.故选答案D. 【知识点】扇形的弧长

8.(2019浙江省温州市,1,4分)某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB 的长为 【 】 A .

95sin α米 B .95cos α米 C .59sin α

米 D .5

9cos α米

【答案】B

【解析】如图,过点A 作AD ⊥BC ,垂足为点D ,则BD=1.5+0.3=1.8(米).在Rt △ABD 中,∠ADB=90°,cosB=BD

AB

,所以AB =

cos BD α= 1.8cos α=9

5cos α

.故选答案B.

D C

B

A

【知识点】解直角三角形

9.(2019浙江省温州市,1,4分)已知二次函数y=x2-4x+2,关于该函数在-1≤x≤3的取值范围内,下列说法正确的是【】

A.有最大值-1,有最小值-2 B.有最大值0,有最小值-1

C.有最大值7,有最小值-1 D.有最大值7,有最小值-2

【答案】D

【解析】∵二次函数y=x2-4x+2=(x-2)2-2,∴该函数在-1≤x≤3的取值范围内,当x=2时,y有最小值-2;当x=-1时,y有最大值7.故选答案D.

【知识点】二次函数的性质

10.(2019浙江省温州市,1,4分)如图,在矩形ABCD中,E为AB中点,以BE为边作正方形BEFG,边EF交CD于点H,在边BE上取点M使BM=BC,作MN∥BG交CD于点L,交FG于点N.欧几里得在《几何原本》中利用该图解释了(a+b)(a-b)=a2-b2.现以点F为圆心,FE为半径作圆弧交线段DH于点P,连结EP,记△EPH 的面积为S1,图中阴影部分的面积为S2.若点A,L,G在同一直线上,则1

2

S

S

的值为

【】

A.

2

2

B.

2

3

C.

2

4

D.

2

6

【答案】C

【解析】如图,连接ALGL,PF.由题意:S矩形AMLD=S阴=a2﹣b2,PH=22

-

a b,

∵点A,L,G在同一直线上,AM∥GN,∴△AML∽△GNL,

∴=,∴=,整理得a=3b,∴===,故选:C.【知识点】平方差公式线段垂直平分线的性质矩形的性质正方形的性质扇形面积的计算相似三角形的判定与性质

二、填空题(本大题共6小题,每小题5分,本大题共30分.不需要写出解答过程,只需把答案直接填写在答.

题卡相应位置

......上)

11.(2019浙江省温州市,11,5分)分解因式:m2+4m+4=.

【答案】(m+2)2

【解析】本题考查了运用完全平方公式分解因式,解题的关键是掌握完全平方公式的特征.原式=(m+2)2.

【知识点】分解因式

12.(2019浙江省温州市,12,5分)不等式组

23

1

4

2

x

x

+>

?

?

?-

??

的解为.

【答案】1<x≤9

【解析】先确定不等式组中每个不等式的解集,然后利用口诀寻找两个不等式解集的公共部分. 解不等式x+2>3,得x>1;解不等式

1

2

x-

≤4,得x≤9.根据“大小小大中间找”确定不等式组的解集是1<x≤9,故填:1<x≤9.

【知识点】不等式(组)的解集;不等式(组)的解集的表示方法

13.(2019浙江省温州市,13,5分)某校学生“汉字听写”大赛成绩的频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩为“优良”(80分及以上)的学生有人.

【答案】90

【解析】从频数直方图中读懂信息、提取信息、发现信息.知道成绩为“优良”(80分及以上)的在80~90、90~100两个小组中,其频数分别为60、30.因此,成绩为“优良”(80分及以上)的学生有90人.故填:90.

【知识点】频数分布直方图

14.(2019浙江省温州市,14,5分)如图,⊙O分别切∠BAC的两边AB,AC于点E,F,点P在优弧?

EDF上.若∠BAC=66°,则∠EPF等于度.

O P

F

D

C

A

【答案】57

【解析】连接OE、OF.∵⊙O分别切∠BAC的两边AB、AC于点E、F,∴OF⊥AC、OE⊥AB,∴∠BAC+∠EOF=180°,∵∠BAC=66°,∴∠EOF=114°.∵点P在优弧?

EDF上,∴∠EPF=

1

2

∠EOF=57°. 故填:57.

【知识点】圆周角切线切线的性质

15.(2019浙江省温州市,15,5分)三个形状大小相同的菱形按如图所示方式摆放,已知∠AOB=∠AOE=90°,菱形的较短对角线长为2cm.若点C落在AH的延长线上,则△ABE的周长为 cm.

Q

P N

M

【答案】12+82

【解析】连接AC、IC,AC交OI于点M、BO于点N,IC交BO于点P.设∠AHO=α,则∠COB=∠IOB=α,.∵点C 落在AH的延长线上,∴A、H、C三点共线.∵图中的三个菱形是形状大小相同的,∴∠CBO=∠CAO,又∵∠BNC=∠ANO,∴∠BCA=∠AOB=90°.∵BC∥IO,∴∠CMO=∠BCA=90°.∵CO=HO,∴∠HOM=∠COM=2α,∴α+2α+α=90°,则α=22.5°,即∠BOI=22.5°,∠PIO=67.5°.作∠QIO=∠BOI=22.5°,交BO于点Q,则∠PIQ=45°,∴PI=PN=1,IQ=QO =2,PO=1+2,BO=2+22,∴AB=2BO=22+4,BE=2BO=4+42,∴△ABE的周长为2AB+BE=(42+8)+(4+42)=12+82. 故填:12+82.

【知识点】菱形的性质等腰三角形的性质解直角三角形方程思想

16.(2019浙江省温州市,16,5分)图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG=FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′-BE为分米.

【答案】5+53 4

【解析】(1)过点O分别作OL⊥MD、ON⊥AM,垂足分别为点L、N,则∠LON=90°,四边形NMLO是矩形,∴MN=LO.

∵OC=OD=10分米,∠COD=60°,∴∠COL=30°,CL=1

2

CD=5,OL=22

-

OC CL=22

10-5=53.

∵∠AOC=90°,∴∠AON=30°,∴AN=1

2

AO=5,∴AM=5+53;(2)过点F分别作FQ⊥OB、FP⊥OC,垂足分别为

点Q、N. 在Rt△OPQ中,∠OQP=90°,∠BOD=60°,∴OQ=2,FQ=23,在Rt△EFQ中,∠EQF=90°,FQ=23,EF=6,∴QE=26,BE=10-2-26=8-26;同理可得PE′=26,∴B′E′=2+10-26=12-26,∴B′E′-BE=(12-26)-(8-26)=4. 故填:5+53 4.

N

L

M

A D C

O

Q P

E /

B /

B

F E

N

L

M

A

D

C O

【知识点】含30°角直角三角形的性质 勾股定理 数学建模

三、解答题(本大题共8小题,共80分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(2019浙江省温州市,17,10分)(本题满分10分)计算:

(1)069(12)(3)--+---;

【思路分析】依次计算有理数的绝对值、化简二次根式、非0数的0指数幂、有理数的相反数,再进行加减乘混合运算.

