当前位置:文档之家› 二次函数知识点总结及典型例题和练习

二次函数知识点总结及典型例题和练习

二次函数知识点总结及典型例题和练习
二次函数知识点总结及典型例题和练习

二次函数知识点总结及典型例题和练习(极好)

知识点一:二次函数的概念和图像 1、二次函数的概念

一般地,如果)0,,(2≠++=a c b a c bx ax y 是常数,,特别注意a 不为零,那么y 叫做x 的二次函数。)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。

2、二次函数的图像

二次函数的图像是一条关于a

b

x 2-=对称的曲线,这条曲线叫抛物线。 抛物线的主要特征:

①有开口方向;②有对称轴;③有顶点。 3、二次函数图像的画法--------五点作图法:

(1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M ,并用虚线画出对称轴

(2)求抛物线c bx ax y ++=2与坐标轴的交点:

当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C ,再找到点C 的对称点D 。将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。

当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D 。由C 、M 、D 三点可粗略地画出二次函数的草图。如果需要画出比较精确的图像,可再描出一对对称点A 、B ,然后顺次连接五点,画出二次函数的图像。 【例1】 已知函数y=x 2-2x-3,

(1)写出函数图象的顶点、图象与坐标轴的交点,以及图象与 y 轴的交点关于图象对称轴的对称点。然后画出函数图象的草图;

(2)求图象与坐标轴交点构成的三角形的面积:

(3)根据第(1)题的图象草图,说 出 x 取哪些值时,① y=0;② y<0;③ y>0

二次函数的解析式有三种形式:

(1)一般式:)0,,(2≠++=a c b a c bx ax y 是常数,

(2) 交点式:当抛物线c bx ax y ++=2与x 轴有交点时,即对应的一元二次方程

02=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2可转化为两根式))((21x x x x a y --=。如

果没有交点,则不能这样表示。

(3)顶点式:)0,,()(2≠+-=a k h a k h x a y 是常数, 当题目中告诉我们抛物线的顶点时,我们最好设顶点式,这样最简洁。

【例1】 抛物线c bx ax y ++=2与x 轴交于A (1,0),B (3,0)两点,且过(-1,16),求抛物线的解析式。

【例2】 如图,抛物线c bx ax y ++=2与x 轴的一个交点A 在点(-2,0)和(-1,0)之间(包括这两点),顶点C 是矩形DEFG 上(包括边界和内部)的一个动点,则: (1)abc 0 (>或<或=)

(2)a 的取值范围是

【例3】 下列二次函数中,图象以直线x = 2为对称轴,且经过点(0,1)的是 ( )

A .y = (x ? 2)2 + 1

B .y = (x + 2)2 + 1

C .y = (x ? 2)2 ? 3

D .y = (x + 2)2 – 3

如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当a

b

x 2-

=时,a

b a

c y 442

-=最值

如果自变量的取值范围是21x x x ≤≤,那么,首先要看a

b

2-

是否在自变量取值范围21x x x ≤≤内,若在此范围内,则当x=a

b

2-时,a b ac y 442-=最值;若不在此范围内,则需要考虑函数在2

1x x x ≤≤范围内的增减性,如果在此范围内,y 随x 的增大而增大,则当2x x =时,c bx ax y ++=22

2

最大,当1x x =时,c bx ax y ++=121最小;如果在此范围内,y 随x 的增大而减小,则当1x x =时,

c bx ax y ++=121最大,当2x x =时,c bx ax y ++=22

2最小。

【例1】 已知二次函数的图像(0≤x≤3)如图所示,关于该函数在所给自变量取值范围内, 下列说法正确的是( ) A .有最小值0,有最大值3 B .有最小值-1,有最大值0 C .有最小值-1,有最大值3

D .有最小值-1,无最大值

【例2】 某宾馆有50个房间供游客住宿,当每个房间的房价为每天l80元时,房间会全部住满. 当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每 天支出20元的各种费用.根据规定,每个房间每天的房价不得高于340元.设每个房间的房价每天增加x 元(x 为10的正整数倍).

(1)设一天订住的房间数为y ,直接写出y 与x 的函数关系式及自变量x 的取值范围; (2)设宾馆一天的利润为w 元,求w 与x 的函数关系式;

(3)一天订住多少个房间时,宾馆的利润最大? 最大利润是多少元?

1、二次函数的性质

2、二次函数)0,,(2≠++=a c b a c bx ax y 是常数,中,c b 、、a 的含义:

a 表示开口方向:a >0时,抛物线开口向上

a <0时,抛物线开口向下

b 与对称轴有关:对称轴为x=a

b 2-

c 表示抛物线与y 轴的交点坐标:(0,c )

3、二次函数与一元二次方程的关系

一元二次方程的解是其对应的二次函数的图像与x 轴的交点横坐标。

因此一元二次方程中的ac 4b 2-=?,在二次函数中表示图像与x 轴是否有交点。 当?>0时,图像与x 轴有两个交点; 当?=0时,图像与x 轴有一个交点; 当?<0时,图像与x 轴没有交点。

【例1】 抛物线y=x 2-2x -3的顶点坐标是 .

【例2】 二次函数有( )

A . 最大值

B . 最小值

C . 最大值

D . 最小值 【例3】 由二次函数,可知( )

A .其图象的开口向下

B .其图象的对称轴为直线

C .其最小值为1

D .当时,y 随x 的增大而增大

【例4】 已知函数的图象与x 轴有交点,则k 的取值范围是( ) A.

B.

C.且

D.且

【例5】 下列函数中,当x >0时y 值随x 值增大而减小的是( ). A .y = x 2

B .y = x -1

C . y = 3

4

x

D .y = 1

x

【例6】 若二次函数.当≤l 时,随的增大而减小,则的取值范围是( )

A .=l

B .>l

C .≥l D.≤l

知识点五、二次函数图象的平移

① 对于抛物线y=ax 2+bx+c 的平移

通常先将一般式转化成顶点式()2

y a x h k =-+,再遵循左加右减,上加下减的的原则

化为顶点式有两种方法:配方法,顶点坐标公式法。在用顶点坐标公式法求出顶点坐标后,在写顶点式时,要减去顶点的横坐标,加上顶点的纵坐标。

② c bx ax y ++=2沿y 轴平移:向上(下)平移m (m >0)个单位,c bx ax y ++=2变成

m c bx ax y +++=2(或m c bx ax y -++=2)

③ 当然,对于抛物线的一般式平移时,也可以不把它化为顶点式

c bx ax y ++=2:向左(右)平移m (m >0)个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)

【例1】 将抛物线向左平移2个单位后,得到的抛物线的解析式是( ) A . B . C . D .

