当前位置:文档之家› 2019年中考数学试卷含答案

2019年中考数学试卷含答案

2019年中考数学试卷含答案

一、选择题

1.若直线1l 经过点()0,4,直线2l 经过点()3,2,且1l 与2l 关于x 轴对称,则1l 与2l 的交点坐标为( )

A .()6,0-

B .()6,0

C .()2,0-

D .()2,0

2.下列几何体中,其侧面展开图为扇形的是( )

A .

B .

C .

D .

3.三张外观相同的卡片分别标有数字1,2,3,从中随机一次性抽出两张,则这两张卡片上的数字恰好都小于3的概率是( )

A .19

B .16

C .13

D .23 4.已知11(1)11

A x x ÷+=-+,则A =( ) A .21x x x -+

B .21x x -

C .211

x - D .x 2﹣1

5.-2的相反数是( ) A .2 B .12 C .-12 D .不存在

6.肥皂泡的泡壁厚度大约是0.0007mm ,0.0007用科学记数法表示为( )

A .0.7×

10﹣3 B .7×10﹣3 C .7×10﹣4 D .7×10﹣5 7.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为

( )

A .﹣3

B .﹣5

C .1或﹣3

D .1或﹣5

8.如图,AB ∥CD ,∠C=80°,∠CAD=60°,则∠BAD 的度数等于( )

2019年中考数学试卷含答案

A .60°

B .50°

C .45°

D .40°

9.如图,菱形ABCD 的对角线相交于点O ,若AC =8,BD =6,则菱形的周长为( )

2019年中考数学试卷含答案

A .40

B .30

C .28

D .20

10.如图,O 为坐标原点,菱形OABC 的顶点A 的坐标为(3

4)-,,顶点C 在x 轴的负半轴上,函数(0)k y x x =<的图象经过顶点B ,则k 的值为( )

2019年中考数学试卷含答案

A .12-

B .27-

C .32-

D .36-

11.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的是( ) A .1201508x x =- B .1201508x x =+ C .1201508x x =- D .1201508

x x =+ 12.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( ) A . B .

C .

D .

二、填空题

13.如图,在四边形ABCD 中,∠B=∠D=90°,AB =3, BC =2,tanA =

43

,则CD =_____.

2019年中考数学试卷含答案

14.关于x 的一元二次方程2310ax x --=的两个不相等的实数根都在-1和0之间(不包括-1和0),则a 的取值范围是___________

15.如图,Rt AOB ?中,90AOB ∠=?,顶点A ,B 分别在反比例函数()10y x x

=>与()50y x x

-=<的图象上,则tan BAO ∠的值为_____.

2019年中考数学试卷含答案

16.已知关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,则m=_____.

17.若一个数的平方等于5,则这个数等于_____.

18.关于x 的一元二次方程(a +1)x 2-2x +3=0有实数根,则整数a 的最大值是_____.

19.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =_____.

2019年中考数学试卷含答案

20.如图,在矩形ABCD 中,AB=3,AD=5,点E 在DC 上,将矩形ABCD 沿AE 折叠,点D 恰好落在BC 边上的点F 处,那么cos ∠EFC 的值是 .

三、解答题

21.如图,AD 是ABC ?的中线,AE BC ∥,BE 交AD 于点F ,F 是AD 的中点,连接EC .

(1)求证:四边形ADCE 是平行四边形;

(2)若四边形ABCE 的面积为S ,请直接写出图中所有面积是13

S 的三角形.

2019年中考数学试卷含答案

22.国家自2016年1月1日起实行全面放开二胎政策,某计生组织为了解该市家庭对待这项政策的态度,准备采用以下调查方式中的一种进行调查:

A .从一个社区随机选取1 000户家庭调查;

B .从一个城镇的不同住宅楼中随机选取1 000户家庭调查;

C .从该市公安局户籍管理处随机抽取1 000户城乡家庭调查.