【解题过程】原式=6-3+1+3=7

【知识点】实数的运算 有理数的绝对值 化简二次根式 非0数的0指数幂 有理数的相反数

(2)

22

41

33x x x x x +-

++. 【思路分析】直接应用同分母分式加减法法则进行运算,再对所得结果进行约分,化成最简分式. 【解题过程】原式=

24-13x x x ++=23

3x x x ++=3(3)x x x ++=1x

【知识点】分式的运算 18.(2019浙江省温州市,18,8分)(本题满分8分)

如图,在△ABC 中,AD 是BC 边上的中线,E 是AB 边上一点,过点C 作CF ∥AB 交ED 的延长线于点F . (1)求证:△BDE ≌△CDF ;

(2)当AD ⊥BC ,AE=1,CF=2时,求AC 的长.

【思路分析】问题(1),直接应用三角形全等的判定方法“角边角”即可解决问题;问题(2),由问题(1)的结论可得CF=BE=2,BD=CD ,即可知道AD 垂直平分BC ,从而将所求AC 转化为AB 的长. 【解题过程】(1) ∵ CF ∥AB ,∴∠B=∠FCD ,∠BED=∠F. ∵ AD 是BC 边上的中线,∴BD=CD ,∴△BDE ≌△CDF ;

(2)∵△BDE ≌△CDF ,∴BE=CF=2,∴AB=AE+BE=1+2=3.∵ AD ⊥BC ,BD=CD ,∴AC=AB=3. 【知识点】全等三角形的判定与性质 线段垂直平分线的性质

19.(2019浙江省温州市,19,8分)(本题满分8分)

车间有20名工人,某天他们生产的零件个数统计如下表.

(1)求这一天20名工人生产零件的平均个数;

(2)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者,从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?

【思路分析】问题(1),直接应用加权平均数的公式求得这组数据的平均数;问题(2),先分别求得这组数据的中位数、众数,再根据问题(1)求得的平均数,结合平均数、中位数、众数的实际意义,确定工人每天加工零件的“定额”.

【解题过程】(1)x=1

20

(9×1+10×1+11×6+12×4+13×2+15×2+16×2+19×1+20×1)=13(个).

答:这一天20名工人生产零件的平均个数为13个;

(2)中位数为12个,众数为11个.

当定额为13个时,有8人达标,6人获奖,不利于提高工人的积极性;

当定额为12个时,有12人达标,8人获奖,不利于提高大多数工人的积极性;

当定额为11个时,有18人达标,12人获奖,有利于提高大多数工人的积极性.

∴定额为11个时,有利于提高大多数工人的积极性.

【知识点】平均数中位数众数“三数”的应用

20.(2019浙江省温州市,20,8分)(本题满分8分)

如图,在7×5的方格纸ABCD中,请按要求画图,且所画格点三角形与格点四边形的顶点均不与点A,B,C,D重合.

(1)在图1中画一个格点△EFG,使点E,F,G分别落在边AB,BC,CD上,且∠EFG=90°;

(2)在图2中画一个格点四边形MNPQ,使点M,N,P,Q分别落在边AB,BC,CD,DA上,且MP=NQ.

注:图1,图2在答题纸上.

第20题图D C

B

A

【思路分析】问题(1)使得△EFG中∠EFG=90°,可以构造与点F共顶点的两个锐角互余,也可以分别构造以EF、EG为斜边的两个直角三角形是等腰直角三角形;问题(2),点M、P的水平宽度为7,点N,Q的铅直高度为5,设点M、P的铅直高度为x,点N,Q的水平宽度为y,则72+x2=52+y2,即y2-x2=24,(y+x)(y-x)=24.由于x、y都是正整数,∴当y+x=12时,y-x=2,解得x=5、y=7(此时点M,N,P,Q分别在A、B、C、D处,不符合题意);当y+x=6时,y-x=4,解得x=5、y=1,可作出符合条件的图形如图3与如图4.

【解题过程】(1)画法不唯一,如图1或如图2等;

(2)画法不唯一,如图3或如图4等.

E F

G A B

C

D G F E

A B

C

D Q

P N

M A B C

D M N

P Q

A B C

D

图1 图2 图3 图4

【知识点】格点图 尺规作图 21.(2019浙江省温州市,21,10分)(本题满分10分)如图,在平面直角坐标系中,二次函数y=-

12

x 2

+2x+6的图象交x 轴于点A ,B (点A 在点B 的左侧). (1)求点A ,B 的坐标,并根据该函数图象写出y ≥0时x 的取值范围;

(2)把点B 向上平移m 个单位得点B 1.若点B 1向左平移n 个单位,将与该二次函数图象上的点B 2重合;若点B 1向左平移(n+6)个单位,将与该二次函数图象上的点B 3重合.已知m >0,n >0,求m ,n 的值.

【思路分析】问题(1),根据一元二次方程与二次函数的图像之间的关系,求得方程-

12

x 2

+2x+6=0是两个根,即可得点A ,B 的坐标,并通过观察该函数图像位于x 轴上方部分确定y ≥0时所对应自变量x 的取值范围;问题(2),根据二次函数的轴对称性即可求得n 值,并求得对应点的坐标. 【解题过程】(1) 令y=0,则-

12

x 2

+2x+6=0,∴x 1=-2,x 2=6,∴A(-2,0),B(6,0). 由函数图像得,当y ≥0时,x 的取值范围为-2≤x ≤6; (2) 由题意得B 2(6-n ,m),B 3(-n ,m),函数图像的对称轴为直线x=26

2

-+=2. ∵ 点B 2、点B 3在二次函数图象上且纵坐标相同,

6(n)

2n -+-=2,∴n=1,

∴ m=-12×(-1)2+2×(-1)+6=72,∴ m ,n 的值分别为7

2

,1.

【知识点】二次函数的图像与性质 一元二次方程、不等式与二次函数的图像 图形平移的性质

22.(2019浙江省温州市,22,10分)(本题满分10分)

如图,在△ABC 中,∠BAC=90°,点E 在BC 边上,且CA=CE ,过A ,C ,E 三点的⊙O 交AB 于另一点F ,作直径AD ,连结DE 并延长交AB 于点G ,连结CD ,CF .

(1)求证:四边形DCFG 是平行四边形;

(2)当BE=4,CD=

3

8

AB 时,求⊙O 的直径长. 第22题图

O

G F

E C

B

A

【思路分析】问题(1),可分别证得四边形DCFG 的两边分别平行;问题(2),根据CD=

3

8

AB ,设立参数x ,可设

CD=3x,AB=8x ,则CD=3x ,AF=CD=3x.进而可得BG=2x ,并借助图形中隐含的△BGE ∽△CDE 以及BE=4,即可求得BC 、AC 、AF 的长,从而应用勾股定理求得⊙O 的直径CF 长. 【解题过程】(1)连接AE. ∵∠BAC=90°,∴CF 是⊙O 的直径.

∵ AC=EC ,∴CF ⊥AE.∵AD 为⊙O 的直径,∴∠AED=90°,即GD ⊥AE ,∴CF ∥DG.

∵ AD 为⊙O 的直径,∴∠ACD=90°,∴∠ACD+∠BAC=180°,∴AB ∥CD ,∴四边形DCFG 为平行四边形;

第22题图

(2)由CD=

3

8

AB ,可设CD=3x,AB=8x ,∴CD=FG=3x. ∵ ∠AOF=∠COD ,∴AF=CD=3x ,∴BG=8x-3x-3x=2x. ∵ GE ∥CF ,∴△BGE ∽△CDE ,∴

2

3

BE BG EG GF ==. 又∵ BE=4

,∴AC=CE=6,∴BC=6+4=10,∴=8=8x ,∴x=1. 在Rt △ACF

中,AF=3,AC=6,∴

O 的直径长为.