【例2】 将抛物线y=x 2-2x 向上平移3个单位,再向右平移4个单位等到的抛物线是_______. 【例3】 抛物线可以由抛物线平移得到,则下列平移过程正确的是( ) A.先向左平移2个单位,再向上平移3个单位 B.先向左平移2个单位,再向下平移3个单位 C.先向右平移2个单位,再向下平移3个单位 D.先向右平移2个单位,再向上平移3个单位

【补】抛物线y=2x 2-3x-7在x 轴上截得的线段的长度为______________ 【公式】抛物线y=ax 2+bx+c 在x 轴上截得的线段的长度为______________

知识点六:抛物线c bx ax y ++=2中, a 、b 、c 的作用

(1)a 决定开口方向及开口大小,这与2ax y =中的a 完全一样.

(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线a

b x 2-=,故:①0=b 时,对称轴为y 轴;②

0>a b (即a 、b 同号)时,对称轴在y 轴左侧;③0

b

(即a 、b 异号)时,对称轴在y 轴右侧.口诀---左同,右异 (a 、b 同号,对称轴在y 轴左侧)

(3)c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置.

当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ):

①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴; ③0

0

b

. 【例1】 如图为抛物线的图像,A 、B 、C 为抛物线与坐标轴的交点,且OA =OC =1,则下列关系中正确的是( )

A .a +b=-1

B .a -b=-1

C .b<2a

D .ac<0

【例2】 已知抛物线y =ax 2+bx +c(a≠0)在平面直角坐标系中的位置如图所示,则下列结论中正确的是( )

A .a>0

B .b <0

C .c <0

D .a +b +c>0

【例3】 如图所示的二次函数的图象中,刘星同学观察得出了下面四条信息:(1);(2)c >1;(3)2a -b <0;(4)a +b +c <0。你认为其中错误..的有( ) A .2个 B .3个

C .4个

D .1

【例4】 如图,二次函数y=ax 2+bx+c 的图象与y 轴正半轴相交,其顶点坐标为,下列结论:①ac

<0;②a+b=0;③4ac -b 2=4a ;④a+b+c <0.其中正确的个数是( ) A. 1 B. 2 C. 3 D. 4

【例5】 如图,是二次函数 y =ax 2+bx +c (a≠0)的图象的一部分,给出下列命题 :①a+b+c=0;

②b >2a ;③ax 2+bx+c=0的两根分别为-3和1;④a-2b+c >0.其中正确的命题是 .(只要求填写正确命题的序号)

【例6】 如图,平面直角坐标系中,两条抛物线有相同的对称轴,则下列关系正确的是( )

A .m =n ,k >h

B .m =n ,k <h

C .m >n ,k =h

D .m <n ,k =h

知识点七:中考二次函数压轴题中常用到的公式

1、两点间距离公式:如图:点A 坐标为(x 1,y 1),点B 坐标为(x 2,y 2),则AB 间的距离,即线段AB 的长度为

()()221221y y x x -+- (这实际上是根据勾股定理得出来的)

2、中点坐标公式:如图,在平面直角坐标系中,、两点的坐标分别为, ,中点的坐标为.由,得, 同理,所以的中点坐标为.

3、两平行直线的解析式分别为:y=k 1x+b 1,y=k 2x+b 2,那么k 1=k 2,也就是说当我们知道一条直线的k 值,就一定能知道与它平行的另一条直线的k 值。

4、两垂直直线的解析式分别为:y=k 1x+b 1,y=k 2x+b 2,那么k 1×k 2=-1,也就是说当我们知道一条直线的k 值,就一定能知道与它垂直的另一条直线的k 值。(对于这一条,只要能灵活运用就行,不需要理解)

以上四条,我称它们为坐标系中的“四大金刚”

【例1】 如图,在平面直角坐标系中,抛物线y=﹣x 2+2x+3与x 轴交于A .B 两点,与y 轴交于点C ,点D 是该抛物线的顶点.

(1)求直线AC 的解析式及B .D 两点的坐标;

(2)点P 是x 轴上一个动点,过P 作直线l ∥AC 交抛物线于点Q ,试探究:随着P 点的运动,在抛物线上是否存在点Q ,使以点A .P 、Q 、C 为顶点的四边形是平行四边形?若存在,请直接写出符合条件的点Q 的坐标;若不存在,请说明理由.

(3)请在直线AC 上找一点M ,使△BDM 的周长最小,求出M 点的坐标.

【例2】 如图,已知抛物线y=﹣x 2

+bx+c 与一直线相交于A (﹣1,0),C (2,3)两点,与y 轴交于点N .其顶点为D .(1)求抛物线及直线AC 的函数关系式; (2)设点M (3,m ),求使MN+MD 的值最小时m 的值;

(3)若抛物线的对称轴与直线AC 相交于点B ,E 为直线AC 上的任意一点,过点E 作EF ∥BD 交抛物线于点F ,以B ,D ,E ,F 为顶点的四边形能否为平行四边形?若能,求点E 的坐标;若不能,请说明理由;

(4)若P 是抛物线上位于直线AC 上方的一个动点,求△APC 的面积的最大值.