(1)在上述调查方式中,你认为比较合理的一个是 .(填“A”、“B”或“C”) (2)将一种比较合理的调查方式调查得到的结果分为四类:(A )已有两个孩子;

2019年中考数学试卷含答案

2019年中考数学试卷含答案

(B )决定生二胎;(C )考虑之中;(D )决定不生二胎.将调查结果绘制成如下两幅不完整的统计图.

请根据以上不完整的统计图提供的信息,解答下列问题:

①补全条形统计图.

②估计该市100万户家庭中决定不生二胎的家庭数.

23.在一个不透明的盒子中装有三张卡片,分别标有数字1,2,3,这些卡片除数字不同外其余均相同.小吉从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片.用画树状图或列表的方法,求两次抽取的卡片上数字之和为奇数的概率.

24.安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y (千克)与每千克降价x (元)(020)x <<之间满足一次函数关系,其图象如图所示:

2019年中考数学试卷含答案

(1)求y 与x 之间的函数关系式;

(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?

25.如图1,已知二次函数y=ax 2+32

x+c (a≠0)的图象与y 轴交于点A (0,4),与x 轴

交于点B、C,点C坐标为(8,0),连接AB、AC.

(1)请直接写出二次函数y=ax2+3

2

x+c的表达式;

(2)判断△ABC的形状,并说明理由;

(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请写出此时点N的坐标;

(4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.

2019年中考数学试卷含答案

【参考答案】***试卷处理标记,请不要删除

一、选择题

1.D

解析:D

【解析】

【分析】

根据1l与2l关于x轴对称,可知2l必经过(0,-4),1l必经过点(3,-2),然后根据待定系数法分别求出1l、2l的解析式后,再联立解方程组即可求得1l与2l的交点坐标.

【详解】

∵直线1l经过点(0,4),2l经过点(3,2),且1l与2l关于x轴对称,

∴直线1l经过点(3,﹣2),2l经过点(0,﹣4),

设直线1l的解析式y=kx+b,

把(0,4)和(3,﹣2)代入直线1l的解析式y=kx+b,

4

342 b

k

=

?

?

+=-

?

解得:

2

4

k

b

=-

?

?

=

?

故直线1l的解析式为:y=﹣2x+4,设l2的解析式为y=mx+n,

把(0,﹣4)和(3,2)代入直线2l的解析式y=mx+n,

32

4

m n

n

+=

?

?

=-

?

,解得

m2

n4

=

?

?

=-

?

∴直线2l的解析式为:y=2x﹣4,

联立

24

24

y x

y x

=-+

?

?

=-

?

,解得:

2

x

y

=

?

?

=

?

即1l与2l的交点坐标为(2,0).

故选D.

【点睛】

本题考查了关于x轴对称的点的坐标特征、待定系数法求一次函数的解析式即两直线的交点坐标问题,熟练应用相关知识解题是关键.

2.C

解析:C

【解析】

【分析】

根据特殊几何体的展开图逐一进行分析判断即可得答案.

【详解】

A、圆柱的侧面展开图是矩形,故A错误;

B、三棱柱的侧面展开图是矩形,故B错误;

C、圆锥的侧面展开图是扇形,故C正确;

D、三棱锥的侧面展开图是三个三角形拼成的图形,故D错误,

故选C.

【点睛】

本题考查了几何体的展开图,熟记特殊几何体的侧面展开图是解题关键.

3.C

解析:C

【解析】

【分析】

画出树状图即可求解.

【详解】

解:画树状图得:

2019年中考数学试卷含答案

∵共有6种等可能的结果,而两张卡片上的数字恰好都小于3有2种情况,

∴两张卡片上的数字恰好都小于3概率=1

3

故选:C.

【点睛】

本题考查的是概率,熟练掌握树状图是解题的关键. 4.B

解析:B

【解析】

【分析】

由题意可知A=

11

1)

11

x x

+

+-

(,再将括号中两项通分并利用同分母分式的减法法则计算,

再用分式的乘法法则计算即可得到结果.【详解】

解:A=

11

1

11

x x

+

+-

=

1

11

x

x x

+-

g=

21

x

x-

故选B.

【点睛】

此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.

5.A

解析:A

【解析】

试题分析:根据只有符号不同的两数互为相反数,可知-2的相反数为2.