【知识点】圆周角定理 垂径定理 平行四边形的判定方法与性质 相似三角形的判定方法与性质 勾股定理

23.(2019浙江省温州市,23,10分)(本题满分10分)

某旅行团32人在景区A 游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人. (1)求该旅行团中成人与少年分别是多少人?

(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B 游玩.景区B 的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少. 【思路分析】问题(1),利用条件中隐含的相等关系式可列出方程或方程组,即可解决问题;问题(2)中的①,由于“名成人可以免费携带一名儿童”,因此所带领10名儿童只需要购买2名儿童门票,依据景区B 的门票价格即可列式求得所需门票的总费用;②根据隐含的不等关系,分情况加以讨论确定可能出现的不同方案,并求得购票费用最少的方案. 【解题过程】(1)该旅行团中成人有x 人,少年有y 人,根据题意,得:

103212x y x y ++=??=+?,解得17

5x y =??

=?

. 答:该旅行团中成人有17人,少年有5人;

(2)①∵成人8人可免费带8名儿童,

∴所需门票的总费用为:100×8+100×0.8×5+100×0.6×(10-8)=1320(元). ②设可以安排成人a 人、少年b 人带队,则1≤a ≤17,1≤b ≤5. 设10≤a ≤17时,(i) 当a=10时,100×10+80b ≤1200,∴b ≤

52

, ∴ b 最大值=2,此时 a+b=12,费用为1160元;

(ii) 当a=11时,100×11+80b ≤1200,∴b ≤

54

, ∴ b 最大值=1,此时 a+b=12,费用为1180元;

(iii) 当a ≥12时,100a ≥1200,即成人门票至少需要1200元,不符合题意,舍去.

设1≤a <10时,(i) 当a=9时,100×9+80b+60≤1200,∴b ≤3,

∴ b 最大值=3,此时 a+b=12,费用为1200元;

(ii) 当a=8时,100×8+80b+60×2≤1200,∴b ≤

72

, ∴ b 最大值=3,此时 a+b=11<12,不符合题意,舍去; (iii) 同理,当a <8时,a+b <12,不符合题意,舍去.

综上所述,最多可以安排成人和少年共12人带队,有三个方案:成人10人、少年2人;成人11人、少年1人;成人9人、少年3人.其中当成人10人、少年2人时购票费用最少. 【知识点】不等式的应用 方案决策 24.(2019浙江省温州市,24,14分)(本题满分14分)

如图,在平面直角坐标系中,直线1

42

y x =-

+分别交x 轴、y 轴于点B ,C ,正方形AOCD 的顶点D 在第二象限内,E 是BC 中点,OF ⊥DE 于点F ,连结OE .动点P 在AO 上从点A 向终点O 匀速运动,同时,动点Q 在直线BC 上从某点Q 1向终点Q 2匀速运动,它们同时到达终点.

(1)求点B 的坐标和OE 的长;

(2)设点Q 2为(m ,n),当

1

7

n m =tan ∠EOF 时,求点Q 2的坐标; (3)根据(2)的条件,当点P 运动到AO 中点时,点Q 恰好与点C 重合.①延长AD 交直线BC 于点Q 3,当点Q 在线段Q 2Q 3上时,设Q 3Q=s ,AP=t ,求s 关于t 的函数表达式;②当PQ 与△OEF 的一边平行时,求所有满足条件的AP 的长.

【思路分析】问题(1),直接借助于一次函数表达式可以求得点B 的坐标和中线OE 的长;问题(2),先求得tan ∠EOF 的值,再确定m 、n 之间的数量关系,求得点Q 2的坐标;问题(3),分情况加以讨论探求PQ 与△OEF 的一边平行时,满足条件的AP 的长. 【解题过程】(1)令y=0,则1

42

x -

+=0,∴ x=8,∴ B(8,0). ∵ C(0,4),在Rt △BOC 中,2284+5. 又∵ E 为BC 的中点,∴OE=

1

2

5(2)如图1,作EM ⊥OC 于点M ,则EM ∥CD ,

∴△CDN∽△MEN,∴

4

=1

4

CN CD

MN EM

==,∴CN=MN=1,∴EN=2

2

1

4

+=17.

∵ EN·OF=ON·EM,∴ OF=

12

17

17

17

=.

由勾股定理得EF=

14

17

17

,∴ tan∠EOF=

7

6

,∴

n

m

=

1

7

×

7

6

=

1

6

.

∵ n=-

1

2

m+4,∴ m=6,n=1,∴Q2(6,1).

(3)①∵动点P、Q同时作匀速直线运动,∴s关于t成一次函数关系,设s=kt+b,

2

25

t

s

=

??

?

=

??

4

55

t

s

=

??

?

=

??

代入得

225

455

k b

k b

?+=

?

?

+=

??

,解得

3

5

2

5

k

b

?

=

?

?

?=-

?

,∴s=

3

5

2

t-5;

②(i)当PQ∥OE时(如图2),∠QPB=∠EOB=∠OBE,作QH⊥x轴于点H,则PH=BH=

1

2

PB.

∵ BQ=65-S=65-

3

5

2

t+5=75-

3

5

2

t,

又∵cos∠QBH=

2

5

5

,∴BH=14-3t,∴PB=28-6t,∴ t+28-6t=12,∴t=

16

5

(ii)当PQ∥OF时(如图3),过点Q作QG⊥AQ3于点G,过点P作PH⊥GQ于点H,

由△Q3QG∽△CBO得Q3G:QG:Q3Q=1:25∵Q3

3

5

2

5,∴Q3G=

3

2

t-1,QG=3t-2,∴ PH=AG=AQ3-Q3G=6-(

3

2

t-1)=7-

3

2

t,QH=QG-AP=3t-2-t=2t-2.

∵∠HPQ=∠CDN,∴tan∠HPQ=tan∠CDN=

1

4

,∴2t-2=

1

4

(7-

3

2

t),∴ t=

30

19

.

(iii) 由图形可知PQ不可能与EF平行.