【例3】 如图,抛物线42

3

412--=

x x y 与x 轴交于A ,B 两点(点B 在点A 的右边)

,与y 轴交于C ,连接BC ,以BC 为一边,点O 为对称中心作菱形BDEC ,点P 是x 轴上的一个动点,设点P 的坐标为(m ,0),过P 作x 轴的垂线l 交抛物线于点Q 。 (1)求点A 、B 、C 的坐标;

(2)当点P 在线段OB 上运动时,直线l 分别交BD 、BC 于点M 、N 。试探究m 为何值时,四边形CQMD

是平行四边形,此时,请判断四边形CQBM 的形状,并说明理由。

(3)当点P 在线段EB 上运动时,是否存在点Q ,使⊿BDQ 为直角三角形,若存在,请直接写出Q 点坐标;若不存在,请说明理由。

【练 习】

1、平时我们在跳大绳时,绳甩到最高处的形状可近似地看为抛物线.如图所示,正在甩绳的甲、乙两名学生拿绳的手间距为4 m ,距地面均为1m ,学生丙、丁分别站在距甲拿绳的手水平距离1m 、2.5 m 处.绳子在甩到最高处时刚好通过他们的头顶.已知学生丙的身高是1.5 m ,则学生丁的身高为(建立的平面直角坐标系如右图所示)( )

A .1.5 m

B .1.625 m

C .1.66 m

D .1.67 m

2、已知函数()()()()

2

2

113513x x y x x ?--?

=?--??≤>,则使y=k 成立的x 值恰好有三个,则k 的值为( ) A .0 B .1 C .2 D .3

3. 二次函数2y ax bx c =++的图象如图所示,则反比例函数a

y x

=与一次函数y bx c =+在同一坐标系中的大致图象是( ).

4. 如图,已知二次函数c bx x y ++=2的图象经过点(-1,0),(1,-2),当y 随x 的增大而增大

时,x 的取值范围是 .

5. 在平面直角坐标系中,将抛物线223y x x =++绕着它与y 轴的交点旋转180°,所得抛物线的解析式是( ).

A .2(1)2y x =-++

B .2(1)4y x =--+

C .2(1)2y x =--+

D .2(1)4y x =-++

6. 已知二次函数c bx ax y ++=2的图像如图,其对称轴1-=x ,给出下列结果①ac b 42>②0>abc ③02=+b a ④0>++c b a ⑤0<+-c b a ,则正确的结论是( )

A ①②③④

②④⑤ C

②③④ D ①④⑤

7.抛物线2y ax bx c =++上部分点的横坐标x ,纵坐标y 的对应值如上表:从上表可知,下列说法中正确的是 .(填写序号)

①抛物线与x 轴的一个交点为(3,0); ②函数2y ax bx c =++的最大值为6; ③抛物线的对称轴是1

2

x =; ④在对称轴左侧,y 随x 增大而增大.

8. 如图,在平面直角坐标系中,O 是坐标原点,点A 的坐标是(-2,4),过点A 作AB ⊥y 轴,垂足为B ,连结OA .

(1)求△OAB 的面积;(2)若抛物线22y x x c =--+经过点A .

①求c 的值;②将抛物线向下平移m 个单位,使平移后得到的抛物线顶点落在△OAB 的内部(不包括△OA B 的边界),求m 的取值范围(直接写出答案即可).

9、“已知函数c bx x y ++=

2

2

1的图象经过点A (c ,-2)

, ) ,这个二次函数图象

的对称轴是x=3。”题目中的矩形框部分是一段被墨水污染了无法辨认的文字。

根据已知和结论中现有的信息,你能否求出题中的二次函数解析式?若能,请写出求解过程,并画出二次函数图象;若不能,请说明理由。

10、如图所示,在平面直角坐标系中,四边形ABCD 是直角梯形,BC ∥AD ,∠BAD = 90°,BC 与y 轴相交于点M ,且M 是BC 的中点,A 、B 、D 三点的坐标分别是A (-1,0),B ( -1,2),D ( 3,0),连接DM ,并把线段DM 沿DA 方向平移到ON ,若抛物线y =ax 2+bx +c 经过点D 、M 、N . (1)求抛物线的解析式

(2)抛物线上是否存在点P .使得PA = PC .若存在,求出点P 的坐标;若不存在.请说明理由。 (3)设抛物线与x 轴的另—个交点为E .点Q 是抛物线的对称轴上的—个动点,当点Q 在什么位置时有QE QC -最大?并求出最大值。

11、如图,抛物线y =2

1

x 2+bx -2与x 轴交于A 、B 两点,与y 轴交于C 点,且A (一1,0).

⑴求抛物线的解析式及顶点D 的坐标; ⑵判断△ABC 的形状,证明你的结论;

⑶点M(m ,0)是x 轴上的一个动点,当CM+DM 的值最小时,求m 的值.

12、在平面直角坐标系中,如图1,将n 个边长为1的正方形并排组成矩形OABC ,相邻两边OA 和

OC 分别落在x 轴和y 轴的正半轴上。设抛物线y =ax 2+bx +c (a <0)过矩形顶点B 、C . (1)当n =1时,如果a =-1,试求b 的值;

(2)当n =2时,如图2,在矩形OABC 上方作一边长为1的正方形EFMN ,使EF 在线段CB 上,如果M ,N 两点也在抛物线上,求出此时抛物线的解析式;

(3)将矩形OABC 绕点O 顺时针旋转,使得点B 落到x 轴的正半轴上,如果该抛物线同时经过原点

O ,

①试求出当n =3时a 的值; ②直接写出a 关于n 的关系式.

-1O x O y 1231

p x 2x 12x x

1

y y 2 P y P y A B C D O E N M 12图3 … y x C A B

初三.二次函数知识点总结

二次函数知识点总结 二次函数知识点: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c , ,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项 系数0a ≠,而b c , 可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c , ,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: 结论:a 的绝对值越大,抛物线的开口越小。 总结:

2. 2 =+的性质: y ax c 结论:上加下减。 总结:

3. ()2 =-的性质: y a x h 结论:左加右减。 总结: 4. ()2 =-+的性质: y a x h k

总结: 1. 平移步骤: ⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法 如下:

【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 三、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 请将2245y x x =++利用配方的形式配成顶点式。请将2y ax bx c =++配成 ()2 y a x h k =-+。 总结: 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者 通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ?? ?,其中2424b ac b h k a a -=-= ,. 四、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式 2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧, 左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c , 、以及()0c , 关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.

