当前位置:文档之家› 二次函数的实际应用(典型例题分类)

二次函数的实际应用(典型例题分类)

二次函数的实际应用(典型例题分类)
二次函数的实际应用(典型例题分类)

二次函数与实际问题

1、理论应用(基本性质的考查:解析式、图象、性质等)

2、实际应用(拱桥问题,求最值、最大利润、最大面积等)

类型一:最大面积问题

例一:如图在长200米,宽80米的矩形广场内修建等宽的十字形道路,绿地面积y(㎡)与路宽x(m)之间的关系?并求出绿地面积的最大值?

变式练习1:如图,用50m长的护栏全部用于建造一块靠墙的长方形花园,写出长方形花园的面积y(㎡)与它与墙平行的边的长x(m)之间的函数关系式?当x为多长时,花园面积最大?

类型二:利润问题

例二:某商店经营T恤衫,已知成批购进时单价是2.5元.根据市场调查,销售量与销售单价满足如下关系:在某一时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件. 请你帮助分析:销售单价是多少时,可以获利最多?

设销售单价为x元,(0<x≤13.5)元,那么

(1)销售量可以表示为____________________;

(2)销售额可以表示为____________________;

(3)所获利润可以表示为__________________;

(4)当销售单价是________元时,可以获得最大利润,最大利润是__________

变式训练2.某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?

变式训练3:某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历从亏损到盈利的过程,如下图的二次函数图象(部分)刻画了该公司年初以来累积利润y(万元)与销售时间x(月)之间的关系(即前x个月的利润之和y与x之间的关系).?(1)根据图上信息,求累积利润y(万元)与销售时间x(月)的函数关系式;?(2)求截止到几月末公司累积利润可达到30万元??(3)求第8个月公司所获利润是多少万元?

400

300

60 70 O

y (件) )

变式训练4.某服装公司试销一种成本为每件50元的T 恤衫,规定试销时的销售单价不低于成本价,又不高于每件70元,试销中销售量y (件)与销售单价x (元)的关系可以近似的看作一次函数(如图).

(1)求y 与x 之间的函数关系式;

(2)设公司获得的总利润(总利润=总销售额 总成本)为P元,求P 与x 之间的函数关系式,并写出自变量x 的取值范围;根据题意判断:当x 取何值时,P 的值最大?最大值是多少?

类型三:实际抛物线问题

例三:某隧道横断面由抛物线与矩形的三边组成,尺寸如图10所示。

(1)以隧道横断面抛物线的顶点为原点,以抛物线的对称轴为y 轴,建立直角坐标系,求该抛物线对应的函数关系式;

(2)某卡车空车时能通过此隧道,现装载一集装箱箱宽3m,

车与箱共高4.5m,此车能否通过隧道?并说明理由。

4米,水位上升3米就达到变式练习3:如图是抛物线型的拱桥,已知水位在AB位置时,水面宽6

4米,若洪水到来时,水位以每小时0.2

警戒水位线CD,这时水面宽3 Array5米的速度上升,求水过警戒线后几小时淹到拱桥顶?

例2图

变式练习4:如图,某大学的校门是一抛物线形状的水泥建筑物,大门的地面高度为8米,两侧距地

面4米高处各有一个挂校名的横匾用的铁环,两铁环的水平距离为6米,则校门的高度为。

(精确到0.1米)

变式:1如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x-6)2+h.已知球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m。

(1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值范围)

(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;

(3)若球一定能越过球网,又不出边界,求h的取值范围。

课后练习:

一,利润问题:

1.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.

(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?

(2)每件衬衫降低多少元时,商场平均每天盈利最多?

二,面积问题:

2,如下图,在一个直角三角形的内部作一个长方形ABCD,其中AB和AD分别在两直角边上.

(1)设长方形的一边AB=xm,那么AD边的长度如何表示?

(2)设长方形的面积为y m2,当x取何值时,y的值最大?最大值是多少?

3. 有一个抛物线形拱桥,其最大高度为16m ,跨度为40m , 现把它的示意图放在平面直角坐标系中, 如图该抛物线的解析式为

4.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m )与水平距离x (m )之间的关系为y =-

1

12

(x -4)2+3,由此可知铅球推出的距离是________m .

5、如图,一小孩将一只皮球从A处抛出去,它所经过的路线是某个二次函数图象的一部分,如果他的出手处A距地面的距离OA 为1 m,球路的最高点B (8,9),则这个二次函数的表达式为______,小孩将球抛出了约______米(精确到0.1 m ) .

x

y

A B O

(第5题

)

6、有一个抛物线形的拱形桥洞,桥洞离水面的最大高度为4 m,跨度为10 m.如图所示,把它的图形放在直角坐标系中.

(1) 求这条抛物线所对应的函数关系式; (2) 如图,在对称轴右边1 m 处,桥洞离 水面的高是多少?