综上所述,当PQ与△OEF的一边平行时,AP的长为

16

5

30

19

【知识点】一次函数相似三角形分类讨论

2019-2020年中考数学试题及答案试题

2019-2020年中考数学试题及答案试题 一、选择题(2分×12=24分) 1.如果a 与-2互为倒数,那么a 是( )A 、-2 B 、-21 C 、2 1 D 、 2 2.比-1大1的数是 ( )A 、-2 B 、-1 C 、0 D 、1 3.计算:x 3·x 2的结果是 ( )A 、x 9 B 、x 8 C 、x 6 D 、x 5 4.9的算术平方根是 ( )A 、-3 B 、3 C 、± 3 D 、81 5.反比例函数y= -x 2的图象位于 ( ) A 、第一、二象限 B 、第一、三象限 C 、第二、三象限 D 、第二、四象限 6.二次函数y=(x-1)2+2的最小值是 ( )A 、-2 B 、2 C 、-1 D 、1 7.在比例尺为1:40000的工程示意图上,将于2005年9月1日正式通车的南京地铁一号线(奥体中心至迈皋桥段)的长度约为54.3cm,它的实际长度约为( ) A 、0.2172km B 、2.172km C 、21.72km D 、217.2km 8.下列四个几何体中,主视图、左视图与俯视图是全等图形的几何体是( ) A 、球 B 、圆柱 C 、三棱柱 D 、圆锥 9.如图,在⊿ABC 中,AC=3,BC=4,AB=5,则tanB 的值是( ) A 、43 B 、34 C 、53 D 、54 10.随机掷一枚均匀的硬币两次,两次正面都朝上 的概率是( ) A 、41 B 、21 C 、4 3 D 、1 11.如图,身高为1.6m 的某学生想测量一棵大树的高度,她沿着树影BA 由B 到A 走去,当走到C 点时,她的影子顶端正好与树的影子顶端重合,测得 BC=3.2m ,CA=0.8m, 则树的高度为( ) A 、4.8m B 、6.4m C 、8m D 、10m 12.右图是甲、乙两户居民家庭全年支出费用的扇形统计图。 根据统计图,下面对全年食品支出费用判断正确的是( ) A 、甲户比乙户多 B 、乙户比甲户多 C 、甲、乙两户一样多 D 、无法确定哪一户多 二、填空题(3分×4=12 分) 13.10在两个连续整数a 和b 之间,a<10

2019年安徽中考数学试卷及答案

2019年安徽省初中学业水平考试数学试卷 一、选择题(本大题共10小题,每小题4分,满分40分) 1、在—2,—1,0,1这四个数中,最小的数是() A、—2 B、—1 C.、0 D、1 2、计算a3·(—a)的结果是() A、a2 B、—a2 C、a4 D、—a4 3、一个由圆柱和长方体组成的几何体如图水平放置,它的俯视图是() 4、2019年“五一”假日期间,我省银联网络交易总金额接近161亿元,其中161亿用科学计数法表示为() A、1.61×109 B、1.61×1010 C、1.61×1011 D、1.61×1012 5、已知点A(1,—3)关于x轴的对称点A/在反比例函数 k y x 的图像上,则 实数k的值为() A、3 B、 1 3 C、—3 D、- 1 3 6、在某时段有50辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这50辆车的车速的众数(单位:km/h)为() A、60 B、50 C、40 D、15

7、如图,在R t△ABC中,∠ACB=900,AC=6,BC=12,点D在边BC上,点E在线段AD上,E F⊥AC于点F,EG⊥EF交AB于G,若EF=EG,则CD的长为() A、3.6 B、4 C、4.8 D、5 8、据国家统计局数据,2018年全年国内生产总值为90.3万亿,比2017年增长6.6﹪,假设国内生产总值增长率保持不变,则国内生产总值首次突破100万亿的年份为() A、2019年 B、2020年 C、2021年 D、2022年 9、已知三个实数a,b,c满足a-2b+c=0,a+2b+c<0,则() A、b>0,b2-a c≤0 B、b<0,b2-a c≤0 C、b>0,b2-a c≥0 D、b<0,b2-a c≥0 10、如图,在正方形ABCD中,点E,F将对角线AC三等 分,且AC=12,点P正方形的边上,则满足PE+PF=9 的点P个数是() A、0 B、4 C、6 D、8 二、填空题(本大题共4小题,每小题5分,满分20分) 的结果是. 11、计算182 12、命题“如果a+b=0,那么a,b互为相反数”的逆命题 为. 13、如图,△ABC内接于⊙O,∠CAB=30O,∠CBA=45O, CD⊥AB于点D,若⊙O的半径为2,则CD的长 为 . 14、在平面直角坐标系中,垂直于x轴的直线l分别与函数y=x-a+1和y=x2-2ax 的图像交于P,Q两点,若平移直线l,可以使P,Q都在x轴的下方,则实数a的取值范围是. 三、(本大题共2小题,每小题8分,满分16分) 15、解方程(x—1)2=4. 16、如图,在边长为1的单位长度的小正方 形组的12×12风格中,给出了以格点 (风格线的交点)为端点的线段AB。 (1)将线段AB向右平移5个单位,再向 上平移3个单位得到线段CD,请画出 线段CD。 (2)以线段CD为一边,作一个菱形CDEF, (作出一个菱形即可) 且E,F也为格点。 四、(本大题共2小题,每小题8分,满分16分)

2019年广东省中考数学试卷

2019 年广东省中考数学试卷 副标题 题号 得分 一二三总分 一、选择题(本大题共10 小题,共30.0 分) 1. -2 的绝对值是() 1 2 A. 2 B. -2 C. D. ±2 【答案】A 【解析】解:|-2|=2,故选:A. 根据负数的绝对值是它的相反数,即可解答. 本题考查了绝对值,解决本题的关键是明确负数的绝对值是它的相反数. 2. 某网店 2019 年母亲节这天的营业额为 221000 元,将数 221000 用科学记数法表示 为() A. 2.21×106 C. 221×103 B. 2.21×105 D. 0.221×106 【答案】B 【解析】解:将 221000 用科学记数法表示为:2.21×105. 故选:B. 根据有效数字表示方法,以及科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数. 此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a| <10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 3. 如图,由 4 个相同正方体组合而成的儿何体,它的左视图是() A. B. C. D. 【答案】A

【解析】解:从左边看得到的是两个叠在一起的正方形,如图所示. 故选:A. 左视图是从左边看得出的图形,结合所给图形及选项即可得出答案. 此题考查了简单几何体的三视图,解答本题的关键是掌握左视图的观察位置. 4. 下列计算正确的是( A. b6+b3=b2 ) B. b3?b3=b9 C. a2+a2=2a2 D. (a3)3=a6 【答案】C 【解析】解:A、b6+b3,无法计算,故此选项错误; B、b3?b3=b6,故此选项错误; C、a2+a2=2a2,正确; D、(a3)3=a9,故此选项错误. 故选:C. 直接利用合并同类项法则以及幂的乘方运算法则、同底数幂的乘法运算法则分别化简得出答案. 此题主要考查了合并同类项以及幂的乘方运算、同底数幂的乘法运算,正确掌握相关运算法则是解题关键. 5. 下列四个银行标志中,既是中心对称图形,又是轴对称图形的是() A. B. C. D. 【答案】C 【解析】解:A、是轴对称图形,不是中心对称图形,故本选项错误; B、是轴对称图形,不是中心对称图形,故本选项错误; C、既是轴对称图形,也是中心对称图形,故本选项正确; D、是轴对称图形,不是中心对称图形,故本选项错误. 故选:C. 根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解. 本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转 180 度后两部分重合 6. 数据 3,3,5,8,11 的中位数是() A. 3 B. 4 C. 5 D. 6 【答案】C 【解析】解:把这组数据按照从小到大的顺序排列为:3,3,5,8,11, 故这组数据的中位数是,5. 故选:C. 先把原数据按从小到大排列,然后根据中位数的定义求解即可. 本题考查了中位数的概念:把一组数据按从小到大的顺序排列,最中间那个数或中间两个数的平均数就是这组数据的中位数. 7. 实数a、b 在数轴上的对应点的位置如图所示,下列式子成立的是()