二次函数知识点总结及典型题目

二次函数知识点总结及典型题目 一.定义: 一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数. 二次函数的图象是抛物线,所以也叫抛物线y=ax2+bx+c ;抛物线关于对称轴对称且以对称轴为界,一半图象上坡,另一半图象下坡;其中c 叫二次函数在y 轴上的截距, 即二次函数图象必过(0,c )点. 二.二次函数2ax y =的性质 (1)抛物线2ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2ax y =的图像与a 的符号关系. ①当0>a 时?抛物线开口向上?顶点为其最低点; ②当0

初三数学二次函数知识点总结

初三数学 二次函数 知识点总结 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数, 0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质: 上加下减。 3. ()2 y a x h =-的性质: 左加右减。

4. ()2 y a x h k =-+的性质: 三、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ?? ?,其中2424b ac b h k a a -=-= ,.

二次函数经典例题及答案

二次函数经典例题及答案 1.已知抛物线的顶点为P (- 4,—2),与x轴交于A B两点,与y轴交于点C,其中B点坐标为(1 , 0)。 (1) 求这条抛物线的函数关系式; (2) 若抛物线的对称轴交x轴于点D,则在线段AC上是否存在这样的点Q,使得△ ADQ 1 2 9 . 135 y=2 x +4x - 2;存在点Q (-1 , -4 ) , Q (2^5-9,-%'5 ) , Q (--^, -4) ?析 一2 25 试题分析:(1)根据顶点坐标把抛物线设为顶点式形式y=a ( x+4) - 2,然后把点B的坐 标代入解析式求出a的值,即可得解; (2)先根据顶点坐标求出点D 的坐标,再根据抛物线解析式求出点A、C的坐标,从而得 到OA OC AD的长度,根据勾股定理列式求出AC的长度,然后根据锐角三角形函数求出/ OAC勺正弦值与余弦值,再分① AD=QD时,过Q作QE1丄x轴于点E,根据等腰三角形三线合一的性质求出AQ,再利用/ OAC勺正弦求出QE的长度,根据/ OAC勺余弦求出AE的长度,然后求出OE,从而得到点Q的坐标;②AD=AQ时,过Q作QE2丄x轴于点E>,利用/ OAC勺正弦求出QE2的长度,根据/ OAC勺余弦求出AE的长度,然后求出OE,从而得到点Q的坐标;③AQ=DQ时,过Q作QE3丄x轴于点已,根据等腰三角形三线合一的性质求出AE 的长度,然后求出OE,再由相似三角形对应边成比例列式求出QE3的长度,从而得到点Q 的坐标. 试题解析:(1 )???抛物线顶点坐标为( 25 -4 , - 2), ???设抛物线解析式为 2 25 y=a (x+4) - 2 为等腰三角形?若存在,请求出符合条件的点

二次函数知识点及典型例题

二次函数一、二次函数的几何变换 二、二次函数的图象和性质 (Ⅰ) y=a(x-h)2+k (a≠0)的图象和性质

(Ⅱ) y=ax2+bx+c (a≠0)的图象和性质

(Ⅲ) a 、b 、c 的符号对抛物线形状位置的影响 三、待定系数法求二次函数的解析式 1、一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式。 2、顶点式:()k h x a y +-=2 .已知图像的顶点或对称轴,通常选择顶点式。 3、交点式:已知图像与x 轴的交点横坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=。 4、顶点在原点,可设解析式为y=ax 2 。 5、对称轴是y 轴(或者顶点在y 轴上),可设解析式为y= ax 2 +c 。 6、顶点在x 轴上,可设解析式为()2 h x a y -=。 7、抛物线过原点,可设解析式为y=ax2+bx 。 四、抛物线的对称性 1、抛物线与x 轴有两个交点(x 1,0)(x 2,0),则对称轴为x= 2x x 2 1+。 2、抛物线上有不同的两个交点(m ,a )(n,a ),则对称轴为x=2 n m +。 3、抛物线c bx ax y ++=2(a ≠0)与y 轴交点关于对称轴的对称点为(a b -, c)。

五、二次函数与一元二次方程的关系 对于抛物线c bx ax y ++=2 (a ≠0),令y=0,即为一元二次方程02=++c bx ax ,一元二次方程的解就是二次函数与x 轴交点的横坐标。要分三种情况: 1、 判别式△=b 2 -4ac >0?抛物线与x 轴有两个不同的交点(a b 24ac b -2+,0) (a b 24ac b --2,0)。有韦达定理可知x 1+x 2=a b - ,x 1·x 2= a c 。 2、 判别式△=b 2 -4ac=0?抛物线与x 轴有一个交点(a b 2-,0)。 3、 判别式△=b 2 -4ac=0?抛物线与x 轴无交点。 六、二次函数与一元二次不等式的关系 1、a >0:(1)02>c bx ax ++的解集为:x <x 1或x >x 2(x 1<x 2)。 (2)02 <c bx ax ++的解集为:x 1<x <x 2(x 1<x 2)。 2、a <0:(1)02>c bx ax ++的解集为:x 1<x <x 2(x 1<x 2)。 (2)02 <c bx ax ++的解集为:x <x 1或x >x 2(x 1<x 2)。 七、二次函数的应用 1、面积最值问题。 2、长度、高度最值问题。 3、利润最大化问题。 4、利用二次函数求近似解。

高中数学二次函数分类讨论经典例题

例1(1)关于x 的方程0142)3(22=++++m x m x 有两个实根,且一个大于1,一个小于1,求m 的取值范围; (2)关于x 的方程0142)3(22=++++m x m x 有两实根都在)4,0[内,求m 的取值范围; ⑶关于x 的方程0142)3(22=++++m x m x 有两实根在[]3,1外,求m 的取值范围 (4)关于x 的方程0142)3(22=++++m x m mx 有两实根,且一个大于4,一个小于4,求m 的取值范围. 例3已知函数3)12()(2--+=x a ax x f 在区间]2,2 3[-上的最大值为1,求实数a 的值。