故选:A.

点睛:此题考查了相反数的意义,解题关键是明确相反数的概念,只有符号不同的两数互为相反数,可直接求解.

6.C

解析:C

【解析】

【分析】

绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.

【详解】

解:0.0007=7×10﹣4

故选C.

【点睛】

本题考查科学计数法,难度不大.

7.A

解析:A

【解析】

分析:根据点A(a+2,4)和B(3,2a+2)到x轴的距离相等,得到4=|2a+2|,即可解答.

详解:∵点A(a+2,4)和B(3,2a+2)到x轴的距离相等,

∴4=|2a+2|,a+2≠3,

解得:a=?3,

故选A.

点睛:考查点的坐标的相关知识;用到的知识点为:到x轴和y轴的距离相等的点的横纵坐标相等或互为相反数.

8.D

解析:D

【解析】

【分析】

【详解】

∵∠C=80°,∠CAD=60°,

∴∠D=180°﹣80°﹣60°=40°,

∵AB∥CD,

∴∠BAD=∠D=40°.

故选D.

9.D

解析:D

【解析】

【分析】

根据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOB中,根据勾股定理可以求得AB的长,即可求出菱形ABCD的周长.

【详解】

∵四边形ABCD是菱形,

∴AB=BC=CD=AD,BO=OD=3,AO=OC=4,AC⊥BD,

∴AB==5,

∴菱形的周长为4×5=20.

故选D.

【点睛】

本题考查了勾股定理在直角三角形中的运用,考查了菱形各边长相等和对角线互相垂直且平分的性质,本题中根据勾股定理计算AB的长是解题的关键.

10.C

解析:C

【解析】

【分析】

【详解】

∵A(﹣3,4),

2019年中考数学试卷含答案

∴,

∵四边形OABC是菱形,

∴AO=CB=OC=AB=5,则点B的横坐标为﹣3﹣5=﹣8,故B的坐标为:(﹣8,4),

将点B的坐标代入

k

y

x

=得,4=

8

k

-

,解得:k=﹣32.故选C.

考点:菱形的性质;反比例函数图象上点的坐标特征.

11.D

解析:D

【解析】

【分析】

首先用x表示甲和乙每小时做的零件个数,再根据甲做120个所用的时间与乙做150个所用的时间相等即可列出一元一次方程.

【详解】

解:∵甲每小时做x个零件,∴乙每小时做(x+8)个零件,

∵甲做120个所用的时间与乙做150个所用的时间相等,∴120150

8

x x

=

+

故选D.

【点睛】

本题考查了分式方程的实际应用,熟练掌握是解题的关键.

12.B

解析:B

【解析】

分析:根据轴对称图形与中心对称图形的概念求解即可.

详解:A.是轴对称图形,不是中心对称图形;

B.是轴对称图形,也是中心对称图形;

C.是轴对称图形,不是中心对称图形;

D.是轴对称图形,不是中心对称图形.

故选B.

点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.

二、填空题

13.【解析】【分析】延长AD和BC交于点E在直角△ABE中利用三角函数求得BE的长则EC的长即可求得然后在直角△CDE中利用三角函数的定义求解【详解】如图延长ADBC相交于点E∵∠B=90°∴∴BE=∴

解析:6 5

【解析】

【分析】

延长AD和BC交于点E,在直角△ABE中利用三角函数求得BE的长,则EC的长即可求得,然后在直角△CDE中利用三角函数的定义求解.

【详解】

如图,延长AD、BC相交于点E,

2019年中考数学试卷含答案

∵∠B=90°,

4 tan

3

BE

A

AB

==,

∴BE=4

4 3

AB

?=,

∴CE=BE-BC=2,225

AB BE

+=,

3 sin

5

AB

E

AE

==,

又∵∠CDE=∠CDA=90°,

∴在Rt△CDE中,sin

CD

E

CE =,

∴CD=

36

sin2

55 CE E

?=?=.

14.