2019年中考数学几何证明、计算题汇编及解析

1、如图,在梯形ABCD 中,AB ∥CD ,∠BCD=90°,且AB=1,BC=2,tan ∠ADC=2. (1) 求证:DC=BC; (2) E 是梯形内一点,F 是梯形外一点,且∠E DC=∠F BC ,DE=BF ,试判断△E CF 的形 状,并证明你的结论; (3) 在(2)的条件下,当BE :CE=1:2,∠BEC=135°时,求sin ∠BFE 的值. [解析] (1)过A 作DC 的垂线AM 交DC 于M, 则AM=BC=2. 又tan ∠ADC=2,所以2 12 DM ==.即DC=BC. (2)等腰三角形. 证明:因为,,DE DF EDC FBC DC BC =∠=∠=. 所以,△DEC ≌△BFC 所以,,CE CF ECD BCF =∠=∠. 所以,90ECF BCF BCE ECD BCE BCD ∠=∠+∠=∠+∠=∠=? 即△ECF 是等腰直角三角形. (3)设BE k =,则2CE CF k ==,所以EF =. 因为135BEC ∠=?,又45CEF ∠=?,所以90BEF ∠=?. 所以3BF k = = 所以1sin 33 k BFE k ∠= =. 2、已知:如图,在□ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,AG ∥DB 交CB 的延长线于G . (1)求证:△ADE ≌△CBF ; (2)若四边形 BEDF 是菱形,则四边形AGBD 是什么特殊四边形?并证明你的结论. [解析] (1)∵四边形ABCD 是平行四边形, ∴∠1=∠C ,AD =CB ,AB =CD . ∵点E 、F 分别是AB 、CD 的中点, ∴AE = 21AB ,CF =2 1 CD . ∴AE =CF ∴△ADE ≌△CBF . (2)当四边形BEDF 是菱形时, 四边形 AGBD 是矩形. E B F C D A

2019年安徽省中考数学试卷及答案(最新)

2019年安徽省中考数学试卷 一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是正确的. 1.(4分)在﹣2,﹣1,0,1这四个数中,最小的数是() A.﹣2B.﹣1C.0D.1 2.(4分)计算a3?(﹣a)的结果是() A.a2 B.﹣a2C.a4D.﹣a4 3.(4分)一个由圆柱和长方体组成的几何体如图水平放置,它的俯视图是() A.B.C.D. 4.(4分)2019年“五一”假日期间,我省银联网络交易总金额接近161亿元,其中161亿用科学记数法表示为() A.1.61×109 B.1.61×1010 C.1.61×1011 D.1.61×1012 5.(4分)已知点A(1,﹣3)关于x轴的对称点A'在反比例函数y=的图象上,则实数k的值为() A.3B.C.﹣3D.﹣ 6.(4分)在某时段由50辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这50辆车的车速的众数(单位:km/h)为() A.60B.50C.40D.15 7.(4分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=12,点D在边BC上,点E在线段AD上,EF⊥AC于点F,EG⊥EF交AB于点G.若EF=EG,则CD的长为()

A.3.6B.4C.4.8D.5 8.(4分)据国家统计局数据,2018年全年国内生产总值为90.3万亿,比2017年增长6.6%.假设国内生产总值的年增长率保持不变,则国内生产总值首次突破100万亿的年份是()A.2019年B.2020年C.2021年D.2022年 9.(4分)已知三个实数a,b,c满足a﹣2b+c=0,a+2b+c<0,则() A.b>0,b2﹣ac≤0B.b<0,b2﹣ac≤0 C.b>0,b2﹣ac≥0D.b<0,b2﹣ac≥0 10.(4分)如图,在正方形ABCD中,点E,F将对角线AC三等分,且AC=12,点P在正方形的边上,则满足PE+PF=9的点P的个数是() A.0B.4C.6D.8 二、填空题(共4小题,每小题5分,满分20分) 11.(5分)计算÷的结果是. 12.(5分)命题“如果a+b=0,那么a,b互为相反数”的逆命题为. 13.(5分)如图,△ABC内接于⊙O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若⊙O的半径为2,则CD的长为. 14.(5分)在平面直角坐标系中,垂直于x轴的直线l分别与函数y=x﹣a+1和y=x2﹣2ax的图象相交于P,Q两点.若平移直线l,可以使P,Q都在x轴的下方,则实数a的取值范围是.三、(本大题共2小题,每小题8分,满分16分) 15.(8分)解方程:(x﹣1)2=4.

2019年中考数学试卷

2019年中考数学试卷 1、如图,在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动. (1)求AC、BC的长; (2)设点P的运动时间为x(秒),△PBQ的面积为y(cm2),当△PBQ存在时,求y与x的函数关系式,并写出自变量x的取值范围; (3)当点Q在CA上运动,使PQ⊥AB时,以点B、P、Q为定点的三角形与△ABC 是否相似,请说明理由; (4)当x=5秒时,在直线PQ上是否存在一点M,使△BCM得周长最小,若存在,求出最小周长,若不存在,请说明理由. 解:(1)设AC=4x,BC=3x,在Rt△ABC中,AC2+BC2=AB2, 即:(4x)2+(3x)2=102,解得:x=2,∴AC=8cm,BC=6cm; (2)①当点Q在边BC上运动时,过点Q作QH⊥AB于H, ∵AP=x,∴BP=10﹣x,BQ=2x,∵△QHB∽△ACB, ∴QH QB AC AB ,∴QH= 8 5 x,y= 1 2 BP?QH= 1 2 (10﹣x)? 8 5 x=﹣ 4 5 x2+8x(0<x≤3), ②当点Q在边CA上运动时,过点Q作QH′⊥AB于H′,∵AP=x,

∴BP=10﹣x ,AQ=14﹣2x ,∵△AQH′∽△ABC, ∴'AQ QH AB BC =,即:'14106x QH -=,解得:QH′=3 5 (14﹣x ), ∴y= 12PB?QH′=12(10﹣x )?35(14﹣x )=310x 2﹣36 5 x+42(3<x <7); ∴y 与x 的函数关系式为:y=2 248(03)5 33642(37)10 5x x x x x x ?-+<≤????-+<

2019年中考数学试卷(及答案)

2019年中考数学试卷(及答案) 一、选择题 1.已知反比例函数 y = 的图象如图所示,则二次函数 y =a x 2-2x 和一次函数 y =bx+a 在同一平面直角坐标系中的图象可能是( ) A . B . C . D . 2.已知11(1)11 A x x ÷+=-+,则A =( ) A . 21 x x x -+ B . 21 x x - C . 21 1 x - D .x 2﹣1 3.如图,某小区规划在一个长16m ,宽9m 的矩形场地ABCD 上,修建同样宽的小路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草,如果使草坪部分的总面积为112m 2,设小路的宽为xm ,那么x 满足的方程是( ) A .2x 2-25x+16=0 B .x 2-25x+32=0 C .x 2-17x+16=0 D .x 2-17x-16=0 4.二次函数y=ax 2+bx+c 的图象如图所示,对称轴是x=-1.有以下结论:①abc>0,②4ac2,其中正确的结论的个数是( ) A .1 B .2 C .3 D .4 5.如图,菱形ABCD 的对角线相交于点O ,若AC =8,BD =6,则菱形的周长为( )