解(1)令142)3(2)(2++++=m x m x x f ,∵对应抛物线开口向上,∴方程有两个实根,且一个大于1,一个小于1等价于0)1(?吗?),即.4 21-++++≥+????? ?????≥+-+<+-<≥≥m m m m m m m m m m f f (3)令142)3(2)(2++++=m x m x x f ,原命题等价于 ???<<0)3(0)1(f f 即? ??<++++<++++0142)3(690142)3(21m m m m 得.421-0)4(0g m 或,0 )4(0???>)(恒成立,求实数a 的取 值范围。 解:(1)0)()(恒成立?.)]([min a x f >又当]1,1[-∈x 时, 5)1()]([min -=-=f x f ,所以).5,(--∞∈a 【评注】“有解”与“恒成立”是很容易搞混的两个概念。一般地,对于“有解”与“恒成立”,有下列常用结论:(1)a x f >)(恒成立?a x f >min )]([;(2)a x f <)(恒成立?a x f )(有解?a x f >max )]([;(4)a x f <)(有解?.)]([min a x f < 分析:这是一个逆向最值问题,若从求最值入手,首先应搞清二次项系数a 是否为零,如果)(,0x f a ≠的最大值与二次函数系数a 的正负有关,也与对称轴

(完整版)九年级上册数学二次函数知识点汇总,推荐文档

新人教版九年级上二次函数知识点总结 知识点一:二次函数的定义 1.二次函数的定义: 一般地,形如(是常数,)的函数,叫做二次函数.2y ax bx c =++a b c ,,0a ≠其中是二次项系数,是一次项系数,是常数项. a b c 知识点二:二次函数的图象与性质抛物线的三要素:开口、对称轴、顶 ??点 2. 二次函数的图象与性质 ()2 y a x h k =-+(1)二次函数基本形式的图象与性质:a 的绝对值越大,抛物线的开口越小 2y ax = (2)的图象与性质:上加下减 2y ax c =+

(3)的图象与性质:左加右减 ()2 y a x h =-

(4)二次函数的图象与性质 ()2 y a x h k =-+ 3. 二次函数的图像与性质 c bx ax y ++=2 (1)当时,抛物线开口向上,对称轴为,顶点坐标为. 0a >2b x a =-2424b ac b a a ??-- ??? ,当时,随的增大而减小;当时,随的增大而增大;当时,2b x a <- y x 2b x a >-y x 2b x a =-有最小值 .y 2 44ac b a - (2)当时,抛物线开口向下,对称轴为,顶点坐标为. 0a <2b x a =-2424b ac b a a ??-- ??? ,当时,随的增大而增大;当时,随的增大而减小;当时,2b x a <- y x 2b x a >-y x 2b x a =-有最大值 .y 2 44ac b a -

4. 二次函数常见方法指导 (1)二次函数2y ax bx c =++图象的画法①画精确图 五点绘图法(列表-描点-连线) 利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图. ②画草图 抓住以下几点:开口方向,对称轴,与y 轴的交点,顶点.(2)二次函数图象的平移平移步骤: ①将抛物线解析式转化成顶点式,确定其顶点坐标;()2 y a x h k =-+()h k ,② 可以由抛物线经过适当的平移得到具体平移方法如下: 2 ax 【【【(h <0)【【【 【【(h >0)【【【(h 【【|k|【【【 平移规律:概括成八个字“左加右减,上加下减”.(3)用待定系数法求二次函数的解析式①一般式:.已知图象上三点或三对、 的值,通常选择一般式. ②顶点式:.已知图象的顶点或对称轴,通常选择顶点式. ③交点式: .已知图象与轴的交点坐标 、 ,通常选择交点式. (4)求抛物线的顶点、对称轴的方法 ①公式法:,∴顶点是,对称轴a b ac a b x a c bx ax y 44222 2 -+ ??? ? ?+=++=),(a b ac a b 4422--是直线.a b x 2- =②配方法:运用配方的方法,将抛物线的解析式化为的形式,得到顶点为(, ()k h x a y +-=2 h ),对称轴是直线. k h x =

二次函数知识点总结及典型例题

浙教版九年级上册二次函数知识点总结及典型例题 知识点一、二次函数的概念和图像 1、二次函数的概念 一般地,如果)0,,(2 ≠++=a c b a c bx ax y 是常数,,特别注意a 不为零,那么y 叫做x 的二次函数。 )0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。 2、二次函数的图像 二次函数的图像是一条关于a b x 2- =对称的曲线,这条曲线叫抛物线。 抛物线的主要特征: ①有开口方向;②有对称轴;③有顶点。 3、二次函数图像的画法--------五点作图法: (1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M ,并用虚线画出对称轴 (2)求抛物线c bx ax y ++=2 与坐标轴的交点: 当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C ,再找到点C 的对称点D 。将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。 当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D 。由C 、M 、D 三点可粗略地画出二次函数的草图。如果需要画出比较精确的图像,可再描出一对对称点A 、B ,然后顺次连接五点,画出二次函数的图像。 【例1】、已知函数y=x 2 -2x-3, (1)写出函数图象的顶点、图象与坐标轴的交点,以及图象与 y 轴的交点关于图象对称轴的对称点。然后画出函数图象的草图; (2)求图象与坐标轴交点构成的三角形的面积: (3)根据第(1)题的图象草图,说 出 x 取哪些值时,① y=0;② y<0;③ y>0 知识点二、二次函数的解析式 二次函数的解析式有三种形式:口诀----- 一般 两根 三顶点 (1)一般 一般式:)0,,(2 ≠++=a c b a c bx ax y 是常数, (2)两根 当抛物线c bx ax y ++=2 与x 轴有交点时,即对应的一元二次方程02 =++c bx ax 有实根1x 和 2x 存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2可转化为两根式 ))((21x x x x a y --=。如果没有交点,则不能这样表示。 a 的绝对值越大,抛物线的开口越小。 (3)三顶点 顶点式:)0,,()(2 ≠+-=a k h a k h x a y 是常数, 当题目中告诉我们抛物线的顶点时,我

