当前位置:文档之家› 推理与证明章末分层突破 学案 2017-2018学年高中数学 苏教版 选修2-2

推理与证明章末分层突破 学案 2017-2018学年高中数学 苏教版 选修2-2

推理与证明章末分层突破 学案 2017-2018学年高中数学 苏教版 选修2-2
推理与证明章末分层突破 学案 2017-2018学年高中数学 苏教版 选修2-2

第2章推理与证明章末分层突破

[自我校对]

①由部分到整体,由个别到一般②类比推理③演绎推理

④由一般到特殊⑤综合法⑥执果索因⑦反证法⑧数学归纳法

_______________________________________________

_______________________________________________

_______________________________________________

_______________________________________________

_______________________________________________

1.

2.类比推理的特点及一般步骤

(2016·温州月考)下面四个图案都是由小正三角形构成的,设第n 个

图形中有n 个正三角形,且所有小正三角形边上黑点的总数为f (n ).

图2-1

(1)求f (2),f (3),f (4),f (5);

(2)找出f (n )与f (n +1)的关系,并求出f (n )的表达式.

【精彩点拨】 (1)根据图案推导计算f (2),f (3),f (4),f (5)及它们之间的关系.(2)利用(1)推导出的关系归纳出f (n )与f (n +1)的关系,然后再求f (n )的表达式.

【规范解答】 (1)由题意有f (1)=3,f (2)=f (1)+3+3×2=12,f (3)=f (2)+3+3×4=27,f (4)=f (3)+3+3×6=48,f (5)=f (4)+3+3×8=75.

(2)由题意及(1)知,f (n +1)=f (n )+3+3×2n =f (n )+6n +3, 即f (n +1)-f (n )=6n +3,所以f (2)-f (1)=6×1+3,

f (3)-f (2)=6×2+3,f (4)-f (3)=6×3+3,…, f (n )-f (n -1)=6×(n -1)+3,

将上面n -1个式子相加,得

f (n )-f (1)=6[1+2+3+…+(n -1)]+3(n -1)

=6× 1+n -1 n -1 2+3(n -1)=3n 2

-3,

又f (1)=3,所以f (n )=3n 2

. [再练一题]

1.已知函数y =sin 4x +cos 4

x (x ∈R )的值域是????

??12,1,则

(1)函数y =sin 6

x +cos 6

x (x ∈R )的值域是___________________; (2)类比上述结论,函数y =sin 2n

x +cos 2n

x (n ∈N *

)的值域是__________.

【解析】 (1)y =sin 6

x +cos 6

x =(sin 2

x +cos 2

x )(sin 4

x -sin 2

x cos 2

x +cos 4

x )=sin 4

x -sin 2x cos 2 x +cos 4x =(sin 2 x +cos 2 x )2-3sin 2x cos 2

x =1-34sin 2(2x )=1-38

(1-cos 4x )

=58+38cos 4x ∈????

??14,1. (2)由类比可知,y =sin 2n

x +cos 2n

x 的值域是[2

1-n,

1].

【答案】 (1)????

??14,1 (2)[21-n,

1]

1.法,综合法是由因导果的思维方式,而分析法的思路恰恰相反,它是执果索因的思维方式.

2.分析法和综合法是两种思路相反的推理方法.分析法是倒溯,综合法是顺推,二者各有优缺点.分析法容易探路,且探路与表述合一,缺点是表述易错;综合法条理清晰,易于表述,因此对于难题常把二者交互运用,互补优缺,形成分析综合法,其逻辑基础是充分条件与必要条件.

设a >0,b >0,a +b =1,求证:1a +1b +1

ab

≥8.试用综合法和分析法分

别证明.

【精彩点拨】 (1)综合法:根据a +b =1,分别求1a +1b 与1

ab

的最小值.

(2)分析法:把1ab 变形为a +b ab =1a +1

b

求证.

【规范解答】 法一:(综合法) ∵a >0,b >0,a +b =1,

∴1=a +b ≥2ab ,ab ≤12,ab ≤14,∴1

ab ≥4.

又1a +1b

=(a +b )? ??

??1a +1b =2+b a +a b

≥4,

∴1a +1b +1ab ≥8(当且仅当a =b =1

2时等号成立). 法二:(分析法) ∵a >0,b >0,a +b =1, 要证1a +1b +1

ab

≥8,

只要证? ????1a +1b +

a +

b ab

≥8, 只要证?

????1a +1b +?

??

??1b +1a

≥8,

即证1a +1

b

≥4.

也就是证

a +

b a +a +b

b

≥4. 即证b a +a b

≥2,

由基本不等式可知,当a >0,b >0时,

b a +a

b

≥2成立,所以原不等式成立. [再练一题]

2.(1)已知a ,b ,c 为互不相等的非负数. 求证:a 2

+b 2

+c 2

>abc (a +b +c ).

(2)用分析法证明:2cos(α-β)-sin 2α-β sin α=sin β

sin α.

【证明】 (1)因为a 2

+b 2

≥2ab ,

b 2+

c 2≥2bc ,a 2+c 2≥2ac ,

又因为a ,b ,c 为互不相等的非负数, 所以上面三个式子中都不能取“=”, 所以a 2

+b 2

+c 2

>ab +bc +ac ,

因为ab +bc ≥2ab 2

c ,bc +ac ≥2abc 2

ab +ac ≥2a 2bc ,

又a ,b ,c 为互不相等的非负数, 所以ab +bc +ac >abc (a +b +c ), 所以a 2

+b 2

+c 2

>abc (a +b +c ). (2)要证原等式成立,只需证:

2cos(α-β)sin α-sin(2α-β)=sin β,① 因为①左边=2cos(α-β)sin α-sin[(α-β)+α]

=2cos(α-β)sin α-sin(α-β)cos α-cos(α-β)sin α =cos(α-β)sin α-sin(α-β)cos α =sin β=右边,

所以①成立,即原等式成立.

从反设和已知条件出发,经过一系列正确的逻辑推理,得出矛盾结果,断定反设不成立,从而肯

定结论.反证法的思路:反设→归谬→结论.

设{a n }是公比为q 的等比数列.

(1)推导{a n }的前n 项和公式;

(2)设q ≠1,证明:数列{a n +1}不是等比数列.

【精彩点拨】 (1)利用等比数列的概念及通项公式推导前n 项和公式;(2)利用反证法证明要证的结论.

【规范解答】 (1)设{a n }的前n 项和为S n , 当q =1时,S n =a 1+a 1+…+a 1=na 1; 当q ≠1时,S n =a 1+a 1q +a 1q 2

+…+a 1q

n -1

,①

qS n =a 1q +a 1q 2+…+a 1q n ,②

①-②得,(1-q )S n =a 1-a 1q n

∴S n =a 1 1-q n

1-q ,∴S n =?????

na 1,q =1,a 1 1-q n

1-q

,q ≠1.