A .40 B .30 C .28 D .20 6.如图,正比例函数1y=k x 与反比例函数2 k y=x 的图象相交于点A 、B 两点,若点A 的坐标为(2,1),则点B 的坐标是( ) A .(1,2) B .(-2,1) C .(-1,-2) D .(-2,-1) 7.如图,在半径为13的O e 中,弦AB 与CD 交于点E ,75DEB ∠=?, 6,1AB AE ==,则CD 的长是( ) A .26 B .210 C .211 D .43 8.如图,已知⊙O 的半径是2,点A 、B 、C 在⊙O 上,若四边形OABC 为菱形,则图中阴影部分面积为( ) A . 2 3 π﹣3B . 1 3 π3 C . 4 3 π﹣3 D . 4 3 π3 9.某商店销售富硒农产品,今年1月开始盈利,2月份盈利240000元,4月份盈利290400元,且从2月份到4月份,每月盈利的平均增长率相同,则每月盈利的平均增长率是( ) A .8% B .9% C .10% D .11% 10.在全民健身环城越野赛中,甲乙两选手的行程y (千米)随时间(时)变化的图象

2019年全国各地中考数学真题大集合

河南省2019年中考数学试题 班级______ 姓名______ 一. 选择题: 1. 1 2 -的绝对值是( ) A. 12- B. 1 2 C. 2 D. 2- 2. 成人每天维生素D 的摄入量约为0.0000046克,数据“0.0000046”用科学记数法表示为( ) A. 74610-? B.74.610-? C. 64.610-? D. 50.4610-? 3. 如图,,75,27AB CD B E ∠=?∠=?P ,则D ∠的度数为( ) A. 45° B. 48° C. 50° D. 58° 4. 下列计算正确的是( ) A. 236a a a += B.()2 236a a -= C. ( )2 22 x y x y -=- D.=5. 如图①是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图②. 关于平移后几何体的三视图,下列说法正确的是( ) A. 主视图相同 B. 左视图相同 C. 俯视图相同 D. 三种视图都不相同 6. 一元二次方程(1)(1)23x x x +-=+的根的情况是( ) A.有两个不相等的实数根 B.有两个相等的实数根 C. 只有一个实数根 D. 没有实数根 图2 E D C B A

7. 某超市销售A ,B ,C ,D 四种矿泉水,它们的单价依次是5元,3元,2元,1元. 某天的销售情况如图所示,则这天销售的矿泉水的平均单价( ) A. 1.95 元 B. 2.15元 C. 2.25元 D. 2.75元 8. 已知抛物线24y x bx =-++经过(-2,n )和(4,n )两点,则n 的值为( ) A. -2 B. - 4 C. 2 D. 4 9. 如图,在四边形ABCD 中,AD ∥BC ,∠D=90°,AD=4,BC=3 ,分别以A ,C 为 圆心,以大于1 2 AC 的长为半径画弧,两弧交于点E ,作射线BE 交AD 于点F , 交AC 于点O ,若点O 是AC 的中点,则CD 的长为 ( ) A. B. 4 C. 3 D. 10. 如图,在△OAB 中,顶点O (0,0),A (-3,4),B (3,4),将△OAB 与正方形ABCD 组成的图形绕点O 顺时针旋转,每次旋转90°,则第70次旋转结束时,点D 的坐标为( ) A. (10,3) B. (-3,10) C. (10,-3) D. (3,-10) 二. 填空题 11. 12-=___________ 12. 不等式组1 274 x x ?≤-???-+>?的解集是_________________ 13. 现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个 黄球2个红球,这些球除颜色外完全相同。从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是______________ 15% 10%20% 55% D C B A A

2019年重庆市中考数学试卷(B卷)(解析版)

2019年重庆市中考数学试卷(B卷) 一、选择题(本大题共12小题,共48.0分) 1.5的绝对值是() A. 5 B. C. D. 2.如图是一个由5个相同正方体组成的立体图形,它的主视图是() A. B. C. D. 3.下列命题是真命题的是() A. 如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为2:3 B. 如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9 C. 如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为2:3 D. 如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为4:9 4.如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,若∠C=40°, 则∠B的度数为() A. B. C. D. 5.抛物线y=-3x2+6x+2的对称轴是() A. 直线 B. 直线 C. 直线 D. 直线 6.某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分要超过120分,他至少要 答对的题的个数为() A. 13 B. 14 C. 15 D. 16 7.估计的值应在() A. 5和6之间 B. 6和7之间 C. 7和8之间 D. 8和9之间 8.根据如图所示的程序计算函数y的值,若输入x的值是7,则输出y的值是-2,若输入x的值是-8,则 输出y的值是() A. 5 B. 10 C. 19 D. 21 9.如图,在平面直角坐标系中,菱形OABC的边OA在x轴上,点A(10,0),sin∠COA=.若反比例 函数y=(k>0,x>0)经过点C,则k的值等于() A. 10 B. 24 C. 48 D. 50 10.如图,AB是垂直于水平面的建筑物.为测量AB的高度,小红从建筑物底端B点 出发,沿水平方向行走了52米到达点C,然后沿斜坡CD前进,到达坡顶D点 处,DC=BC.在点D处放置测角仪,测角仪支架DE高度为0.8米,在E点处测 得建筑物顶端A点的仰角∠AEF为27°(点A,B,C,D,E在同一平面内).斜 坡CD的坡度(或坡比)i=1:2.4,那么建筑物AB的高度约为() (参考数据sin27°≈0.45,cos27°≈0.89,tan27°≈0.51) A. 米 B. 米 C. 米 D. 米 11.若数a使关于x的不等式组 , > 有且仅有三个整数解,且使关于y的分式方程-=-3 的解为正数,则所有满足条件的整数a的值之和是() A. B. C. D. 1 12.如图,在△ABC中,∠ABC=45°,AB=3,AD⊥BC于点D,BE⊥AC于点E,AE=1.连接DE,将△AED 沿直线AE翻折至△ABC所在的平面内,得△AEF,连接DF.过点D作DG⊥DE 交BE于点G.则四边形DFEG的周长为() A.8 B. C. D. 二、填空题(本大题共6小题,共24.0分) 13.计算:(-1)0+()-1=______. 14.2019年1月1日,“学习强国”平台全国上线,截至2019年3月17日止,重庆市党员“学习强国”APP 注册人数约1180000,参学覆盖率达71%,稳居全国前列.将数据1180000用科学记数法表示为______.15.一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.连续掷两次骰子,在骰子向上的一面 上,第二次出现的点数是第一次出现的点数的2倍的概率是______. 16.如图,四边形ABCD是矩形,AB=4,AD=2,以点A为圆心,AB长为半径画弧,交 CD于点E,交AD的延长线于点F,则图中阴影部分的面积是______. 17.一天,小明从家出发匀速步行去学校上学.几分钟后,在家休假的爸爸发现小明忘带数 学书,于是爸爸立即匀速跑步去追小明,爸爸追上小明后以原速原路跑回家.小明拿到 书后以原速的快步赶往学校,并在从家出发后23分钟到校(小明被爸爸追上时交流时 间忽略不计).两人之间相距的路程y(米)与小明从家出发到学校的步行时间x(分钟)之间的函数关系如图所示,则小明家到学校的路程为______米. 18.某磨具厂共有六个生产车间,第一、二、三、四车间毎天生产相同数量的产品,第五、六车间每天生 产的产品数量分別是第一车间每天生产的产品数量的和.甲、 乙两组检验员进驻该厂进行产品检验,