二次函数典型例题解析

二次函数典型例题解析 关于二次函数的概念 例1 如果函数1)3(232++-=+-mx x m y m m 是二次函数,那么m 的值为 。 例2 抛物线422-+=x x y 的开口方向是 ;对称轴是 ;顶点为 。 关于二次函数的性质及图象 例3 函数)0(2≠++=a c bx ax y 的图象如图所示, 则a 、b 、c ,?,c b a ++,c b a +-的符号 为 , 例4 (镇江2001中考题)老师给出一个函数y=f (x ),甲,乙,丙,丁四位同学各指出这个函数的一个性质:甲:函数的图像不经过第三象限。乙:函数的图像经过第一象限。丙:当x <2时,y 随x 的增大而减小。丁:当x <2时,y >0,已知这四位同学叙述都正确,请构造出满足上述所有性质的一个函数—————————————————。 例5 (荆州2001)已知二次函数y=x 2+bx +c 的图像过点A (c ,0),且关于直线x=2对称,则这个二次函数的解析式可能是 (只要写出一个可能的解析式) 例6 已知a -b +c=0 9a +3b +c=0,则二次函数y=ax 2+bx +c 的图像的顶点可能在( ) (A ) 第一或第二象限 (B )第三或第四象限 (C )第一或第四象限 (D )第二或第三象限 例7 双曲线x k y = )0(≠k 的两分支多在第二、四象限内,则抛物线222k x kx y +-=的大致图 象是( ) 例8 在同一坐标系中,直线b ax y +=和抛物线c bx ax y ++=2 确定二次函数的解析式 例9 已知:函数c bx ax y ++=2的图象如图:那么函数解析式为((A )322++-=x x y (B )322--=x x y (C )322+--=x x y (D )322---=x x y

中考数学复习专题二次函数知识点归纳

二次函数知识点归纳 一、二次函数概念 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: o o 结论:a 的绝对值越大,抛物线的开口越小。 总结: 2. 2y ax c =+的性质: 结论:上加下减。 a 的符号 开口方向 顶点坐标 对称轴 性质 0a > 向上 ()00, y 轴 0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值0. 0a < 向下 ()00, y 轴 0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值0.

总结: 3. ()2 y a x h =-的性质: 结论:左加右减。 总结: 4. ()2 y a x h k =-+的性质: 总结: a 的符号 开口方向 顶点坐标 对称轴 性质 0a > 向上 ()0c , y 轴 0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值c . 0a < 向下 ()0c , y 轴 0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值c . a 的符号 开口方向 顶点坐标 对称轴 性质 0a > 向上 ()0h , X=h x h >时,y 随x 的增大而增大;x h <时,y 随x 的增大而减小;x h =时,y 有最小值0. 0a < 向下 ()0h , X=h x h >时,y 随x 的增大而减小;x h <时,y 随x 的增大而增大;x h =时,y 有最大值0. a 的符号 开口方向 顶点坐标 对称轴 性质

二次函数知识点总结题型分类总结

二次函数知识点总结——题型分类总结 一、二次函数的定义 (考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式) 1、下列函数中,是二次函数的是 . ①142 +-=x x y ; ②2 2x y =; ③x x y 422 +=; ④x y 3-=; ⑤12--=x y ; ⑥p nx mx y ++=2 ; ⑦()x y ,4=; ⑧x y 5-=。 2、在一定条件下,若物体运动的路程s (米)与时间t (秒)的关系式为t t s 252 +=,则t =4秒时,该物体所经过的路程为 _________ 。 3、若函数( ) 54722 2 ++-+=x x m m y 是关于x 的二次函数,则m 的取值范围为 。 4、若函数()1522 ++-=-x x m y m 是关于x 的二次函数,则m 的值为 。 6、已知函数()35112 -+-=+x x m y m 是二次函数,求m 的值。 二、二次函数的对称轴、顶点、最值 记忆:如果解析式为顶点式:()k h x a y +-=2 ,则对称轴为: _ , 最值 为: ; 如果解析式为一般式:c bx ax y ++=2 ,则对称轴为: __ ,最值为: ; 如果解析式为交点式:()()21x x x x a y --=, 则对称轴为: ,最值为: 。 1.抛物线m m x x y -++=2 2 42经过坐标原点,则m 的值为 。 2.抛物线c bx x y ++=2的顶点坐标为(1,3),则b = ,c = . 3.抛物线x x y 32+=的顶点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.若抛物线x ax y 62-=经过点(2,0),则抛物线顶点到坐标原点的距离为( ) 5.若直线b ax y +=不经过二、四象限,则抛物线c bx ax y ++=2 ( ) A.开口向上,对称轴是y 轴 B.开口向下,对称轴是y 轴 C.开口向下,对称轴平行于y 轴 D.开口向上,对称轴平行于y 轴 6.已知抛物线()4 1 12- -+=x m x y 的顶点的横坐标是2,则m 的值是 . 7.抛物线322 -+=x x y 的对称轴是 。 8.若二次函数332 -+=mx x y 的对称轴是直线x =1,则m = 。 9.当n =______,m =______时,函数()()x n m x n m y n -++=的图象是抛物线,

二次函数经典测试题及答案解析

二次函数经典测试题及答案解析 一、选择题 1.如图,ABC ?为等边三角形,点P 从A 出发,沿A B C A →→→作匀速运动,则线段AP 的长度y 与运动时间x 之间的函数关系大致是( ) A . B . C . D . 【答案】B 【解析】 【分析】 根据题意可知点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故可排除选项C 与D ;点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值,故选项B 符合题意,选项A 不合题意. 【详解】 根据题意得,点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故选项C 与选项D 不合题意; 点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值, ∴选项B 符合题意,选项A 不合题意. 故选B . 【点睛】 本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y 与x 的函数关系,然后根据二次函数和一次函数图象与性质解决问题. 2.二次函数y =x 2+bx 的对称轴为直线x =2,若关于x 的一元二次方程x 2+bx ﹣t =0(t 为实数)在﹣1<x <4的范围内有解,则t 的取值范围是( ) A .0<t <5 B .﹣4≤t <5 C .﹣4≤t <0 D .t ≥﹣4 【答案】B 【解析】 【分析】 先求出b ,确定二次函数解析式,关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函