(2)证明:假设{a n +1}是等比数列,则对任意的k ∈N *

, (a k +1+1)2

=(a k +1)(a k +2+1),

a 2k +1+2a k +1+1=a k a k +2+a k +a k +2+1,

a 21q 2k +2a 1q k =a 1q

k -1·a 1q k +1+a 1q k -1+a 1q k +1

, ∵a 1≠0,∴2q k =q

k -1

+q

k +1

.

∵q ≠0,∴q 2

-2q +1=0, ∴q =1,这与已知矛盾.

∴假设不成立,故{a n +1}不是等比数列. [再练一题]

3.设{a n },{b n }是公比不相等的两个等比数列,c n =a n +b n .证明:数列{c n }不是等比数列.

【证明】 假设数列{c n }是等比数列,则 (a n +b n )2

=(a n -1+b n -1)(a n +1+b n +1).①

因为{a n },{b n }是公比不相等的两个等比数列,设公比分别为p ,q , 所以a 2

n =a n -1a n +1,b 2

n =b n -1b n +1. 代入①并整理,得 2a n b n =a n +1b n -1+a n -1b n +1

=a n b n ?

??

??p q +q

p

即2=p q +q p

,②

当p ,q 异号时,p q +q p

<0,与②相矛盾; 当p ,q 同号时,由于p ≠q , 所以p q +q p

>2,与②相矛盾. 故数列{c n }不是等比数列.

1.关注点一:其关键点在于“先看项”,弄清等式两边的构成规律,等式两边各有多少项,初始值n 0是多少.

2.关注点二:由n =k 到n =k +1时,除等式两边变化的项外还要利用n =k 时的式子,即利用假设,正确写出归纳证明的步骤,从而使问题得以证明.

已知正数数列{a n }(n ∈N *

)中,前n 项和为S n ,且2S n =a n +1a n

,用数学

归纳法证明:a n =n -n -1.

【规范解答】 (1)当n =1时,a 1=S 1=12? ?

???a 1+1a 1,

所以a 2

1=1(a n >0),所以a 1=1,又1-0=1, 所以n =1时,结论成立.

(2)假设n =k (k ≥1,k ∈N *

)时,结论成立,即a k =k -k -1. 当n =k +1时,a k +1=S k +1-S k =12?

?

???a k +1+1a k +1-12? ????a k +1a k =12? ?

?

??a k +1+1a k +1-

12? ????k -k -1+1k -k -1

=12? ?

???a k +1+1a k +1-k ,

所以a 2

k +1+2ka k +1-1=0,

解得a k +1=k +1-k (a n >0),所以n =k +1时,结论成立. 由(1)(2)可知,对n ∈N *

都有a n =n -n -1. [再练一题]

4.已知f (n )=1+123+133+143+…+1n 3,g (n )=32-12n 2,n ∈N *

.

(1)当n =1,2,3时,试比较f (n )与g (n )的大小; (2)猜想f (n )与g (n )的大小关系,并给出证明.

【解】 (1)当n =1时,f (1)=1,g (1)=1,所以f (1)=g (1); 当n =2时,f (2)=98,g (2)=11

8,所以f (2)

当n =3时,f (3)=251216,g (3)=312

216,所以f (3)

(2)由(1)猜想f (n )≤g (n ),下面用数学归纳法给出证明: ①当n =1,2,3时,不等式显然成立; ②假设当n =k (k ≥3)时不等式成立,即 1+123+133+143+…+1k 3<32-1

2k 2. 那么,当n =k +1时,

f (k +1)=f (k )+

1 k +1 3<32-12k 2+1

k +1

3.

因为12 k +1 2-??????12k 2-1 k +1 3 =

k +32 k +1 3-12k 2=-3k -1

2 k +1 3k

2<0,

所以f (k +1)<32-1

2 k +1

2=g (k +1).

由①②可知,对一切n ∈N *

,都有f (n )≤g (n )成立.

殊的转化;数学归纳法体现的是一般与特殊、有限与无限的转化;反证法体现的是对立与统一的转化.

设二次函数f (x )=ax 2

+bx +c (a ≠0)中的a ,b ,c 都为整数,已知f (0),

f (1)均为奇数,求证:方程f (x )=0无整数根.

【精彩点拨】 假设方程f (x )=0有整数根k ,结合f (0),f (1)均为奇数推出矛盾. 【规范解答】 假设方程f (x )=0有一个整数根k , 则ak 2

+bk +c =0,

∵f (0)=c ,f (1)=a +b +c 都为奇数,

∴a+b必为偶数,ak2+bk为奇数.

当k为偶数时,令k=2n(n∈Z),则ak2+bk=4n2a+2nb=2n(2na+b)必为偶数,与ak2+bk为奇数矛盾;

当k为奇数时,令k=2n+1(n∈Z),则ak2+bk=(2n+1)·(2na+a+b)为一奇数与一偶数乘积,必为偶数,也与ak2+bk为奇数矛盾.

综上可知,方程f(x)=0无整数根.

[再练一题]

5.用数学归纳法证明:当n为正奇数时,x n+y n能被x+y整除.

【证明】设n=2m-1,m∈N*,则x n+y n=x2m-1+y2m-1.

要证明原命题成立,只需证明x2m-1+y2m-1能被x+y整除(m∈N*).

(1)当m=1时,x2m-1+y2m-1=x+y能被x+y整除.

(2)假设当m=k(k∈N*)时命题成立,即x2k-1+y2k-1能被x+y整除,那么当m=k+1时,

x2(k+1)-1+y2(k+1)-1=x2k+2-1+y2k+2-1=x2k-1x2-x2k-1y2+y2k-1y2+x2k-1y2=x2k-1(x2-y2)+y2(x2k-1+y2k-1)=x2k-1(x-y)(x+y)+y2(x2k-1+y2k-1).

因为x2k-1(x-y)(x+y)与y2(x2k-1+y2k-1)均能被x+y整除,

所以当m=k+1时,命题成立.

由(1)(2),知原命题成立.

1.(2015·山东高考)观察下列各式:

C01=40;

C03+C13=41;

C05+C15+C25=42;

C07+C17+C27+C37=43;

……

照此规律,当n∈N*时,

=________.

C02n-1+C12n-1+C22n-1+…+C n-1

2n-1

【解析】观察每行等式的特点,每行等式的右端都是幂的形式,底数均为4,指数与

=4n-1.