1)>0解得:a>?设f(x)=ax2-3x-1如图∵实数根都在-1

解析:

9

4

-

【解析】

【分析】

【详解】

解:∵关于x的一元二次方程ax2-3x-1=0的两个不相等的实数根∴△=(-3)2-4×a×(-1)>0,

解得:a>?9 4

设f(x)=ax2-3x-1,如图,

2019年中考数学试卷含答案

∵实数根都在-1和0之间,

∴-1<?

32a -<0, ∴a <?32

, 且有f (-1)<0,f (0)<0,

即f (-1)=a×(-1)2-3×(-1)-1<0,f (0)=-1<0,

解得:a <-2,

∴?94

<a <-2, 故答案为?

94<a <-2. 15.【解析】【分析】过作轴过作轴于于是得到根据反比例函数的性质得到根据相似三角形的性质得到求得根据三角函数的定义即可得到结论【详解】过作轴过作轴于则∵顶点分别在反比例函数与的图象上∴∵∴∴∴∴∴∴故答案 5

【解析】

【分析】

过A 作AC x ⊥轴,过B 作BD x ⊥轴于D ,于是得到90BDO ACO ∠=∠=?,根据反比例函数的性质得到52BDO S ?=,12AOC S ?=,根据相似三角形的性质得到25BOD OAC S OB S OA ????== ???,求得5OB OA = 【详解】

过A 作AC x ⊥轴,过B 作BD x ⊥轴于,

则90BDO ACO ∠=∠=?,

∵顶点A ,B 分别在反比例函数()10y x x =

>与()50y x x -=<的图象上, ∴52BDO S ?=,12

AOC S ?=, ∵90AOB ∠=?,

∴90BOD DBO BOD AOC ∠+∠=∠+∠=?,

∴DBO AOC ∠=∠,

∴BDO OCA ??:, ∴252512BOD OAC

S OB S OA ????=== ???

, ∴5OB OA

=, ∴tan 5OB BAO OA ∠=

=, 故答案为:5.

2019年中考数学试卷含答案

【点睛】

本题考查了相似三角形的判定与性质、反比例函数的性质以及直角三角形的性质.解题时注意掌握数形结合思想的应用,注意掌握辅助线的作法.

16.2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m 的方程通过解关于m 的方程求得m 的值即可【详解】∵关于x 的一元二次方程mx2+5x+m2﹣2m=0有一个根为0∴m2﹣2m=

解析:2

【解析】

【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m 的方程,通过解关于m 的方程求得m 的值即可.

【详解】∵关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,

∴m 2﹣2m=0且m≠0,

解得,m=2,

故答案是:2.

【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的解的定义.解答该题时需注意二次项系数a≠0这一条件.

17.【解析】【分析】根据平方根的定义即可求解【详解】若一个数的平方等于5则这个数等于:故答案为:【点睛】此题主要考查平方根的定义解题的关键是熟知平方根的性质

2019年中考数学试卷含答案

解析:

【解析】

【分析】

根据平方根的定义即可求解.

【详解】

2019年中考数学试卷含答案

若一个数的平方等于5,则这个数等于:

2019年中考数学试卷含答案

故答案为:

【点睛】

此题主要考查平方根的定义,解题的关键是熟知平方根的性质.

18.-2【解析】【分析】若一元二次方程有实数根则根的判别式△=b2-4ac≥0建立关于a的不等式求出a的取值范围还要注意二次项系数不为0【详解】∵关于x的一元二次方程(a+1)x2-2x+3=0有实数根

解析:-2

【解析】

【分析】

若一元二次方程有实数根,则根的判别式△=b2-4ac≥0,建立关于a的不等式,求出a的取值范围.还要注意二次项系数不为0.

【详解】

∵关于x的一元二次方程(a+1)x2-2x+3=0有实数根,

∴△=4-4(a+1)×3≥0,且a+1≠0,

解得a≤-2

3

,且a≠-1,

则a的最大整数值是-2.

故答案为:-2.

【点睛】

本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:

①当△>0时,方程有两个不相等的实数根;

②当△=0时,方程有两个相等的实数根;

③当△<0时,方程无实数根.