2019年成都中考数学试题与答案

2019年成都中考数学试题与答案 A 卷(共100分) 一.选择题(本大题共10个小题,每小题3分,共30分) 1.比-3大5的数是( ) A.-15 B.-8 C.2 D.8 2.如图所示的几何体是由6个大小相同的小立方块搭成,它的左视图是( ) A. B. C. D. 3.2019年4月10日,人类首张黑洞图片问世,该黑洞位于室女座一个巨椭圆星系M87的中心,距离地球5500万光年.将数据5500万用科学计数法表示为( ) 5500×104 B.55×106 C.5.5×107 D.5.5×108 4.在平面直角坐标系中,将点(-2,3)向右平移4个单位长度后得到的点的坐标为( ) A.(2,3) B.(-6,3) C.(-2,7) D.(-2,-1) 5.将等腰直角三角形纸片和矩形纸片按如图方式折叠放在一起,若∠1=30°,则∠2的度数为( ) A.10° B.15° C.20° D.30° 6.下列计算正确的是( ) A. B. C. D. b b ab 235=-242263b a b a =-)(1)1(22-=-a a 2222a b b a =÷

7.分式方程的解为( ) A. B. C. D. 8.某校开展了主题为“青春·梦想”的艺术作品征集互动,从九年级五个班收集到的作品数量(单位:件)分别为:42,50,45,46,50则这组数据的中位数是( ) A.42件 B.45件 C.46件 D.50件 9.如图,正五边形ABCDE 内接于⊙O ,P 为上的一点(点P 不与点D 重合),则∠CPD 的度数为( ) A.30° B.36° C.60° D.72° 10.如图,二次函数的图象经过点A (1,0),B (5,0),下列说法正确的是( ) A. B. C. D.图象的对称轴是直线 二.填空题(本大题共4个小题,每小题4分,共16分) 1215=+--x x x 1-=x 1=x 2=x 2-=x DE c bx ax y ++=20>c 042<-ac b 0<+-c b a 3= x

2019年中考数学计算题专项训练(超详细,经典!!!)

2019年中考数学计算题专项训练(超详细,经典!!!) 一、集训一(代数计算) 1. 计算: (1)30 82 145+-Sin (2) (3)2×(-5)+23-3÷1 2 (4)22+(-1)4+(5-2)0-|-3|; (5)?+-+-30sin 2)2(20 (6)()()0 2 2161-+-- (7)( 3 )0 - ( 12 )-2 + tan45° (8)()()0332011422 ---+÷- 2.计算:345tan 3231211 0-?-??? ? ??+??? ??-- 3.计算:( ) () () ??-+-+-+ ?? ? ??-30tan 3312120122010311001 2 4.计算:() ( ) 11 2230sin 4260cos 18-+ ?-÷?---

5.计算:1 2010 0(60)(1) |28|(301) cos tan -÷-+-- 二、集训二(分式化简) 注意:此类要求的题目,如果没有化简,直接代入求值一分不得! 考点:①分式的加减乘除运算 ②因式分解 ③二次根式的简单计算 1. . 2。 2 1 422 ---x x x 3.(a+b )2 +b (a ﹣b ). 4. 11()a a a a --÷ 5.2 11 1x x x -??+÷ ??? 6、化简求值 (1)????1+ 1 x -2÷ x 2 -2x +1 x 2-4,其中x =-5(2)(a ﹣1+ )÷(a 2 +1),其中a= ﹣ 1 (3)2121 (1)1a a a a ++-?+,其中a (4))2 5 2(423--+÷--a a a a , 1-=a

舟山市2019年中考数学试题及答案

舟山市2019年中考数学试题及答案 (试卷满分120分,考试时间120分钟) 一、选择题(本题有10小题,每题3分,共30分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分) 1.﹣2019的相反数是() A.2019 B.﹣2019 C.D.﹣ 2. 2019年1月3日10时26分,“嫦娥四号”探测器飞行约380000千米,实现人类探测器首次在月球背面软着陆.数据380000用科学记数法表示为() A.38×104B.3.8×104C.3.8×105D.0.38×106 3.如图是由四个相同的小正方形组成的立体图形,它的俯视图为() A.B.C.D. 4. 2019年5月26日第5届中国国际大数据产业博览会召开.某市在五届数博会上的产业签约金额的折线统计图如图.下列说法正确的是() A.签约金额逐年增加 B.与上年相比,2019年的签约金额的增长量最多 C.签约金额的年增长速度最快的是2016年 D.2018年的签约金额比2017年降低了22.98% 5.如图是一个2×2的方阵,其中每行、每列的两数和相等,则a可以是()

A.tan60°B.﹣1 C.0 D.12019 6.已知四个实数a,b,c,d,若a>b,c>d,则() A.a+c>b+d B.a﹣c>b﹣d C.ac>bd D.> 7.如图,已知⊙O上三点A,B,C,半径OC=1,∠ABC=30°,切线PA交OC延长线于点P,则PA的长为() A.2 B.C.D. 8.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马二匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x两,牛每头y两,根据题意可列方程组为() A.B. C.D. 9.如图,在直角坐标系中,已知菱形OABC的顶点A(1,2),B(3,3).作菱形OABC关于y轴的对称图形OA'B'C',再作图形OA'B'C'关于点O的中心对称图形OA″B″C″,则点C的对应点C″的坐标是() A.(2,﹣1)B.(1,﹣2)C.(﹣2,1)D.(﹣2,﹣1)10.小飞研究二次函数y=﹣(x﹣m)2﹣m+1(m为常数)性质时如下结论: ①这个函数图象的顶点始终在直线y=﹣x+1上; ②存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形;

2019年中考数学试题(含解析)

2019年中考数学试卷 一.选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个. 1.4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439 000米.将439 000用科学记数法表示应为( ) A.0.439×106 B.4.39×106 C.4.39×105 D.139×103 【解析】本题考察科学记数法较大数,N a 10?中要求10||1<≤a ,此题中5,39.4==N a ,故选C 2.下列倡导节约的图案中,是轴对称图形的是( ) A. B. C. D. 【解析】本题考察轴对称图形的概念,故选C 3.正十边形的外角和为( ) A.180° B.360° C.720° D.1440° 【解析】多边形的外角和是一个定值360°,故选B 4.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO=BO ,则a 的值为( ) A.-3 B.-2 C.-1 D.1 【解析】本题考察数轴上的点的平移及绝对值的几何意义.点A 表示数为a ,点B 表示数为2,点C 表示数为a+1,由题意可知,a <0, ∵CO=BO ,∵2|1|=+a ,解得1=a (舍)或3-=a ,故选A