等式左端最后一个组合数的上标相等,故有C02n-1+C12n-1+C22n-1+…+C n-1

2n-1

【答案】4n-1

2.(2015·福建高考)一个二元码是由0和1组成的数字串x1x2…x n(n∈N*),其中x k(k =1,2,…,n)称为第k位码元.二元码是通信中常用的码,但在通信过程中有时会发生码元

错误(即码元由0变为1,或者由1变为0).

已知某种二元码x 1x 2…x 7的码元满足如下校验方程组:

????

?

x 4⊕x 5⊕x 6⊕x 7=0,x 2⊕x 3⊕x 6⊕x 7=0,x 1⊕x 3⊕x 5⊕x 7=0,

其中运算⊕定义为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0.现已知一个这种二元码在通信过程中仅在第k 位发生码元错误后变成了1101101,那么利用上述校验方程组可判定k 等于________.

【导学号:01580055】

【解析】 因为x 2⊕x 3⊕x 6⊕x 7=0,所以x 2,x 3,x 6,x 7都正确.又因为x 4⊕x 5⊕x 6⊕x 7

=1,x 1⊕x 3⊕x 5⊕x 7=1,故x 1和x 4都错误,或仅x 5错误.因为条件中要求仅在第k 位发生码元错误,故只有x 5错误.

【答案】 5

3.(2016·北京高考)袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则____.(填序号)

①乙盒中黑球不多于丙盒中黑球 ②乙盒中红球与丙盒中黑球一样多 ③乙盒中红球不多于丙盒中红球 ④乙盒中黑球与丙盒中红球一样多

【解析】 通过随机事件直接分析出现情况的可能性. 取两个球往盒子中放有4种情况: ①红+红,则乙盒中红球数加1; ②黑+黑,则丙盒中黑球数加1;

③红+黑(红球放入甲盒中),则乙盒中黑球数加1;

④黑+红(黑球放入甲盒中),则丙盒中红球数加 1.因为红球和黑球个数一样多,所以①和②的情况一样多,③和④的情况完全随机.

③和④对B 选项中的乙盒中的红球数与丙盒中的黑球数没有任何影响.

①和②出现的次数是一样的,所以对B 选项中的乙盒中的红球数与丙盒中的黑球数的影响次数一样.

综上,选(2). 【答案】 (2)

4.(2015·湖南高考)设a >0,b >0,且a +b =1a +1

b

.证明:

(1)a +b ≥2;

(2)a 2

+a <2与b 2

+b <2不可能同时成立.

【证明】 由a +b =1a +1b =a +b

ab

,a >0,b >0,得ab =1.

(1)由基本不等式及ab =1,有a +b ≥2ab =2,即a +b ≥2,当且仅当a =b =1时等号成立.

(2)假设a 2

+a <2与b 2

+b <2同时成立,则由a 2

+a <2及a >0,得0

+a <2与b 2

+b <2不可能同时成立.

5.(2015·福建高考)已知a >0,b >0,c >0,函数f (x )=|x +a |+|x -b |+c 的最小值为4.

(1)求a +b +c 的值; (2)求14a 2+19

b 2+

c 2

的最小值.

【解】 (1)因为f (x )=|x +a |+|x -b |+c ≥|(x +a )-(x -b )|+c =|a +b |+c , 当且仅当-a ≤x ≤b 时,等号成立. 又a >0,b >0,所以|a +b |=a +b , 所以f (x )的最小值为a +b +c .

又已知f (x )的最小值为4,所以a +b +c =4. (2)由(1)知a +b +c =4,由柯西不等式,得

? ??

??14a 2+19b 2+c 2(4+9+1)≥ ? ??

??a 2×2+b 3×3+c ×12=(a +b +c )2=16,即14a 2+19b 2+c 2≥87. 当且仅当12a 2=1

3b 3=c 1,即a =87,b =187,c =27时等号成立,故14a 2+19b 2+c 2的最小值是8

7.

6.(2016·北京高考)设数列A :a 1,a 2,…,a N (N ≥2).如果对小于n (2≤n ≤N )的每个正整数k 都有a k

(1)对数列A :-2,2,-1,1,3,写出G (A )的所有元素; (2)证明:若数列A 中存在a n 使得a n >a 1,则G (A )≠?;

(3)证明:若数列A 满足a n -a n -1≤1(n =2,3,…,N ),则G (A )的元素个数不小于a N -

a 1.

高中数学选修2-2推理与证明 直接证明与间接证明

2.2.1综合法和分析法 [学习目标] 1.了解直接证明的两种基本方法:分析法与综合法.2.了解分析法和综合法的思维过程和特点.3.会用分析法、综合法证明实际问题. 知识点一综合法 1.定义 一般地,利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法. 2.基本模式 综合法的证明过程如下: 已知条件?…?…?结论 即用P表示已知条件、已有的定义、公理、定理等,Q表示所要证明的结论,则综合法用框图可表示为: P?Q1→Q1?Q2→Q2?Q3→…→Q n?Q 3.综合法的证明格式 因为…,所以…,所以…,…,所以…成立. 思考综合法的推理过程是合情推理还是演绎推理? 答案演绎推理. 知识点二分析法 1.分析法 一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法. 2.基本模式

用Q 表示要证明的结论,P 表示条件,则分析法可用框图表示为: Q ?P 1→P 1?P 2→P 2?P 3→…→得到一个明显成立的条件 3.分析法的证明格式 要证…,只需证…,只需证…,…,因为…成立,所以…成立. 思考 分析法与综合法有哪些异同点? 答案 相同点:两者都是直接利用原命题的条件(或结论),逐步推得命题成立的证明方法——直接证明法.不同点:证法1,由因导果,使用综合法;证法2,执果索因,使用分析法. 题型一 综合法的应用 例1 已知a ,b 是正数,且a +b =1,求证:1a +1 b ≥4. 证明 方法一 ∵a ,b 是正数,且a +b =1, ∴a +b ≥2ab ,∴ab ≤12,∴1a +1b =a +b ab =1 ab ≥4. 方法二 ∵a ,b 是正数,∴a +b ≥2ab >0, 1a +1 b ≥2 1 ab >0, ∴(a +b )???? 1a +1b ≥4. 又a +b =1,∴1a +1b ≥4. 方法三 1a +1b =a +b a +a +b b =1+b a +a b +1≥2+2 b a ·a b =4.当且仅当a =b 时,取“=”号. 反思与感悟 利用综合法证明问题的步骤: (1)分析条件选择方向:仔细分析题目的已知条件(包括隐含条件),分析已知与结论之间的联系与区别,选择相关的公理、定理、公式、结论,确定恰当的解题方法. (2)转化条件组织过程:把题目的已知条件,转化成解题所需要的语言,主要是文字、符号、图形三种语言之间的转化,组织过程时要有严密的逻辑,简洁的语言,清晰的思路. (3)适当调整回顾反思:解题后回顾解题过程,可对部分步骤进行调整,并对一些语言进行适当的修饰,反思总结优化解法. 跟踪训练1 已知a ,b ,c ∈R ,且它们互不相等,求证a 4+b 4+c 4>a 2b 2+b 2c 2+c 2a 2. 证明 ∵a 4+b 4≥2a 2b 2,b 4+c 4≥2b 2c 2,a 4+c 4≥2a 2c 2,∴2(a 4+b 4+c 4)≥2(a 2b 2+b 2c 2+c 2a 2), 即a 4+b 4+c 4≥a 2b 2+b 2c 2+c 2a 2. 又∵a ,b ,c 互不相等. ∴a 4+b 4+c 4>a 2b 2+b 2c 2+c 2a 2.