数y =x 2﹣4x 与直线y =t 的交点,﹣1<x <4时﹣4≤y <5,进而求解; 【详解】 解:∵对称轴为直线x =2, ∴b =﹣4, ∴y =x 2﹣4x , 关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函数y =x 2﹣4x 与直线y =t 的交点, ∵﹣1<x <4, ∴二次函数y 的取值为﹣4≤y <5, ∴﹣4≤t <5; 故选:B . 【点睛】 本题考查二次函数图象的性质,一元二次方程的解;将一元二次方程的解转换为二次函数与直线交点问题,数形结合的解决问题是解题的关键. 3.一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是( ) A .原数与对应新数的差不可能等于零 B .原数与对应新数的差,随着原数的增大而增大 C .当原数与对应新数的差等于21时,原数等于30 D .当原数取50时,原数与对应新数的差最大 【答案】D 【解析】 【分析】 设出原数,表示出新数,利用解方程和函数性质即可求解. 【详解】 解:设原数为m ,则新数为2 1100 m , 设新数与原数的差为y 则22 11100100 y m m m m =-=-+, 易得,当m =0时,y =0,则A 错误 ∵1 0100 - < 当1m 50 122100b a ﹣﹣﹣===??? ??? 时,y 有最大值.则B 错误,D 正确. 当y =21时,2 1100 m m - +=21 解得1m =30,2m =70,则C 错误.

二次函数知识点及题型归纳总结

二次函数知识点及题型归纳总结 知识点精讲 一、二次函数解析式的三种形式及图像 1. 二次函数解析式的三种形式 (1)一般式:2 ()(0)f x ax bx c a =++≠; (2)顶点式:2 ()()(0)f x a x m n a =-+≠;其中,(,)m n 为抛物线顶点坐标,x m =为对称轴方程. (3)零点式:12()()()(0)f x a x x x x a =--≠,其中,12,x x 是抛物线与x 轴交点的横坐标. 2.二次函数的图像 二次函数2 ()(0)f x ax bx c a =++≠的图像是一条抛物线,对称轴方程为2b x a =- ,顶点坐标为24(,)24b ac b a a --. (1) 单调性与最值 ①当0a >时,如图2-8所示,抛物线开口向上,函数在(,]2b a -∞- 上递减,在[,)2b a -+∞上递增,当2b x a =-时, 2min 4()4ac b f x a -=;②当0a <时,如图2-9所示,抛物线开口向下,函数在(,] 2b a -∞-上递增,在[,) b -+∞上递减,当 b x =- 时,;24()4ac b f x a -=. (2) 当2 40b ac ?=->时,二次函数2()(0)f x ax bx c a =++≠的图像与x 轴有两个交点11(,0)M x 和 22(,0)M x ,1212|||||| M M x x a =-== . 二、二次函数在闭区间上的最值 闭区间上二次函数最值的取得一定是在区间端点或顶点处. 对二次函数2 ()(0)f x ax bx c a =++≠,当0a >时,()f x 在区间[,]p q 上的最大值是M ,最小值是m , 图2-9

最新史上最全初三数学二次函数知识点归纳总结

二次函数知识点归纳及相关典型题 第一部分 基础知识 1.定义:一般地,如果c b a c bx ax y ,,(2 ++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数2 ax y =的性质 (1)抛物线2 ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2 ax y =的图像与a 的符号关系. ①当0>a 时?抛物线开口向上?顶点为其最低点; ②当0a 时,开口向上;当0

7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. 8.求抛物线的顶点、对称轴的方法 (1)公式法:a b ac a b x a c bx ax y 44222 2 -+ ??? ? ? +=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线a b x 2-=. (2)配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2 的形式,得到顶点为(h ,k ),对称轴是直线 h x =. (3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对 称轴,对称轴与抛物线的交点是顶点. 用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. 9.抛物线c bx ax y ++=2 中,c b a ,,的作用 (1)a 决定开口方向及开口大小,这与2 ax y =中的a 完全一样. (2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2 的对称轴是直线 a b x 2- =,故:①0=b 时,对称轴为y 轴;②0>a b (即a 、b 同号)时,对称轴在y 轴左侧;③0c ,与y 轴交于正半轴;③0

二次函数知识点总结及典型例题和练习(极好)

二次函数知识点总结及典型例题和练习(极好) 知识点一:二次函数的概念和图像 1、二次函数的概念 一般地,如果)0,,(2≠++=a c b a c bx ax y 是常数,,特别注意a不为零,那么y叫做x 的二次函数。)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。 2、二次函数的图像 二次函数的图像是一条关于a b x 2-=对称的曲线,这条曲线叫抛物线。 抛物线的主要特征: ①有开口方向;②有对称轴;③有顶点。 3、二次函数图像的画法--------五点作图法: (1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M,并用虚线画出对称轴 (2)求抛物线c bx ax y ++=2与坐标轴的交点: 当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C,再找到点C 的对称点D。将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。 当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D。由C 、M 、D 三点可粗略地画出二次函数的草图。如果需要画出比较精确的图像,可再描出一对对称点A 、B,然后顺次连接五点,画出二次函数的图像。 【例1】 已知函数y=x 2-2x-3, (1)写出函数图象的顶点、图象与坐标轴的交点,以及图象与 y 轴的交点关于图象对称轴的对称点。然后画出函数图象的草图; (2)求图象与坐标轴交点构成的三角形的面积: (3)根据第(1)题的图象草图,说 出 x 取哪些值时,① y=0;② y <0;③ y>0

知识点二:二次函数的解析式 二次函数的解析式有三种形式: (1)一般式:)0,,(2≠++=a c b a c bx ax y 是常数, (2) 交点式:当抛物线c bx ax y ++=2与x 轴有交点时,即对应的一元二次方程 02=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2可转化为两根式))((21x x x x a y --=。如果 没有交点,则不能这样表示。 (3)顶点式:)0,,()(2≠+-=a k h a k h x a y 是常数, 当题目中告诉我们抛物线的顶点时,我们最好设顶点式,这样最简洁。 【例1】 抛物线c bx ax y ++=2与x 轴交于A (1,0),B(3,0)两点,且过(-1,16),求抛物线的解析式。 【例2】 如图,抛物线c bx ax y ++=2与x 轴的一个交点A 在点(-2,0)和(-1,0)之间(包括这两点),顶点C 是矩形DEFG 上(包括边界和内部)的一个动点,则: (1)abc 0 (>或<或=) (2)a 的取值范围是 ? 【例3】 下列二次函数中,图象以直线x = 2为对称轴,且经过点(0,1)的是 ( ) A.y = (x ? 2)2 + 1 B .y = (x + 2)2 + 1 C .y = (x ? 2)2 ? 3 D.y = (x + 2)2 – 3

