当前位置:文档之家› 球墨铸铁铸造工艺 (1)

球墨铸铁铸造工艺 (1)

球墨铸铁铸造工艺 (1)
球墨铸铁铸造工艺 (1)

球墨铸铁铸造工艺

1、金属炉料的要求

1.1各种入炉金属炉料必须明确成份,除回炉铁和废钢由炉前配料人员根据炉料状况确定外,螺纹钢不准加入球铁中。其余炉料必须具备化学成份化验单方可使用,同时应保证炉料、合金干燥。1.2防止有密闭容器混入炉料中。

1.3所有炉料应按配料单过称。

2.1球墨铸铁化学成分

2.2球墨铸铁单铸试样力学性能(GB/T1348-1988)

3.熔炼过程化学成分和机械性能控制范围:

3.1熔炼过程化学成分控制范围

3.1.2球墨铸铁熔炼过程化学成分控制范围

3.2机械性能控制范围符合2.2、2.4标准

4.1配料:加料按(2200kg)根据材质和回炉料情况选择下表其中一种配比。(注意:如果是其他增碳剂,则增碳剂加入量增加10%)

4.2加料顺序:

200kg新生铁或回炉料-1/3增碳剂-废钢-1/3增碳剂-废钢-1/3增碳剂-新生铁-回炉料。

增碳剂不准一次加入.防止棚料.

6冶炼要求

6.1加料顺序:新生铁-废钢加满炉-增碳剂-废钢-回炉料。

6.2熔化完毕,温度升到1380℃左右清除铁水表面的渣,取原铁水化学成分。

6.3根据成分标准加合金或其他原料调整化学成分。成份不合格不准出铁水

6.4测温,根据铸件工艺要求要求确定出铁温度,

6.5出铁水前扒渣干净。

6.6小铸件要用0.5-1吨包分包出铁或球化

7球墨铸铁的孕育和球化处理

7.1孕育剂选用75SiFe,加入方法为随流加入。

7.2球化处理材料的技术要求参见下表(有特殊要求的球化剂按专项规定).

7.3球铁处理方法

7.3.1球化处理采取冲入法

7.3.2将球化处理材料按球化剂-孕育剂(1/3的硅铁粒)-0.1%增碳剂-聚渣剂-铁板的顺序层状加入铁水包底的一边,每加入一种材料需扒平,椿实。

7.3.3铁水冲入位置应是放置合金等材料的另一边,防止铁水直接冲击合金。先出2/3铁水球化。

7.3.4球化反应结束后,再出余下的铁水1/3。剩余2/3 Si75孕育剂硅铁粒随在出剩余铁水均匀加入。孕育后必须搅拌铁水。

7.3.5铁水反应平静后,搅拌,扒渣取样,检查是否球化,如球化不良,禁止浇注。

8球化质量的炉前检验

8.1三角试片检验方法:试片截面25mm(宽)X 50mm(高),冷至暗红色,取出淬水,若断口呈银灰色,中间明显缩松,三边凹缩,悬击有钢音,浸水有电石味,则球化良好。

8.2观察铁水表面:铁水表面平静,覆盖一层皱皮,温度下降,出现五颜六色浮皮,则球化良好;表面翻腾严重,氧化皮极少,且集中在中央,则未球化,处理好的铁水,应迅速扒渣浇注,防止球化衰退。

9浇注

9.1准备好泥球。及时堵住漏箱。

9.2铁水浇注温度:根据铸件工艺要求确定

9.3球铁浇注前放0.2%的大块硅铁在铁水表面,进行随流孕育.

9.4连续浇注,不得断流。始终保持浇口杯充满2/3左右。

9.5见冒口上铁水或气孔火焰无力时,慢浇,到冒口浇满或气孔溢出部分铁水后停止浇注.在冒口翻腾时继续浇入铁水,直到冒口平静为止,不允许再浇注完再向冒口内浇铁水.

9.6浇注时保证冒口浇满,盖上保温剂

9.7最后浇注试样。

9.8球墨铸铁要按《球墨铸铁球化率追溯管理规定》进行。

9.9按工艺要求保温。

10.球墨铸铁的出厂检验项目和型式试验项目按下表规定执行。

10.1 试验方法及检验规则

10.1按《GB/T1348-1988》和《GB/T9441-1988》检验机械性能和金相组织。11质量记录:

11.1化学成分原始记录

11.2球化追溯检验记录

11.3配料记录

11.4熔炼浇注记录

11.5熔炼值班记录

11.6机械性能检验记录

11.7金相检验记录

铸件尺寸公差(GBT_6414-1999)

铸件尺寸公差数值(GB/T6414-1999) 表1铸件尺寸公差数值mm 基本尺寸公差等级CT 大于至345678910111213141516 100.180.260.360.520.74 1.0 1.5 2.0 2.8 4.2 10160.200.280.380.540.78 1.1 1.6 2.2 3.0 4.4 16250.220.300.420.580.82 1.2 1.7 2.4 3.2 4.6681012 25400.240.320.460.640.90 1.3 1.8 2.6 3.6 5.0791114 40630.260.360.500.70 1.0 1.4 2.0 2.8 4.0 5.68101216 631000.280.400.560.78 1.1 1.6 2.2 3.2 4.469111418 1001600.300.440.620.88 1.2 1.8 2.5 3.6 5.0710121620 1602500.340.500.70 1.0 1.4 2.0 2.8 4.0 5.6811141822 2504000.400.560.78 1.1 1.6 2.2 3.2 4.4 6.2912162025 4006300.640.90 1.2 1.8 2.6 3.6571014182228 6301000 1.0 1.4 2.0 2.8 4.0681116202532 10001600 1.6 2.2 3.2 4.6791318232937 16002500 2.6 3.8 5.48101521263342 25004000 4.4 6.29121724303849 400063007.010142028354456 63001000011162332405064注:①CT1和CT2没有规定公差值,是为了将来可能要求更精密的公差保留的。 ②CT13至CT16小于或等于16mm的铸件基本尺寸,其公差值需单独标注,可提高2-3级。