高中数学专题讲义-直接证明与间接证明

题型一:综合法 【例1】若 11 0a b <<,则下列结论不正确的是 ( ) A.22a b < B.2ab b < C.2b a a b +> D.a b a b -=- 【例2】如果数列{}n a 是等差数列,则( )。 (A )1845a a a a +<+ (B ) 1845a a a a +=+ (C )1845a a a a +>+ (D )1845a a a a = 【例3】在△ABC 中若2sin b a B =,则A 等于( ) (A)003060或 (B)004560或 (C)0060120或 (D)0030150或 【例4】下列四个命题:①若1 02 a << ,则()()cos 1cos 1a a +<-;②若01a <<,则11a -1a >+>2a ;③若x 、y ∈R ,满足2y x =,则()2log 22x y +的最小值是7 8;④ 若a 、b ∈R ,则221a b ab a b +++>+。其中正确的是( )。 (A) ①②③ (B) ①②④ (C) ②③④ (D) ①②③④ 【例5】下面的四个不等式:①ca bc ab c b a ++≥++222;②()4 1 1≤ -a a ;③2≥+a b b a ;④()()()2 2222bd ac d c b a +≥+?+.其中不成立的有 (A )1个 (B )2个 (C )3个 (D )4个 【例6】已知,a b R ∈且,0a b ≠,则在① ab b a ≥+222;②2≥+b a a b ; 典例分析 板块二.直接证明与 间接证明

③2 )2 (b a ab +≤;④2)2(222b a b a +≤+这四个式子中,恒成立的个数是 ( ) A 1个 B 2个 C 3个 D 4个 【例7】已知c b a ,,均大于1,且4log log =?c b c a ,则下列各式中,一定正确的是 ( ) A b ac ≥ B c ab ≥ C a bc ≥ D c ab ≤ 【例8】已知不等式1()()9,a x y x y ++≥对任意正实数x ,y 恒成立,则正实数a 的最小值是 ( ) A .2 B .4 C .6 D .8 【例9】α、β为锐角()sin a αβ=+,sin sin b αβ=+,则a 、b 之间关系为 ( ) A .a b > B .b a > C .a b = D .不确定 【例10】设M 是ABC ?内一点,且AB AC ?=u u u r u u u r 30BAC ∠=?,定义()(,,)f M m n p =, 其中m 、n 、p 分别是MBC ?,MCA ?,MAB ?的面积,若1 ()(,,)2 f P x y =,则14x y + 的最小值是 ( ) A .8 B .9 C .16 D .18 【例11】若函数32)1(2++-=mx x m y 是偶函数,则)4 3(-f ,)1(2+-a a f (a ∈R ) 的大小关系是)4 3(-f )1(2+-a a f . 【例12】设≥++=++>>>c b a c b a c b a 111 ,1,0,0,0则若 【例13】函数()y f x =在(0,2)上是增函数,函数()2y f x =+是偶函数,则 ()1f ,()2.5f ,()3.5f 的大小关系是 . 【例14】已知 5,2==b a ρρ,向量b a ρρ与的 夹角为0 120,则a b a ρρρ.)2(-=

高中数学课本中的定理公式结论的证明

数学课本中的定理、公式、结论的证明 数学必修一 第一章 集合(无) 第二章 函数(无) 第三章 指数函数和对数函数 1.对数的运算性质: 如果 a > 0 , a 1, M > 0 ,N > 0, 那么 (1)log ()log log a a a MN M N =+; (2)log log -log a a a M M N N =; (3)log log ()n a a M n M n R =∈. 根据指数幂的运算性质证明对数的运算性质 证明:(性质1)设log a M p =,log a N q =,由对数的定义可得 p M a =,q N a =, ∴p q p q MN a a a +=?=, ∴log ()a MN =p q +, 即证得log log log a a a MN M N =+. 证明:(性质2)设log a M p =,log a N q =, 由对数的定义可得 p M a =,q N a =, ∴ q p q p a a a N M -==, ∴q p N M a -=log , 即证得log log -log a a a M M N N =. 证明(性质3)设log a M p =,由对数的定义可得 p M a =, ∴n np M a =, ∴log n a M np =, 即证得log log n a a M n M =.

第四章函数应用(无) 数学必修二 第一章立体几何初步 直线与平面、平面与平面平行、垂直的判定定理与性质定理的证明. 1、直线与平面平行的判定定理 若平面外一条直线与此平面内一条直线平行,则该直线与此平面平行. 2、平面与平面平行的判定定理 如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.

高二数学 归纳推理演绎推理

3月5日 高二理科数学测试题 1.由直线与圆相切时,圆心到切点连线与直线垂直,想到平面与球相切时,球心与切点连线与平面垂直,用的是 ( ) A .归纳推理 B .演绎推理 C .类比推理 D .传递性推理 2.下列正确的是( ) A .类比推理是由特殊到一般的推理 B .演绎推理是由特殊到一般的推理 C .归纳推理是由个别到一般的推理 D .合情推理可以作为证明的步骤 3.下面几种推理中是演绎推理.... 的序号为( ) A .半径为r 圆的面积2S r π=,则单位圆的面积S π=; B .由金、银、铜、铁可导电,猜想:金属都可导电; C .由平面三角形的性质,推测空间四面体性质; D .由平面直角坐标系中圆的方程为222()()x a y b r -+-=,推测空间直角坐标系中球的方程为2222()()()x a y b z c r -+-+-= . 4.“∵四边形ABCD 是矩形,∴四边形ABCD 的对角线相等”,补充以上推理的大前提是 ( ) A .正方形都是对角线相等的四边形 B .矩形都是对角线相等的四边形 C .等腰梯形都是对角线相等的四边形 D .矩形都是对边平行且相等的四边形 5.设 f 0(x )=sin x ,f 1(x )=f ′0(x ),f 2(x)=f ′1(x ),…,f n (x )=f ′n -1(x ),n ∈N ,则f 2009(x )=( ) A .sin x B .-sin x C .cos x D .-cos x 6.命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命 题,推理错误的原因是( ) A .使用了归纳推理 B .使用了类比推理 C .使用了“三段论”,但大前提使用错误 D .使用了“三段论”,但小前提使用错误 7.观察下列等式: 1- ; 1- ;1- ...... 据此规律,第n 个等式可为______________________. 8.观察下列等式:,……,根据上述规律, 第五个等式为 ______________________. 1122=1111123434+-=+1111111123456456+-+-=++332123,+=3332 1236,++=33332123410+++=

新课标高中数学《推理与证明》知识归纳总结

《推理与证明》知识归纳总结 第一部分 合情推理 学习目标: 了解合情推理的含义(易混点) 理解归纳推理和类比推理的含义,并能运用它进行简单的推理(重点、难点) 了解合情推理在数学发展中的作用(难点) 一、知识归纳: 合情推理可分为归纳推理和类比推理两类: 归纳推理: 1.归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理.简言之,归纳推理是由部分到整体、由个别到一般的推理. 2.归纳推理的一般步骤: 第一步,通过观察个别情况发现某些相同的性质; 第二步,从已知的相同性质中推出一个明确表述的一般命题(猜想). 思考探究: 1.归纳推理的结论一定正确吗? 2.统计学中,从总体中抽取样本,然后用样本估计总体,是否属归纳推理? 题型1 用归纳推理发现规律 1、观察 < < ;….对于任意正实数,a b , ≤成立的一个条件可以是 ____. 点拨:前面所列式子的共同特征特征是被开方数之和为22,故22=+b a

2、蜜蜂被认为是自然界中最杰出的建筑师,单个蜂 巢可以近似地看作是一个正六边形,如图为一组蜂 巢的截面图. 其中第一个图有1个蜂巢,第二个图 有7个蜂巢,第三个图有19个蜂巢,按此规律,以 ()f n 表示第n 幅图的蜂巢总数.则(4)f =_____;()f n =___________. 【解题思路】找出)1()(--n f n f 的关系式 [解析],1261)3(,61)2(,1)1(++=+==f f f 37181261)4(=+++=∴f 133)1(6181261)(2+-=-+++++=∴n n n n f 总结:处理“递推型”问题的方法之一是寻找相邻两组数据的关系 类比推理 1.类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理.简言之,类比推理是由特殊到特殊的推理. 2.类比推理的一般步骤: 第一步:找出两类对象之间可以确切表述的相似特征; 第二步:用一类对象的已知特征去推测另一类对象的特征,从而得出一个猜想. 思考探究: 1.类比推理的结论能作为定理应用吗? 2.(1)圆有切线,切线与圆只交于一点,切点到圆心的距离等于半径.由此结论如何类比到球体? (2)平面内不共线的三点确定一个圆.由此结论如何类比得到空间的结论? 题型2 用类比推理猜想新的命题 [例]已知正三角形内切圆的半径是高的 13,把这个结论推广到空间正四面体,类似的结论是______. 【解题思路】从方法的类比入手 [解析]原问题的解法为等面积法,即h r ar ah S 3121321=??== ,类比问题的解法应为等体积法, h r Sr Sh V 4131431=??==即正四面体的内切球的半径是高4 1 总结:(1)不仅要注意形式的类比,还要注意方法的类比 (2)类比推理常见的情形有:平面向空间类比;低维向高维类比;等差数列与等比数列类比;实数集的性质向复数集的性质类比;圆锥曲线间的类比等

高中数学四大推理方法巧解证明题

高中数学四大推理方法巧解证明题 高中数学四大推理方法巧解证明题 高中数学是数学各种基础知识的总结和归纳,同时也是以前所学到的数学知识的深化和检验。针对高中数学的这一特性,可以通过四大推理方法来进行证明题的解答,不但可以掌握数学知识脉络,也可以把所学到的知识上升到思维层面,使自己可以综合运用数学知识,达到学以致用的目的。 一、合情推理法 在高中数学证明题的解答过程中使用合情推理,有着比较重要的作用以及影响。比较常用的合情推理法就是类比推理法,这是一种从特殊转向特殊的推理方法,两种类似对象间的推理,一个对象有着某个性质,而另一个对象同时也有类似性质。进行类比时,对已知对象性质推理的过程进行充分的考虑,之后类比推导出类比对象性质。高中数学知识的结构很复杂,难度也比其他学科大,而通过合情推理法,并结合多种的思维方法,使学生可以进行思考和分析,也培养了学生对于数学学习的兴趣,提高了学生数学的学习能力。所以,合情推理法是一种很好的解答高中数学证明题的方法。 二、演绎推理法 对于演绎推理法来说,这是一种从一般转向特殊的推理方法,高中数学证明题的证明过程大都是通过演绎推理来证明的,保证演绎推理的前提以及形式正确,就能保证结论是正确的,同时要注意推理的过程具有正确性以及完备性。

三、间接和直接证明法 (一)直接证明法 直接证明法比较常见的就是综合法以及分析法。其中,综合法就是利用已知的条件以及数学定理和公理等,进行推理论证,之后推导出结论成立。综合法也被称作为顺推证法或者由因导果法。而分析法是从结论出发,对结论充分成立的条件进行逐步的寻求,把结论归纳总结成明显成立的一个条件。 (二)间接证明法 间接证明法比较常用的就是反证法,其证明步骤为首先反设,之后归谬,最后存真。首先假设结论不成立,就是把结论反面假设为真,之后的归谬就是在己知条件和反设背景下推理,得出同假设命题相矛盾的结论,最后的存真就是由归谬得出的结果进行反设命题不真的断定,来说明原先结论是成立的。 四、归纳推理法 同上述的推理方法相比较来说,归纳推理法注重对高中数学知识总体的规划,总结和归纳所学到知识。我们都知道,高中数学的知识点比较多,每个知识点之间都有着一定的关系,一道证明题中,可能存在几个知识点,如果同学们不能归纳知识的话,短时间内就不能看出题目中知识点之间的联系,就会严重影响题目的解答。 在高中数学的证明题目中,虽然有限的研究对象比较常见,但是,更为常见的是研究对象众多,一些特定的情况下研究对象可能是无穷的,同学们很难找到突破口。如果同学们把研究对象根据形成的情况

(经典)高中数学正弦定理的五种全证明方法

(经典)高中数学正弦定理的五种全证明方法

————————————————————————————————作者:————————————————————————————————日期:

高中数学正弦定理的五种证明方法 ——王彦文 青铜峡一中 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B = ,同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = .从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 = ∠sin sin a b A ABC ,同理可得 = ∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即 sin sin a b A B = sin c C = . 2.利用三角形面积证明正弦定理 已知△ABC,设BC =a, CA =b,AB =c,作AD⊥BC,垂足为D 则Rt△ADB 中,AB AD B =sin ∴S △ABC =B ac AD a sin 2121=?同理,可证 S △ABC =A bc C ab sin 21 sin 21= ∴ S △ABC =B ac A bc C ab sin 2 1 sin 21sin 21== 在等式两端同除以ABC,可得b B a A c C sin sin sin ==即C c B b A a sin sin sin ==. 3.向量法证明正弦定理 (1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于AC ,则j 与AB 的夹角为90°-A ,j 与 CB 的夹角为90°-C 由向量的加法原则可得 AB CB AC =+ a b D A B C A B C D b a D C B A

高中数学 数学归纳法

13.4 数学归纳法 一、填空题 1.用数学归纳法证明1+12+13…+1 2n -1<n (n ∈N ,且n >1),第一步要证的不 等式是________. 解析 n =2时,左边=1+12+122-1=1+12+1 3,右边=2. 答案 1+12+1 3<2 2.用数学归纳法证明: 121×3+223×5+…+n 2(2n -1)(2n +1)=n(n +1)2(2n +1);当推证当n =k +1等式也成立时,用上归纳假设后需要证明的等式是 . 解析 当n =k +1时,121×3+223×5+…+k 2(2k -1)(2k +1)+(k +1)2(2k +1)(2k +3) =k(k +1)2(2k +1)+(k +1)2 (2k +1)(2k +3) 故只需证明k(k +1)2(2k +1)+(k +1)2(2k +1)(2k +3)=(k +1)(k +2) 2(2k +3)即可. 答案 k(k +1)2(2k +1)+(k +1)2(2k +1)(2k +3)=(k +1)(k +2) 2(2k +3) 3.若f (n )=12+22+32+…+(2n )2,则f (k +1)与f (k )的递推关系式是________. 解析 ∵f (k )=12+22+…+(2k )2, ∴f (k +1)=12+22+…+(2k )2+(2k +1)2+(2k +2)2; ∴f (k +1)=f (k )+(2k +1)2+(2k +2)2. 答案 f (k +1)=f (k )+(2k +1)2+(2k +2)23.若存在正整数m ,使得f (n )= (2n -7)3n +9(n ∈N *)能被m 整除,则m =________. 解析 f (1)=-6,f (2)=-18,f (3)=-18,猜想:m =-6. 答案 6 4.用数学归纳法证明“n 3+(n +1)3+(n +2)3(n ∈N *)能被9整除”,要利用归纳

高中数学选修2-2推理与证明教(学)案及章节测试及答案

推理与证明 一、核心知识 1.合情推理 (1)归纳推理的定义:从个别事实中推演出一般性的结论,像这样的推理通常称为归纳推理。归纳推理是由部分到整体,由个别到一般的推理。 (2)类比推理的定义:根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其他方面也相似或相同,这样的推理称为类比推理。类比推理是由特殊到特殊的推理。 2.演绎推理 (1)定义:演绎推理是根据已有的事实和正确的结论(包括定义、公理、定理等)按照严格的逻辑法则得到新结论的推理过程。演绎推理是由一般到特殊的推理。 (2)演绎推理的主要形式:三段论 “三段论”可以表示为:①大前题:M 是P②小前提:S 是M ③结论:S 是 P。其中①是大前提,它提供了一个一般性的原理;②是小前提,它指出了一个特殊对象;③是结论,它是根据一般性原理,对特殊情况做出的判断。 3.直接证明 直接证明是从命题的条件或结论出发,根据已知的定义、公理、定理,直接推证结论的真实性。直接证明包括综合法和分析法。 (1)综合法就是“由因导果” ,从已知条件出发,不断用必要条件代替前面的条件,直至推出要证的结论。 (2)分析法就是从所要证明的结论出发,不断地用充分条件替换前面的条件或者一定成立的式子,可称为“由果索因” 。要注意叙述的形式:要证 A,只要证 B,B 应是 A 成立的充分条件. 分析法和综合法常结合使用,不要将它们割裂开。 4反证法 (1)定义:是指从否定的结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的证明方法。 (2)一般步骤:(1)假设命题结论不成立,即假设结论的反面成立;②从假设出发,经过推理论证,得出矛盾;③从矛盾判定假设不正确,即所求证命题正

高一数学直接证明与间接证明练习题

推理与证明综合测试题 一、选择题 1.分析法是从要证明的结论出发,逐步寻求使结论成立的( ) A.充分条件 B.必要条件 C.充要条件 D.等价条件 答案:A 2.结论为:n n x y +能被x y +整除,令1234n =, ,,验证结论是否正确,得到此结论成立的条件可以为( ) A.n *∈N B.n *∈N 且3n ≥ C.n 为正奇数 D.n 为正偶数 答案:C 3.在ABC △中,sin sin cos cos A C A C >,则ABC △一定是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.不确定 答案:C 4.在等差数列{}n a 中,若0n a >,公差0d >,则有4637a a a a >··,类经上述

性质,在等比数列{}n b 中,若01n b q >>,,则4578b b b b ,,,的一个不等关系是( ) A.4857b b b b +>+ B.5748b b b b +>+ C.4758b b b b +>+ D.4578b b b b +>+ 答案:B 5.(1)已知332p q +=,求证2p q +≤,用反证法证明时,可假设2p q +≥, (2)已知a b ∈R ,,1a b +<,求证方程20x ax b ++=的两根的绝对值都小于1.用反证法证明时可假设方程有一根1x 的绝对值大于或等于1,即假设11x ≥,以下结论正确的是( ) A.(1)与(2)的假设都错误 B.(1)与(2)假设都正确 C.(1)的假设正确;(2)的假设错误 D.(1)的假设错误;(2)的假设正确 答案:D 6.观察式子:213122+ <,221151233++<,2221117 12344 +++<,,则可归纳 出式子为( ) A.22211 111(2)2321n n n ++++<-≥ B.22 211111(2)2321 n n n + +++ <+≥