人教版初三数学二次函数知识点及难点总结

初三数学二次函数知识点总结 二次项系数a决定二次函数图像的开口方向和大小. 当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口. |a|越大,则二次函数图像的开口越小. 1、决定对称轴位置的因素 一次项系数b和二次项系数a共同决定对称轴的位置. 当a与b同号时(即ab>0),对称轴在y轴左;因为对称轴在左边则对称轴小于0,也就是- b/2a0,所以b/2a要小于0,所以a、b要异号 可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab< 0 ),对称轴在y轴右. 事实上,b有其自身的几何意义:二次函数图像与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的斜率k的值.可通过对二次函数求导得到. 2、决定二次函数图像与y轴交点的因素 常数项c决定二次函数图像与y轴交点. 二次函数图像与y轴交于(0,c) 一、二次函数概念: 1.二次函数的概念:一般地,形如2 =++(a b c y ax bx c ,,是常数,0 a≠)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数0 a≠,而b c,可以为零.二次函数的定义域是全体实数. 2. 二次函数2 =++的结构特征: y ax bx c ⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2. ⑵a b c ,,是常数,a是二次项系数,b是一次项系数,c是常数项.

二、二次函数的基本形式 1. 二次函数基本形式:2 =的性质: y ax a 的绝对值越大,抛物线的开口越小。Array 2. 2 =+的性质:上加下减。 y ax c

二次函数知识点总结及典型例题

二次函数知识点总结及典型例题 一、二次函数的概念和图像 1、二次函数的概念 一般地,如果)0,,(2 ≠++=a c b a c bx ax y 是常数,,那么y 叫做x 的二次函数。 )0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。 2、二次函数的图像 二次函数的图像是一条关于a b x 2-=对称的曲线,这条曲线叫抛物线。 抛物线的主要特征: ①有开口方向;②有对称轴;③有顶点。 3、二次函数图像的画法---五点法: 二、二次函数的解析式 二次函数的解析式有三种形式: (1)一般式:)0,,(2 ≠++=a c b a c bx ax y 是常数, (2)顶点式:)0,,()(2 ≠+-=a k h a k h x a y 是常数, (3)当抛物线c bx ax y ++=2 与x 轴有交点时,即对应二次好方程0 2=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的分解因式))((212 x x x x a c bx ax --=++,二次函数c bx ax y ++=2 可转化为两根式))((21x x x x a y --=。如果没有交点,则不能这 样表示。 三、抛物线c bx ax y ++=2 中,c b a ,,的作用 (1)a 决定开口方向及开口大小,这与2 ax y =中的a 完全一样. (2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2 的对称轴是直线 a b x 2- =,故:①0=b 时,对称轴为y 轴所在直线;②0>a b (即a 、b 同号)时,对称轴在y 轴左侧;③0

二次函数典型例题——旋转

二次函数典型例题——找规律 1、如图,一段抛物线:y =-x(x -3)(0≤x≤3),记为C 1,它与x 轴交于点O ,A 1; 将C 1绕点A 1旋转180°得C 2,交x 轴于点A 2;将C 2绕点A2旋转180°得C 3,交x 轴于点A 3; …… 如此进行下去,直至得C 13.若P (37,m )在第13段抛物线C 13上,则m =_________. 2、二次函数223 y x =的图象如图所示,点A 0位于坐标原点,点1232015,,,,A A A A ???在y 轴的正半轴上,点1232015,,,,B B B B ???在二次函数223 y x =位于第一象限的图象上,若△A 0B 1C 1,△A 1B 2C 2,△A 2B 3C 3,…△A 2014B 2015C 2015都为正三角形,则△011A B A 的边长= , △201420152015A B A 的边长= . 1,2015

3、如图,点A 1、A 2、A 3、……、A n 在抛物线2y x =图象上,点B 1、B 2、B 3、……、B n 在y 轴上,若△A 1B 0B 1、△A 2B 1B 2、……、△A n B n -1B n 都为等腰直角三角形(点B 0是坐 标原点),则△A 2014B 2013B 2014的腰长= . (石景山区)已知关于x 的方程01)1(22=-+-+m x m mx 有两个实数根,且m 为非负 整数. (1)求m 的值; (2)将抛物线1C :1)1(22-+-+=m x m mx y 向右平移a 个单位,再向上平移b 个单位得到抛物线2C ,若抛物线2C 过点),(b A 2和点),(12 4+b B ,求抛物线2C 的 表达式; (3)将抛物线2C 绕点(n n ,1+)旋转?180得到抛物线3C ,若抛物线3C 与直线 12 1+=x y 有两个交点且交点在其对称轴两侧,求n 的取值范围. (石景山区)解:(1)∵方程01)1(22=-+-+m x m mx 有两个实数根, ∴0≠m 且0≥?, ……………………1分 则有0)1(4-)1(42≥--m m m 且0≠m ∴1≤m 且0≠m 又∵m 为非负整数, ∴1=m . ………………………………2分 (2)抛物线1C :2x y =平移后,得到抛物线2C :b a x y +-=2 )(,……3分 ∵抛物线2C 过),2(b A 点,b a b +-=2)2(,可得2=a , 同理:b a b +-=+2)4(12,可得3=b , …………………………4分 ∴2C :()322+-=x y )(或742+-=x x y . …………5分 (3)将抛物线2C :3)2(2+-=x y 绕点(n n ,1+)旋转180°后得到的抛物线3C 顶 点为(322-n n ,), ………………6分 当n x 2=时,1122 1+=+?= n n y , 由题意,132+>-n n ,

相关主题
文本预览
相关文档 最新文档