典型铸铁件铸造工艺设计与实例

典型铸铁件铸造工艺设计与实例叙述铸造生产中典型铸铁件——气缸类铸件、圆筒形铸件、环形铸件、球墨铸铁曲轴、盖类铸件、箱体及壳体类铸件、阀体及管件、轮形铸件、锅形铸件及平板类铸件的铸造实践。内容涉及材质选用、铸造工艺过程的主要设计、常见主要铸造缺陷及对策等。 第1章气缸类铸件 1.1 低速柴油机气缸体 1.1.1 一般结构及铸造工艺性分析1.1.2 主要技术要求 1.1.3 铸造工艺过程的主要设计1.1.4 常见主要铸造缺陷及对策1.1.5 铸造缺陷的修复 1.2 中速柴油机气缸体 1.2.1 一般结构及铸造工艺性分析1.2.2 主要技术要求 1.2.3 铸造工艺过程的主要设计1.3 空气压缩机气缸体 1.3.1 主要技术要求 1.3.2 铸造工艺过程的主要设计第2章圆筒形铸件 2.1 气缸套 2.1.1 一般结构及铸造工艺性分析2.1.2 工作条件 2.1.3 主要技术要求 2.1.4 铸造工艺过程的主要设计2.1.5 常见主要铸造缺陷及对策2.1.6 大型气缸套的低压铸造2.1.7 气缸套的离心铸造 2.2 冷却水套 2.2.1 一般结构及铸造工艺性分析2.2.2 主要技术要求 2.2.3 铸造工艺过程的主要设计2.2.4 常见主要铸造缺陷及对策2.3 烘缸 2.3.1 结构特点 2.3.2 主要技术要求 2.3.3 铸造工艺过程的主要设计2.4 活塞 2.4.1 结构特点 2.4.2 主要技术要求 2.4.3 铸造工艺过程的主要设计2.4.4 砂衬金属型铸造 第3章环形铸件 3.1 活塞环3.1.1 概述 3.1.2 材质 3.1.3 铸造工艺过程的主要设计 3.2 L形环 3.2.1 L形环的单体铸造 3.2.2 L形环的筒形铸造 第4章球墨铸铁曲轴 4.1 主要结构特点 4.1.1 曲臂与轴颈的连接结构 4.1.2 组合式曲轴 4.2 主要技术要求 4.2.1 材质 4.2.2 铸造缺陷 4.2.3 质量检验 4.2.4 热处理 4.3 铸造工艺过程的主要设计 4.3.1 浇注位置 4.3.2 模样 4.3.3 型砂及造型 4.3.4 浇冒口系统 4.3.5 冷却速度 4.3.6 熔炼、球化处理及浇注 4.4 热处理 4.4.1 退火处理 4.4.2 正火、回火处理 4.4.3 调质(淬火与回火)处理 4.4.4 等温淬火 4.5 常见主要铸造缺陷及对策 4.5.1 球化不良及球化衰退 4.5.2 缩孔及缩松 4.5.3 夹渣 4.5.4 石墨漂浮 4.5.5 皮下气孔 4.6 大型球墨铸铁曲轴的低压铸造 第5章盖类铸件 5.1 柴油机气缸盖 5.1.1 一般结构及铸造工艺性分析 5.1.2 主要技术要求 5.1.3 铸造工艺过程的主要设计 5.2 空气压缩机气缸盖 5.2.1 一般结构及铸造工艺性分析 5.2.2 主要技术要求 5.2.3 铸造工艺过程的主要设计 5.3 其他形式气缸盖 5.3.1 一般结构 5.3.2 主要技术要求 5.3.3 铸造工艺过程的主要设计 第6章箱体及壳体类铸件 6.1 大型链轮箱体 6.2 增压器进气涡壳体 6.3 排气阀壳体 6.4 球墨铸铁机端壳体 6.5 球墨铸铁水泵壳体 6.6 球墨铸铁分配器壳体 第7章阀体及管件 7.1 灰铸铁大型阀体 7.2 灰铸铁大型阀盖 7.3 球墨铸铁阀体 7.4 管件 7.5 球墨铸铁螺纹管件 7.6 球墨铸铁管卡箍 7.6.1 主要技术要求 7.6.2 铸造工艺过程的主要设计 7.6.3 常见主要铸造缺陷及对策 第8章轮形铸件 8.1 飞轮 8.2 调频轮 8.3 中小型轮形铸件 8.4 球墨铸铁轮盘 第9章锅形铸件 9.1 大型碱锅 9.2 中小型锅形铸件 第10章平板类铸件 10.1 大型龙门铣床落地工作台 10.2 大型立式车床工作台 10.3 大型床身中段 10.4 大型底座 中国机械工业出版社精装16开定价:299元

球墨铸铁铸造工艺(1)

球墨铸铁铸造工艺 1、金属炉料的要求 各种入炉金属炉料必须明确成份,除回炉铁和废钢由炉前配料人员根据炉料状况确定外,螺纹钢不准加入球铁中。其余炉料必须具备化学成份化验单方可使用,同时应保证炉料、合金干燥。 防止有密闭容器混入炉料中。 所有炉料应按配料单过称。 球墨铸铁化学成分

球墨铸铁单铸试样力学性能( GB/T1348-1988)

3. 熔炼过程化学成分和机械性能控制范围:熔炼过程化学成分控制范围 3.1.2 球墨铸铁熔炼过程化学成分控制范围

机械性能控制范围符合、标准 配料:加料按(2200kg)根据材质和回炉料情况选择下表其中一种配比。(注 意:如果是其他增碳剂,则增碳剂加入量增加10%) 加料顺序: 200kg 新生铁或回炉料-1/3 增碳剂-废钢-1/3 增碳剂-废钢-1/3 增碳剂- 新生铁- 回炉料。 增碳剂不准一次加入. 防止棚料. 6 冶炼要求加料顺序:新生铁-废钢加满炉-增碳剂-废钢-回炉料。 熔化完毕,温度升到1380℃左右清除铁水表面的渣,取原铁水化学成分

根据成分标准加合金或其他原料调整化学成分。成份不合格不准出铁水 测温,根据铸件工艺要求要求确定出铁温度, 出铁水前扒渣干净。 小铸件要用吨包分包出铁或球化 7 球墨铸铁的孕育和球化处理 孕育剂选用75SiFe, 加入方法为随流加入。 球化处理材料的技术要求参见下表(有特殊要求的球化剂按专项规定). 球铁处理方法 7.3.1 球化处理采取冲入法 7.3.2 将球化处理材料按球化剂-孕育剂(1/3 的硅铁粒)%增碳剂-聚渣剂- 铁板的顺序层状加入铁水包底的一边,每加入一种材料需扒平, 椿实。 7.3.3 铁水冲入位置应是放置合金等材料的另一边,防止铁水直接冲击合 金。先出2/3 铁水球化 7.3.4 球化反应结束后,再出余下的铁水1/3 。剩余2/3 Si75 孕育剂硅铁粒随在出剩余铁水均匀加入。孕育后必须搅拌铁水。

GB6414----铸件尺寸公差

铸件尺寸公差 1.主题内容与适应范围 本标准规定砂型铸造、金属型铸造、压力铸造等工艺方法生产的各种金属及合金铸件的尺寸公差。 2. 引用标准 GB6414 铸件尺寸公差 GB1800 公差与配合总论标准公差与基本偏差 3. 术语 3.1 一般术语 尺寸、极限尺寸、公差、公差带和公差等级的定义按GB1800的规定。 3.2 铸件基本尺寸 铸件图上给定的尺寸、应包括铸件的机械加工余量(见图1、图2),产品零件图如不给出铸件图,则产品零件图上给出的尺寸为加工后的完工尺寸。 图1 机械加工余量与铸件尺寸公差的关系 图2 铸件的极限尺寸

3.3 壁厚 本标准的壁厚是指由铸型与铸型、铸型与型芯、型芯与型芯之间构成的铸壁厚度。 3.4 错型(错箱) 铸件的一部分与另一部分在分型面处相互错开(见图3)。 图3 错型 4. 基本规定 4.1 铸件尺寸公差代号、等级及数值 铸件尺寸公差的代号为CT,公差等级分为16级,各级公差数值列于表1. 4.2 壁厚尺寸公差一般可降一级选用。即图样上的一般尺寸公差为CT10,则壁厚公差为CT11。 4.3 公差带的位置 公差带应以铸件基本尺寸为零线对称设置。即按表1所示公差值的一半为上偏差,另一半取负值为下偏差(见图2)。例如:当选铸件尺寸公差为CT9级时,则铸件基本尺寸50的公差注为±1。 当铸件有倾斜的部位,其尺寸公差应沿倾斜面对称标注(见图4)。公差值按铸件基本尺寸从表1中选取。

图4 倾斜部位的尺寸公差带 4.4 错型(错箱)值 错型必须位于表1规定的公差值之内。其值从表1或表2中选取较小的值,且不得与表1中所列值相加。 注:①本表给定的公差值已包括了分型面,铸型与型芯装配的影响而引起的公差增量,但不包括由于拔模斜度引起的公差增量。 ②CT13至CT16小于或等于16mm的铸件基本尺寸,其公差值需单独标注,可提高2~3级。

我国铸铁铸造业当前发展状况及趋势

我国铸铁铸造业当前发展状况及趋势 20世纪80年代初,铸铁材料发展进入了顶峰期,随后,世界的铸铁产量便出现急剧递减,然而铸铁仍是当今金属材料中应用最为广泛的基础材料,在铸造合金材料中占有重要地位。 由于受能源、劳动力价格和环境因素的影响,西方工业发达国家的铸件产量将会逐渐减少,转而向发展中国家采购一般铸件,但同时又会向发展中国家出口高附加值、高技术含量的优质铸件。当前,世界经济全球化进程的加速为我国铸造业的发展提供了机遇,国际和国内市场对我国铸件的需求呈持续增长的趋势。与此同时,铸铁作为一种传统的金属材料,在其质量、性能和价格等方面正面临着严酷的挑战。抓紧我国铸铁铸造业的结构调整和技术改造;努力提高铸件质量档次,提高和理环境污染的水平,实现铸铁材料的高附加值化是应付未来更加激烈的市场竞争,满足用户多样化需求的主要对策。 一、我国铸铁的生产水平及差距 1.铸造工艺材料及辅料 我国铸造工艺材料如原砂、粘土、煤粉、粘结剂和涂料在品种、性能、质量等方面与工业先进国家之间的差距极大,以致我国的铸件尺寸精度和表面粗糙度比国外差一到两个等级,铸件表面缺陷造成的废品率比国外高几倍。铸造用工艺原料的标准化、系列化和商品化仍是一个亟待解决的问题。 2.铸造工艺过程及铸件质量的检测与控制 我国在铸造工艺过程和铸件质量的检测与控制方面与工业先进国家还存在比较大的差距,主要反映在以下方面:

①铸造工艺过程的检测。 ②铸造工艺过程的优化和控制。 ③铸件质量的检测。而上述检测和控制手段的完善是提升我国铸铁铸造生产水平的一个主要内容。 3.铸造工艺装备 对于铸造生产,国外广泛采用流水线大量生产;高压造型、射压造型、静压造型和气冲造型;造芯全部用壳芯和冷、热芯盒工艺。国内除汽车等行业中少数厂家采用半自动、自动化流水线大量生产外,多数厂家仍采用较落后的铸造工艺装备。 二、铸铁熔炼技术 1.冲天炉技术 冲天炉居铸铁熔炼设备之首,至今仍担负着80%以上铸铁件的熔炼任务。70年代以后,符合我国特点的炉型和熔炼技术已逐渐完善和成熟,形成了独具特色的多排小风口和两排大间距冲天炉系列。在操作技术上,从一度追求低焦耗到重视铁液质量,进而讲求提高技术、经济、劳动卫个和环境保护的综合指标,逐步开发应用了从炉料处理、修炉、烘炉到配加料、鼓风。炉况控制、铁液检验等全过程的操作技术。在较短的历程中,我们在冲天炉理论研究、炉子结构、修炉材料、送风系统、热能利用、强化底作燃烧、炉内气氛调整控制、铁液炉前检验、消烟除尘、非焦炭化铁、配料及熔炼过程计算机优化控制等诸多方自都取得了可喜的成绩。 冲火炉的发展是围绕着提高性能和生产率,降低消耗,改善操作,减少污染进行的。冲天炉性能主要体现在炭的燃烧、炉料的加热和冶金过程三方面。随着铸铁生产批量的扩大和对铸造生

灰铸铁的铸造工艺

灰铸铁的铸造工艺-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

灰铸铁的铸造工艺 铸造业就说“三好”即:好铁水、好型砂、好工艺。铸造工艺在铸件的制造上是和铁水、型砂并列的而做出铸件,铸造工艺是研究决定其流入的路径、方法的技术。 铸型分为: 浇口:把铁水从铁水包注入铸型的入口。往往为使浇注量均匀,除去铁水中的夹杂物,设有集渣浇 横浇道:指铁水从直浇道向型腔流道的水平部分。 内浇口:指铁水从横浇道进入型腔的部位。铸造俗语叫“堰”,是工艺上的重要部分。 出气孔:是随着铁水的充型把型腔内部的空气向外排放的孔道,如果型砂的透气性合适,一般是没 冒口:是把铁水中的夹杂物和铸型中的杂物向外排出口,但是由于铸件冷却收缩造成体积不足起补 铸造工艺的基本要点 铸造工艺是为了使浇注顺利进行,得到良好铸件的技术,平稳且快是加山延太郎博士的名言,即(1)关于铸型的上下:铸件的切削加工面尽量在下箱里,因下部产生缩孔少,材质致密。(2)浇注方式:有从铸件的上部浇入的顶注式和从下部、中部浇注的底注式。顶注式铸型容易(3)内浇口的位置:由于流入型腔内的铁水急速冷却成固体,如果在厚壁部分开内浇口铁水进浇口的数量、形状而决定其位置。 (4)内浇口的种类: 主要为三角内浇口和梯形内浇口。三角内浇口容易做,梯形内浇口能防止渣子混入铸型。(5)直浇口、横浇口、内浇口的断面积比。 按西德R·LEHMANN博士的意见,直浇口为A,横浇口为B,内浇口为C时,A ∶B ∶C=3.6 ∶4.0 ∶虽然关于这个比例是否妥当,有各种不同意见,但说明一下这个比例的思路是:首先铁水通过3间稍长,这期间比重轻的夹杂物可以上浮,就不能从内浇口进入铸件内部。这就是这种比例的要点 浇注系统的设计 浇注系统设计上的一个要点

铸件尺寸公差与机械加工余量

铸件尺寸公差与机械加工余量 引言 对铸件规定的公差可以确定铸造方法因此在设计完成或合同签订之前建议采购方应与铸造厂取得 联系以商定 铸件设计和所要求的精度机械加工要求铸造方法所要生产的铸件数量所采用的铸造设备各种特殊 要求例如基准目标系统个别的尺寸公差几何公差圆角半径公差以及个别的机械 加工余量是否有更适合该铸件的其他标准由于铸件的尺寸精度与生产因素有关因此对下列生产方式在附录中介绍了用不同方法和不同金属 所能达到的公差等级 大批和大量生产此时可通过对铸造设备的改进调整和维护以获得精密的公差 小批量生产和单件生产 1. 范围 本标准规定了铸件的尺寸公差等级和要求的机械加工余量等级。 本标准适用于有各种铸造方法生产的各类金属及其合金铸件的尺寸。 本标准既适用于在图样上给出的一般公差和/或个别要求的机械加工余量。 本公差体系用于铸造厂家提供墨阳或金属型装备,或承担模样或金属型装备检验责任的场合。 2. 铸件基本尺寸 机械加工前的毛坯铸件的尺寸,包括必要的机械加工余量。 3. 在图样上的标注 3.1.铸件公差的标注 如果需要在基本尺寸后面标注个别公差 3.2.机械加工余量的标注 应在图样上标出需机械加工的表面和要求的机械加工余量值并在括号内标出要求的机械加工余量 等级当制造模样或金属型装备时应考虑这些要求 要求的机械加工余量应按下列方式标注在图样上

要求的机械加工余量在特定表面上的标注 铸件尺寸公差 亡堆討■n貳卒英-hmm WN'茁卑後CT" xj-全12 3 4 5 e7*9 101112 1費U冲1阴 —Iff tk]3 0.1R tm 0.36EL 52 0.川1 1.& 2 ZB 1.2 ———— 10 le Oil (LH 0.2 a 2& XM Z O L7B LI l.tJ 3.2 iO 4.4 ———— 16 2S Dull (LIS 0H2£tX30 CL 42X5B Q.腔t2 L7 2.412 46 6g 10 12 25 4?0.12 ft K 山24ex 33Ck聽[ktil Q.9 1.3 1.8 2.6 3.fl & 79 11 14 40 63 0L13a]?0.26 0.紀0.50[k70 1 lU 3 2*8 彳5,6 S n 1£Ifl 阳100 XH (k倉 D 心OUO W X78 bl L6 £.3 3.2 4.4g ?n U 14 100 LEO O L JS Q.22 0.30 & 440.62Z L2bS 2 5&e5r10 121€£0 M Z利■=0i24 0.34 Qi50 0.72 1 2 £84ft 11 u 1?22 £504W ———(k 400i£60i7e 1. 1L6 2,2 3,24,46,2 '& 12 16 20 £5 40D 6昭————仏4(kU b2 I. ft 2.6 缶ti 5 7 IQ14la 22 2fl 琥。 1 m————0.72 1 l?d 2,8 4fl fl 11 Ifi 20 2535 1 WQ 1 ———0i?0M 1.6 3.2 4. 67 8 13 IE 23 3fl 37 1600 2 500 X8 5, 4?10 1521 2fl 闘42 £500 4 000 6.29 L21721ao 魏19 A 000 ? 3007 10 LI 20 關35 445€esoQ 10 00ft ====-11 11 16 2332n 50 fil 1)在尋幼CT1YT15屮时笙駅弟用陶级左莖t见凱丁臣人 2)丰扌F-不咼过lEmm的扯寸*不裳用CTIACT唐的一般梵差.对「2些尺寸屁标浊4*■別公差* 盼薯域灯班仅血用:一殷处芷观尿勺CT15的咗界, 在等级CT1~CT15中对壁厚采用粗一级公差。

铸件尺寸公差-ISO-8062-3(2007)-中文

国际标准ISO 8062-3:2007(E) 产品几何量技术规(GPS)-模制零件的尺寸和几何公差 第3部分: 铸件的一般尺寸、几何公差和机械加工余量 1 围 本国际标准ISO 8062的本部分,规定了符合ISO 8062-2的,交付给客户的铸件的一般尺寸和几何公差,以及机械加工余量的等级。它适用于为各种铸件制造工艺所生产的所有铸造金属及其合金的铸件所规定的尺寸和几何形状公差,以及所要求的加工余量。 ISO 8062的本部分适用于一般尺寸公差和一般的几何公差(在工程图明细表之中或近旁所标明的),除了另有说明,以及在图纸上特别提到的,在第9条中的参考条目之一的情况之外。 ISO 8062的本部分所涵盖的尺寸公差,都是用于线性尺寸的公差。 ISO 8062的本部分所涵盖的几何公差(形位公差)是指: —直线度公差, —平面度, —圆度, —并行度, —垂直度, —对称度,以及 —同轴度。 ISO 8062的本部分可用于个别指标公差值的选定。 注:ISO 8062的本部分不适用于采用非标注尺寸的三维计算机辅助设计(3D CAD)模型。 2 参考标准 本文件的使用,以下引用文件是必不可少的。对于注明日期的引用标准,仅采用所引用的版本。对于未标日期的参考标准,采用所引用文件的最新本版(包括任何修正版)。 ISO 286-1:1988, ISO 565极限与配合—第一部分:公差、偏差与配合的基础 ISO 1101:2004,产品几何量技术规(GPS) —几何公差—形状、方向、位置与跳动公差 1

ISO 1302:2002, 产品几何量技术规(GPS) —在产品技术文件中表面特征的表示 ISO 5459:—1), 产品几何量技术规(GPS) —几何公差—几何图形公差的基准和基准系统 ISO 8062-1:2007, 产品几何量技术规(GPS) —模制零件的尺寸和几何公差—第一部分:词汇 ISO/TS 8062-2:—2), 产品几何量技术规(GPS) —模制零件的尺寸和几何公差—第二部分:技术要求ISO 10135:—3), 产品几何量技术规(GPS) —技术产品文件(TPD)中模制零件的图纸标注 ISO 10579:1993, 技术图纸—尺寸与公差—非刚性零件 ISO 14405:—4), 产品几何量技术规(GPS) —尺寸公差—线性尺寸 3 术语和定义 ISO 8062-1、ISO 1101与ISO 5459 中所规定的术语和定义适用于本文件的目的。 4 缩略语 缩略语规定于表1。 2 5 公差等级

灰铸铁的铸造工艺

灰铸铁的铸造工艺 铸造业就说“三好”即: 好铁水、好型砂、好工艺。铸造工艺在铸件的制造上是和铁水、型砂并列的三大要素之一,若轻视它,绝对做不出好铸件。在砂型中用模型做出铸型,使铁水流入型腔而做出铸件,铸造工艺是研究决定其流入的路径、方法的技术。 铸型分为: 浇口: 把铁水从铁水包注入铸型的入口。往往为使浇注量均匀,除去铁水中的夹杂物,设有集渣浇口杯。浇口杯下是直浇道。 横浇道: 指铁水从直浇道向型腔流道的水平部分。 内浇口: 指铁水从横浇道进入型腔的部位。铸造俗语叫“堰”,是工艺上的重要部分。 出气孔: 是随着铁水的充型把型腔内部的空气向外排放的孔道,如果型砂的透气性合适,一般是没有必要的。 冒口: 是把铁水中的夹杂物和铸型中的杂物向外排出口,但是由于铸件冷却收缩造成体积不足起补缩作用时叫补缩冒口,这种冒口粗大。 铸造工艺的基本要点

铸造工艺是为了使浇注顺利进行,得到良好铸件的技术,平稳且快是加山延太郎博士的名言,即浇注时间应尽量短,而且在型腔内部又不产生紊乱那样去浇注,其要点如下。 (1)关于铸型的上下: 铸件的切削加工面尽量在下箱里,因下部产生缩孔少,材质致密。 (2)浇注方式: 有从铸件的上部浇入的顶注式和从下部、中部浇注的底注式。 顶注式铸型容易产生冲砂而不怎么使用。 (3)内浇口的位置: 由于流入型腔内的铁水急速冷却成固体,如果在厚壁部分开内浇口铁水进不到薄壁部分,在大铸件时,内浇口若小了通过的铁水就快,内浇口附近要冲砂。要考虑内浇口的数量、形状而决定其位置。 (4)内浇口的种类: 主要为三角内浇口和梯形内浇口。三角内浇口容易做,梯形内浇口能防止渣子混入铸型。 (5)直浇口、横浇口、内浇口的断面积比。 按西德R·LEHMANN博士的意见,直浇口为A,横浇口为B,内浇口为C 时,A∶B∶C= 3.6∶ 4.0∶ 2.0。 虽然关于这个比例是否妥当,有各种不同意见,但说明一下这个比例的思路是:

精密铸造公差

公差标准TOLERANCE ●铸件线性公差Casting Linear Tolerance:可按照美国ICI General Tolerance, 德国VDG P690 D1 或ISO8062 美国熔模铸造线性尺寸公差 USA Investment Casting Linear Tolerance (ICI, USA)铸件基本尺寸Nominal Dimension 一般公差 General 特别公差 Premium inch mm inch mm inch mm up to 1/2 ≤12.70 ±0.007 ±0.18 ±0.003 ±0.08 up to 1 ≤25.40 ±0.010 ±0.25 ±0.005 ±0.13 up to 2 ≤50.80 ±0.013 ±0.33 ±0.008 ±0.20 up to 3 ≤76.20 ±0.016 ±0.41 ±0.010 ±0.25 up to 4 ≤101.60 ±0.019 ±0.48 ±0.012 ±0.30 up to 5 ≤127.00 ±0.022 ±0.56 ±0.014 ±0.36 up to 6 ≤152.40 ±0.025 ±0.64 ±0.015 ±0.38 up to 7 ≤177.80 ±0.028 ±0.71 ±0.016 ±0.41 up to 8 ≤203.20 ±0.031 ±0.79 ±0.017 ±0.43 up to 9 ≤228.60 ±0.034 ±0.86 ±0.018 ±0.46 up to 10 ≤254.00 ±0.037 ±0.94 ±0.019 ±0.48 一般尺寸公差适用于批量生产的熔模铸件尺寸。通常一英寸以内按+ 0.010”,每增加一英寸公差增加+ 0.005"。 特别公差需要额外增加费用采取辅助措施才能达到,需要与供方协商确定,只适用于公差要求严格的个别尺寸。Normal tolerances can be expected for production repeatability of all casting dimensions. As a general rule, normal linear tolerance on an investment casting can be + .010" for up to 1", and + .005" for each additional inch thereafter. Premium tolerances require additional operations at extra cost and achieve closer tolerances on selected dimensions only. Premium tolerances should be determined during consultation with our engineer. ISO铸件尺寸公差标准ISO Linear Dimension Casting Tolerances(GB/T6414 eqv ISO8062) 基本尺寸(mm) Nominal dimension 铸件线性尺寸公差等级(GB/T6414) Linear dimension Tolerances(ISO8062) > ≤ CT4 CT5 CT6 CT7 CT8 — 10 0.26 ±0.13 0.36 ±0.180.52 ±0.260.74 ±0.37 1.0 ±0.5 10 16 0.28 ±0.14 0.38 ±0.190.54 ±0.270.78 ±0.39 1.1 ±0.55 16 25 0.30 ±0.15 0.42 ±0.210.58 ±0.290.82 ±0.44 1.2 ±0.6 25 40 0.32 ±0.16 0.46 ±0.230.64 ±0.320.90 ±0.45 1.3 ±0.65 40 63 0.36 ±0.18 0.50 ±0.250.70 ±0.35 1.0 ±0.50 1.4 ±0.70 63 100 0.40 ±0.20 0.56 ±0.280.78 ±0.39 1.1 ±0.55 1.6 ±0.80 100 160 0.44 ±0.22 0.62 ±0.310.88 ±0.44 1.2 ±0.60 1.8 ±0.90 160 250 0.50 ±0.25 0.70 ±0.35 1.00 ±0.50 1.4 ±0.70 2.0 ±1.0 250 400 0.56 ±0.28 0.78 ±0.39 1.1 ±0.55 1.6 ±0.80 2.2 ±1.1 400 630 0.64 ±0.32 0.90 ±0.45 1.2 ±0.60 1.8 ±0.90 2.6 ±1.3 ■一般级别公差 General Level ■ 特别公差 Premium Level 根据铸件最大外廓尺寸选取合适的公差等级,铸件壁厚公差应该比正常值宽一个等级。 Select tolerance level according to maximum outline dimension. Looser level should be selected for wall thickness. 铸造倒角和转接园角尺寸一般不做检查,参考公差为:6毫米以下±0.6-1.0,每增加6毫米公差增加±0.2。 Unless otherwise specified the chamfer and radius of corners needn’t inspect generally, Reference tolerance may be ±0.6-1.0 for dimensions up to 6mm , and + 0.2 for each additional 6mm.

铸造工艺流程介绍

铸造生产的工艺流程 铸造生产是一个复杂的多工序组合的工艺过程,它包括以下主要工序: 1)生产工艺准备,根据要生产的零件图、生产批量和交货期限,制定生产工艺方案和工艺文件,绘制铸 造工艺图; 2)生产准备,包括准备熔化用材料、造型制芯用材料和模样、芯盒、砂箱等工艺装备; 3)造型与制芯; 4)熔化与浇注; 5)落砂清理与铸件检验等主要工序。 成形原理 铸造生产是将金属加热熔化,使其具有流动性,然后浇入到具有一定形状的铸型型腔中,在重力或外力(压力、离心力、电磁力等)的作用下充满型腔,冷却并凝固成铸件(或零件)的一种金属成形方法。 图1铸造成形过程铸件一般作为毛坯经切削加工成为零件。但也有许多铸件无需切削加工就能满足零件的设计精度和表面粗糙度要求,直接作为零件使用。 型砂的性能及组成 1、型砂的性能 型砂(含芯砂)的主要性能要求有强度、透气性、耐火度、退让性、流动性、紧实率和溃散性等。 2、型砂的组成 型砂由原砂、粘接剂和附加物组成。铸造用原砂要求含泥量少、颗粒均匀、形状为圆形和多角形的海砂、河砂或山砂等。铸造用粘接剂有粘土(普通粘土和膨润土)、水玻璃砂、树脂、合脂油和植物油等,分别称为粘土砂,水玻璃砂、树脂砂、合脂油砂和植物油砂等。为了进一步提高型(芯)砂的某些性能,往往要在型(芯)砂中加入一些附加物,如煤份、锯末、纸浆等。型砂结构,如图2所示 图2型砂结构示意图 工艺特点 铸造是生产零件毛坯的主要方法之一,尤其对于有些脆性金属或合金材料(如各种铸铁件、有色合金铸件等)的零件毛坯,铸造几乎是唯一的加工方法。与其它加工方法相比,铸造工艺具有以下特点: 1)铸件可以不受金属材料、尺寸大小和重量的限制。铸件材料可以是各种铸铁、铸钢、铝合金、铜合金、镁合金、钛合金、锌合金和各种特殊合金材料;铸件可以小至几克,大到数百吨;铸件壁厚可以从0. 5毫米到1米左右;铸件长度可以从几毫米到十几米。 2)铸造可以生产各种形状复杂的毛坯,特别适用于生产具有复杂内腔的零件毛坯,如各种箱体、缸体、叶片、叶轮等。 3)铸件的形状和大小可以与零件很接近,既节约金属材料,又省切削加工工时。 4)铸件一般使用的原材料来源广、铸件成本低。 5)铸造工艺灵活,生产率高,既可以手工生产,也可以机械化生产。 铸件的手工造型 手工造型的主要方法 砂型铸造分为手工造型(制芯)和机器造型(制芯)。手工造型是指造型和制芯的主要工作均由手工

球墨铸铁铸造工艺修订稿

球墨铸铁铸造工艺 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

球墨铸铁铸造工艺 1、金属炉料的要求 各种入炉金属炉料必须明确成份,除回炉铁和废钢由炉前配料人员根据炉料状况确定外,螺纹钢不准加入球铁中。其余炉料必须具备化学成份化验单方可使用,同时应保证炉料、合金干燥。 防止有密闭容器混入炉料中。 所有炉料应按配料单过称。 球墨铸铁化学成分 球墨铸铁单铸试样力学性能(GB/T1348-1988) 3.熔炼过程化学成分和机械性能控制范围: 熔炼过程化学成分控制范围 3.1.2球墨铸铁熔炼过程化学成分控制范围

机械性能控制范围符合、标准 配料:加料按(2200kg )根据材质和回炉料情况选择下表其中一种配比。(注意:如果是其他增碳剂,则增碳剂加入量增加10%) 加料顺序: 200kg 新生铁或回炉料-1/3增碳剂-废钢-1/3增碳剂-废钢-1/3增碳剂-新生铁-回炉料。 增碳剂不准一次加入.防止棚料. 6冶炼要求 加料顺序:新生铁-废钢加满炉-增碳剂 -废钢-回炉料。 熔化完毕,温度升到1380℃左右清除铁水表面的渣,取原铁水化学成分。 根据成分标准加合金或其他原料调整化学成分。成份不合格不准出铁水 测温,根据铸件工艺要求要求确定出铁温度, 出铁水前扒渣干净。 小铸件要用吨包分包出铁或球化 7球墨铸铁的孕育和球化处理 孕育剂选用75SiFe,加入方法为随流加入。 球化处理材料的技术要求参见下表(有特殊要求的球化剂按专项规定). 球铁处理方法 7.3.1球化处理采取冲入法 7.3.2将球化处理材料按球化剂-孕育剂(1/3的硅铁粒)%增碳剂-聚渣剂-铁板的顺序层状加入铁水包底的一边,每加入一种材料需扒平,椿实。 7.3.3铁水冲入位置应是放置合金等材料的另一边,防止铁水直接冲击合金。先出2/3铁水球化。 7.3.4球化反应结束后,再出余下的铁水1/3。剩余2/3 Si75孕育剂硅铁粒随在出剩余铁水均匀加入。孕育后必须搅拌铁水。

铸件尺寸公差

加工最终表面 机械加工余量 铸件尺寸公差铸件基本尺寸 铸件基本尺寸 铸件基本尺寸铸件基本尺寸 铸件尺寸公差 1. 主题内容与适应范围 本标准规定砂型铸造、金属型铸造、压力铸造等工艺方法生产的各种金属及合金铸件的尺寸公差。 2. 引用标准 GB6414 铸件尺寸公差 GB1800 公差与配合 总论 标准公差与基本偏差 3. 术语 3.1 一般术语 尺寸、极限尺寸、公差、公差带和公差等级的定义按GB1800的规定。 3.2 铸件基本尺寸 铸件图上给定的尺寸、应包括铸件的机械加工余量(见图1、图2),产品零件图如不给出铸件图,则产品零件图上给出的尺寸为加工后的完工尺寸。 图1 机械加工余量与铸件尺寸公差的关系 图2 铸件的极限尺寸

3.3 壁厚 本标准的壁厚是指由铸型与铸型、铸型与型芯、型芯与型芯之间构成的铸壁厚度。 3.4 错型(错箱) 铸件的一部分与另一部分在分型面处相互错开(见图3)。 错型 错型 错型 图3 错型 4. 基本规定 4.1 铸件尺寸公差代号、等级及数值 铸件尺寸公差的代号为CT,公差等级分为16级,各级公差数值列于表1. 4.2 壁厚尺寸公差一般可降一级选用。即图样上的一般尺寸公差为CT10,则壁厚公差为CT11。 4.3 公差带的位置 公差带应以铸件基本尺寸为零线对称设置。即按表1所示公差值的一半为上偏差,另一半取负值为下偏差(见图2)。例如:当选铸件尺寸公差为CT9级时,则铸件基本尺寸50的公差注为±1。 当铸件有倾斜的部位,其尺寸公差应沿倾斜面对称标注(见图4)。公差值按铸件基本尺寸从表1中选取。

铸件尺寸公差带 角度 图4 倾斜部位的尺寸公差带 4.4 错型(错箱)值 错型必须位于表1规定的公差值之内。其值从表1或表2中选取较小的值, 且不得与表1中所列值相加。 表1 铸件尺寸公差数值mm 铸件基本尺寸公差等级 大于至 3 4 5 6 7 8 9 10 11 12 13 14 15 16 — 3 0.14 0.20 0.28 0.40 0.56 0.80 1.2 1.6 1.6 1.6 2.3 ——— 3 6 0.16 0.2 4 0.32 0.48 0.64 0.90 1.3 1.8 2. 5 2.5 2.5 ——— 6 10 0.18 0.26 0.36 0.52 0.74 1.0 1.5 2.0 2.8 4.2 4.2 ———10 16 0.20 0.28 0.38 0.54 0.78 1.1 1.6 2.2 3.0 4.4 5.0 ———16 25 0.22 0.30 0.42 0.58 0.82 1.2 1. 7 2.4 3.2 4.6 6.0 8 10 12 25 40 0.24 0.32 0.46 0.64 0.90 1.3 1.8 2.6 3.6 5.0 7.0 9 11 14 40 63 0.26 0.36 0.50 0.70 1.0 1.4 2.0 2.8 4.0 5.6 8.0 10 12 16 63 100 0.28 0.40 0.56 0.78 1.1 1.6 2.2 3.2 4.4 6.0 9.0 11 14 18 100 160 0.30 0.44 0.62 0.88 1.2 1.8 2.5 3.6 5.0 7.0 10 12 16 20 160 250 0.34 0.50 0.70 1.0 1.4 2.0 2.8 4.0 5.6 8.0 11 14 18 22 250 400 0.40 0.56 0.78 1.1 1.6 2.2 3.2 4.4 6.2 9.0 12 16 20 25 400 630 —0.64 0.90 1.2 1.8 2.6 3.6 5.0 7.0 10 14 18 22 28 630 1000 —— 1.0 1.4 2.0 2.8 4.0 6.0 8.0 11 16 20 25 32 1000 1600 ——— 1.6 2.2 3.2 4.6 7.0 9.0 13 18 23 29 37 1600 2500 ———— 2.6 3.8 5.4 8.0 10 15 21 26 33 42 2500 4000 ————— 4.4 6.2 9.0 12 17 24 30 38 49 注:①本表给定的公差值已包括了分型面,铸型与型芯装配的影响而引起的公 差增量,但不包括由于拔模斜度引起的公差增量。 ②CT13至CT16小于或等于16mm的铸件基本尺寸,其公差值需单独标 注,可提高2~3级。

铸铁件常见铸造缺陷的防止方法

铸铁件常见铸造缺陷的防止方法 铸铁件经常会发生各种不同的铸造缺陷,如何防止这些缺陷发生,一直是铸件生产厂关注的问题。本文介绍了笔者在这方面的一些认识和实践经验。 1 气孔 特征:铸件中的气孔是指在铸件内部,表面或接近表面处存在的大小不等的光滑孔洞。孔壁往往还带有氧化色泽,由于气体的来源和形成原因不同,气孔的表现形式也各不相同,有侵入性气孔,析出性气孔,皮下气孔等。 1.1 侵入性气孔 这种气孔的数量较少,尺寸较大,多产生在铸件外表面某些部位,呈梨形或圆球形。主要是由于铸型或砂芯产生的气体侵入金属液的未能逸出而造成。 防止措施: (1)减少发气量:控制型砂或芯砂中发气物质的含量,湿型砂的含水量不能过高,造型与修模时脱模剂和水用量不宜过多。砂芯要保证烘干,烘干后的砂芯不宜存放太长时间,隔天使用的砂芯在使用前要回炉烘干,以防砂芯吸潮,不使用受潮、生锈的冷铁和芯撑等。 (2)改善型砂的透气性,选择合适的型空紧实度,合理安排出气眼位置以利排气,确保砂芯通气孔道畅通。 (3)适当提高浇注温度,开排气孔和排气冒口等,以利于侵入金属液的气体上浮排出。

1.2 析出性气孔 这种气孔多而分散,一般位于铸件表面往往同批浇注的铸件大部分都发现有。这种气孔主要是由于在熔炼过程中,金属液吸收的气体在凝固前未能全部析出,便在铸件中形成许多分散的小气孔。 防止措施: (1)采用洁净干燥的炉料,限制含气量较多的炉料使用。 (2)确保“三干”:即出铁槽、出铁口、过桥要彻底烘干。 (3)浇包要烘干,使用前最好用铁液烫过,包中有铁液,一定要在铁液表面放覆盖剂。 (4)各种添加剂(球化剂、孕育剂、覆盖剂)一不定期要保持干燥,湿度高的时候,要烘干后才能使用。 1.3 皮下气孔 这种气孔主要出现在铸件的表层皮下2~3mm处,直径为1~3mm左右。而且数量较多,铸件经热处理或粗加工去除外皮后,就会清晰地显露出来。 防止措施; (1)适当提高浇注温度,严格控制各种添加剂的加入量,尽可能缩短浇注时间。

典型铸铁件铸造工艺设计与实例

典型铸铁件铸造工艺设计与实例 叙述铸造生产中典型铸铁件一一气缸类铸件、圆筒形铸件、环形铸件、球墨铸铁曲轴、盖类铸件、箱体及壳体类铸件、阀体及管件、轮形铸件、锅形铸件及平板类铸件的铸造实践。内容涉及材质选用、铸造工艺过程的主要设计、常见主要铸造缺陷及对策等。 第1章气缸类铸件 1.1低速柴油机气缸体 1.1.1 一般结构及铸造工艺性分析1.1.2 主要技术要求 1.1.3 铸造工艺过程的主要设计1.1.4 常见主要铸造缺陷及对策1.1.5 铸造缺陷的修复 1.2中速柴油机气缸体 1.2.1 一般结构及铸造工艺性分析1.2.2 主要技术要求 1.2.3 铸造工艺过程的主要设计1.3空气压缩机气缸体 1.3.1 主要技术要求 1.3.2 铸造工艺过程的主要设计第2章圆筒形铸件 2.1 气缸套 2.1.1 一般结构及铸造工艺性分析2.1.2 工作条件 2.1.3 主要技术要求 2.1.4 铸造工艺过程的主要设计2.1.5 常见主要铸造缺陷及对策2.1.6 大型气缸套的低压铸造 2.1.7 气缸套的离心铸造 2.2冷却水套 2.2.1 一般结构及铸造工艺性分析2.2.2 主要技术要求 2.2.3 铸造工艺过程的主要设计2.2.4 常见主要铸造缺陷及对策2.3烘缸 2.3.1 结构特点 2.3.2 主要技术要求2.3.3 铸造工艺过程的主要设计 2.4活塞 2.4.1 结构特点 2.4.2 主要技术要求 2.4.3 铸造工艺过程的主要设计 2.4.4 砂衬金属型铸造 第3章环形铸件 3.1活塞环 3.1.1 概述 3.1.2 材质 3.1.3 铸造工艺过程的主要设计 3.2 L形环 3.2.1 L形环的单体铸造 3.2.2 L形环的筒形铸造 第4章球墨铸铁曲轴 4.1 主要结构特点 4.1.1曲臂与轴颈的连接结构 4.1.2 组合式曲轴 4.2主要技术要求 4.2.1 材质 4.2.2 铸造缺陷 4.2.3 质量检验 4.2.4 热处理 4.3铸造工艺过程的主要设计 4.3.1 浇注位置 4.3.2 模样 4.3.3 型砂及造型 4.3.4 浇冒口系统 4.3.5 冷却速度 4.3.6 熔炼、球化处理及浇注 4.4 热处理 4.4.1 退火处理 4.4.2 正火、回火处理 4.4.3 调质(淬火与回火)处理 4.4.4 等温淬火 4.5常见主要铸造缺陷及对策 4.5.1 球化不良及球化衰退 4.5.2 缩孔及缩松 4.5.3 夹渣 4.5.4 石墨漂浮 4.5.5 皮下气孔 4.6大型球墨铸铁曲轴的低压铸造 第5章盖类铸件 5.1柴油机气缸盖 5.1.1 一般结构及铸造工艺性分析 5.1.2 主要技术要求 5.1.3铸造工艺过程的主要设计 5.2空气压缩机气缸盖 5.2.1 一般结构及铸造工艺性分析 5.2.2 主要技术要求 5.2.3 铸造工艺过程的主要设计 5.3其他形式气缸盖 5.3.1 一般结构 5.3.2 主要技术要求 5.3.3铸造工艺过程的主要设计 第6章箱体及壳体类铸件 6.1大型链轮箱体 6.2增压器进气涡壳体 6.3排气阀壳体 6.4球墨铸铁机端壳体 6.5球墨铸铁水泵壳体 6.6球墨铸铁分配器壳体

球墨铸铁连杆铸造工艺设计

攀枝花学院 Panzhihua University 铸造工艺课程设计说明书 设计题目:球墨铸铁连杆铸造工艺设计姓名:xxxxx 院系:材料工程学院 专业:材料成型及控制工程 学号:xxxxxxx 指导老师:xxx 时间:xxxxx

摘要 首先,根据提供的零件图获取零件的技术要求、材料组成、结构特点、生产条件、生产批量及性能要求。然后,对零件结构的铸造工艺性进行分析,找出可能存在的结构问题提出改进措施或者预防缺陷的措施:根据零件的结构特点、技术要求、生产批量、生产条件选择铸造和造型方法。由零件的结构特点提出多种浇注和分型方案,综合对比分析,选择最为理想的浇注位置及分型面。再次根据铸造工艺方案和零件的特点,选用适宜的工艺参数,设计铸件的浇注系统并绘制铸造工艺图。 关键词:球墨铸铁,铸造工艺,浇注系统,工艺参数

目录 摘要 (Ⅰ) 第1章绪论 (1) 1.1课程设计的意义 (1) 1.2设计题目的提出 (1) 第2章材料的确定 (3) 第3章结构工艺分析 (4) 第4章工艺方案的设计 (5) 4.1铸型种类及方法确定 (5) 4.2型芯结构及制造 (5) 4.3分型面的筛选 (6) 4.4铸造位置及浇注口的确定 (6) 第5章铸件工艺参数确定 (7) 5.1加工余量 (7) 5.2起模斜度及圆角确定 (8) 5.3收缩量选择 (8) 5.4型芯及型芯头选择 (8) 第6章浇注系统的拟定 (10) 6.1系统作用与结构分析 (10) 6.2横浇道及其结构 (10) 6.3各组元截面尺寸确定 (10) 6.4 系统引注位置的选用 (12) 6.5冒口及尺寸确定 (12) 附录 (14) 总结 (16) 致谢 (17) 参考文献 (20)

相关主题
文本预览
相关文档 最新文档