高中数学相关定理及证明

高中数学相关定理、公式及结论证明 汉阴中学正弦定理证明 内容:在ABC ?中,c b a ,,分别为角C B A ,,的对边,则.sin sin sin C c B b A a == 证明: 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD , 根据锐角三角函数的定义,有sin CD b A ==sin CD a B 。 由此,得 sin sin a b A B = , 同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = . 从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高, 交AB 的延长线于点D ,根据锐角三角函数的定义, 有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。 由此,得 =∠sin sin a b A ABC ,同理可得 =∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . (3)在ABC Rt ?中,,sin ,sin c b B c a A == ∴ c B b A a ==sin sin , .1sin ,90=?=C C Θ.sin sin sin C c B b A a ==∴ 由(1)(2)(3)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 2.外接圆证明正弦定理 在△ABC 中,已知BC=a,AC=b,AB=c,作△ABC 的外接圆,O 为圆心, 连结BO 并延长交圆于B ′,设BB ′=2R.则根据直径所对的圆周 角是直角以及同弧所对的圆周角相等可以得到 ∠BAB ′=90°,∠C =∠B ′, ∴sin C =sin B ′=R c B C 2sin sin ='=. ∴R C c 2sin =. 同理,可得R B b R A a 2sin ,2sin ==.∴R C c B b A a 2sin sin sin ===. 3.向量法证明正弦定理 a b D A B C A B C D b a

高中数学证明公式

高中数学证明公式数学公式 抛物线:y = ax *+ bx + c 就是y等于ax 的平方加上 bx再加上 c a > 0时开口向上 a < 0时开口向下 c = 0时抛物线经过原点 b = 0时抛物线对称轴为y轴 还有顶点式y = a(x+h)* + k 就是y等于a乘以(x+h)的平方+k -h是顶点坐标的x k是顶点坐标的y 一般用于求最大值与最小值 抛物线标准方程:y^2=2px 它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2 由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py 圆:体积=4/3(pi)(r^3) 面积=(pi)(r^2) 周长=2(pi)r 圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标 圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0 (一)椭圆周长计算公式 椭圆周长公式:L=2πb+4(a-b) 椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。 (二)椭圆面积计算公式 椭圆面积公式:S=πab 椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。 以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。常数为体,公式为用。 椭圆形物体体积计算公式椭圆的长半径*短半径*PAI*高 三角函数: 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA) 倍角公式 tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cota cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0 cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及 sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0 ·万能公式: sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] 半角公式

苏教版数学高二- 选修2-2试题 《合情推理—归纳推理》(1)

2.1.1 合情推理—归纳推理 同步检测 一、基础过关 1.数列5,9,17,33,x ,…中的x 等于________ 2.f(n)=1+12+13+…+1n (n ∈N *),计算得f(2)=32,f(4)>2,f(8)>52,f(16)>3,f(32)>7 2, 推测当n≥2时,有________. 3.已知sin 230°+sin 290°+sin 2150°=32,sin 25°+sin 265°+sin 2125°=3 2. 通过观察上述两等 式的规律,请你写出一个一般性的命题:____________________. 4.已知a 1=3,a 2=6且a n +2=a n +1-a n ,则a 33=________. 5.数列-3,7,-11,15,…的通项公式是________. 二、能力提升 6.设x ∈R ,且x≠0,若x +x - 1=3,猜想x2n +x -2n (n ∈N *)的个位数字是________. 7.如图,观察图形规律,在其右下角的空格处画上合适的图形,应为________. 8.如图所示四个图形中,着色三角形的个数依次构成一个数列的前4项,则这个数列的一个通项公式为________. 9.如图所示,图(a)是棱长为1的小正方体,图(b)、图(c)是由这样的小正方体摆放而成.按照这样的方法继续摆放,自上而下分别叫第1层,第2层,…,第n 层.第n 层的小正方体的个数记为S n .解答下列问题. (1)按照要求填表:

n 1 2 3 4 … S n 1 3 6 … (2)S 10=________.(3)S n 10.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上面画点或用小石子表示数.他们研究过如图所示的三角形数: 将三角形数1,3,6,10,…记为数列{a n },将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n },可以推测: (1)b 2 012是数列{a n }中的第______项; (2)b 2k -1=________.(用k 表示) 11.已知数列{a n }的前n 项和为S n ,a 1=1且S n -1+1 S n +2=0(n≥2),计算S 1,S 2,S 3,S 4, 并猜想S n 的表达式. 12.一条直线将平面分成2个部分,两条直线最多将平面分成4个部分. (1)3条直线最多将平面分成多少部分? (2)设n 条直线最多将平面分成f(n)部分,归纳出f(n +1)与f(n)的关系; (3)求出f(n). 三、探究与拓展 13.在一容器内装有浓度r%的溶液a 升,注入浓度为p%的溶液1 4a 升,搅匀后再倒出溶 液1 4a 升,这叫一次操作,设第n 次操作后容器内溶液的浓度为b n ,计算b 1、b 2、b 3,并归纳出计算公式.

2020年高考理科数学《推理与证明》题型归纳与训练

福利:本教程由捡漏优惠券(https://www.doczj.com/doc/a115025634.html, )整理提供 领红包:支付宝首页搜索“527608834”即可领取支付宝红包哟 领下面余额宝红包才是大红包,一般都是5-10元 支付的时候把选择余额宝就行呢 每天都可以领取早餐钱哟! 2020年高考理科数学《推理与证明》题型归纳与训练 合情推理与演绎推理 题型一 归纳推理 1 与数字有关的等式的推理 【易错点】 例1观察下列等式: ????sin π3-2+????sin 2π3-2=43 ×1×2; ????sin π5-2+????sin 2π5-2+????sin 3π5-2+????sin 4π5-2=43×2×3; ????sin π7-2+????sin 2π7-2+????sin 3π7-2+…+????sin 6π7-2=43×3×4; ????sin π9-2+????sin 2π9-2+????sin 3π9-2+…+????sin 8π9-2=43 ×4×5; … 照此规律,????sin π2n +1-2+????sin 2π2n +1-2+????sin 3π2n +1-2+…+??? ?sin 2n π2n +1- 2=__________. 【答案】 4 3 ×n ×(n +1) 【解析】观察等式右边的规律:第1个数都是4 3,第2个数对应行数n ,第3个数为n +1. 2 与不等式有关的推理 例2已知a i >0(i =1,2,3,…,n ),观察下列不等式: a 1+a 2 2≥a 1a 2; a 1+a 2+a 33≥3 a 1a 2a 3; a 1+a 2+a 3+a 44≥4 a 1a 2a 3a 4; … 照此规律,当n ∈N *,n ≥2时,a 1+a 2+…+a n n ≥______. 【答案】 n a 1a 2…a n

2019-2020年高中数学选修1-2合情推理

2019-2020年高中数学选修1-2合情推理 教学目标: 结合已学过的数学实例和生活中的实例,了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用 教学重点: 了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用 教学过程 一、引入新课 1归纳推理 (一)什么是归纳推理 归纳推理的前提是一些关于个别事物或现象的命题,而结论则是关于该类事物或现象的普遍性命题。归纳推理的结论所断定的知识范围超出了前提所断定的知识范围,因此,归纳推理的前提与结论之间的联系不是必然性的,而是或然性的。也就是说,其前提真而结论假是可能的,所以,归纳推理乃是一种或然性推理。 拿任何一种草药来说吧,人们为什么会发现它能治好某种疾病呢?原来,这是经过我们先人无数次经验(成功的或失败的)的积累的。由于某一种草无意中治好了某一种病,第二次,第三次,……都治好了这一种病,于是人们就把这几次经验积累起来,做出结论说,“这种草能治好某一种病。”这样,一次次个别经验的认识就上升到对这种草能治某一种病的一般性认识了。这里就有着归纳推理的运用。 (二)归纳推理与演绎推理的区别和联系 归纳推理与演绎推理的主要区别是:首先,从思维运动过程的方向来看,演绎推理是从一般性的知识的前提推出一个特殊性的知识的结论,即从一般过渡到特殊;而归纳推理则是从一些特殊性的知识的前提推出一个一般性的知识的结论,即从特殊过渡到一般。其实,从前提与结论联系的性质来看,演绎推理的结论不超出前提所断定的范围,其前提和结论之间的联系是必然的,即其前提真而结论假是不可能的。一个演绎推理只要前提真实并且推理形式正确,那么,其结论就必然真实。而归纳推理(完全归纳推理除外)的结论却超出了前提所断定的范围,其前提和结论之间的联系不是必然的,而只具有或然性,即其前提真而结论假是有可能的。也就是说,即使其前提都真也并不能保证结论是必然真实的。 归纳推理与演绎推理虽有上述区别,但它们在人们的认识过程中是紧密的联系着的,两者互相依赖、互为补充,比如说,演绎推理的一般性知识的大前提必须借助于归纳推理从具体的经验中概括出来,从这个意义上我们可以说,没有归纳推理也就没有演绎推理。当然,归纳推理也离不开演绎推理。比如,归纳活动的目的、任务和方向是归纳过程本身所不能解决和提供的,这只有借助于理论思维,依靠人们先前积累的一般性理论知识的指导,而这本身就是一种演绎活动。而且,单靠归纳推理是不能证明必然性的,因此,在归纳推理的过程中,人们常常需要应用演绎推理对某些归纳的前提或者结论加以论证。从这个意义上我们也可以说,没有演绎推理也就不可能有归纳推理。 (三)观察与实验 归纳推理是一种由特殊性知识的前提得出一般性知识的结论的推理。当然,人们在进行归纳推理的时候,总是先要搜集到一定的事实材料,有了个别性的、特殊性的知识作为前提,

高中数学四大推理方法巧解证明题.doc

高中数学四大推理方法巧解证明题- 高中数学是数学各种基础知识的总结和归纳,同时也是以前所学到的数学知识的深化和检验。针对高中数学的这一特性,可以通过四大推理方法来进行证明题的解答,不但可以掌握数学知识脉络,也可以把所学到的知识上升到思维层面,使自己可以综合运用数学知识,达到学以致用的目的。 一、合情推理法 在高中数学证明题的解答过程中使用合情推理,有着比较重要的作用以及影响。比较常用的合情推理法就是类比推理法,这是一种从特殊转向特殊的推理方法,两种类似对象间的推理,一个对象有着某个性质,而另一个对象同时也有类似性质。进行类比时,对已知对象性质推理的过程进行充分的考虑,之后类比推导出类比对象性质。高中数学知识的结构很复杂,难度也比其他学科大,而通过合情推理法,并结合多种的思维方法,使学生可以进行思考和分析,也培养了学生对于数学学习的兴趣,提高了学生数学的学习能力。所以,合情推理法是一种很好的解答高中数学证明题的方法。 二、演绎推理法 对于演绎推理法来说,这是一种从一般转向特殊的推理方法,高中数学证明题的证明过程大都是通过演绎推理来证明的,保证演绎推理的前提以及形式正确,就能保证结论是正确的,同时要注意推理的过程具有正确性以及完备性。 三、间接和直接证明法 (一)直接证明法 直接证明法比较常见的就是综合法以及分析法。其中,综

合法就是利用已知的条件以及数学定理和公理等,进行推理论证,之后推导出结论成立。综合法也被称作为顺推证法或者由因导果法。而分析法是从结论出发,对结论充分成立的条件进行逐步的寻求,把结论归纳总结成明显成立的一个条件。 (二)间接证明法 间接证明法比较常用的就是反证法,其证明步骤为首先反设,之后归谬,最后存真。首先假设结论不成立,就是把结论反面假设为真,之后的归谬就是在己知条件和反设背景下推理,得出同假设命题相矛盾的结论,最后的存真就是由归谬得出的结果进行反设命题不真的断定,来说明原先结论是成立的。 四、归纳推理法 同上述的推理方法相比较来说,归纳推理法注重对高中数学知识总体的规划,总结和归纳所学到知识。我们都知道,高中数学的知识点比较多,每个知识点之间都有着一定的关系,一道证明题中,可能存在几个知识点,如果同学们不能归纳知识的话,短时间内就不能看出题目中知识点之间的联系,就会严重影响题目的解答。 在高中数学的证明题目中,虽然有限的研究对象比较常见,但是,更为常见的是研究对象众多,一些特定的情况下研究对象可能是无穷的,同学们很难找到突破口。如果同学们把研究对象根据形成的情况进行分类,之后根据分类在进行证明,假如每种情况都可以得到证明,那么所得到的结论就必然是正确的,这种分类证明、归纳方法,可以使同学们找到突破口,从而使证明题得到解答。 结束语: 在数学证明题的实际解答过程中,要根据题目的具体情景

(经典)高中数学正弦定理的五种最全证明方法

(经典)高中数学正弦定理的五种最全证明方法

高中数学正弦定理的五种证明方法 ——王彦文 青铜峡一中 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B = ,同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = .从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 = ∠sin sin a b A ABC ,同理可得 = ∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即 sin sin a b A B = sin c C = . 2.利用三角形面积证明正弦定理 已知△ABC,设BC =a, CA =b,AB =c,作AD⊥BC,垂足为 D.则Rt△ADB 中,AB AD B =sin ,∴AD=AB·sinB=csinB. ∴S △ABC =B ac AD a sin 2121=?.同理,可证 S △ABC =A bc C ab sin 21 sin 21=. ∴ S △ABC =B ac A bc C ab sin 2 1 sin 21sin 21==.∴absinc=bcsinA=acsinB, 在等式两端同除以ABC,可得b B a A c C sin sin sin ==.即C c B b A a sin sin sin ==. 3.向量法证明正弦定理 (1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于AC ,则j 与AB 的夹角为90°-A ,j 与 CB 的夹角为90°-C .由向量的加法原则可得 AB CB AC =+, a b D A B C B C D b a D C B A

相关主题
文本预览
相关文档 最新文档