5.已知锐角∵AOB 如图,(1)在射线OA 上取一点C ,以点O 为圆心, OC 长为半径作?PQ ,交射线OB 于点D ,连接CD ; (2)分别以点C ,D 为圆心,CD 长为半径作弧,交?PQ 于点M ,N ; (3)连接OM ,MN . 根据以上作图过程及所作图形,下列结论中错误的是( ) A.∵COM=∵COD B.若OM=MN ,则∵AOB=20° C.MN∵CD D.MN=3CD 【解析】连接ON ,由作图可知∵COM∵∵DON. A. 由∵COM∵∵DON.,可得∵COM=∵COD ,故A 正确. B. 若OM=MN ,则∵OMN 为等边三角形,由全等可知∵COM=∵COD=∵DON=20°,故B 正确 C.由题意,OC=OD ,∵∵OCD=2 COD 180∠-?.设OC 与OD 与MN 分别交于R ,S ,易证 ∵MOR∵∵NOS ,则OR=OS ,∵∵ORS=2 COD 180∠-?,∵∵OCD=∵ORS.∵MN∵CD ,故C 正 确. D.由题意,易证MC=CD=DN ,∵MC+CD+DN=3CD.∵两点之间线段最短.∵MN <MC+CD+DN=3CD ,故选D 6.如果1m n +=,那么代数式()22 2 21m n m n m mn m +??+?- ?-?? 的值为( ) A.-3 B.-1 C.1 D.3 【解析】()22 2 21m n m n m mn m +??+?- ?-?? ))(()()(2n m n m n m m n m n m m n m -+???????--+-+= ) (3))(() (3n m n m n m n m m m +=-+?-= 1 =+n m Θ ∵原式=3,故选D B

2019年中考数学试卷含答案

2019年中考数学试卷含答案 一、选择题 1.若直线1l 经过点()0,4,直线2l 经过点()3,2,且1l 与2l 关于x 轴对称,则1l 与2l 的交点坐标为( ) A .()6,0- B .()6,0 C .()2,0- D .()2,0 2.下列几何体中,其侧面展开图为扇形的是( ) A . B . C . D . 3.三张外观相同的卡片分别标有数字1,2,3,从中随机一次性抽出两张,则这两张卡片上的数字恰好都小于3的概率是( ) A .19 B .16 C .13 D .23 4.已知11(1)11 A x x ÷+=-+,则A =( ) A .21x x x -+ B .21x x - C .211 x - D .x 2﹣1 5.-2的相反数是( ) A .2 B .12 C .-12 D .不存在 6.肥皂泡的泡壁厚度大约是0.0007mm ,0.0007用科学记数法表示为( ) A .0.7× 10﹣3 B .7×10﹣3 C .7×10﹣4 D .7×10﹣5 7.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为 ( ) A .﹣3 B .﹣5 C .1或﹣3 D .1或﹣5 8.如图,AB ∥CD ,∠C=80°,∠CAD=60°,则∠BAD 的度数等于( ) A .60° B .50° C .45° D .40° 9.如图,菱形ABCD 的对角线相交于点O ,若AC =8,BD =6,则菱形的周长为( )

A .40 B .30 C .28 D .20 10.如图,O 为坐标原点,菱形OABC 的顶点A 的坐标为(3 4)-,,顶点C 在x 轴的负半轴上,函数(0)k y x x =<的图象经过顶点B ,则k 的值为( ) A .12- B .27- C .32- D .36- 11.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的是( ) A .1201508x x =- B .1201508x x =+ C .1201508x x =- D .1201508 x x =+ 12.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( ) A . B . C . D . 二、填空题 13.如图,在四边形ABCD 中,∠B=∠D=90°,AB =3, BC =2,tanA = 43 ,则CD =_____. 14.关于x 的一元二次方程2310ax x --=的两个不相等的实数根都在-1和0之间(不包括-1和0),则a 的取值范围是___________

北京市2019年中考数学试题(含答案)

2019年市高级中等学校招生考试 数学试卷 一、选择题(本题共16分,每小题2分) 第1-8题均有四个选项,符合题意的选项只有一个. 1.4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439 000米.将439 000用科学记数法表示应为 (A )6 10 439 .0?(B)6 10 39 .4? (C)5 10 39 .4?(D)3 10 439? 2.下列倡导节约的图案中,是轴对称图形的是 (A)(B)(C)(D) 3.正十边形的外角和为 (A)180°(B)360°(C)720°(D)1440° 4.在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C.若CO=BO,则a的值为 (A)﹣3 (B)﹣2 (C)﹣1 (D)1 5.已知锐角∠AOB 如图, (1)在射线OA上取一点C,以点O为圆心,OC长为半径作, 交射线OB于点D,连接CD; (2)分别以点C,D为圆心,CD长为半径作弧,交于点M,N; (3)连接OM,MN. 根据以上作图过程及所作图形,下列结论中错误的是 (A)∠COM=∠COD(B)若OM=MN,则∠AOB=20° (C)MN∥CD(D)MN=3CD 6.如果1 = +n m,那么代数式()2 2 2 1 2 n m m mn m n m - ?? ? ? ? ? + - + 的值为 (A)﹣3 (B)﹣1 (C)1 (D)3 N M D O B C P A

7 组成一个命题,组成真命题的个数为 (A)0 (B)1 (C)2 (D)3 8.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分. 下面有四个推断: ①这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间 ②这200名学生参加公益劳动时间的中位数在20-30之间 ③这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间 ④这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间 所有合理推断的序号是 (A)①③(B)②④ (C)①②③(D)①②③④ 二、填空题(本题共16分,每小题2分)

2019年中考数学试题(解析版)

2019年中考数学试卷 一、选择题(本题有10小题,每小题3分,共30分) 1.初数4的相反数是() A. B. -4 C. D. 4 2.计算a6÷a3,正确的结果是() A. 2 B. 3a C. a2 D. a3 3.若长度分别为a,3,5的三条线段能组成一个三角形,则a的值可以是() A. 1 B. 2 C. 3 D. 8 4.某地一周前四天每天的最高气温与最低气温如表,则这四天中温差最大的是() A. 星期一 B. 星期二 C. 星期三 D. 星期四 5.一个布袋里装有2个红球,3个黄球和5个白球,除颜色外其它都相同,搅匀后任意摸出一个球,是白球的概率为() A. B. C. D. 6.如图是雷达屏幕在一次探测中发现的多个目标,其中对目标A的位置表述正确的是() A. 在南偏东75°方向处 B. 在5km处 C. 在南偏东15°方向5km处 D. 在南75°方向5km处 7.用配方法解方程x2-6x-8=0时,配方结果正确的是() A. (x-3)2=17 B. (x-3)2=14 C. (x-6)2=44 D. (x-3)2=1 8.如图,矩形ABCD的对角线交于点O,已知AB=m,∠BAC=∠α,则下列结论错误的是() A. ∠BDC=∠α B. BC=m·tanα C. AO= D. BD=

9.如图物体由两个圆锥组成,其主视图中,∠A=90°,∠ABC=105°,若上面圆锥的侧面积为1,则下面圆锥的侧面积为() A. 2 B. C. D. 10.将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线剪去一个角,展开铺平后得到图⑤,其中FM,GN是折痕,若正方形EFGH与五边形MCNGF的面积相等,则的值是() A. B. -1 C. D. 二、填空题(本题有6小题,每小题4分,共24分) 11.不等式3x-6≤9的解是________. 12.数据3,4,10,7,6的中位数是________. 13.当x=1,y= 时,代数式x2+2xy+y2的值是________. 14.如图,在量角器的圆心O处下挂一铅锤,制作了一个简易测倾仪。量角器的O刻度线AB对准楼顶时,铅垂线对应的读数是50°,则此时观察楼顶的仰角度数是________ . 15.元朝朱世杰的《算学启蒙》一书记载:“今有良马目行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之,”如图是两匹马行走路程s关于行走时间t的函数图象,则两图象交点P的坐标是________ .

相关主题
文本预览
相关文档 最新文档