二次函数专项复习经典试题集锦(含答案)

二次函数专项复习经典试题集锦(含答案) 一、选择题: 1. 抛物线3)2(2+-=x y 的对称轴是( ) A. 直线3-=x B. 直线3=x C. 直线2-=x D. 直线2=x 2. 二次函数c bx ax y ++=2的图象如右图,则点 ),(a c b M 在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 3. 已知二次函数c bx ax y ++=2,且0+-c b a ,则一定有( ) A. 042>-ac b B. 042=-ac b C. 042<-ac b D. ac b 42-≤0 4. 把抛物线c bx x y ++=2向右平移3个单位,再向下平移2个单位,所得图象的解析式 是532+-=x x y ,则有( ) A. 3=b ,7=c B. 9-=b ,15-=c C. 3=b ,3=c D. 9-=b ,21=c 5. 下面所示各图是在同一直角坐标系,二次函数c x c a ax y +++=)(2与一次函数 c ax y +=的大致图象,有且只有一个是正确的,正确的是( ) B D 6. 抛物线322+-=x x y 的对称轴是直线( ) A. 2-=x B. 2=x C. 1-=x D. 1=x

7. 二次函数2)1(2+-=x y 的最小值是( ) A. 2- B. 2 C. 1- D. 1 8. 二次函数c bx ax y ++=2的图象如图所示,若 c b a M ++=24c b a N +-=,b a P -=4,则( ) A. 0>M ,0>N ,0>P B. 0N ,0>P C. 0>M ,0P D. 0N ,0

x 时,求使y ≥2的x 的取值围.

二次函数经典例题及答案

二次函数经典例题及答案 1.已知抛物线的顶点为P (- 4,—2),与x轴交于A B两点,与y轴交于点C,其中B点坐标为(1 , 0)。 (1) 求这条抛物线的函数关系式; (2) 若抛物线的对称轴交x轴于点D,则在线段AC上是否存在这样的点Q,使得△ ADQ 1 2 9 . 135 y=2 x +4x - 2;存在点Q (-1 , -4 ) , Q (2^5-9,-%'5 ) , Q (--^, -4) ?析 一2 25 试题分析:(1)根据顶点坐标把抛物线设为顶点式形式y=a ( x+4) - 2,然后把点B的坐 标代入解析式求出a的值,即可得解; (2)先根据顶点坐标求出点D 的坐标,再根据抛物线解析式求出点A、C的坐标,从而得 到OA OC AD的长度,根据勾股定理列式求出AC的长度,然后根据锐角三角形函数求出/ OAC勺正弦值与余弦值,再分① AD=QD时,过Q作QE1丄x轴于点E,根据等腰三角形三线合一的性质求出AQ,再利用/ OAC勺正弦求出QE的长度,根据/ OAC勺余弦求出AE的长度,然后求出OE,从而得到点Q的坐标;②AD=AQ时,过Q作QE2丄x轴于点E>,利用/ OAC勺正弦求出QE2的长度,根据/ OAC勺余弦求出AE的长度,然后求出OE,从而得到点Q的坐标;③AQ=DQ时,过Q作QE3丄x轴于点已,根据等腰三角形三线合一的性质求出AE 的长度,然后求出OE,再由相似三角形对应边成比例列式求出QE3的长度,从而得到点Q 的坐标. 试题解析:(1 )???抛物线顶点坐标为( 25 -4 , - 2), ???设抛物线解析式为 2 25 y=a (x+4) - 2 为等腰三角形?若存在,请求出符合条件的点

二次函数典型例题解析与习题训练

又∵y=x 2-x+m=[x 2-x+(12)2]- 14+m=(x -12)2+414 m - ∴对称轴是直线x=12,顶点坐标为(12,41 4 m -). (2)∵顶点在x 轴上方, ∴顶点的纵坐标大于0,即41 4 m ->0 ∴m> 14 ∴m>1 4 时,顶点在x 轴上方. (3)令x=0,则y=m . 即抛物线y=x 2-x+m 与y 轴交点的坐标是A (0,m ). ∵AB ∥x 轴 ∴B 点的纵坐标为m . 当x 2-x+m=m 时,解得x 1=0,x 2=1. ∴A (0,m ),B (1,m ) 在Rt △BAO 中,AB=1,OA=│m │. ∵S △AOB =1 2 OA ·AB=4. ∴ 1 2 │m │·1=4,∴m=±8 故所求二次函数的解析式为y=x 2-x+8或y=x 2-x -8. 【点评】正确理解并掌握二次函数中常数a ,b ,c 的符号与函数性质及位置的关系是解答本题的关键之处. 例2 已知:m ,n 是方程x 2-6x+5=0的两个实数根,且m

为D,试求出点C,D的坐标和△BCD的面积; (3)P是线段OC上的一点,过点P作PH⊥x轴,与抛物线交于H点,若直线BC把△PCH 分成面积之比为2:3的两部分,请求出P点的坐标. 【分析】(1)解方程求出m,n的值.用待定系数法求出b,c的值. (2)过D作x轴的垂线交x轴于点M,可求出△DMC,梯形BDBO,△BOC的面积,用割补法可求出△BCD的面积. (3)PH与BC的交点设为E点,则点E有两种可能:①EH=3 2EP,②EH=2 3 EP. 【解答】(1)解方程x2-6x+5=0, 得x1=5,x2=1. 由m

二次函数压轴题题型归纳

一、二次函数常考点汇总 1、两点间的距离公式:()()22B A B A x x y y AB -+-= 2、中点坐标:线段AB 的中点C 的坐标为:??? ??++22 B A B A y y x x , 直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系: (1)两直线平行?21k k =且21b b ≠ (2)两直线相交?21k k ≠ (3)两直线重合?21k k =且21b b = (4)两直线垂直?121-=k k 3、一元二次方程有整数根问题,解题步骤如下: ① 用?和参数的其他要求确定参数的取值范围; ② 解方程,求出方程的根;(两种形式:分式、二次根式) ③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。 例:关于x 的一元二次方程()0122 2 =-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。 4、二次函数与x 轴的交点为整数点问题。(方法同上) 例:若抛物线()3132 +++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定 此抛物线的解析式。 5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下: 已知关于x 的方程2 3(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。 解:当0=m 时,1=x ; 当0≠m 时,()032 ≥-=?m ,()m m x 213?±-= ,m x 3 21-=、12=x ; 综上所述:无论m 为何值,方程总有一个固定的根是1。 6、函数过固定点问题,举例如下: 已知抛物线22 -+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。 解:把原解析式变形为关于m 的方程()x m x y -=+-122 ; ∴ ???=-=+-0 1 02 2x x y ,解得:???=-=1 1 x y ;∴ 抛物线总经过一个固定的点(1,-1)。 (题目要求等价于:关于m 的方程()x m x y -=+-122 不论m 为何值,方程恒成立) 小结.. :关于x 的方程b ax =有无数解????==0 b a

高中数学二次函数分类讨论经典例题

例1(1)关于x 的方程0142)3(22=++++m x m x 有两个实根,且一个大于1,一个小于1,求m 的取值范围; (2)关于x 的方程0142)3(22=++++m x m x 有两实根都在)4,0[内,求m 的取值范围; ⑶关于x 的方程0142)3(22=++++m x m x 有两实根在[]3,1外,求m 的取值范围 (4)关于x 的方程0142)3(22=++++m x m mx 有两实根,且一个大于4,一个小于4,求m 的取值范围. 例3已知函数3)12()(2--+=x a ax x f 在区间]2,2 3[-上的最大值为1,求实数a 的值。

解(1)令142)3(2)(2++++=m x m x x f ,∵对应抛物线开口向上,∴方程有两个实根,且一个大于1,一个小于1等价于0)1(?吗?),即.4 21-++++≥+????? ?????≥+-+<+-<≥≥m m m m m m m m m m f f (3)令142)3(2)(2++++=m x m x x f ,原命题等价于 ???<<0)3(0)1(f f 即? ??<++++<++++0142)3(690142)3(21m m m m 得.421-0)4(0g m 或,0 )4(0???>)(恒成立,求实数a 的取 值范围。 解:(1)0)()(恒成立?.)]([min a x f >又当]1,1[-∈x 时, 5)1()]([min -=-=f x f ,所以).5,(--∞∈a 【评注】“有解”与“恒成立”是很容易搞混的两个概念。一般地,对于“有解”与“恒成立”,有下列常用结论:(1)a x f >)(恒成立?a x f >min )]([;(2)a x f <)(恒成立?a x f )(有解?a x f >max )]([;(4)a x f <)(有解?.)]([min a x f < 分析:这是一个逆向最值问题,若从求最值入手,首先应搞清二次项系数a 是否为零,如果)(,0x f a ≠的最大值与二次函数系数a 的正负有关,也与对称轴

2021年中考 二次函数题型分类复习总结

二次函数考点分类复习 知识点一:二次函数的定义 考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式。 备注:当b=c=0时,二次函数y=ax2是最简单的二次函数. 1、下列函数中,是二次函数的是 . ①y=x 2 -4x+1; ②y=2x 2 ; ③y=2x 2 +4x ; ④y=-3x ; ⑤y=-2x -1; ⑥y=mx 2 +nx+p ; ⑦y =; ⑧y=-5x 。 2、在一定条件下,若物体运动的路程s (米)与时间t (秒)的关系式为s=5t 2 +2t ,则t =4秒时,该物体所经过的路程为 。 3、若函数y=(m 2 +2m -7)x 2 +4x+5是关于x 的二次函数,则m 的取值范围为 。 课后练习: (1)下列函数中,二次函数的是( ) A .y=ax 2+bx+c B 。2 )1()2)(2(---+=x x x y C 。x x y 1 2+ = D 。y=x(x —1) (2)如果函数1)3(2 32++-=+-mx x m y m m 是二次函数,那么m 的值为 知识点二:二次函数的对称轴、顶点、最值 1、二次函数 c bx ax y ++=2,当0>a 时?抛物线开口向上?顶点为其最低点;当0

二次函数典型例题解析

二次函数典型例题解析 关于二次函数的概念 例1 如果函数1)3(232++-=+-mx x m y m m 是二次函数,那么m 的值为 。 例2 抛物线422-+=x x y 的开口方向是 ;对称轴是 ;顶点为 。 关于二次函数的性质及图象 例3 函数)0(2≠++=a c bx ax y 的图象如图所示, 则a 、b 、c ,?,c b a ++,c b a +-的符号 为 , 例4 (镇江2001中考题)老师给出一个函数y=f (x ),甲,乙,丙,丁四位同学各指出这个函数的一个性质:甲:函数的图像不经过第三象限。乙:函数的图像经过第一象限。丙:当x <2时,y 随x 的增大而减小。丁:当x <2时,y >0,已知这四位同学叙述都正确,请构造出满足上述所有性质的一个函数—————————————————。 例5 (荆州2001)已知二次函数y=x 2+bx +c 的图像过点A (c ,0),且关于直线x=2对称,则这个二次函数的解析式可能是 (只要写出一个可能的解析式) 例6 已知a -b +c=0 9a +3b +c=0,则二次函数y=ax 2+bx +c 的图像的顶点可能在( ) (A ) 第一或第二象限 (B )第三或第四象限 (C )第一或第四象限 (D )第二或第三象限 例7 双曲线x k y = )0(≠k 的两分支多在第二、四象限内,则抛物线222k x kx y +-=的大致图 象是( ) 例8 在同一坐标系中,直线b ax y +=和抛物线c bx ax y ++=2 确定二次函数的解析式 例9 已知:函数c bx ax y ++=2的图象如图:那么函数解析式为((A )322++-=x x y (B )322--=x x y (C )322+--=x x y (D )322---=x x y

中考复习:二次函数题型分类总结

【二次函数的定义】 (考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式) 1、下列函数中,是二次函数的是 . ①y=x2-4x+1;②y=2x2;③y=2x2+4x;④y=-3x; ⑤y=-2x-1;⑥y=mx2+nx+p;⑦y =(4,x) ;⑧y=-5x。 2、在一定条件下,若物体运动的路程s(米)与时间t(秒)的关系式为s=5t2+2t,则t=4 秒时,该物体所经过的路程为。 3、若函数y=(m2+2m-7)x2+4x+5是关于x的二次函数,则m的取值范围为。 4、若函数y=(m-2)x m -2+5x+1是关于x的二次函数,则m的值为。 6、已知函数y=(m-1)x m2 +1+5x-3是二次函数,求m的值。 【二次函数的对称轴、顶点、最值】 (技法:如果解析式为顶点式y=a(x-h)2+k,则最值为k; 如果解析式为一般式y=ax2+bx+c,则最值为4ac-b2 4a 1.抛物线y=2x2+4x+m2-m经过坐标原点,则m的值为。 2.抛物y=x2+bx+c线的顶点坐标为(1,3),则b=,c= . 3.抛物线y=x2+3x的顶点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.若抛物线y=ax2-6x经过点(2,0),则抛物线顶点到坐标原点的距离为( ) B. 5.若直线y=ax+b不经过二、四象限,则抛物线y=ax2+bx+c( ) A.开口向上,对称轴是y轴 B.开口向下,对称轴是y轴 C.开口向下,对称轴平行于y轴 D.开口向上,对称轴平行于y轴 6.已知抛物线y=x2+(m-1)x-1 4 的顶点的横坐标是2,则m的值是_ . 7.抛物线y=x2+2x-3的对称轴是。 8.若二次函数y=3x2+mx-3的对称轴是直线x=1,则m=。 9.当n=______,m=______时,函数y=(m+n)x n+(m-n)x的图象是抛物线,且其顶点在原点,此抛物线的开口________.

二次函数经典例题与解答

、中考导航图 顶点 对称轴 1. 二次函数的意义 ; 2. 二次函数的图象 ; 3. 二次函数的性质 开口方向 增减性 顶点式: y=a(x-h) 2+k(a ≠ 0) 4. 二次函数 待定系数法确定函数解析式 一般式: y=ax 2+bx+c(a ≠ 0) 两根式: y=a(x-x 1)(x-x 2)(a ≠0) 5. 二次函数与一元二次方程的关系。 6. 抛物线 y=ax 2+bx+c 的图象与 a 、 b 、 c 之间的关系。 三、中考知识梳理 1. 二次函数的图象 在 画二 次函数 y=ax 2+bx+c(a ≠ 0) 的图象 时通常 先通 过配 方配成 y=a(x+ b ) 2+ 2a 公式来求得顶点坐标 . 2. 理解二次函数的性质 抛物线的开口方向由 a 的符号来确定 , 当 a>0 时, 在对称轴左侧 y 随 x 的增大而减小 b 4ac-b 2 反之当 a0时,抛物线开口向上 ; 当 a<0时,?抛物线开口向 下 ;c 的符号由抛物线与 y 轴交点的纵坐标决定 . 当 c>0 时, 抛物线交 y 轴于正半轴 ; 当 c<0 时,抛物线交 y 轴于负半轴 ;b 的符号由对称轴来决定 .当对称轴在 y?轴左侧时 ,b 的符号与 a 二次函数 4ac-b 的形式 , 先确定顶点 4a (- 2b a 4ac-b 2 ), 然后对称找点列表并画图 ,或直接代用顶点 4a 在对称轴的右侧 ,y 随 x 的增大而增大 简记左减右增 , 这时当 x=- b 时 ,y 2a 最小值= 4ac-b 2 4a

二次函数经典测试题及答案解析

二次函数经典测试题及答案解析 一、选择题 1.如图,ABC ?为等边三角形,点P 从A 出发,沿A B C A →→→作匀速运动,则线段AP 的长度y 与运动时间x 之间的函数关系大致是( ) A . B . C . D . 【答案】B 【解析】 【分析】 根据题意可知点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故可排除选项C 与D ;点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值,故选项B 符合题意,选项A 不合题意. 【详解】 根据题意得,点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故选项C 与选项D 不合题意; 点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值, ∴选项B 符合题意,选项A 不合题意. 故选B . 【点睛】 本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y 与x 的函数关系,然后根据二次函数和一次函数图象与性质解决问题. 2.二次函数y =x 2+bx 的对称轴为直线x =2,若关于x 的一元二次方程x 2+bx ﹣t =0(t 为实数)在﹣1<x <4的范围内有解,则t 的取值范围是( ) A .0<t <5 B .﹣4≤t <5 C .﹣4≤t <0 D .t ≥﹣4 【答案】B 【解析】 【分析】 先求出b ,确定二次函数解析式,关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函

数y =x 2﹣4x 与直线y =t 的交点,﹣1<x <4时﹣4≤y <5,进而求解; 【详解】 解:∵对称轴为直线x =2, ∴b =﹣4, ∴y =x 2﹣4x , 关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函数y =x 2﹣4x 与直线y =t 的交点, ∵﹣1<x <4, ∴二次函数y 的取值为﹣4≤y <5, ∴﹣4≤t <5; 故选:B . 【点睛】 本题考查二次函数图象的性质,一元二次方程的解;将一元二次方程的解转换为二次函数与直线交点问题,数形结合的解决问题是解题的关键. 3.一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是( ) A .原数与对应新数的差不可能等于零 B .原数与对应新数的差,随着原数的增大而增大 C .当原数与对应新数的差等于21时,原数等于30 D .当原数取50时,原数与对应新数的差最大 【答案】D 【解析】 【分析】 设出原数,表示出新数,利用解方程和函数性质即可求解. 【详解】 解:设原数为m ,则新数为2 1100 m , 设新数与原数的差为y 则22 11100100 y m m m m =-=-+, 易得,当m =0时,y =0,则A 错误 ∵1 0100 - < 当1m 50 122100b a ﹣﹣﹣===??? ??? 时,y 有最大值.则B 错误,D 正确. 当y =21时,2 1100 m m - +=21 解得1m =30,2m =70,则C 错误.

九年级数学二次函数 基础分类练习题(含答案)

二次函数 基础分类练习题 练习一 二次函数 1、一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s (米)与时间t (秒)的数 据如下表: 时间t (秒)1234…距离s (米) 2 8 18 32 … 写出用t 表示s 的函数关系式. 2、下列函数:① ;② ;③ ;④ ; y = ()21y x x x =-+()224y x x x =+-2 1 y x x = +⑤ ,其中是二次函数的是 ,其中 , , ()1y x x =-a =b =c =3、当 时,函数(为常数)是关于的二次函数 m ()2 235y m x x =-+-m x 4、当时,函数是关于的二次函数 ____m =()2 221m m y m m x --= +x 5、当时,函数+3x 是关于的二次函数 ____m =()256 4m m y m x -+=-x 6、若点 A ( 2, ) 在函数 的图像上,则 A 点的坐标是____. m 12 -=x y 7、在圆的面积公式 S =πr 2 中,s 与 r 的关系是( ) A 、一次函数关系 B 、正比例函数关系 C 、反比例函数关系 D 、二次函数关系 8、正方形铁片边长为15cm ,在四个角上各剪去一个边长为x (cm )的小正方形,用余下的部分做成一个无盖的盒子. (1)求盒子的表面积S (cm 2)与小正方形边长x (cm )之间的函数关系式; (2)当小正方形边长为3cm 时,求盒子的表面积. 9、如图,矩形的长是 4cm ,宽是 3cm ,如果将长和宽都增加 x cm ,那么面积增加 ycm 2, ① 求 y 与 x 之间的函数关系式.② 求当边长增加多少时,面积增加 8cm 2. 10、已知二次函数当x=1时,y= -1;当x=2时,y=2,求该函数解析式. ),0(2 ≠+=a c ax y 11、富根老伯想利用一边长为a 米的旧墙及可以围成24米长的旧木料,建造猪舍三间,如图,它们的平面图是一排大小相等的长方形. (1)如果设猪舍的宽AB 为x 米,则猪舍的总面积S (米2)与x 有怎样的函数关 系? (2)请你帮富根老伯计算一下,如果猪舍的总面积为32米2,应该如何安排猪舍的长BC 和宽AB 的长度?旧 墙的长度是否会对猪舍的长度有影响?怎样影响?

二次函数知识点总结及典型例题和练习(极好)

二次函数知识点总结及典型例题和练习(极好) 知识点一:二次函数的概念和图像 1、二次函数的概念 一般地,如果)0,,(2≠++=a c b a c bx ax y 是常数,,特别注意a不为零,那么y叫做x 的二次函数。)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。 2、二次函数的图像 二次函数的图像是一条关于a b x 2-=对称的曲线,这条曲线叫抛物线。 抛物线的主要特征: ①有开口方向;②有对称轴;③有顶点。 3、二次函数图像的画法--------五点作图法: (1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M,并用虚线画出对称轴 (2)求抛物线c bx ax y ++=2与坐标轴的交点: 当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C,再找到点C 的对称点D。将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。 当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D。由C 、M 、D 三点可粗略地画出二次函数的草图。如果需要画出比较精确的图像,可再描出一对对称点A 、B,然后顺次连接五点,画出二次函数的图像。 【例1】 已知函数y=x 2-2x-3, (1)写出函数图象的顶点、图象与坐标轴的交点,以及图象与 y 轴的交点关于图象对称轴的对称点。然后画出函数图象的草图; (2)求图象与坐标轴交点构成的三角形的面积: (3)根据第(1)题的图象草图,说 出 x 取哪些值时,① y=0;② y <0;③ y>0

知识点二:二次函数的解析式 二次函数的解析式有三种形式: (1)一般式:)0,,(2≠++=a c b a c bx ax y 是常数, (2) 交点式:当抛物线c bx ax y ++=2与x 轴有交点时,即对应的一元二次方程 02=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2可转化为两根式))((21x x x x a y --=。如果 没有交点,则不能这样表示。 (3)顶点式:)0,,()(2≠+-=a k h a k h x a y 是常数, 当题目中告诉我们抛物线的顶点时,我们最好设顶点式,这样最简洁。 【例1】 抛物线c bx ax y ++=2与x 轴交于A (1,0),B(3,0)两点,且过(-1,16),求抛物线的解析式。 【例2】 如图,抛物线c bx ax y ++=2与x 轴的一个交点A 在点(-2,0)和(-1,0)之间(包括这两点),顶点C 是矩形DEFG 上(包括边界和内部)的一个动点,则: (1)abc 0 (>或<或=) (2)a 的取值范围是 ? 【例3】 下列二次函数中,图象以直线x = 2为对称轴,且经过点(0,1)的是 ( ) A.y = (x ? 2)2 + 1 B .y = (x + 2)2 + 1 C .y = (x ? 2)2 ? 3 D.y = (x + 2)2 – 3

二次函数考点和题型归纳

二次函数考点和题型归纳 一、基础知识 1.二次函数解析式的三种形式 一般式:f (x )=ax 2+bx +c (a ≠0); 顶点式:f (x )=a (x -h )2+k (a ≠0); 两根式:f (x )=a (x -x 1)(x -x 2)(a ≠0). 2.二次函数的图象与性质 二次函数系数的特征 (1)二次函数y =ax 2+bx +c (a ≠0)中,系数a 的正负决定图象的开口方向及开口大小; (2)- b 2a 的值决定图象对称轴的位置; (3)c 的取值决定图象与y 轴的交点; (4)b 2-4ac 的正负决定图象与x 轴的交点个数. 解析式 f (x )=ax 2+bx +c (a >0) f (x )=ax 2+bx +c (a <0) 图象 定义域 (-∞,+∞) (-∞,+∞) 值域 ??? ?4ac -b 24a ,+∞ ? ???-∞,4ac -b 24a 单调性 在??? ?-b 2a ,+∞上单调递增;在????-∞,-b 2a 上单调递减 在? ???-∞,-b 2a 上单调递增;在??? ?-b 2a ,+∞上单调递减 奇偶性 当b =0时为偶函数,当b ≠0时为非奇非偶函数 顶点 ????-b 2a ,4ac -b 24a 对称性 图象关于直线x =-b 2a 成轴对称图形

二、常用结论 1.一元二次不等式恒成立的条件 (1)“ax 2+bx +c >0(a ≠0)恒成立”的充要条件是“a >0,且Δ<0”. (2)“ax 2+bx +c <0(a ≠0)恒成立”的充要条件是“a <0,且Δ<0”. 2.二次函数在闭区间上的最值 设二次函数f (x )=ax 2+bx +c (a >0),闭区间为[m ,n ]. (1)当-b 2a ≤m 时,最小值为f (m ),最大值为f (n ); (2)当m <-b 2a ≤m +n 2时,最小值为f ????-b 2a ,最大值为f (n ); (3)当 m +n 2<-b 2a ≤n 时,最小值为f ????-b 2a ,最大值为f (m ); (4)当-b 2a >n 时,最小值为f (n ),最大值为f (m ). 考点一 求二次函数的解析式 求二次函数的解析式常利用待定系数法,但由于条件不同,则所选用的解析式不同,其方法也不同. [典例] 已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定此二次函数的解析式. [解] 法一:利用二次函数的一般式 设f (x )=ax 2+bx +c (a ≠0). 由题意得?? ? 4a +2b +c =-1, a - b + c =-1, 4ac -b 2 4a =8, 解得????? a =-4, b =4, c =7. 故所求二次函数为f (x )=-4x 2+4x +7. 法二:利用二次函数的顶点式 设f (x )=a (x -m )2+n .

二次函数典型例题——旋转

二次函数典型例题——找规律 1、如图,一段抛物线:y =-x(x -3)(0≤x≤3),记为C 1,它与x 轴交于点O ,A 1; 将C 1绕点A 1旋转180°得C 2,交x 轴于点A 2;将C 2绕点A2旋转180°得C 3,交x 轴于点A 3; …… 如此进行下去,直至得C 13.若P (37,m )在第13段抛物线C 13上,则m =_________. 2、二次函数223 y x =的图象如图所示,点A 0位于坐标原点,点1232015,,,,A A A A ???在y 轴的正半轴上,点1232015,,,,B B B B ???在二次函数223 y x =位于第一象限的图象上,若△A 0B 1C 1,△A 1B 2C 2,△A 2B 3C 3,…△A 2014B 2015C 2015都为正三角形,则△011A B A 的边长= , △201420152015A B A 的边长= . 1,2015

3、如图,点A 1、A 2、A 3、……、A n 在抛物线2y x =图象上,点B 1、B 2、B 3、……、B n 在y 轴上,若△A 1B 0B 1、△A 2B 1B 2、……、△A n B n -1B n 都为等腰直角三角形(点B 0是坐 标原点),则△A 2014B 2013B 2014的腰长= . (石景山区)已知关于x 的方程01)1(22=-+-+m x m mx 有两个实数根,且m 为非负 整数. (1)求m 的值; (2)将抛物线1C :1)1(22-+-+=m x m mx y 向右平移a 个单位,再向上平移b 个单位得到抛物线2C ,若抛物线2C 过点),(b A 2和点),(12 4+b B ,求抛物线2C 的 表达式; (3)将抛物线2C 绕点(n n ,1+)旋转?180得到抛物线3C ,若抛物线3C 与直线 12 1+=x y 有两个交点且交点在其对称轴两侧,求n 的取值范围. (石景山区)解:(1)∵方程01)1(22=-+-+m x m mx 有两个实数根, ∴0≠m 且0≥?, ……………………1分 则有0)1(4-)1(42≥--m m m 且0≠m ∴1≤m 且0≠m 又∵m 为非负整数, ∴1=m . ………………………………2分 (2)抛物线1C :2x y =平移后,得到抛物线2C :b a x y +-=2 )(,……3分 ∵抛物线2C 过),2(b A 点,b a b +-=2)2(,可得2=a , 同理:b a b +-=+2)4(12,可得3=b , …………………………4分 ∴2C :()322+-=x y )(或742+-=x x y . …………5分 (3)将抛物线2C :3)2(2+-=x y 绕点(n n ,1+)旋转180°后得到的抛物线3C 顶 点为(322-n n ,), ………………6分 当n x 2=时,1122 1+=+?= n n y , 由题意,132+>-n n ,

商品利润问题与二次函数典型例题解析

商品利润问题与二次函数典型例题解析 知识链接复习: 1、某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.现该商场要保证每天盈利6 000元,同时又要顾客得到实惠,那么每千克应涨价多少元 解:设每千克应涨价x 元,读题完成下列填空 问题一:涨价后每千克盈利 元; 问题二:涨价后日销售量减少 千克; 问题三:涨价后每天的销售量是 千克; 问题四:涨价后每天盈利 元 根据题意列方程得: 解方程得: 因为商家涨价的目的是 ;所以 符合题意。 答: 。 2、二次函数y=ax 2 +bx+c 的顶点坐标是x= y= 3、函数y=x 2+2x-3(-2≤x ≤2)的最大值和最小值分别是 新知解析: 例1、某商品现在的售价为每件35元,每天可卖出50件。市场调查发现:如果调整价格,每降价1元,那么每天可多卖出两件。请你帮助分析,当每件商品降价多少元时,可使每天的销售额最大,最大销售额是多少 解:设当降价X 元时销售额为y 元,根据题意得: y=(35-x )(50+2x )=-2x 2+20x+1750 x=-a b 2=-) 2(×220=5 因为0<5<35且a=-2<0 所以y=(35-5)(50+10)=1800 答:当降价5元时 销售额最大为1800元。 此类习题注意要点: 1、根据题意设未知量,一般设增加或者减少量为x 元时相应的收益为y 元,列出函数关系式。 2、判断顶点横坐标是否在取值范围内。因为函数的最值不一定是实际问题的最值 3、根据题意求最值。写出正确答案。 例2、某民俗旅游村为接待游客住宿需要,开设了有100张床位的旅馆,当每张床位每天收费10元时,床位可全部租出,若每张床位每天收费提高2元,则相应的减少了10张床位租出,如果每张床位每天以2元为单位提高收费,为使租出的床位少且租金高,那么每张床位每天最合适的收费是多少元租金最高是多少钱 解:设当张价X 元时租金为y 元,根据题意得:y=(100-10 ×2 x )(10+x )=-5x 2+50x+1000 x=-a b 2=-)5_( ×250=5

二次函数知识点及题型归纳总结

二次函数知识点及题型归纳总结 知识点精讲 一、二次函数解析式的三种形式及图像 1. 二次函数解析式的三种形式 (1)一般式:2 ()(0)f x ax bx c a =++≠; (2)顶点式:2 ()()(0)f x a x m n a =-+≠;其中,(,)m n 为抛物线顶点坐标,x m =为对称轴方程. (3)零点式:12()()()(0)f x a x x x x a =--≠,其中,12,x x 是抛物线与x 轴交点的横坐标. 2.二次函数的图像 二次函数2 ()(0)f x ax bx c a =++≠的图像是一条抛物线,对称轴方程为2b x a =- ,顶点坐标为24(,)24b ac b a a --. (1) 单调性与最值 ①当0a >时,如图2-8所示,抛物线开口向上,函数在(,]2b a -∞- 上递减,在[,)2b a -+∞上递增,当2b x a =-时, 2min 4()4ac b f x a -=;②当0a <时,如图2-9所示,抛物线开口向下,函数在(,] 2b a -∞-上递增,在[,) b -+∞上递减,当 b x =- 时,;24()4ac b f x a -=. (2) 当2 40b ac ?=->时,二次函数2()(0)f x ax bx c a =++≠的图像与x 轴有两个交点11(,0)M x 和 22(,0)M x ,1212|||||| M M x x a =-== . 二、二次函数在闭区间上的最值 闭区间上二次函数最值的取得一定是在区间端点或顶点处. 对二次函数2 ()(0)f x ax bx c a =++≠,当0a >时,()f x 在区间[,]p q 上的最大值是M ,最小值是m , 图2-9

二次函数各知识点、考点、典型例题及对应练习(超全)

二次函数 专题一:二次函数的图象与性质 考点1.二次函数图象的对称轴和顶点坐标 二次函数的图象是一条抛物线,它的对称轴是直线x=-2b a ,顶点坐标是(-2b a ,244ac b a -). 例 1 已知,在同一直角坐标系中,反比例函数5 y x =与二次函数22y x x c =-++的图像交于点(1)A m -,. (1)求m 、c 的值; (2)求二次函数图像的对称轴和顶点坐标. 考点2.抛物线与a 、b 、c 的关系 抛物线y=ax 2 +bx+c 中,当a>0时,开口向上,在对称轴x=-2b a 的左侧y 随x 的增大而减小,在对称轴的右侧,y 随x 的增大而增大;当a<0时,开口向下,在对称轴的右侧,y 随x 的增大而增大,在对称轴的右侧,y 随x 的增大而减小. 例2 已知2 y ax bx =+的图象如图1所示,则y ax b =-的图象一定过( ) A .第一、二、三象限 B .第一、二、四象限 C .第二、三、四象限 D .第一、三、四象限 考点3.二次函数的平移 当k>0(k<0)时,抛物线y=ax 2+k (a ≠0)的图象可由抛物线y=ax 2向上(或向下)平移|k|个单位得到;当h>0(h<0)时,抛物线y=a (x-h )2(a ≠0)的图象可由抛物线y=ax 2向右(或向左)平移|h|个单位得到. 例3 把抛物线y=3x 2向上平移2个单位,得到的抛物线是( ) A.y=3(x+2)2 B.y=3(x-2)2 C.y=3x 2+2 D.y=3x 2 -2 图1

专题练习一 1.对于抛物线y=13-x 2+ 103x 163 -,下列说法正确的是( ) A.开口向下,顶点坐标为(5,3) B.开口向上,顶点坐标为(5,3) C.开口向下,顶点坐标为(-5,3) D.开口向上,顶点坐标为(-5,3) 2.若抛物线y=x 2-2x+c 与y 轴的交点为(0,-3),则下列说法不正确的是( ) A.抛物线开口向上 B.抛物线的对称轴是x=1 C.当x=1时,y 的最大值为-4 D.抛物线与x 轴交点为(-1,0),(3,0) 3.将二次函数y=x 2的图象向左平移1个单位长度,再向下平移2个单位长度后,所得图象的函数表达式是________. 4.小明从图2所示的二次函数2 y ax bx c =++的图象中,观察得出了下面五条信息:①0c <;②0abc >;③0a b c -+>;④230a b -=;⑤40c b ->,你认为其中正确信息的个数有_______.(填序号) 专题复习二:二次函数表达式的确定 考点1.根据实际问题模型确定二次函数表达式 例1 如图1,用一段长为30米的篱笆围成一个一边靠墙(墙 的长度不限)的矩形菜园ABCD ,设AB 边长为x 米,则菜园的面积y (单位:米2 )与x (单位:米)的函数关系式为 (不要求写出自变量x 的取值范围). 考点2.根据抛物线上点的坐标确定二次函数表达式 1.若已知抛物线上三点的坐标,则可用一般式:y=ax 2+bx+c (a ≠0); 2.若已知抛物线的顶点坐标或最大(小)值及抛物线上另一个点的坐标,则可用顶点式:y=a (x-h )2+k (a ≠0); 3.若已知抛物线与x 轴的两个交点坐标及另一个点,则可用交点式:y=a (x-x 1)(x-x 2)(a ≠0). 例2 已知抛物线的图象以A (-1,4)为顶点,且过点B (2,-5),求该抛物线的表达式. 图2 A B C D 图1 菜园 墙

相关主题
文本预览
相关文档 最新文档