上面的结论反过来也成立.也考查了一元二次方程的定义.

19.6【解析】分析:根据BD=CDAB=CD可得BD=BA再根据AM⊥BDDN⊥AB即可得到DN=AM=3依据∠ABD=∠MAP+∠PAB∠ABD=∠P+∠BAP即可得到△APM是等腰直角三角形进而得到

解析:6

【解析】

分析:根据BD=CD,AB=CD,可得BD=BA,再根据AM⊥BD,DN⊥AB,即可得到

2019年中考数学试卷含答案

,依据∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,即可得到△APM是

等腰直角三角形,进而得到AP=2AM=6.

详解:∵BD=CD ,AB=CD ,

∴BD=BA ,

又∵AM ⊥BD ,DN ⊥AB ,

∴DN=AM=32,

又∵∠ABD=∠MAP+∠PAB ,∠ABD=∠P+∠BAP ,

∴∠P=∠PAM ,

∴△APM 是等腰直角三角形, ∴AP=2AM=6,

故答案为6.

点睛:本题主要考查了平行四边形的性质以及等腰直角三角形的性质的运用,解决问题给的关键是判定△APM 是等腰直角三角形.

20.【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°AF=AD=5根据矩形的性质得到∠EFC=∠BAF 根据余弦的概念计算即可由翻转变换的性质可知∠AFE=∠D=90°AF=AD=5∴∠EF

解析:.

【解析】

试题分析:根据翻转变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF ,根据余弦的概念计算即可.

由翻转变换的性质可知,∠AFE=∠D=90°,AF=AD=5,

∴∠EFC+∠AFB=90°,∵∠B=90°,

∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF ,cos ∠BAF=

=,

∴cos ∠EFC=,故答案为:.

考点:轴对称的性质,矩形的性质,余弦的概念. 三、解答题

21.(1)见解析;(2)ABD ?,ACD ?,ACE ?,ABE ?

【解析】

【分析】

(1)首先证明△AFE ≌△DFB 可得AE=BD ,进而可证明AE=CD ,再由AE ∥BC 可利用一组对边平行且相等的四边形是平行四边形可得四边形ADCE 是平行四边形;

(2)根据面积公式解答即可.

【详解】

证明:∵AD 是△ABC 的中线,

∴BD=CD ,

∵AE ∥BC ,

∴∠AEF=∠DBF ,

在△AFE 和△DFB 中,

AEF DBF AFE BFD AF DF ===∠∠??∠∠???

∴△AFE ≌△DFB (AAS ),

∴AE=BD ,

∴AE=CD ,

∵AE ∥BC ,

∴四边形ADCE 是平行四边形;

(2)∵四边形ABCE 的面积为S ,

∵BD=DC ,

∴四边形ABCE 的面积可以分成三部分,即△ABD 的面积+△ADC 的面积+△AEC 的面积=S ,

∴面积是12

S 的三角形有△ABD ,△ACD ,△ACE ,△ABE . 【点睛】

此题主要考查了平行四边形的判定,全等三角形的判定和性质.等腰三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.

22.(1)C ;(2)①作图见解析;②35万户.

【解析】

【分析】

(1)C 项涉及的范围更广;

(2)①求出B ,D 的户数补全统计图即可;

①100万乘以不生二胎的百分比即可.

【详解】

解:(1)A 、B 两种调查方式具有片面性,故C 比较合理;

故答案为:C ;

(2)①B :100030%300?=户

1000-100-300-250=350户

2019年中考数学试卷含答案

补全统计图如图所示:

(3)因为350100351000

?=(万户), 所以该市100万户家庭中决定不生二胎的家庭数约为35万户.

【点睛】

本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.

23.

49

. 【解析】

【分析】 首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次抽取的卡片上数字之和是奇数的情况,再利用概率公式即可求得答案即可.

【详解】

解:画树状图得:

2019年中考数学试卷含答案

∵共有9种等可能的结果,两次抽取的卡片上数字之和是奇数的有4种情况,

∴两次两次抽取的卡片上数字之和是奇数的概率为

49. 【点睛】

本题考查列表法与树状图法.

24.(1)10100y x =+;(2)商贸公司要想获利2090元,则这种干果每千克应降价9元.

【解析】

【分析】

(1)根据图象可得:当2x =,120y =,当4x =,140y =;再用待定系数法求解即可;

(2)根据这种干果每千克的利润×销售量=2090列出方程,解方程即可.

【详解】

解:(1)设一次函数解析式为:y kx b =+,根据图象可知:当2x =,120y =;当4x =,140y =;

∴21204140

k b k b +=??+=?,解得:10100k b =??=?, ∴y 与x 之间的函数关系式为10100y x =+;

(2)由题意得:(6040)(10100)2090x x --+=,

整理得:21090x x -+=,解得:11x =.29x =,

∵让顾客得到更大的实惠,∴9x =.

答:商贸公司要想获利2090元,这种干果每千克应降价9元.

【点睛】

本题考查了一元二次方程的应用和一次函数的应用,读懂图象信息、熟练掌握待定系数法、正确列出一元二次方程是解题的关键.

25.(1)y=﹣14x 2+32x+4;(2)△ABC 是直角三角形.理由见解析;(3)点N 的坐标分别为(﹣8,0)、(8﹣45,0)、(3,0)、(8+45,0).(4)当△AMN 面积最大时,N 点坐标为(3,0). 【解析】

【分析】

(1)由点A 、C 的坐标利用待定系数法即可求出二次函数的解析式;(2)令二次函数解析式中y=0,求出点B 的坐标,再由两点间的距离公式求出线段AB 、AC 、BC 的长度,由三者满足AB 2+AC 2=BC 2即可得出△ABC 为直角三角形;(3)分别以A 、C 两点为圆心,AC 长为半径画弧,与x 轴交于三个点,由AC 的垂直平分线与x 轴交于一点,即可求得点N 的坐标;(4)设点N 的坐标为(n ,0)(-2

【详解】

(1)∵二次函数y=ax 2+x+c 的图象与y 轴交于点A (0,4),与x 轴交于点B 、C ,点C 坐标为(8,0),

∴,

解得.

∴抛物线表达式:y=﹣x 2+x+4;

(2)△ABC 是直角三角形.

令y=0,则﹣x 2+x+4=0,

解得x 1=8,x 2=﹣2,

∴点B 的坐标为(﹣2,0),

由已知可得,

在Rt △ABO 中AB 2=BO 2+AO 2=22+42=20,

在Rt △AOC 中AC 2=AO 2+CO 2=42+82=80,

又∵BC=OB+OC=2+8=10,

∴在△ABC 中AB 2+AC 2=20+80=102=BC 2

∴△ABC是直角三角形.

(3)∵A(0,4),C(8,0),

∴AC==4,

①以A为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(﹣8,0),

②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(8﹣4,0)或(8+4,0)

③作AC的垂直平分线,交x轴于N,此时N的坐标为(3,0),

综上,若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(﹣8,0)、(8﹣4,0)、(3,0)、(8+4,0).

(4)如图

设点N的坐标为(n,0),则BN=n+2,过M点作MD⊥x轴于点D,

∴MD∥OA,

∴△BMD∽△BAO,

∴=,

∵MN∥AC

∴=,

∴=,

∵OA=4,BC=10,BN=n+2

∴MD=(n+2),

∵S△AMN=S△ABN﹣S△BMN

=BN?OA﹣BN?MD

=(n+2)×4﹣×(n+2)2

=﹣(n﹣3)2+5,

当n=3时,△AMN面积最大是5,

∴N点坐标为(3,0).

∴当△AMN面积最大时,N点坐标为(3,0).

【点睛】

本题考查了二次函数的综合问题,熟练掌握二次函数的知识点是本题解题的关键.

下载文档原格式(Word原格式,共19页)
相关文档
  • 2019年中考数学

  • 2019年中考数学试卷

  • 2019年中考数学压轴题

  • 中考数学试卷含答案

  • 2019年中考数学测试卷

  • 东莞市中考数学试卷

相关文档推荐: